8171244: PPC64: Make interpreter's math entries consistent with C1 and C2 and support FMA
Reviewed-by: kvn, goetz
/*
* Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
#define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
#include "asm/register.hpp"
// definitions of various symbolic names for machine registers
// First intercalls between C and Java which use 8 general registers
// and 8 floating registers
// we also have to copy between x86 and ARM registers but that's a
// secondary complication -- not all code employing C call convention
// executes as x86 code though -- we generate some of it
class Argument VALUE_OBJ_CLASS_SPEC {
public:
enum {
n_int_register_parameters_c = 8, // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
n_float_register_parameters_c = 8, // v0, v1, ... v7 (c_farg0, c_farg1, ... )
n_int_register_parameters_j = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
n_float_register_parameters_j = 8 // v0, v1, ... v7 (j_farg0, j_farg1, ...
};
};
REGISTER_DECLARATION(Register, c_rarg0, r0);
REGISTER_DECLARATION(Register, c_rarg1, r1);
REGISTER_DECLARATION(Register, c_rarg2, r2);
REGISTER_DECLARATION(Register, c_rarg3, r3);
REGISTER_DECLARATION(Register, c_rarg4, r4);
REGISTER_DECLARATION(Register, c_rarg5, r5);
REGISTER_DECLARATION(Register, c_rarg6, r6);
REGISTER_DECLARATION(Register, c_rarg7, r7);
REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
// Symbolically name the register arguments used by the Java calling convention.
// We have control over the convention for java so we can do what we please.
// What pleases us is to offset the java calling convention so that when
// we call a suitable jni method the arguments are lined up and we don't
// have to do much shuffling. A suitable jni method is non-static and a
// small number of arguments
//
// |--------------------------------------------------------------------|
// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 |
// |--------------------------------------------------------------------|
// | r0 r1 r2 r3 r4 r5 r6 r7 |
// |--------------------------------------------------------------------|
// | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 |
// |--------------------------------------------------------------------|
REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
// Java floating args are passed as per C
REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
// registers used to hold VM data either temporarily within a method
// or across method calls
// volatile (caller-save) registers
// r8 is used for indirect result location return
// we use it and r9 as scratch registers
REGISTER_DECLARATION(Register, rscratch1, r8);
REGISTER_DECLARATION(Register, rscratch2, r9);
// current method -- must be in a call-clobbered register
REGISTER_DECLARATION(Register, rmethod, r12);
// non-volatile (callee-save) registers are r16-29
// of which the following are dedicated global state
// link register
REGISTER_DECLARATION(Register, lr, r30);
// frame pointer
REGISTER_DECLARATION(Register, rfp, r29);
// current thread
REGISTER_DECLARATION(Register, rthread, r28);
// base of heap
REGISTER_DECLARATION(Register, rheapbase, r27);
// constant pool cache
REGISTER_DECLARATION(Register, rcpool, r26);
// monitors allocated on stack
REGISTER_DECLARATION(Register, rmonitors, r25);
// locals on stack
REGISTER_DECLARATION(Register, rlocals, r24);
// bytecode pointer
REGISTER_DECLARATION(Register, rbcp, r22);
// Dispatch table base
REGISTER_DECLARATION(Register, rdispatch, r21);
// Java stack pointer
REGISTER_DECLARATION(Register, esp, r20);
#define assert_cond(ARG1) assert(ARG1, #ARG1)
namespace asm_util {
uint32_t encode_logical_immediate(bool is32, uint64_t imm);
};
using namespace asm_util;
class Assembler;
class Instruction_aarch64 {
unsigned insn;
#ifdef ASSERT
unsigned bits;
#endif
Assembler *assem;
public:
Instruction_aarch64(class Assembler *as) {
#ifdef ASSERT
bits = 0;
#endif
insn = 0;
assem = as;
}
inline ~Instruction_aarch64();
unsigned &get_insn() { return insn; }
#ifdef ASSERT
unsigned &get_bits() { return bits; }
#endif
static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
union {
unsigned u;
int n;
};
u = val << (31 - hi);
n = n >> (31 - hi + lo);
return n;
}
static inline uint32_t extract(uint32_t val, int msb, int lsb) {
int nbits = msb - lsb + 1;
assert_cond(msb >= lsb);
uint32_t mask = (1U << nbits) - 1;
uint32_t result = val >> lsb;
result &= mask;
return result;
}
static inline int32_t sextract(uint32_t val, int msb, int lsb) {
uint32_t uval = extract(val, msb, lsb);
return extend(uval, msb - lsb);
}
static void patch(address a, int msb, int lsb, unsigned long val) {
int nbits = msb - lsb + 1;
guarantee(val < (1U << nbits), "Field too big for insn");
assert_cond(msb >= lsb);
unsigned mask = (1U << nbits) - 1;
val <<= lsb;
mask <<= lsb;
unsigned target = *(unsigned *)a;
target &= ~mask;
target |= val;
*(unsigned *)a = target;
}
static void spatch(address a, int msb, int lsb, long val) {
int nbits = msb - lsb + 1;
long chk = val >> (nbits - 1);
guarantee (chk == -1 || chk == 0, "Field too big for insn");
unsigned uval = val;
unsigned mask = (1U << nbits) - 1;
uval &= mask;
uval <<= lsb;
mask <<= lsb;
unsigned target = *(unsigned *)a;
target &= ~mask;
target |= uval;
*(unsigned *)a = target;
}
void f(unsigned val, int msb, int lsb) {
int nbits = msb - lsb + 1;
guarantee(val < (1U << nbits), "Field too big for insn");
assert_cond(msb >= lsb);
unsigned mask = (1U << nbits) - 1;
val <<= lsb;
mask <<= lsb;
insn |= val;
assert_cond((bits & mask) == 0);
#ifdef ASSERT
bits |= mask;
#endif
}
void f(unsigned val, int bit) {
f(val, bit, bit);
}
void sf(long val, int msb, int lsb) {
int nbits = msb - lsb + 1;
long chk = val >> (nbits - 1);
guarantee (chk == -1 || chk == 0, "Field too big for insn");
unsigned uval = val;
unsigned mask = (1U << nbits) - 1;
uval &= mask;
f(uval, lsb + nbits - 1, lsb);
}
void rf(Register r, int lsb) {
f(r->encoding_nocheck(), lsb + 4, lsb);
}
// reg|ZR
void zrf(Register r, int lsb) {
f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
}
// reg|SP
void srf(Register r, int lsb) {
f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
}
void rf(FloatRegister r, int lsb) {
f(r->encoding_nocheck(), lsb + 4, lsb);
}
unsigned get(int msb = 31, int lsb = 0) {
int nbits = msb - lsb + 1;
unsigned mask = ((1U << nbits) - 1) << lsb;
assert_cond(bits & mask == mask);
return (insn & mask) >> lsb;
}
void fixed(unsigned value, unsigned mask) {
assert_cond ((mask & bits) == 0);
#ifdef ASSERT
bits |= mask;
#endif
insn |= value;
}
};
#define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
class PrePost {
int _offset;
Register _r;
public:
PrePost(Register reg, int o) : _r(reg), _offset(o) { }
int offset() { return _offset; }
Register reg() { return _r; }
};
class Pre : public PrePost {
public:
Pre(Register reg, int o) : PrePost(reg, o) { }
};
class Post : public PrePost {
public:
Post(Register reg, int o) : PrePost(reg, o) { }
};
namespace ext
{
enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
};
// abs methods which cannot overflow and so are well-defined across
// the entire domain of integer types.
static inline unsigned int uabs(unsigned int n) {
union {
unsigned int result;
int value;
};
result = n;
if (value < 0) result = -result;
return result;
}
static inline unsigned long uabs(unsigned long n) {
union {
unsigned long result;
long value;
};
result = n;
if (value < 0) result = -result;
return result;
}
static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
// Addressing modes
class Address VALUE_OBJ_CLASS_SPEC {
public:
enum mode { no_mode, base_plus_offset, pre, post, pcrel,
base_plus_offset_reg, literal };
// Shift and extend for base reg + reg offset addressing
class extend {
int _option, _shift;
ext::operation _op;
public:
extend() { }
extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
int option() const{ return _option; }
int shift() const { return _shift; }
ext::operation op() const { return _op; }
};
class uxtw : public extend {
public:
uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
};
class lsl : public extend {
public:
lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
};
class sxtw : public extend {
public:
sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
};
class sxtx : public extend {
public:
sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
};
private:
Register _base;
Register _index;
long _offset;
enum mode _mode;
extend _ext;
RelocationHolder _rspec;
// Typically we use AddressLiterals we want to use their rval
// However in some situations we want the lval (effect address) of
// the item. We provide a special factory for making those lvals.
bool _is_lval;
// If the target is far we'll need to load the ea of this to a
// register to reach it. Otherwise if near we can do PC-relative
// addressing.
address _target;
public:
Address()
: _mode(no_mode) { }
Address(Register r)
: _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
Address(Register r, int o)
: _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
Address(Register r, long o)
: _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
Address(Register r, unsigned long o)
: _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
#ifdef ASSERT
Address(Register r, ByteSize disp)
: _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
_index(noreg), _target(0) { }
#endif
Address(Register r, Register r1, extend ext = lsl())
: _mode(base_plus_offset_reg), _base(r), _index(r1),
_ext(ext), _offset(0), _target(0) { }
Address(Pre p)
: _mode(pre), _base(p.reg()), _offset(p.offset()) { }
Address(Post p)
: _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
Address(address target, RelocationHolder const& rspec)
: _mode(literal),
_rspec(rspec),
_is_lval(false),
_target(target) { }
Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
Address(Register base, RegisterOrConstant index, extend ext = lsl())
: _base (base),
_ext(ext), _offset(0), _target(0) {
if (index.is_register()) {
_mode = base_plus_offset_reg;
_index = index.as_register();
} else {
guarantee(ext.option() == ext::uxtx, "should be");
assert(index.is_constant(), "should be");
_mode = base_plus_offset;
_offset = index.as_constant() << ext.shift();
}
}
Register base() const {
guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
| _mode == post),
"wrong mode");
return _base;
}
long offset() const {
return _offset;
}
Register index() const {
return _index;
}
mode getMode() const {
return _mode;
}
bool uses(Register reg) const { return _base == reg || _index == reg; }
address target() const { return _target; }
const RelocationHolder& rspec() const { return _rspec; }
void encode(Instruction_aarch64 *i) const {
i->f(0b111, 29, 27);
i->srf(_base, 5);
switch(_mode) {
case base_plus_offset:
{
unsigned size = i->get(31, 30);
if (i->get(26, 26) && i->get(23, 23)) {
// SIMD Q Type - Size = 128 bits
assert(size == 0, "bad size");
size = 0b100;
}
unsigned mask = (1 << size) - 1;
if (_offset < 0 || _offset & mask)
{
i->f(0b00, 25, 24);
i->f(0, 21), i->f(0b00, 11, 10);
i->sf(_offset, 20, 12);
} else {
i->f(0b01, 25, 24);
i->f(_offset >> size, 21, 10);
}
}
break;
case base_plus_offset_reg:
{
i->f(0b00, 25, 24);
i->f(1, 21);
i->rf(_index, 16);
i->f(_ext.option(), 15, 13);
unsigned size = i->get(31, 30);
if (i->get(26, 26) && i->get(23, 23)) {
// SIMD Q Type - Size = 128 bits
assert(size == 0, "bad size");
size = 0b100;
}
if (size == 0) // It's a byte
i->f(_ext.shift() >= 0, 12);
else {
if (_ext.shift() > 0)
assert(_ext.shift() == (int)size, "bad shift");
i->f(_ext.shift() > 0, 12);
}
i->f(0b10, 11, 10);
}
break;
case pre:
i->f(0b00, 25, 24);
i->f(0, 21), i->f(0b11, 11, 10);
i->sf(_offset, 20, 12);
break;
case post:
i->f(0b00, 25, 24);
i->f(0, 21), i->f(0b01, 11, 10);
i->sf(_offset, 20, 12);
break;
default:
ShouldNotReachHere();
}
}
void encode_pair(Instruction_aarch64 *i) const {
switch(_mode) {
case base_plus_offset:
i->f(0b010, 25, 23);
break;
case pre:
i->f(0b011, 25, 23);
break;
case post:
i->f(0b001, 25, 23);
break;
default:
ShouldNotReachHere();
}
unsigned size; // Operand shift in 32-bit words
if (i->get(26, 26)) { // float
switch(i->get(31, 30)) {
case 0b10:
size = 2; break;
case 0b01:
size = 1; break;
case 0b00:
size = 0; break;
default:
ShouldNotReachHere();
size = 0; // unreachable
}
} else {
size = i->get(31, 31);
}
size = 4 << size;
guarantee(_offset % size == 0, "bad offset");
i->sf(_offset / size, 21, 15);
i->srf(_base, 5);
}
void encode_nontemporal_pair(Instruction_aarch64 *i) const {
// Only base + offset is allowed
i->f(0b000, 25, 23);
unsigned size = i->get(31, 31);
size = 4 << size;
guarantee(_offset % size == 0, "bad offset");
i->sf(_offset / size, 21, 15);
i->srf(_base, 5);
guarantee(_mode == Address::base_plus_offset,
"Bad addressing mode for non-temporal op");
}
void lea(MacroAssembler *, Register) const;
static bool offset_ok_for_immed(long offset, int shift = 0) {
unsigned mask = (1 << shift) - 1;
if (offset < 0 || offset & mask) {
return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
} else {
return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
}
}
};
// Convience classes
class RuntimeAddress: public Address {
public:
RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
};
class OopAddress: public Address {
public:
OopAddress(address target) : Address(target, relocInfo::oop_type){}
};
class ExternalAddress: public Address {
private:
static relocInfo::relocType reloc_for_target(address target) {
// Sometimes ExternalAddress is used for values which aren't
// exactly addresses, like the card table base.
// external_word_type can't be used for values in the first page
// so just skip the reloc in that case.
return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
}
public:
ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
};
class InternalAddress: public Address {
public:
InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
};
const int FPUStateSizeInWords = 32 * 2;
typedef enum {
PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
} prfop;
class Assembler : public AbstractAssembler {
#ifndef PRODUCT
static const unsigned long asm_bp;
void emit_long(jint x) {
if ((unsigned long)pc() == asm_bp)
asm volatile ("nop");
AbstractAssembler::emit_int32(x);
}
#else
void emit_long(jint x) {
AbstractAssembler::emit_int32(x);
}
#endif
public:
enum { instruction_size = 4 };
Address adjust(Register base, int offset, bool preIncrement) {
if (preIncrement)
return Address(Pre(base, offset));
else
return Address(Post(base, offset));
}
Address pre(Register base, int offset) {
return adjust(base, offset, true);
}
Address post (Register base, int offset) {
return adjust(base, offset, false);
}
Instruction_aarch64* current;
void set_current(Instruction_aarch64* i) { current = i; }
void f(unsigned val, int msb, int lsb) {
current->f(val, msb, lsb);
}
void f(unsigned val, int msb) {
current->f(val, msb, msb);
}
void sf(long val, int msb, int lsb) {
current->sf(val, msb, lsb);
}
void rf(Register reg, int lsb) {
current->rf(reg, lsb);
}
void srf(Register reg, int lsb) {
current->srf(reg, lsb);
}
void zrf(Register reg, int lsb) {
current->zrf(reg, lsb);
}
void rf(FloatRegister reg, int lsb) {
current->rf(reg, lsb);
}
void fixed(unsigned value, unsigned mask) {
current->fixed(value, mask);
}
void emit() {
emit_long(current->get_insn());
assert_cond(current->get_bits() == 0xffffffff);
current = NULL;
}
typedef void (Assembler::* uncond_branch_insn)(address dest);
typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
typedef void (Assembler::* prefetch_insn)(address target, prfop);
void wrap_label(Label &L, uncond_branch_insn insn);
void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
void wrap_label(Label &L, prfop, prefetch_insn insn);
// PC-rel. addressing
void adr(Register Rd, address dest);
void _adrp(Register Rd, address dest);
void adr(Register Rd, const Address &dest);
void _adrp(Register Rd, const Address &dest);
void adr(Register Rd, Label &L) {
wrap_label(Rd, L, &Assembler::Assembler::adr);
}
void _adrp(Register Rd, Label &L) {
wrap_label(Rd, L, &Assembler::_adrp);
}
void adrp(Register Rd, const Address &dest, unsigned long &offset);
#undef INSN
void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
int negated_op);
// Add/subtract (immediate)
#define INSN(NAME, decode, negated) \
void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) { \
starti; \
f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
zrf(Rd, 0), srf(Rn, 5); \
} \
\
void NAME(Register Rd, Register Rn, unsigned imm) { \
starti; \
add_sub_immediate(Rd, Rn, imm, decode, negated); \
}
INSN(addsw, 0b001, 0b011);
INSN(subsw, 0b011, 0b001);
INSN(adds, 0b101, 0b111);
INSN(subs, 0b111, 0b101);
#undef INSN
#define INSN(NAME, decode, negated) \
void NAME(Register Rd, Register Rn, unsigned imm) { \
starti; \
add_sub_immediate(Rd, Rn, imm, decode, negated); \
}
INSN(addw, 0b000, 0b010);
INSN(subw, 0b010, 0b000);
INSN(add, 0b100, 0b110);
INSN(sub, 0b110, 0b100);
#undef INSN
// Logical (immediate)
#define INSN(NAME, decode, is32) \
void NAME(Register Rd, Register Rn, uint64_t imm) { \
starti; \
uint32_t val = encode_logical_immediate(is32, imm); \
f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
srf(Rd, 0), zrf(Rn, 5); \
}
INSN(andw, 0b000, true);
INSN(orrw, 0b001, true);
INSN(eorw, 0b010, true);
INSN(andr, 0b100, false);
INSN(orr, 0b101, false);
INSN(eor, 0b110, false);
#undef INSN
#define INSN(NAME, decode, is32) \
void NAME(Register Rd, Register Rn, uint64_t imm) { \
starti; \
uint32_t val = encode_logical_immediate(is32, imm); \
f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10); \
zrf(Rd, 0), zrf(Rn, 5); \
}
INSN(ands, 0b111, false);
INSN(andsw, 0b011, true);
#undef INSN
// Move wide (immediate)
#define INSN(NAME, opcode) \
void NAME(Register Rd, unsigned imm, unsigned shift = 0) { \
assert_cond((shift/16)*16 == shift); \
starti; \
f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21), \
f(imm, 20, 5); \
rf(Rd, 0); \
}
INSN(movnw, 0b000);
INSN(movzw, 0b010);
INSN(movkw, 0b011);
INSN(movn, 0b100);
INSN(movz, 0b110);
INSN(movk, 0b111);
#undef INSN
// Bitfield
#define INSN(NAME, opcode) \
void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) { \
starti; \
f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10); \
rf(Rn, 5), rf(Rd, 0); \
}
INSN(sbfmw, 0b0001001100);
INSN(bfmw, 0b0011001100);
INSN(ubfmw, 0b0101001100);
INSN(sbfm, 0b1001001101);
INSN(bfm, 0b1011001101);
INSN(ubfm, 0b1101001101);
#undef INSN
// Extract
#define INSN(NAME, opcode) \
void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) { \
starti; \
f(opcode, 31, 21), f(imms, 15, 10); \
rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \
}
INSN(extrw, 0b00010011100);
INSN(extr, 0b10010011110);
#undef INSN
// The maximum range of a branch is fixed for the AArch64
// architecture. In debug mode we shrink it in order to test
// trampolines, but not so small that branches in the interpreter
// are out of range.
static const unsigned long branch_range = INCLUDE_JVMCI ? 128 * M : NOT_DEBUG(128 * M) DEBUG_ONLY(2 * M);
static bool reachable_from_branch_at(address branch, address target) {
return uabs(target - branch) < branch_range;
}
// Unconditional branch (immediate)
#define INSN(NAME, opcode) \
void NAME(address dest) { \
starti; \
long offset = (dest - pc()) >> 2; \
DEBUG_ONLY(assert(reachable_from_branch_at(pc(), dest), "debug only")); \
f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0); \
} \
void NAME(Label &L) { \
wrap_label(L, &Assembler::NAME); \
} \
void NAME(const Address &dest);
INSN(b, 0);
INSN(bl, 1);
#undef INSN
// Compare & branch (immediate)
#define INSN(NAME, opcode) \
void NAME(Register Rt, address dest) { \
long offset = (dest - pc()) >> 2; \
starti; \
f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0); \
} \
void NAME(Register Rt, Label &L) { \
wrap_label(Rt, L, &Assembler::NAME); \
}
INSN(cbzw, 0b00110100);
INSN(cbnzw, 0b00110101);
INSN(cbz, 0b10110100);
INSN(cbnz, 0b10110101);
#undef INSN
// Test & branch (immediate)
#define INSN(NAME, opcode) \
void NAME(Register Rt, int bitpos, address dest) { \
long offset = (dest - pc()) >> 2; \
int b5 = bitpos >> 5; \
bitpos &= 0x1f; \
starti; \
f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
rf(Rt, 0); \
} \
void NAME(Register Rt, int bitpos, Label &L) { \
wrap_label(Rt, bitpos, L, &Assembler::NAME); \
}
INSN(tbz, 0b0110110);
INSN(tbnz, 0b0110111);
#undef INSN
// Conditional branch (immediate)
enum Condition
{EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
void br(Condition cond, address dest) {
long offset = (dest - pc()) >> 2;
starti;
f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
}
#define INSN(NAME, cond) \
void NAME(address dest) { \
br(cond, dest); \
}
INSN(beq, EQ);
INSN(bne, NE);
INSN(bhs, HS);
INSN(bcs, CS);
INSN(blo, LO);
INSN(bcc, CC);
INSN(bmi, MI);
INSN(bpl, PL);
INSN(bvs, VS);
INSN(bvc, VC);
INSN(bhi, HI);
INSN(bls, LS);
INSN(bge, GE);
INSN(blt, LT);
INSN(bgt, GT);
INSN(ble, LE);
INSN(bal, AL);
INSN(bnv, NV);
void br(Condition cc, Label &L);
#undef INSN
// Exception generation
void generate_exception(int opc, int op2, int LL, unsigned imm) {
starti;
f(0b11010100, 31, 24);
f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
}
#define INSN(NAME, opc, op2, LL) \
void NAME(unsigned imm) { \
generate_exception(opc, op2, LL, imm); \
}
INSN(svc, 0b000, 0, 0b01);
INSN(hvc, 0b000, 0, 0b10);
INSN(smc, 0b000, 0, 0b11);
INSN(brk, 0b001, 0, 0b00);
INSN(hlt, 0b010, 0, 0b00);
INSN(dpcs1, 0b101, 0, 0b01);
INSN(dpcs2, 0b101, 0, 0b10);
INSN(dpcs3, 0b101, 0, 0b11);
#undef INSN
// System
void system(int op0, int op1, int CRn, int CRm, int op2,
Register rt = dummy_reg)
{
starti;
f(0b11010101000, 31, 21);
f(op0, 20, 19);
f(op1, 18, 16);
f(CRn, 15, 12);
f(CRm, 11, 8);
f(op2, 7, 5);
rf(rt, 0);
}
void hint(int imm) {
system(0b00, 0b011, 0b0010, imm, 0b000);
}
void nop() {
hint(0);
}
// we only provide mrs and msr for the special purpose system
// registers where op1 (instr[20:19]) == 11 and, (currently) only
// use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
void msr(int op1, int CRn, int CRm, int op2, Register rt) {
starti;
f(0b1101010100011, 31, 19);
f(op1, 18, 16);
f(CRn, 15, 12);
f(CRm, 11, 8);
f(op2, 7, 5);
// writing zr is ok
zrf(rt, 0);
}
void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
starti;
f(0b1101010100111, 31, 19);
f(op1, 18, 16);
f(CRn, 15, 12);
f(CRm, 11, 8);
f(op2, 7, 5);
// reading to zr is a mistake
rf(rt, 0);
}
enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
void dsb(barrier imm) {
system(0b00, 0b011, 0b00011, imm, 0b100);
}
void dmb(barrier imm) {
system(0b00, 0b011, 0b00011, imm, 0b101);
}
void isb() {
system(0b00, 0b011, 0b00011, SY, 0b110);
}
void sys(int op1, int CRn, int CRm, int op2,
Register rt = (Register)0b11111) {
system(0b01, op1, CRn, CRm, op2, rt);
}
// Only implement operations accessible from EL0 or higher, i.e.,
// op1 CRn CRm op2
// IC IVAU 3 7 5 1
// DC CVAC 3 7 10 1
// DC CVAU 3 7 11 1
// DC CIVAC 3 7 14 1
// DC ZVA 3 7 4 1
// So only deal with the CRm field.
enum icache_maintenance {IVAU = 0b0101};
enum dcache_maintenance {CVAC = 0b1010, CVAU = 0b1011, CIVAC = 0b1110, ZVA = 0b100};
void dc(dcache_maintenance cm, Register Rt) {
sys(0b011, 0b0111, cm, 0b001, Rt);
}
void ic(icache_maintenance cm, Register Rt) {
sys(0b011, 0b0111, cm, 0b001, Rt);
}
// A more convenient access to dmb for our purposes
enum Membar_mask_bits {
// We can use ISH for a barrier because the ARM ARM says "This
// architecture assumes that all Processing Elements that use the
// same operating system or hypervisor are in the same Inner
// Shareable shareability domain."
StoreStore = ISHST,
LoadStore = ISHLD,
LoadLoad = ISHLD,
StoreLoad = ISH,
AnyAny = ISH
};
void membar(Membar_mask_bits order_constraint) {
dmb(Assembler::barrier(order_constraint));
}
// Unconditional branch (register)
void branch_reg(Register R, int opc) {
starti;
f(0b1101011, 31, 25);
f(opc, 24, 21);
f(0b11111000000, 20, 10);
rf(R, 5);
f(0b00000, 4, 0);
}
#define INSN(NAME, opc) \
void NAME(Register R) { \
branch_reg(R, opc); \
}
INSN(br, 0b0000);
INSN(blr, 0b0001);
INSN(ret, 0b0010);
void ret(void *p); // This forces a compile-time error for ret(0)
#undef INSN
#define INSN(NAME, opc) \
void NAME() { \
branch_reg(dummy_reg, opc); \
}
INSN(eret, 0b0100);
INSN(drps, 0b0101);
#undef INSN
// Load/store exclusive
enum operand_size { byte, halfword, word, xword };
void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
Register Rn, enum operand_size sz, int op, bool ordered) {
starti;
f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
rf(Rs, 16), f(ordered, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
}
void load_exclusive(Register dst, Register addr,
enum operand_size sz, bool ordered) {
load_store_exclusive(dummy_reg, dst, dummy_reg, addr,
sz, 0b010, ordered);
}
void store_exclusive(Register status, Register new_val, Register addr,
enum operand_size sz, bool ordered) {
load_store_exclusive(status, new_val, dummy_reg, addr,
sz, 0b000, ordered);
}
#define INSN4(NAME, sz, op, o0) /* Four registers */ \
void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) { \
guarantee(Rs != Rn && Rs != Rt1 && Rs != Rt2, "unpredictable instruction"); \
load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0); \
}
#define INSN3(NAME, sz, op, o0) /* Three registers */ \
void NAME(Register Rs, Register Rt, Register Rn) { \
guarantee(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
load_store_exclusive(Rs, Rt, dummy_reg, Rn, sz, op, o0); \
}
#define INSN2(NAME, sz, op, o0) /* Two registers */ \
void NAME(Register Rt, Register Rn) { \
load_store_exclusive(dummy_reg, Rt, dummy_reg, \
Rn, sz, op, o0); \
}
#define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
void NAME(Register Rt1, Register Rt2, Register Rn) { \
guarantee(Rt1 != Rt2, "unpredictable instruction"); \
load_store_exclusive(dummy_reg, Rt1, Rt2, Rn, sz, op, o0); \
}
// bytes
INSN3(stxrb, byte, 0b000, 0);
INSN3(stlxrb, byte, 0b000, 1);
INSN2(ldxrb, byte, 0b010, 0);
INSN2(ldaxrb, byte, 0b010, 1);
INSN2(stlrb, byte, 0b100, 1);
INSN2(ldarb, byte, 0b110, 1);
// halfwords
INSN3(stxrh, halfword, 0b000, 0);
INSN3(stlxrh, halfword, 0b000, 1);
INSN2(ldxrh, halfword, 0b010, 0);
INSN2(ldaxrh, halfword, 0b010, 1);
INSN2(stlrh, halfword, 0b100, 1);
INSN2(ldarh, halfword, 0b110, 1);
// words
INSN3(stxrw, word, 0b000, 0);
INSN3(stlxrw, word, 0b000, 1);
INSN4(stxpw, word, 0b001, 0);
INSN4(stlxpw, word, 0b001, 1);
INSN2(ldxrw, word, 0b010, 0);
INSN2(ldaxrw, word, 0b010, 1);
INSN_FOO(ldxpw, word, 0b011, 0);
INSN_FOO(ldaxpw, word, 0b011, 1);
INSN2(stlrw, word, 0b100, 1);
INSN2(ldarw, word, 0b110, 1);
// xwords
INSN3(stxr, xword, 0b000, 0);
INSN3(stlxr, xword, 0b000, 1);
INSN4(stxp, xword, 0b001, 0);
INSN4(stlxp, xword, 0b001, 1);
INSN2(ldxr, xword, 0b010, 0);
INSN2(ldaxr, xword, 0b010, 1);
INSN_FOO(ldxp, xword, 0b011, 0);
INSN_FOO(ldaxp, xword, 0b011, 1);
INSN2(stlr, xword, 0b100, 1);
INSN2(ldar, xword, 0b110, 1);
#undef INSN2
#undef INSN3
#undef INSN4
#undef INSN_FOO
// 8.1 Compare and swap extensions
void lse_cas(Register Rs, Register Rt, Register Rn,
enum operand_size sz, bool a, bool r, bool not_pair) {
starti;
if (! not_pair) { // Pair
assert(sz == word || sz == xword, "invalid size");
/* The size bit is in bit 30, not 31 */
sz = (operand_size)(sz == word ? 0b00:0b01);
}
f(sz, 31, 30), f(0b001000, 29, 24), f(1, 23), f(a, 22), f(1, 21);
rf(Rs, 16), f(r, 15), f(0b11111, 14, 10), rf(Rn, 5), rf(Rt, 0);
}
// CAS
#define INSN(NAME, a, r) \
void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
assert(Rs != Rn && Rs != Rt, "unpredictable instruction"); \
lse_cas(Rs, Rt, Rn, sz, a, r, true); \
}
INSN(cas, false, false)
INSN(casa, true, false)
INSN(casl, false, true)
INSN(casal, true, true)
#undef INSN
// CASP
#define INSN(NAME, a, r) \
void NAME(operand_size sz, Register Rs, Register Rs1, \
Register Rt, Register Rt1, Register Rn) { \
assert((Rs->encoding() & 1) == 0 && (Rt->encoding() & 1) == 0 && \
Rs->successor() == Rs1 && Rt->successor() == Rt1 && \
Rs != Rn && Rs1 != Rn && Rs != Rt, "invalid registers"); \
lse_cas(Rs, Rt, Rn, sz, a, r, false); \
}
INSN(casp, false, false)
INSN(caspa, true, false)
INSN(caspl, false, true)
INSN(caspal, true, true)
#undef INSN
// 8.1 Atomic operations
void lse_atomic(Register Rs, Register Rt, Register Rn,
enum operand_size sz, int op1, int op2, bool a, bool r) {
starti;
f(sz, 31, 30), f(0b111000, 29, 24), f(a, 23), f(r, 22), f(1, 21);
rf(Rs, 16), f(op1, 15), f(op2, 14, 12), f(0, 11, 10), rf(Rn, 5), zrf(Rt, 0);
}
#define INSN(NAME, NAME_A, NAME_L, NAME_AL, op1, op2) \
void NAME(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, false); \
} \
void NAME_A(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, false); \
} \
void NAME_L(operand_size sz, Register Rs, Register Rt, Register Rn) { \
lse_atomic(Rs, Rt, Rn, sz, op1, op2, false, true); \
} \
void NAME_AL(operand_size sz, Register Rs, Register Rt, Register Rn) {\
lse_atomic(Rs, Rt, Rn, sz, op1, op2, true, true); \
}
INSN(ldadd, ldadda, ldaddl, ldaddal, 0, 0b000);
INSN(ldbic, ldbica, ldbicl, ldbical, 0, 0b001);
INSN(ldeor, ldeora, ldeorl, ldeoral, 0, 0b010);
INSN(ldorr, ldorra, ldorrl, ldorral, 0, 0b011);
INSN(ldsmax, ldsmaxa, ldsmaxl, ldsmaxal, 0, 0b100);
INSN(ldsmin, ldsmina, ldsminl, ldsminal, 0, 0b101);
INSN(ldumax, ldumaxa, ldumaxl, ldumaxal, 0, 0b110);
INSN(ldumin, ldumina, lduminl, lduminal, 0, 0b111);
INSN(swp, swpa, swpl, swpal, 1, 0b000);
#undef INSN
// Load register (literal)
#define INSN(NAME, opc, V) \
void NAME(Register Rt, address dest) { \
long offset = (dest - pc()) >> 2; \
starti; \
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
sf(offset, 23, 5); \
rf(Rt, 0); \
} \
void NAME(Register Rt, address dest, relocInfo::relocType rtype) { \
InstructionMark im(this); \
guarantee(rtype == relocInfo::internal_word_type, \
"only internal_word_type relocs make sense here"); \
code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
NAME(Rt, dest); \
} \
void NAME(Register Rt, Label &L) { \
wrap_label(Rt, L, &Assembler::NAME); \
}
INSN(ldrw, 0b00, 0);
INSN(ldr, 0b01, 0);
INSN(ldrsw, 0b10, 0);
#undef INSN
#define INSN(NAME, opc, V) \
void NAME(FloatRegister Rt, address dest) { \
long offset = (dest - pc()) >> 2; \
starti; \
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
sf(offset, 23, 5); \
rf((Register)Rt, 0); \
}
INSN(ldrs, 0b00, 1);
INSN(ldrd, 0b01, 1);
INSN(ldrq, 0b10, 1);
#undef INSN
#define INSN(NAME, opc, V) \
void NAME(address dest, prfop op = PLDL1KEEP) { \
long offset = (dest - pc()) >> 2; \
starti; \
f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24), \
sf(offset, 23, 5); \
f(op, 4, 0); \
} \
void NAME(Label &L, prfop op = PLDL1KEEP) { \
wrap_label(L, op, &Assembler::NAME); \
}
INSN(prfm, 0b11, 0);
#undef INSN
// Load/store
void ld_st1(int opc, int p1, int V, int L,
Register Rt1, Register Rt2, Address adr, bool no_allocate) {
starti;
f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
zrf(Rt2, 10), zrf(Rt1, 0);
if (no_allocate) {
adr.encode_nontemporal_pair(current);
} else {
adr.encode_pair(current);
}
}
// Load/store register pair (offset)
#define INSN(NAME, size, p1, V, L, no_allocate) \
void NAME(Register Rt1, Register Rt2, Address adr) { \
ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
}
INSN(stpw, 0b00, 0b101, 0, 0, false);
INSN(ldpw, 0b00, 0b101, 0, 1, false);
INSN(ldpsw, 0b01, 0b101, 0, 1, false);
INSN(stp, 0b10, 0b101, 0, 0, false);
INSN(ldp, 0b10, 0b101, 0, 1, false);
// Load/store no-allocate pair (offset)
INSN(stnpw, 0b00, 0b101, 0, 0, true);
INSN(ldnpw, 0b00, 0b101, 0, 1, true);
INSN(stnp, 0b10, 0b101, 0, 0, true);
INSN(ldnp, 0b10, 0b101, 0, 1, true);
#undef INSN
#define INSN(NAME, size, p1, V, L, no_allocate) \
void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) { \
ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
}
INSN(stps, 0b00, 0b101, 1, 0, false);
INSN(ldps, 0b00, 0b101, 1, 1, false);
INSN(stpd, 0b01, 0b101, 1, 0, false);
INSN(ldpd, 0b01, 0b101, 1, 1, false);
INSN(stpq, 0b10, 0b101, 1, 0, false);
INSN(ldpq, 0b10, 0b101, 1, 1, false);
#undef INSN
// Load/store register (all modes)
void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
starti;
f(V, 26); // general reg?
zrf(Rt, 0);
// Encoding for literal loads is done here (rather than pushed
// down into Address::encode) because the encoding of this
// instruction is too different from all of the other forms to
// make it worth sharing.
if (adr.getMode() == Address::literal) {
assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
assert(op == 0b01, "literal form can only be used with loads");
f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
long offset = (adr.target() - pc()) >> 2;
sf(offset, 23, 5);
code_section()->relocate(pc(), adr.rspec());
return;
}
f(size, 31, 30);
f(op, 23, 22); // str
adr.encode(current);
}
#define INSN(NAME, size, op) \
void NAME(Register Rt, const Address &adr) { \
ld_st2(Rt, adr, size, op); \
} \
INSN(str, 0b11, 0b00);
INSN(strw, 0b10, 0b00);
INSN(strb, 0b00, 0b00);
INSN(strh, 0b01, 0b00);
INSN(ldr, 0b11, 0b01);
INSN(ldrw, 0b10, 0b01);
INSN(ldrb, 0b00, 0b01);
INSN(ldrh, 0b01, 0b01);
INSN(ldrsb, 0b00, 0b10);
INSN(ldrsbw, 0b00, 0b11);
INSN(ldrsh, 0b01, 0b10);
INSN(ldrshw, 0b01, 0b11);
INSN(ldrsw, 0b10, 0b10);
#undef INSN
#define INSN(NAME, size, op) \
void NAME(const Address &adr, prfop pfop = PLDL1KEEP) { \
ld_st2((Register)pfop, adr, size, op); \
}
INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
// writeback modes, but the assembler
// doesn't enfore that.
#undef INSN
#define INSN(NAME, size, op) \
void NAME(FloatRegister Rt, const Address &adr) { \
ld_st2((Register)Rt, adr, size, op, 1); \
}
INSN(strd, 0b11, 0b00);
INSN(strs, 0b10, 0b00);
INSN(ldrd, 0b11, 0b01);
INSN(ldrs, 0b10, 0b01);
INSN(strq, 0b00, 0b10);
INSN(ldrq, 0x00, 0b11);
#undef INSN
enum shift_kind { LSL, LSR, ASR, ROR };
void op_shifted_reg(unsigned decode,
enum shift_kind kind, unsigned shift,
unsigned size, unsigned op) {
f(size, 31);
f(op, 30, 29);
f(decode, 28, 24);
f(shift, 15, 10);
f(kind, 23, 22);
}
// Logical (shifted register)
#define INSN(NAME, size, op, N) \
void NAME(Register Rd, Register Rn, Register Rm, \
enum shift_kind kind = LSL, unsigned shift = 0) { \
starti; \
f(N, 21); \
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0); \
op_shifted_reg(0b01010, kind, shift, size, op); \
}
INSN(andr, 1, 0b00, 0);
INSN(orr, 1, 0b01, 0);
INSN(eor, 1, 0b10, 0);
INSN(ands, 1, 0b11, 0);
INSN(andw, 0, 0b00, 0);
INSN(orrw, 0, 0b01, 0);
INSN(eorw, 0, 0b10, 0);
INSN(andsw, 0, 0b11, 0);
INSN(bic, 1, 0b00, 1);
INSN(orn, 1, 0b01, 1);
INSN(eon, 1, 0b10, 1);
INSN(bics, 1, 0b11, 1);
INSN(bicw, 0, 0b00, 1);
INSN(ornw, 0, 0b01, 1);
INSN(eonw, 0, 0b10, 1);
INSN(bicsw, 0, 0b11, 1);
#undef INSN
// Add/subtract (shifted register)
#define INSN(NAME, size, op) \
void NAME(Register Rd, Register Rn, Register Rm, \
enum shift_kind kind, unsigned shift = 0) { \
starti; \
f(0, 21); \
assert_cond(kind != ROR); \
zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16); \
op_shifted_reg(0b01011, kind, shift, size, op); \
}
INSN(add, 1, 0b000);
INSN(sub, 1, 0b10);
INSN(addw, 0, 0b000);
INSN(subw, 0, 0b10);
INSN(adds, 1, 0b001);
INSN(subs, 1, 0b11);
INSN(addsw, 0, 0b001);
INSN(subsw, 0, 0b11);
#undef INSN
// Add/subtract (extended register)
#define INSN(NAME, op) \
void NAME(Register Rd, Register Rn, Register Rm, \
ext::operation option, int amount = 0) { \
starti; \
zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0); \
add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
}
void add_sub_extended_reg(unsigned op, unsigned decode,
Register Rd, Register Rn, Register Rm,
unsigned opt, ext::operation option, unsigned imm) {
guarantee(imm <= 4, "shift amount must be < 4");
f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
f(option, 15, 13), f(imm, 12, 10);
}
INSN(addw, 0b000);
INSN(subw, 0b010);
INSN(add, 0b100);
INSN(sub, 0b110);
#undef INSN
#define INSN(NAME, op) \
void NAME(Register Rd, Register Rn, Register Rm, \
ext::operation option, int amount = 0) { \
starti; \
zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0); \
add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
}
INSN(addsw, 0b001);
INSN(subsw, 0b011);
INSN(adds, 0b101);
INSN(subs, 0b111);
#undef INSN
// Aliases for short forms of add and sub
#define INSN(NAME) \
void NAME(Register Rd, Register Rn, Register Rm) { \
if (Rd == sp || Rn == sp) \
NAME(Rd, Rn, Rm, ext::uxtx); \
else \
NAME(Rd, Rn, Rm, LSL); \
}
INSN(addw);
INSN(subw);
INSN(add);
INSN(sub);
INSN(addsw);
INSN(subsw);
INSN(adds);
INSN(subs);
#undef INSN
// Add/subtract (with carry)
void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
starti;
f(op, 31, 29);
f(0b11010000, 28, 21);
f(0b000000, 15, 10);
zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
}
#define INSN(NAME, op) \
void NAME(Register Rd, Register Rn, Register Rm) { \
add_sub_carry(op, Rd, Rn, Rm); \
}
INSN(adcw, 0b000);
INSN(adcsw, 0b001);
INSN(sbcw, 0b010);
INSN(sbcsw, 0b011);
INSN(adc, 0b100);
INSN(adcs, 0b101);
INSN(sbc,0b110);
INSN(sbcs, 0b111);
#undef INSN
// Conditional compare (both kinds)
void conditional_compare(unsigned op, int o2, int o3,
Register Rn, unsigned imm5, unsigned nzcv,
unsigned cond) {
f(op, 31, 29);
f(0b11010010, 28, 21);
f(cond, 15, 12);
f(o2, 10);
f(o3, 4);
f(nzcv, 3, 0);
f(imm5, 20, 16), rf(Rn, 5);
}
#define INSN(NAME, op) \
void NAME(Register Rn, Register Rm, int imm, Condition cond) { \
starti; \
f(0, 11); \
conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond); \
} \
\
void NAME(Register Rn, int imm5, int imm, Condition cond) { \
starti; \
f(1, 11); \
conditional_compare(op, 0, 0, Rn, imm5, imm, cond); \
}
INSN(ccmnw, 0b001);
INSN(ccmpw, 0b011);
INSN(ccmn, 0b101);
INSN(ccmp, 0b111);
#undef INSN
// Conditional select
void conditional_select(unsigned op, unsigned op2,
Register Rd, Register Rn, Register Rm,
unsigned cond) {
starti;
f(op, 31, 29);
f(0b11010100, 28, 21);
f(cond, 15, 12);
f(op2, 11, 10);
zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
}
#define INSN(NAME, op, op2) \
void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
conditional_select(op, op2, Rd, Rn, Rm, cond); \
}
INSN(cselw, 0b000, 0b00);
INSN(csincw, 0b000, 0b01);
INSN(csinvw, 0b010, 0b00);
INSN(csnegw, 0b010, 0b01);
INSN(csel, 0b100, 0b00);
INSN(csinc, 0b100, 0b01);
INSN(csinv, 0b110, 0b00);
INSN(csneg, 0b110, 0b01);
#undef INSN
// Data processing
void data_processing(unsigned op29, unsigned opcode,
Register Rd, Register Rn) {
f(op29, 31, 29), f(0b11010110, 28, 21);
f(opcode, 15, 10);
rf(Rn, 5), rf(Rd, 0);
}
// (1 source)
#define INSN(NAME, op29, opcode2, opcode) \
void NAME(Register Rd, Register Rn) { \
starti; \
f(opcode2, 20, 16); \
data_processing(op29, opcode, Rd, Rn); \
}
INSN(rbitw, 0b010, 0b00000, 0b00000);
INSN(rev16w, 0b010, 0b00000, 0b00001);
INSN(revw, 0b010, 0b00000, 0b00010);
INSN(clzw, 0b010, 0b00000, 0b00100);
INSN(clsw, 0b010, 0b00000, 0b00101);
INSN(rbit, 0b110, 0b00000, 0b00000);
INSN(rev16, 0b110, 0b00000, 0b00001);
INSN(rev32, 0b110, 0b00000, 0b00010);
INSN(rev, 0b110, 0b00000, 0b00011);
INSN(clz, 0b110, 0b00000, 0b00100);
INSN(cls, 0b110, 0b00000, 0b00101);
#undef INSN
// (2 sources)
#define INSN(NAME, op29, opcode) \
void NAME(Register Rd, Register Rn, Register Rm) { \
starti; \
rf(Rm, 16); \
data_processing(op29, opcode, Rd, Rn); \
}
INSN(udivw, 0b000, 0b000010);
INSN(sdivw, 0b000, 0b000011);
INSN(lslvw, 0b000, 0b001000);
INSN(lsrvw, 0b000, 0b001001);
INSN(asrvw, 0b000, 0b001010);
INSN(rorvw, 0b000, 0b001011);
INSN(udiv, 0b100, 0b000010);
INSN(sdiv, 0b100, 0b000011);
INSN(lslv, 0b100, 0b001000);
INSN(lsrv, 0b100, 0b001001);
INSN(asrv, 0b100, 0b001010);
INSN(rorv, 0b100, 0b001011);
#undef INSN
// (3 sources)
void data_processing(unsigned op54, unsigned op31, unsigned o0,
Register Rd, Register Rn, Register Rm,
Register Ra) {
starti;
f(op54, 31, 29), f(0b11011, 28, 24);
f(op31, 23, 21), f(o0, 15);
zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
}
#define INSN(NAME, op54, op31, o0) \
void NAME(Register Rd, Register Rn, Register Rm, Register Ra) { \
data_processing(op54, op31, o0, Rd, Rn, Rm, Ra); \
}
INSN(maddw, 0b000, 0b000, 0);
INSN(msubw, 0b000, 0b000, 1);
INSN(madd, 0b100, 0b000, 0);
INSN(msub, 0b100, 0b000, 1);
INSN(smaddl, 0b100, 0b001, 0);
INSN(smsubl, 0b100, 0b001, 1);
INSN(umaddl, 0b100, 0b101, 0);
INSN(umsubl, 0b100, 0b101, 1);
#undef INSN
#define INSN(NAME, op54, op31, o0) \
void NAME(Register Rd, Register Rn, Register Rm) { \
data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31); \
}
INSN(smulh, 0b100, 0b010, 0);
INSN(umulh, 0b100, 0b110, 0);
#undef INSN
// Floating-point data-processing (1 source)
void data_processing(unsigned op31, unsigned type, unsigned opcode,
FloatRegister Vd, FloatRegister Vn) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, op31, type, opcode) \
void NAME(FloatRegister Vd, FloatRegister Vn) { \
data_processing(op31, type, opcode, Vd, Vn); \
}
private:
INSN(i_fmovs, 0b000, 0b00, 0b000000);
public:
INSN(fabss, 0b000, 0b00, 0b000001);
INSN(fnegs, 0b000, 0b00, 0b000010);
INSN(fsqrts, 0b000, 0b00, 0b000011);
INSN(fcvts, 0b000, 0b00, 0b000101); // Single-precision to double-precision
private:
INSN(i_fmovd, 0b000, 0b01, 0b000000);
public:
INSN(fabsd, 0b000, 0b01, 0b000001);
INSN(fnegd, 0b000, 0b01, 0b000010);
INSN(fsqrtd, 0b000, 0b01, 0b000011);
INSN(fcvtd, 0b000, 0b01, 0b000100); // Double-precision to single-precision
void fmovd(FloatRegister Vd, FloatRegister Vn) {
assert(Vd != Vn, "should be");
i_fmovd(Vd, Vn);
}
void fmovs(FloatRegister Vd, FloatRegister Vn) {
assert(Vd != Vn, "should be");
i_fmovs(Vd, Vn);
}
#undef INSN
// Floating-point data-processing (2 source)
void data_processing(unsigned op31, unsigned type, unsigned opcode,
FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, op31, type, opcode) \
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) { \
data_processing(op31, type, opcode, Vd, Vn, Vm); \
}
INSN(fmuls, 0b000, 0b00, 0b0000);
INSN(fdivs, 0b000, 0b00, 0b0001);
INSN(fadds, 0b000, 0b00, 0b0010);
INSN(fsubs, 0b000, 0b00, 0b0011);
INSN(fnmuls, 0b000, 0b00, 0b1000);
INSN(fmuld, 0b000, 0b01, 0b0000);
INSN(fdivd, 0b000, 0b01, 0b0001);
INSN(faddd, 0b000, 0b01, 0b0010);
INSN(fsubd, 0b000, 0b01, 0b0011);
INSN(fnmuld, 0b000, 0b01, 0b1000);
#undef INSN
// Floating-point data-processing (3 source)
void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
FloatRegister Va) {
starti;
f(op31, 31, 29);
f(0b11111, 28, 24);
f(type, 23, 22), f(o1, 21), f(o0, 15);
rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, op31, type, o1, o0) \
void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, \
FloatRegister Va) { \
data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va); \
}
INSN(fmadds, 0b000, 0b00, 0, 0);
INSN(fmsubs, 0b000, 0b00, 0, 1);
INSN(fnmadds, 0b000, 0b00, 1, 0);
INSN(fnmsubs, 0b000, 0b00, 1, 1);
INSN(fmaddd, 0b000, 0b01, 0, 0);
INSN(fmsubd, 0b000, 0b01, 0, 1);
INSN(fnmaddd, 0b000, 0b01, 1, 0);
INSN(fnmsub, 0b000, 0b01, 1, 1);
#undef INSN
// Floating-point conditional select
void fp_conditional_select(unsigned op31, unsigned type,
unsigned op1, unsigned op2,
Condition cond, FloatRegister Vd,
FloatRegister Vn, FloatRegister Vm) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22);
f(op1, 21, 21);
f(op2, 11, 10);
f(cond, 15, 12);
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
}
#define INSN(NAME, op31, type, op1, op2) \
void NAME(FloatRegister Vd, FloatRegister Vn, \
FloatRegister Vm, Condition cond) { \
fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm); \
}
INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
#undef INSN
// Floating-point<->integer conversions
void float_int_convert(unsigned op31, unsigned type,
unsigned rmode, unsigned opcode,
Register Rd, Register Rn) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
f(opcode, 18, 16), f(0b000000, 15, 10);
zrf(Rn, 5), zrf(Rd, 0);
}
#define INSN(NAME, op31, type, rmode, opcode) \
void NAME(Register Rd, FloatRegister Vn) { \
float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn); \
}
INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
INSN(fcvtzs, 0b100, 0b00, 0b11, 0b000);
INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
INSN(fcvtzd, 0b100, 0b01, 0b11, 0b000);
INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
// INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
#undef INSN
#define INSN(NAME, op31, type, rmode, opcode) \
void NAME(FloatRegister Vd, Register Rn) { \
float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn); \
}
INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
INSN(scvtfs, 0b100, 0b00, 0b00, 0b010);
INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
INSN(scvtfd, 0b100, 0b01, 0b00, 0b010);
// INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
#undef INSN
// Floating-point compare
void float_compare(unsigned op31, unsigned type,
unsigned op, unsigned op2,
FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
starti;
f(op31, 31, 29);
f(0b11110, 28, 24);
f(type, 23, 22), f(1, 21);
f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
rf(Vn, 5), rf(Vm, 16);
}
#define INSN(NAME, op31, type, op, op2) \
void NAME(FloatRegister Vn, FloatRegister Vm) { \
float_compare(op31, type, op, op2, Vn, Vm); \
}
#define INSN1(NAME, op31, type, op, op2) \
void NAME(FloatRegister Vn, double d) { \
assert_cond(d == 0.0); \
float_compare(op31, type, op, op2, Vn); \
}
INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
// INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
// INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
INSN(fcmpd, 0b000, 0b01, 0b00, 0b00000);
INSN1(fcmpd, 0b000, 0b01, 0b00, 0b01000);
// INSN(fcmped, 0b000, 0b01, 0b00, 0b10000);
// INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
#undef INSN
#undef INSN1
// Floating-point Move (immediate)
private:
unsigned pack(double value);
void fmov_imm(FloatRegister Vn, double value, unsigned size) {
starti;
f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
f(pack(value), 20, 13), f(0b10000000, 12, 5);
rf(Vn, 0);
}
public:
void fmovs(FloatRegister Vn, double value) {
if (value)
fmov_imm(Vn, value, 0b00);
else
fmovs(Vn, zr);
}
void fmovd(FloatRegister Vn, double value) {
if (value)
fmov_imm(Vn, value, 0b01);
else
fmovd(Vn, zr);
}
/* SIMD extensions
*
* We just use FloatRegister in the following. They are exactly the same
* as SIMD registers.
*/
public:
enum SIMD_Arrangement {
T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D, T1Q
};
enum SIMD_RegVariant {
B, H, S, D, Q
};
#define INSN(NAME, op) \
void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) { \
ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
} \
INSN(ldr, 1);
INSN(str, 0);
#undef INSN
private:
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
starti;
f(0,31), f((int)T & 1, 30);
f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
}
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
int imm, int op1, int op2) {
starti;
f(0,31), f((int)T & 1, 30);
f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
}
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
Register Xm, int op1, int op2) {
starti;
f(0,31), f((int)T & 1, 30);
f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
}
void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
switch (a.getMode()) {
case Address::base_plus_offset:
guarantee(a.offset() == 0, "no offset allowed here");
ld_st(Vt, T, a.base(), op1, op2);
break;
case Address::post:
ld_st(Vt, T, a.base(), a.offset(), op1, op2);
break;
case Address::base_plus_offset_reg:
ld_st(Vt, T, a.base(), a.index(), op1, op2);
break;
default:
ShouldNotReachHere();
}
}
public:
#define INSN1(NAME, op1, op2) \
void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) { \
ld_st(Vt, T, a, op1, op2); \
}
#define INSN2(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
assert(Vt->successor() == Vt2, "Registers must be ordered"); \
ld_st(Vt, T, a, op1, op2); \
}
#define INSN3(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
SIMD_Arrangement T, const Address &a) { \
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, \
"Registers must be ordered"); \
ld_st(Vt, T, a, op1, op2); \
}
#define INSN4(NAME, op1, op2) \
void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, \
FloatRegister Vt4, SIMD_Arrangement T, const Address &a) { \
assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && \
Vt3->successor() == Vt4, "Registers must be ordered"); \
ld_st(Vt, T, a, op1, op2); \
}
INSN1(ld1, 0b001100010, 0b0111);
INSN2(ld1, 0b001100010, 0b1010);
INSN3(ld1, 0b001100010, 0b0110);
INSN4(ld1, 0b001100010, 0b0010);
INSN2(ld2, 0b001100010, 0b1000);
INSN3(ld3, 0b001100010, 0b0100);
INSN4(ld4, 0b001100010, 0b0000);
INSN1(st1, 0b001100000, 0b0111);
INSN2(st1, 0b001100000, 0b1010);
INSN3(st1, 0b001100000, 0b0110);
INSN4(st1, 0b001100000, 0b0010);
INSN2(st2, 0b001100000, 0b1000);
INSN3(st3, 0b001100000, 0b0100);
INSN4(st4, 0b001100000, 0b0000);
INSN1(ld1r, 0b001101010, 0b1100);
INSN2(ld2r, 0b001101011, 0b1100);
INSN3(ld3r, 0b001101010, 0b1110);
INSN4(ld4r, 0b001101011, 0b1110);
#undef INSN1
#undef INSN2
#undef INSN3
#undef INSN4
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T8B || T == T16B, "must be T8B or T16B"); \
f(0, 31), f((int)T & 1, 30), f(opc, 29, 21); \
rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(eor, 0b101110001);
INSN(orr, 0b001110101);
INSN(andr, 0b001110001);
INSN(bic, 0b001110011);
INSN(bif, 0b101110111);
INSN(bit, 0b101110101);
INSN(bsl, 0b101110011);
INSN(orn, 0b001110111);
#undef INSN
#define INSN(NAME, opc, opc2) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10); \
rf(Vn, 5), rf(Vd, 0); \
}
INSN(addv, 0, 0b100001);
INSN(subv, 1, 0b100001);
INSN(mulv, 0, 0b100111);
INSN(mlav, 0, 0b100101);
INSN(mlsv, 1, 0b100101);
INSN(sshl, 0, 0b010001);
INSN(ushl, 1, 0b010001);
#undef INSN
#define INSN(NAME, opc, opc2) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24); \
f((int)T >> 1, 23, 22), f(opc2, 21, 10); \
rf(Vn, 5), rf(Vd, 0); \
}
INSN(absr, 0, 0b100000101110);
INSN(negr, 1, 0b100000101110);
INSN(notr, 1, 0b100000010110);
INSN(addv, 0, 0b110001101110);
INSN(cls, 0, 0b100000010010);
INSN(clz, 1, 0b100000010010);
INSN(cnt, 0, 0b100000010110);
#undef INSN
#define INSN(NAME, op0, cmode0) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) { \
unsigned cmode = cmode0; \
unsigned op = op0; \
starti; \
assert(lsl == 0 || \
((T == T4H || T == T8H) && lsl == 8) || \
((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift"); \
cmode |= lsl >> 2; \
if (T == T4H || T == T8H) cmode |= 0b1000; \
if (!(T == T4H || T == T8H || T == T2S || T == T4S)) { \
assert(op == 0 && cmode0 == 0, "must be MOVI"); \
cmode = 0b1110; \
if (T == T1D || T == T2D) op = 1; \
} \
f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19); \
f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5); \
rf(Vd, 0); \
}
INSN(movi, 0, 0);
INSN(orri, 0, 1);
INSN(mvni, 1, 0);
INSN(bici, 1, 1);
#undef INSN
#define INSN(NAME, op1, op2, op3) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T2S || T == T4S || T == T2D, "invalid arrangement"); \
f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23); \
f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(fadd, 0, 0, 0b110101);
INSN(fdiv, 1, 0, 0b111111);
INSN(fmul, 1, 0, 0b110111);
INSN(fsub, 0, 1, 0b110101);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
assert(T == T4S, "arrangement must be T4S"); \
f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(sha1c, 0b000000);
INSN(sha1m, 0b001000);
INSN(sha1p, 0b000100);
INSN(sha1su0, 0b001100);
INSN(sha256h2, 0b010100);
INSN(sha256h, 0b010000);
INSN(sha256su1, 0b011000);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
assert(T == T4S, "arrangement must be T4S"); \
f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(sha1h, 0b000010);
INSN(sha1su1, 0b000110);
INSN(sha256su0, 0b001010);
#undef INSN
#define INSN(NAME, opc) \
void NAME(FloatRegister Vd, FloatRegister Vn) { \
starti; \
f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(aese, 0b0100111000101000010010);
INSN(aesd, 0b0100111000101000010110);
INSN(aesmc, 0b0100111000101000011010);
INSN(aesimc, 0b0100111000101000011110);
#undef INSN
void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
starti;
assert(T != Q, "invalid register variant");
f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
}
void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
starti;
f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
rf(Vn, 5), rf(Rd, 0);
}
#define INSN(NAME, opc, opc2) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){ \
starti; \
/* The encodings for the immh:immb fields (bits 22:16) are \
* 0001 xxx 8B/16B, shift = xxx \
* 001x xxx 4H/8H, shift = xxxx \
* 01xx xxx 2S/4S, shift = xxxxx \
* 1xxx xxx 1D/2D, shift = xxxxxx (1D is RESERVED) \
*/ \
assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value"); \
f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23), \
f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(shl, 0, 0b010101);
INSN(sshr, 0, 0b000001);
INSN(ushr, 1, 0b000001);
#undef INSN
void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
starti;
/* The encodings for the immh:immb fields (bits 22:16) are
* 0001 xxx 8H, 8B/16b shift = xxx
* 001x xxx 4S, 4H/8H shift = xxxx
* 01xx xxx 2D, 2S/4S shift = xxxxx
* 1xxx xxx RESERVED
*/
assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
ushll(Vd, Ta, Vn, Tb, shift);
}
void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement T, int op = 0){
starti;
f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
}
void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement T){
uzp1(Vd, Vn, Vm, T, 1);
}
// Move from general purpose register
// mov Vd.T[index], Rn
void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
starti;
f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
}
// Move to general purpose register
// mov Rd, Vn.T[index]
void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
starti;
f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
}
void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
starti;
assert((Ta == T1Q && (Tb == T1D || Tb == T2D)) ||
(Ta == T8H && (Tb == T8B || Tb == T16B)), "Invalid Size specifier");
int size = (Ta == T1Q) ? 0b11 : 0b00;
f(0, 31), f(Tb & 1, 30), f(0b001110, 29, 24), f(size, 23, 22);
f(1, 21), rf(Vm, 16), f(0b111000, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
assert(Tb == T2D || Tb == T16B, "pmull2 assumes T2D or T16B as the second size specifier");
pmull(Vd, Ta, Vn, Vm, Tb);
}
void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
starti;
int size_b = (int)Tb >> 1;
int size_a = (int)Ta >> 1;
assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
}
void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
{
starti;
assert(T != T1D, "reserved encoding");
f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
}
void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
{
starti;
assert(T != T1D, "reserved encoding");
f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
}
// AdvSIMD ZIP/UZP/TRN
#define INSN(NAME, opcode) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
starti; \
f(0, 31), f(0b001110, 29, 24), f(0, 21), f(0b001110, 15, 10); \
rf(Vm, 16), rf(Vn, 5), rf(Vd, 0); \
f(T & 1, 30), f(T >> 1, 23, 22); \
}
INSN(uzp1, 0b001);
INSN(trn1, 0b010);
INSN(zip1, 0b011);
INSN(uzp2, 0b101);
INSN(trn2, 0b110);
INSN(zip2, 0b111);
#undef INSN
// CRC32 instructions
#define INSN(NAME, c, sf, sz) \
void NAME(Register Rd, Register Rn, Register Rm) { \
starti; \
f(sf, 31), f(0b0011010110, 30, 21), f(0b010, 15, 13), f(c, 12); \
f(sz, 11, 10), rf(Rm, 16), rf(Rn, 5), rf(Rd, 0); \
}
INSN(crc32b, 0, 0, 0b00);
INSN(crc32h, 0, 0, 0b01);
INSN(crc32w, 0, 0, 0b10);
INSN(crc32x, 0, 1, 0b11);
INSN(crc32cb, 1, 0, 0b00);
INSN(crc32ch, 1, 0, 0b01);
INSN(crc32cw, 1, 0, 0b10);
INSN(crc32cx, 1, 1, 0b11);
#undef INSN
// Table vector lookup
#define INSN(NAME, op) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, unsigned registers, FloatRegister Vm) { \
starti; \
assert(T == T8B || T == T16B, "invalid arrangement"); \
assert(0 < registers && registers <= 4, "invalid number of registers"); \
f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21), rf(Vm, 16), f(0, 15); \
f(registers - 1, 14, 13), f(op, 12),f(0b00, 11, 10), rf(Vn, 5), rf(Vd, 0); \
}
INSN(tbl, 0);
INSN(tbx, 1);
#undef INSN
// AdvSIMD two-reg misc
#define INSN(NAME, U, opcode) \
void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) { \
starti; \
assert((ASSERTION), MSG); \
f(0, 31), f((int)T & 1, 30), f(U, 29), f(0b01110, 28, 24); \
f((int)(T >> 1), 23, 22), f(0b10000, 21, 17), f(opcode, 16, 12); \
f(0b10, 11, 10), rf(Vn, 5), rf(Vd, 0); \
}
#define MSG "invalid arrangement"
#define ASSERTION (T == T2S || T == T4S || T == T2D)
INSN(fsqrt, 1, 0b11111);
INSN(fabs, 0, 0b01111);
INSN(fneg, 1, 0b01111);
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H || T == T2S || T == T4S)
INSN(rev64, 0, 0b00000);
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B || T == T4H || T == T8H)
INSN(rev32, 1, 0b00000);
private:
INSN(_rbit, 1, 0b00101);
public:
#undef ASSERTION
#define ASSERTION (T == T8B || T == T16B)
INSN(rev16, 0, 0b00001);
// RBIT only allows T8B and T16B but encodes them oddly. Argh...
void rbit(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
assert((ASSERTION), MSG);
_rbit(Vd, SIMD_Arrangement(T & 1 | 0b010), Vn);
}
#undef ASSERTION
#undef MSG
#undef INSN
void ext(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm, int index)
{
starti;
assert(T == T8B || T == T16B, "invalid arrangement");
assert((T == T8B && index <= 0b0111) || (T == T16B && index <= 0b1111), "Invalid index value");
f(0, 31), f((int)T & 1, 30), f(0b101110000, 29, 21);
rf(Vm, 16), f(0, 15), f(index, 14, 11);
f(0, 10), rf(Vn, 5), rf(Vd, 0);
}
/* Simulator extensions to the ISA
haltsim
takes no arguments, causes the sim to enter a debug break and then
return from the simulator run() call with STATUS_HALT? The linking
code will call fatal() when it sees STATUS_HALT.
blrt Xn, Wm
blrt Xn, #gpargs, #fpargs, #type
Xn holds the 64 bit x86 branch_address
call format is encoded either as immediate data in the call
or in register Wm. In the latter case
Wm[13..6] = #gpargs,
Wm[5..2] = #fpargs,
Wm[1,0] = #type
calls the x86 code address 'branch_address' supplied in Xn passing
arguments taken from the general and floating point registers according
to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
or v0 according to the the return type #type' where
address branch_address;
uimm4 gpargs;
uimm4 fpargs;
enum ReturnType type;
enum ReturnType
{
void_ret = 0,
int_ret = 1,
long_ret = 1,
obj_ret = 1, // i.e. same as long
float_ret = 2,
double_ret = 3
}
notify
notifies the simulator of a transfer of control. instr[14:0]
identifies the type of change of control.
0 ==> initial entry to a method.
1 ==> return into a method from a submethod call.
2 ==> exit out of Java method code.
3 ==> start execution for a new bytecode.
in cases 1 and 2 the simulator is expected to use a JVM callback to
identify the name of the specific method being executed. in case 4
the simulator is expected to use a JVM callback to identify the
bytecode index.
Instruction encodings
---------------------
These are encoded in the space with instr[28:25] = 00 which is
unallocated. Encodings are
10987654321098765432109876543210
PSEUDO_HALT = 0x11100000000000000000000000000000
PSEUDO_BLRT = 0x11000000000000000_______________
PSEUDO_BLRTR = 0x1100000000000000100000__________
PSEUDO_NOTIFY = 0x10100000000000000_______________
instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
for BLRT
instr[14,11] = #gpargs, instr[10,7] = #fpargs
instr[6,5] = #type, instr[4,0] = Rn
for BLRTR
instr[9,5] = Rm, instr[4,0] = Rn
for NOTIFY
instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
*/
enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
virtual void notify(int type) {
if (UseBuiltinSim) {
starti;
// 109
f(0b101, 31, 29);
// 87654321098765
f(0b00000000000000, 28, 15);
f(type, 14, 0);
}
}
void blrt(Register Rn, int gpargs, int fpargs, int type) {
if (UseBuiltinSim) {
starti;
f(0b110, 31 ,29);
f(0b00, 28, 25);
// 4321098765
f(0b0000000000, 24, 15);
f(gpargs, 14, 11);
f(fpargs, 10, 7);
f(type, 6, 5);
rf(Rn, 0);
} else {
blr(Rn);
}
}
void blrt(Register Rn, Register Rm) {
if (UseBuiltinSim) {
starti;
f(0b110, 31 ,29);
f(0b00, 28, 25);
// 4321098765
f(0b0000000001, 24, 15);
// 43210
f(0b00000, 14, 10);
rf(Rm, 5);
rf(Rn, 0);
} else {
blr(Rn);
}
}
void haltsim() {
starti;
f(0b111, 31 ,29);
f(0b00, 28, 27);
// 654321098765432109876543210
f(0b000000000000000000000000000, 26, 0);
}
Assembler(CodeBuffer* code) : AbstractAssembler(code) {
}
virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset) {
ShouldNotCallThis();
return RegisterOrConstant();
}
// Stack overflow checking
virtual void bang_stack_with_offset(int offset);
static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
static bool operand_valid_for_add_sub_immediate(long imm);
static bool operand_valid_for_float_immediate(double imm);
void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
};
inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
Assembler::Membar_mask_bits b) {
return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
}
Instruction_aarch64::~Instruction_aarch64() {
assem->emit();
}
#undef starti
// Invert a condition
inline const Assembler::Condition operator~(const Assembler::Condition cond) {
return Assembler::Condition(int(cond) ^ 1);
}
class BiasedLockingCounters;
extern "C" void das(uint64_t start, int len);
#endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP