src/jdk.crypto.ec/share/native/libsunec/impl/ecp_384.c
author pliden
Thu, 23 Aug 2018 10:52:27 +0200
changeset 51503 0265a70ea2a5
parent 47216 71c04702a3d5
permissions -rw-r--r--
8209831: ZGC: Clean up ZRelocationSetSelectorGroup::semi_sort() Reviewed-by: eosterlund, kbarrett

/*
 * Copyright (c) 2007, 2011, Oracle and/or its affiliates. All rights reserved.
 * Use is subject to license terms.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/* *********************************************************************
 *
 * The Original Code is the elliptic curve math library for prime field curves.
 *
 * The Initial Developer of the Original Code is
 * Sun Microsystems, Inc.
 * Portions created by the Initial Developer are Copyright (C) 2003
 * the Initial Developer. All Rights Reserved.
 *
 * Contributor(s):
 *   Douglas Stebila <douglas@stebila.ca>
 *
 *********************************************************************** */

#include "ecp.h"
#include "mpi.h"
#include "mplogic.h"
#include "mpi-priv.h"
#ifndef _KERNEL
#include <stdlib.h>
#endif

/* Fast modular reduction for p384 = 2^384 - 2^128 - 2^96 + 2^32 - 1.  a can be r.
 * Uses algorithm 2.30 from Hankerson, Menezes, Vanstone. Guide to
 * Elliptic Curve Cryptography. */
mp_err
ec_GFp_nistp384_mod(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_err res = MP_OKAY;
        int a_bits = mpl_significant_bits(a);
        int i;

        /* m1, m2 are statically-allocated mp_int of exactly the size we need */
        mp_int m[10];

#ifdef ECL_THIRTY_TWO_BIT
        mp_digit s[10][12];
        for (i = 0; i < 10; i++) {
                MP_SIGN(&m[i]) = MP_ZPOS;
                MP_ALLOC(&m[i]) = 12;
                MP_USED(&m[i]) = 12;
                MP_DIGITS(&m[i]) = s[i];
        }
#else
        mp_digit s[10][6];
        for (i = 0; i < 10; i++) {
                MP_SIGN(&m[i]) = MP_ZPOS;
                MP_ALLOC(&m[i]) = 6;
                MP_USED(&m[i]) = 6;
                MP_DIGITS(&m[i]) = s[i];
        }
#endif

#ifdef ECL_THIRTY_TWO_BIT
        /* for polynomials larger than twice the field size or polynomials
         * not using all words, use regular reduction */
        if ((a_bits > 768) || (a_bits <= 736)) {
                MP_CHECKOK(mp_mod(a, &meth->irr, r));
        } else {
                for (i = 0; i < 12; i++) {
                        s[0][i] = MP_DIGIT(a, i);
                }
                s[1][0] = 0;
                s[1][1] = 0;
                s[1][2] = 0;
                s[1][3] = 0;
                s[1][4] = MP_DIGIT(a, 21);
                s[1][5] = MP_DIGIT(a, 22);
                s[1][6] = MP_DIGIT(a, 23);
                s[1][7] = 0;
                s[1][8] = 0;
                s[1][9] = 0;
                s[1][10] = 0;
                s[1][11] = 0;
                for (i = 0; i < 12; i++) {
                        s[2][i] = MP_DIGIT(a, i+12);
                }
                s[3][0] = MP_DIGIT(a, 21);
                s[3][1] = MP_DIGIT(a, 22);
                s[3][2] = MP_DIGIT(a, 23);
                for (i = 3; i < 12; i++) {
                        s[3][i] = MP_DIGIT(a, i+9);
                }
                s[4][0] = 0;
                s[4][1] = MP_DIGIT(a, 23);
                s[4][2] = 0;
                s[4][3] = MP_DIGIT(a, 20);
                for (i = 4; i < 12; i++) {
                        s[4][i] = MP_DIGIT(a, i+8);
                }
                s[5][0] = 0;
                s[5][1] = 0;
                s[5][2] = 0;
                s[5][3] = 0;
                s[5][4] = MP_DIGIT(a, 20);
                s[5][5] = MP_DIGIT(a, 21);
                s[5][6] = MP_DIGIT(a, 22);
                s[5][7] = MP_DIGIT(a, 23);
                s[5][8] = 0;
                s[5][9] = 0;
                s[5][10] = 0;
                s[5][11] = 0;
                s[6][0] = MP_DIGIT(a, 20);
                s[6][1] = 0;
                s[6][2] = 0;
                s[6][3] = MP_DIGIT(a, 21);
                s[6][4] = MP_DIGIT(a, 22);
                s[6][5] = MP_DIGIT(a, 23);
                s[6][6] = 0;
                s[6][7] = 0;
                s[6][8] = 0;
                s[6][9] = 0;
                s[6][10] = 0;
                s[6][11] = 0;
                s[7][0] = MP_DIGIT(a, 23);
                for (i = 1; i < 12; i++) {
                        s[7][i] = MP_DIGIT(a, i+11);
                }
                s[8][0] = 0;
                s[8][1] = MP_DIGIT(a, 20);
                s[8][2] = MP_DIGIT(a, 21);
                s[8][3] = MP_DIGIT(a, 22);
                s[8][4] = MP_DIGIT(a, 23);
                s[8][5] = 0;
                s[8][6] = 0;
                s[8][7] = 0;
                s[8][8] = 0;
                s[8][9] = 0;
                s[8][10] = 0;
                s[8][11] = 0;
                s[9][0] = 0;
                s[9][1] = 0;
                s[9][2] = 0;
                s[9][3] = MP_DIGIT(a, 23);
                s[9][4] = MP_DIGIT(a, 23);
                s[9][5] = 0;
                s[9][6] = 0;
                s[9][7] = 0;
                s[9][8] = 0;
                s[9][9] = 0;
                s[9][10] = 0;
                s[9][11] = 0;

                MP_CHECKOK(mp_add(&m[0], &m[1], r));
                MP_CHECKOK(mp_add(r, &m[1], r));
                MP_CHECKOK(mp_add(r, &m[2], r));
                MP_CHECKOK(mp_add(r, &m[3], r));
                MP_CHECKOK(mp_add(r, &m[4], r));
                MP_CHECKOK(mp_add(r, &m[5], r));
                MP_CHECKOK(mp_add(r, &m[6], r));
                MP_CHECKOK(mp_sub(r, &m[7], r));
                MP_CHECKOK(mp_sub(r, &m[8], r));
                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
                s_mp_clamp(r);
        }
#else
        /* for polynomials larger than twice the field size or polynomials
         * not using all words, use regular reduction */
        if ((a_bits > 768) || (a_bits <= 736)) {
                MP_CHECKOK(mp_mod(a, &meth->irr, r));
        } else {
                for (i = 0; i < 6; i++) {
                        s[0][i] = MP_DIGIT(a, i);
                }
                s[1][0] = 0;
                s[1][1] = 0;
                s[1][2] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
                s[1][3] = MP_DIGIT(a, 11) >> 32;
                s[1][4] = 0;
                s[1][5] = 0;
                for (i = 0; i < 6; i++) {
                        s[2][i] = MP_DIGIT(a, i+6);
                }
                s[3][0] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
                s[3][1] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
                for (i = 2; i < 6; i++) {
                        s[3][i] = (MP_DIGIT(a, i+4) >> 32) | (MP_DIGIT(a, i+5) << 32);
                }
                s[4][0] = (MP_DIGIT(a, 11) >> 32) << 32;
                s[4][1] = MP_DIGIT(a, 10) << 32;
                for (i = 2; i < 6; i++) {
                        s[4][i] = MP_DIGIT(a, i+4);
                }
                s[5][0] = 0;
                s[5][1] = 0;
                s[5][2] = MP_DIGIT(a, 10);
                s[5][3] = MP_DIGIT(a, 11);
                s[5][4] = 0;
                s[5][5] = 0;
                s[6][0] = (MP_DIGIT(a, 10) << 32) >> 32;
                s[6][1] = (MP_DIGIT(a, 10) >> 32) << 32;
                s[6][2] = MP_DIGIT(a, 11);
                s[6][3] = 0;
                s[6][4] = 0;
                s[6][5] = 0;
                s[7][0] = (MP_DIGIT(a, 11) >> 32) | (MP_DIGIT(a, 6) << 32);
                for (i = 1; i < 6; i++) {
                        s[7][i] = (MP_DIGIT(a, i+5) >> 32) | (MP_DIGIT(a, i+6) << 32);
                }
                s[8][0] = MP_DIGIT(a, 10) << 32;
                s[8][1] = (MP_DIGIT(a, 10) >> 32) | (MP_DIGIT(a, 11) << 32);
                s[8][2] = MP_DIGIT(a, 11) >> 32;
                s[8][3] = 0;
                s[8][4] = 0;
                s[8][5] = 0;
                s[9][0] = 0;
                s[9][1] = (MP_DIGIT(a, 11) >> 32) << 32;
                s[9][2] = MP_DIGIT(a, 11) >> 32;
                s[9][3] = 0;
                s[9][4] = 0;
                s[9][5] = 0;

                MP_CHECKOK(mp_add(&m[0], &m[1], r));
                MP_CHECKOK(mp_add(r, &m[1], r));
                MP_CHECKOK(mp_add(r, &m[2], r));
                MP_CHECKOK(mp_add(r, &m[3], r));
                MP_CHECKOK(mp_add(r, &m[4], r));
                MP_CHECKOK(mp_add(r, &m[5], r));
                MP_CHECKOK(mp_add(r, &m[6], r));
                MP_CHECKOK(mp_sub(r, &m[7], r));
                MP_CHECKOK(mp_sub(r, &m[8], r));
                MP_CHECKOK(mp_submod(r, &m[9], &meth->irr, r));
                s_mp_clamp(r);
        }
#endif

  CLEANUP:
        return res;
}

/* Compute the square of polynomial a, reduce modulo p384. Store the
 * result in r.  r could be a.  Uses optimized modular reduction for p384.
 */
mp_err
ec_GFp_nistp384_sqr(const mp_int *a, mp_int *r, const GFMethod *meth)
{
        mp_err res = MP_OKAY;

        MP_CHECKOK(mp_sqr(a, r));
        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
  CLEANUP:
        return res;
}

/* Compute the product of two polynomials a and b, reduce modulo p384.
 * Store the result in r.  r could be a or b; a could be b.  Uses
 * optimized modular reduction for p384. */
mp_err
ec_GFp_nistp384_mul(const mp_int *a, const mp_int *b, mp_int *r,
                                        const GFMethod *meth)
{
        mp_err res = MP_OKAY;

        MP_CHECKOK(mp_mul(a, b, r));
        MP_CHECKOK(ec_GFp_nistp384_mod(r, r, meth));
  CLEANUP:
        return res;
}

/* Wire in fast field arithmetic and precomputation of base point for
 * named curves. */
mp_err
ec_group_set_gfp384(ECGroup *group, ECCurveName name)
{
        if (name == ECCurve_NIST_P384) {
                group->meth->field_mod = &ec_GFp_nistp384_mod;
                group->meth->field_mul = &ec_GFp_nistp384_mul;
                group->meth->field_sqr = &ec_GFp_nistp384_sqr;
        }
        return MP_OKAY;
}