/*
* Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "interpreter/interpreter.hpp"
#include "nativeInst_x86.hpp"
#include "oops/instanceOop.hpp"
#include "oops/method.hpp"
#include "oops/objArrayKlass.hpp"
#include "oops/oop.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/handles.inline.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubCodeGenerator.hpp"
#include "runtime/stubRoutines.hpp"
#include "runtime/thread.inline.hpp"
#ifdef COMPILER2
#include "opto/runtime.hpp"
#endif
// Declaration and definition of StubGenerator (no .hpp file).
// For a more detailed description of the stub routine structure
// see the comment in stubRoutines.hpp
#define __ _masm->
#define a__ ((Assembler*)_masm)->
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#else
#define BLOCK_COMMENT(str) __ block_comment(str)
#endif
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions
const int FPU_CNTRL_WRD_MASK = 0xFFFF;
// -------------------------------------------------------------------------------------------------------------------------
// Stub Code definitions
class StubGenerator: public StubCodeGenerator {
private:
#ifdef PRODUCT
#define inc_counter_np(counter) ((void)0)
#else
void inc_counter_np_(int& counter) {
__ incrementl(ExternalAddress((address)&counter));
}
#define inc_counter_np(counter) \
BLOCK_COMMENT("inc_counter " #counter); \
inc_counter_np_(counter);
#endif //PRODUCT
void inc_copy_counter_np(BasicType t) {
#ifndef PRODUCT
switch (t) {
case T_BYTE: inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
case T_SHORT: inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
case T_INT: inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
case T_LONG: inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
case T_OBJECT: inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
}
ShouldNotReachHere();
#endif //PRODUCT
}
//------------------------------------------------------------------------------------------------------------------------
// Call stubs are used to call Java from C
//
// [ return_from_Java ] <--- rsp
// [ argument word n ]
// ...
// -N [ argument word 1 ]
// -7 [ Possible padding for stack alignment ]
// -6 [ Possible padding for stack alignment ]
// -5 [ Possible padding for stack alignment ]
// -4 [ mxcsr save ] <--- rsp_after_call
// -3 [ saved rbx, ]
// -2 [ saved rsi ]
// -1 [ saved rdi ]
// 0 [ saved rbp, ] <--- rbp,
// 1 [ return address ]
// 2 [ ptr. to call wrapper ]
// 3 [ result ]
// 4 [ result_type ]
// 5 [ method ]
// 6 [ entry_point ]
// 7 [ parameters ]
// 8 [ parameter_size ]
// 9 [ thread ]
address generate_call_stub(address& return_address) {
StubCodeMark mark(this, "StubRoutines", "call_stub");
address start = __ pc();
// stub code parameters / addresses
assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
bool sse_save = false;
const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
const int locals_count_in_bytes (4*wordSize);
const Address mxcsr_save (rbp, -4 * wordSize);
const Address saved_rbx (rbp, -3 * wordSize);
const Address saved_rsi (rbp, -2 * wordSize);
const Address saved_rdi (rbp, -1 * wordSize);
const Address result (rbp, 3 * wordSize);
const Address result_type (rbp, 4 * wordSize);
const Address method (rbp, 5 * wordSize);
const Address entry_point (rbp, 6 * wordSize);
const Address parameters (rbp, 7 * wordSize);
const Address parameter_size(rbp, 8 * wordSize);
const Address thread (rbp, 9 * wordSize); // same as in generate_catch_exception()!
sse_save = UseSSE > 0;
// stub code
__ enter();
__ movptr(rcx, parameter_size); // parameter counter
__ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
__ addptr(rcx, locals_count_in_bytes); // reserve space for register saves
__ subptr(rsp, rcx);
__ andptr(rsp, -(StackAlignmentInBytes)); // Align stack
// save rdi, rsi, & rbx, according to C calling conventions
__ movptr(saved_rdi, rdi);
__ movptr(saved_rsi, rsi);
__ movptr(saved_rbx, rbx);
// provide initial value for required masks
if (UseAVX > 2) {
__ movl(rbx, 0xffff);
__ kmovwl(k1, rbx);
}
// save and initialize %mxcsr
if (sse_save) {
Label skip_ldmx;
__ stmxcsr(mxcsr_save);
__ movl(rax, mxcsr_save);
__ andl(rax, MXCSR_MASK); // Only check control and mask bits
ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
__ cmp32(rax, mxcsr_std);
__ jcc(Assembler::equal, skip_ldmx);
__ ldmxcsr(mxcsr_std);
__ bind(skip_ldmx);
}
// make sure the control word is correct.
__ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
#ifdef ASSERT
// make sure we have no pending exceptions
{ Label L;
__ movptr(rcx, thread);
__ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::equal, L);
__ stop("StubRoutines::call_stub: entered with pending exception");
__ bind(L);
}
#endif
// pass parameters if any
BLOCK_COMMENT("pass parameters if any");
Label parameters_done;
__ movl(rcx, parameter_size); // parameter counter
__ testl(rcx, rcx);
__ jcc(Assembler::zero, parameters_done);
// parameter passing loop
Label loop;
// Copy Java parameters in reverse order (receiver last)
// Note that the argument order is inverted in the process
// source is rdx[rcx: N-1..0]
// dest is rsp[rbx: 0..N-1]
__ movptr(rdx, parameters); // parameter pointer
__ xorptr(rbx, rbx);
__ BIND(loop);
// get parameter
__ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
__ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
Interpreter::expr_offset_in_bytes(0)), rax); // store parameter
__ increment(rbx);
__ decrement(rcx);
__ jcc(Assembler::notZero, loop);
// call Java function
__ BIND(parameters_done);
__ movptr(rbx, method); // get Method*
__ movptr(rax, entry_point); // get entry_point
__ mov(rsi, rsp); // set sender sp
BLOCK_COMMENT("call Java function");
__ call(rax);
BLOCK_COMMENT("call_stub_return_address:");
return_address = __ pc();
#ifdef COMPILER2
{
Label L_skip;
if (UseSSE >= 2) {
__ verify_FPU(0, "call_stub_return");
} else {
for (int i = 1; i < 8; i++) {
__ ffree(i);
}
// UseSSE <= 1 so double result should be left on TOS
__ movl(rsi, result_type);
__ cmpl(rsi, T_DOUBLE);
__ jcc(Assembler::equal, L_skip);
if (UseSSE == 0) {
// UseSSE == 0 so float result should be left on TOS
__ cmpl(rsi, T_FLOAT);
__ jcc(Assembler::equal, L_skip);
}
__ ffree(0);
}
__ BIND(L_skip);
}
#endif // COMPILER2
// store result depending on type
// (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
__ movptr(rdi, result);
Label is_long, is_float, is_double, exit;
__ movl(rsi, result_type);
__ cmpl(rsi, T_LONG);
__ jcc(Assembler::equal, is_long);
__ cmpl(rsi, T_FLOAT);
__ jcc(Assembler::equal, is_float);
__ cmpl(rsi, T_DOUBLE);
__ jcc(Assembler::equal, is_double);
// handle T_INT case
__ movl(Address(rdi, 0), rax);
__ BIND(exit);
// check that FPU stack is empty
__ verify_FPU(0, "generate_call_stub");
// pop parameters
__ lea(rsp, rsp_after_call);
// restore %mxcsr
if (sse_save) {
__ ldmxcsr(mxcsr_save);
}
// restore rdi, rsi and rbx,
__ movptr(rbx, saved_rbx);
__ movptr(rsi, saved_rsi);
__ movptr(rdi, saved_rdi);
__ addptr(rsp, 4*wordSize);
// return
__ pop(rbp);
__ ret(0);
// handle return types different from T_INT
__ BIND(is_long);
__ movl(Address(rdi, 0 * wordSize), rax);
__ movl(Address(rdi, 1 * wordSize), rdx);
__ jmp(exit);
__ BIND(is_float);
// interpreter uses xmm0 for return values
if (UseSSE >= 1) {
__ movflt(Address(rdi, 0), xmm0);
} else {
__ fstp_s(Address(rdi, 0));
}
__ jmp(exit);
__ BIND(is_double);
// interpreter uses xmm0 for return values
if (UseSSE >= 2) {
__ movdbl(Address(rdi, 0), xmm0);
} else {
__ fstp_d(Address(rdi, 0));
}
__ jmp(exit);
return start;
}
//------------------------------------------------------------------------------------------------------------------------
// Return point for a Java call if there's an exception thrown in Java code.
// The exception is caught and transformed into a pending exception stored in
// JavaThread that can be tested from within the VM.
//
// Note: Usually the parameters are removed by the callee. In case of an exception
// crossing an activation frame boundary, that is not the case if the callee
// is compiled code => need to setup the rsp.
//
// rax,: exception oop
address generate_catch_exception() {
StubCodeMark mark(this, "StubRoutines", "catch_exception");
const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
const Address thread (rbp, 9 * wordSize); // same as in generate_call_stub()!
address start = __ pc();
// get thread directly
__ movptr(rcx, thread);
#ifdef ASSERT
// verify that threads correspond
{ Label L;
__ get_thread(rbx);
__ cmpptr(rbx, rcx);
__ jcc(Assembler::equal, L);
__ stop("StubRoutines::catch_exception: threads must correspond");
__ bind(L);
}
#endif
// set pending exception
__ verify_oop(rax);
__ movptr(Address(rcx, Thread::pending_exception_offset()), rax );
__ lea(Address(rcx, Thread::exception_file_offset ()),
ExternalAddress((address)__FILE__));
__ movl(Address(rcx, Thread::exception_line_offset ()), __LINE__ );
// complete return to VM
assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
__ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
return start;
}
//------------------------------------------------------------------------------------------------------------------------
// Continuation point for runtime calls returning with a pending exception.
// The pending exception check happened in the runtime or native call stub.
// The pending exception in Thread is converted into a Java-level exception.
//
// Contract with Java-level exception handlers:
// rax: exception
// rdx: throwing pc
//
// NOTE: At entry of this stub, exception-pc must be on stack !!
address generate_forward_exception() {
StubCodeMark mark(this, "StubRoutines", "forward exception");
address start = __ pc();
const Register thread = rcx;
// other registers used in this stub
const Register exception_oop = rax;
const Register handler_addr = rbx;
const Register exception_pc = rdx;
// Upon entry, the sp points to the return address returning into Java
// (interpreted or compiled) code; i.e., the return address becomes the
// throwing pc.
//
// Arguments pushed before the runtime call are still on the stack but
// the exception handler will reset the stack pointer -> ignore them.
// A potential result in registers can be ignored as well.
#ifdef ASSERT
// make sure this code is only executed if there is a pending exception
{ Label L;
__ get_thread(thread);
__ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, L);
__ stop("StubRoutines::forward exception: no pending exception (1)");
__ bind(L);
}
#endif
// compute exception handler into rbx,
__ get_thread(thread);
__ movptr(exception_pc, Address(rsp, 0));
BLOCK_COMMENT("call exception_handler_for_return_address");
__ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
__ mov(handler_addr, rax);
// setup rax & rdx, remove return address & clear pending exception
__ get_thread(thread);
__ pop(exception_pc);
__ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
__ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
#ifdef ASSERT
// make sure exception is set
{ Label L;
__ testptr(exception_oop, exception_oop);
__ jcc(Assembler::notEqual, L);
__ stop("StubRoutines::forward exception: no pending exception (2)");
__ bind(L);
}
#endif
// Verify that there is really a valid exception in RAX.
__ verify_oop(exception_oop);
// continue at exception handler (return address removed)
// rax: exception
// rbx: exception handler
// rdx: throwing pc
__ jmp(handler_addr);
return start;
}
//----------------------------------------------------------------------------------------------------
// Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
//
// xchg exists as far back as 8086, lock needed for MP only
// Stack layout immediately after call:
//
// 0 [ret addr ] <--- rsp
// 1 [ ex ]
// 2 [ dest ]
//
// Result: *dest <- ex, return (old *dest)
//
// Note: win32 does not currently use this code
address generate_atomic_xchg() {
StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
address start = __ pc();
__ push(rdx);
Address exchange(rsp, 2 * wordSize);
Address dest_addr(rsp, 3 * wordSize);
__ movl(rax, exchange);
__ movptr(rdx, dest_addr);
__ xchgl(rax, Address(rdx, 0));
__ pop(rdx);
__ ret(0);
return start;
}
//----------------------------------------------------------------------------------------------------
// Support for void verify_mxcsr()
//
// This routine is used with -Xcheck:jni to verify that native
// JNI code does not return to Java code without restoring the
// MXCSR register to our expected state.
address generate_verify_mxcsr() {
StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
address start = __ pc();
const Address mxcsr_save(rsp, 0);
if (CheckJNICalls && UseSSE > 0 ) {
Label ok_ret;
ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
__ push(rax);
__ subptr(rsp, wordSize); // allocate a temp location
__ stmxcsr(mxcsr_save);
__ movl(rax, mxcsr_save);
__ andl(rax, MXCSR_MASK);
__ cmp32(rax, mxcsr_std);
__ jcc(Assembler::equal, ok_ret);
__ warn("MXCSR changed by native JNI code.");
__ ldmxcsr(mxcsr_std);
__ bind(ok_ret);
__ addptr(rsp, wordSize);
__ pop(rax);
}
__ ret(0);
return start;
}
//---------------------------------------------------------------------------
// Support for void verify_fpu_cntrl_wrd()
//
// This routine is used with -Xcheck:jni to verify that native
// JNI code does not return to Java code without restoring the
// FP control word to our expected state.
address generate_verify_fpu_cntrl_wrd() {
StubCodeMark mark(this, "StubRoutines", "verify_spcw");
address start = __ pc();
const Address fpu_cntrl_wrd_save(rsp, 0);
if (CheckJNICalls) {
Label ok_ret;
__ push(rax);
__ subptr(rsp, wordSize); // allocate a temp location
__ fnstcw(fpu_cntrl_wrd_save);
__ movl(rax, fpu_cntrl_wrd_save);
__ andl(rax, FPU_CNTRL_WRD_MASK);
ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
__ cmp32(rax, fpu_std);
__ jcc(Assembler::equal, ok_ret);
__ warn("Floating point control word changed by native JNI code.");
__ fldcw(fpu_std);
__ bind(ok_ret);
__ addptr(rsp, wordSize);
__ pop(rax);
}
__ ret(0);
return start;
}
//---------------------------------------------------------------------------
// Wrapper for slow-case handling of double-to-integer conversion
// d2i or f2i fast case failed either because it is nan or because
// of under/overflow.
// Input: FPU TOS: float value
// Output: rax, (rdx): integer (long) result
address generate_d2i_wrapper(BasicType t, address fcn) {
StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
address start = __ pc();
// Capture info about frame layout
enum layout { FPUState_off = 0,
rbp_off = FPUStateSizeInWords,
rdi_off,
rsi_off,
rcx_off,
rbx_off,
saved_argument_off,
saved_argument_off2, // 2nd half of double
framesize
};
assert(FPUStateSizeInWords == 27, "update stack layout");
// Save outgoing argument to stack across push_FPU_state()
__ subptr(rsp, wordSize * 2);
__ fstp_d(Address(rsp, 0));
// Save CPU & FPU state
__ push(rbx);
__ push(rcx);
__ push(rsi);
__ push(rdi);
__ push(rbp);
__ push_FPU_state();
// push_FPU_state() resets the FP top of stack
// Load original double into FP top of stack
__ fld_d(Address(rsp, saved_argument_off * wordSize));
// Store double into stack as outgoing argument
__ subptr(rsp, wordSize*2);
__ fst_d(Address(rsp, 0));
// Prepare FPU for doing math in C-land
__ empty_FPU_stack();
// Call the C code to massage the double. Result in EAX
if (t == T_INT)
{ BLOCK_COMMENT("SharedRuntime::d2i"); }
else if (t == T_LONG)
{ BLOCK_COMMENT("SharedRuntime::d2l"); }
__ call_VM_leaf( fcn, 2 );
// Restore CPU & FPU state
__ pop_FPU_state();
__ pop(rbp);
__ pop(rdi);
__ pop(rsi);
__ pop(rcx);
__ pop(rbx);
__ addptr(rsp, wordSize * 2);
__ ret(0);
return start;
}
//----------------------------------------------------------------------------------------------------
// Non-destructive plausibility checks for oops
address generate_verify_oop() {
StubCodeMark mark(this, "StubRoutines", "verify_oop");
address start = __ pc();
// Incoming arguments on stack after saving rax,:
//
// [tos ]: saved rdx
// [tos + 1]: saved EFLAGS
// [tos + 2]: return address
// [tos + 3]: char* error message
// [tos + 4]: oop object to verify
// [tos + 5]: saved rax, - saved by caller and bashed
Label exit, error;
__ pushf();
__ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
__ push(rdx); // save rdx
// make sure object is 'reasonable'
__ movptr(rax, Address(rsp, 4 * wordSize)); // get object
__ testptr(rax, rax);
__ jcc(Assembler::zero, exit); // if obj is NULL it is ok
// Check if the oop is in the right area of memory
const int oop_mask = Universe::verify_oop_mask();
const int oop_bits = Universe::verify_oop_bits();
__ mov(rdx, rax);
__ andptr(rdx, oop_mask);
__ cmpptr(rdx, oop_bits);
__ jcc(Assembler::notZero, error);
// make sure klass is 'reasonable', which is not zero.
__ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
__ testptr(rax, rax);
__ jcc(Assembler::zero, error); // if klass is NULL it is broken
// return if everything seems ok
__ bind(exit);
__ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
__ pop(rdx); // restore rdx
__ popf(); // restore EFLAGS
__ ret(3 * wordSize); // pop arguments
// handle errors
__ bind(error);
__ movptr(rax, Address(rsp, 5 * wordSize)); // get saved rax, back
__ pop(rdx); // get saved rdx back
__ popf(); // get saved EFLAGS off stack -- will be ignored
__ pusha(); // push registers (eip = return address & msg are already pushed)
BLOCK_COMMENT("call MacroAssembler::debug");
__ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
__ popa();
__ ret(3 * wordSize); // pop arguments
return start;
}
//
// Generate pre-barrier for array stores
//
// Input:
// start - starting address
// count - element count
void gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
assert_different_registers(start, count);
BarrierSet* bs = Universe::heap()->barrier_set();
switch (bs->kind()) {
case BarrierSet::G1SATBCTLogging:
// With G1, don't generate the call if we statically know that the target in uninitialized
if (!uninitialized_target) {
__ pusha(); // push registers
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
start, count);
__ popa();
}
break;
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
case BarrierSet::ModRef:
break;
default :
ShouldNotReachHere();
}
}
//
// Generate a post-barrier for an array store
//
// start - starting address
// count - element count
//
// The two input registers are overwritten.
//
void gen_write_ref_array_post_barrier(Register start, Register count) {
BarrierSet* bs = Universe::heap()->barrier_set();
assert_different_registers(start, count);
switch (bs->kind()) {
case BarrierSet::G1SATBCTLogging:
{
__ pusha(); // push registers
__ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
start, count);
__ popa();
}
break;
case BarrierSet::CardTableForRS:
case BarrierSet::CardTableExtension:
{
CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
Label L_loop;
const Register end = count; // elements count; end == start+count-1
assert_different_registers(start, end);
__ lea(end, Address(start, count, Address::times_ptr, -wordSize));
__ shrptr(start, CardTableModRefBS::card_shift);
__ shrptr(end, CardTableModRefBS::card_shift);
__ subptr(end, start); // end --> count
__ BIND(L_loop);
intptr_t disp = (intptr_t) ct->byte_map_base;
Address cardtable(start, count, Address::times_1, disp);
__ movb(cardtable, 0);
__ decrement(count);
__ jcc(Assembler::greaterEqual, L_loop);
}
break;
case BarrierSet::ModRef:
break;
default :
ShouldNotReachHere();
}
}
// Copy 64 bytes chunks
//
// Inputs:
// from - source array address
// to_from - destination array address - from
// qword_count - 8-bytes element count, negative
//
void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
assert( UseSSE >= 2, "supported cpu only" );
Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
if (UseAVX > 2) {
__ push(rbx);
__ movl(rbx, 0xffff);
__ kmovwl(k1, rbx);
__ pop(rbx);
}
// Copy 64-byte chunks
__ jmpb(L_copy_64_bytes);
__ align(OptoLoopAlignment);
__ BIND(L_copy_64_bytes_loop);
if (UseUnalignedLoadStores) {
if (UseAVX > 2) {
__ evmovdqul(xmm0, Address(from, 0), Assembler::AVX_512bit);
__ evmovdqul(Address(from, to_from, Address::times_1, 0), xmm0, Assembler::AVX_512bit);
} else if (UseAVX == 2) {
__ vmovdqu(xmm0, Address(from, 0));
__ vmovdqu(Address(from, to_from, Address::times_1, 0), xmm0);
__ vmovdqu(xmm1, Address(from, 32));
__ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
} else {
__ movdqu(xmm0, Address(from, 0));
__ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
__ movdqu(xmm1, Address(from, 16));
__ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
__ movdqu(xmm2, Address(from, 32));
__ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
__ movdqu(xmm3, Address(from, 48));
__ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
}
} else {
__ movq(xmm0, Address(from, 0));
__ movq(Address(from, to_from, Address::times_1, 0), xmm0);
__ movq(xmm1, Address(from, 8));
__ movq(Address(from, to_from, Address::times_1, 8), xmm1);
__ movq(xmm2, Address(from, 16));
__ movq(Address(from, to_from, Address::times_1, 16), xmm2);
__ movq(xmm3, Address(from, 24));
__ movq(Address(from, to_from, Address::times_1, 24), xmm3);
__ movq(xmm4, Address(from, 32));
__ movq(Address(from, to_from, Address::times_1, 32), xmm4);
__ movq(xmm5, Address(from, 40));
__ movq(Address(from, to_from, Address::times_1, 40), xmm5);
__ movq(xmm6, Address(from, 48));
__ movq(Address(from, to_from, Address::times_1, 48), xmm6);
__ movq(xmm7, Address(from, 56));
__ movq(Address(from, to_from, Address::times_1, 56), xmm7);
}
__ addl(from, 64);
__ BIND(L_copy_64_bytes);
__ subl(qword_count, 8);
__ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
if (UseUnalignedLoadStores && (UseAVX == 2)) {
// clean upper bits of YMM registers
__ vpxor(xmm0, xmm0);
__ vpxor(xmm1, xmm1);
}
__ addl(qword_count, 8);
__ jccb(Assembler::zero, L_exit);
//
// length is too short, just copy qwords
//
__ BIND(L_copy_8_bytes);
__ movq(xmm0, Address(from, 0));
__ movq(Address(from, to_from, Address::times_1), xmm0);
__ addl(from, 8);
__ decrement(qword_count);
__ jcc(Assembler::greater, L_copy_8_bytes);
__ BIND(L_exit);
}
// Copy 64 bytes chunks
//
// Inputs:
// from - source array address
// to_from - destination array address - from
// qword_count - 8-bytes element count, negative
//
void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
assert( VM_Version::supports_mmx(), "supported cpu only" );
Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
// Copy 64-byte chunks
__ jmpb(L_copy_64_bytes);
__ align(OptoLoopAlignment);
__ BIND(L_copy_64_bytes_loop);
__ movq(mmx0, Address(from, 0));
__ movq(mmx1, Address(from, 8));
__ movq(mmx2, Address(from, 16));
__ movq(Address(from, to_from, Address::times_1, 0), mmx0);
__ movq(mmx3, Address(from, 24));
__ movq(Address(from, to_from, Address::times_1, 8), mmx1);
__ movq(mmx4, Address(from, 32));
__ movq(Address(from, to_from, Address::times_1, 16), mmx2);
__ movq(mmx5, Address(from, 40));
__ movq(Address(from, to_from, Address::times_1, 24), mmx3);
__ movq(mmx6, Address(from, 48));
__ movq(Address(from, to_from, Address::times_1, 32), mmx4);
__ movq(mmx7, Address(from, 56));
__ movq(Address(from, to_from, Address::times_1, 40), mmx5);
__ movq(Address(from, to_from, Address::times_1, 48), mmx6);
__ movq(Address(from, to_from, Address::times_1, 56), mmx7);
__ addptr(from, 64);
__ BIND(L_copy_64_bytes);
__ subl(qword_count, 8);
__ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
__ addl(qword_count, 8);
__ jccb(Assembler::zero, L_exit);
//
// length is too short, just copy qwords
//
__ BIND(L_copy_8_bytes);
__ movq(mmx0, Address(from, 0));
__ movq(Address(from, to_from, Address::times_1), mmx0);
__ addptr(from, 8);
__ decrement(qword_count);
__ jcc(Assembler::greater, L_copy_8_bytes);
__ BIND(L_exit);
__ emms();
}
address generate_disjoint_copy(BasicType t, bool aligned,
Address::ScaleFactor sf,
address* entry, const char *name,
bool dest_uninitialized = false) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
int shift = Address::times_ptr - sf;
const Register from = rsi; // source array address
const Register to = rdi; // destination array address
const Register count = rcx; // elements count
const Register to_from = to; // (to - from)
const Register saved_to = rdx; // saved destination array address
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ push(rsi);
__ push(rdi);
__ movptr(from , Address(rsp, 12+ 4));
__ movptr(to , Address(rsp, 12+ 8));
__ movl(count, Address(rsp, 12+ 12));
if (entry != NULL) {
*entry = __ pc(); // Entry point from conjoint arraycopy stub.
BLOCK_COMMENT("Entry:");
}
if (t == T_OBJECT) {
__ testl(count, count);
__ jcc(Assembler::zero, L_0_count);
gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
__ mov(saved_to, to); // save 'to'
}
__ subptr(to, from); // to --> to_from
__ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
__ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
// align source address at 4 bytes address boundary
if (t == T_BYTE) {
// One byte misalignment happens only for byte arrays
__ testl(from, 1);
__ jccb(Assembler::zero, L_skip_align1);
__ movb(rax, Address(from, 0));
__ movb(Address(from, to_from, Address::times_1, 0), rax);
__ increment(from);
__ decrement(count);
__ BIND(L_skip_align1);
}
// Two bytes misalignment happens only for byte and short (char) arrays
__ testl(from, 2);
__ jccb(Assembler::zero, L_skip_align2);
__ movw(rax, Address(from, 0));
__ movw(Address(from, to_from, Address::times_1, 0), rax);
__ addptr(from, 2);
__ subl(count, 1<<(shift-1));
__ BIND(L_skip_align2);
}
if (!VM_Version::supports_mmx()) {
__ mov(rax, count); // save 'count'
__ shrl(count, shift); // bytes count
__ addptr(to_from, from);// restore 'to'
__ rep_mov();
__ subptr(to_from, from);// restore 'to_from'
__ mov(count, rax); // restore 'count'
__ jmpb(L_copy_2_bytes); // all dwords were copied
} else {
if (!UseUnalignedLoadStores) {
// align to 8 bytes, we know we are 4 byte aligned to start
__ testptr(from, 4);
__ jccb(Assembler::zero, L_copy_64_bytes);
__ movl(rax, Address(from, 0));
__ movl(Address(from, to_from, Address::times_1, 0), rax);
__ addptr(from, 4);
__ subl(count, 1<<shift);
}
__ BIND(L_copy_64_bytes);
__ mov(rax, count);
__ shrl(rax, shift+1); // 8 bytes chunk count
//
// Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
//
if (UseXMMForArrayCopy) {
xmm_copy_forward(from, to_from, rax);
} else {
mmx_copy_forward(from, to_from, rax);
}
}
// copy tailing dword
__ BIND(L_copy_4_bytes);
__ testl(count, 1<<shift);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rax, Address(from, 0));
__ movl(Address(from, to_from, Address::times_1, 0), rax);
if (t == T_BYTE || t == T_SHORT) {
__ addptr(from, 4);
__ BIND(L_copy_2_bytes);
// copy tailing word
__ testl(count, 1<<(shift-1));
__ jccb(Assembler::zero, L_copy_byte);
__ movw(rax, Address(from, 0));
__ movw(Address(from, to_from, Address::times_1, 0), rax);
if (t == T_BYTE) {
__ addptr(from, 2);
__ BIND(L_copy_byte);
// copy tailing byte
__ testl(count, 1);
__ jccb(Assembler::zero, L_exit);
__ movb(rax, Address(from, 0));
__ movb(Address(from, to_from, Address::times_1, 0), rax);
__ BIND(L_exit);
} else {
__ BIND(L_copy_byte);
}
} else {
__ BIND(L_copy_2_bytes);
}
if (t == T_OBJECT) {
__ movl(count, Address(rsp, 12+12)); // reread 'count'
__ mov(to, saved_to); // restore 'to'
gen_write_ref_array_post_barrier(to, count);
__ BIND(L_0_count);
}
inc_copy_counter_np(t);
__ pop(rdi);
__ pop(rsi);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ xorptr(rax, rax); // return 0
__ ret(0);
return start;
}
address generate_fill(BasicType t, bool aligned, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
BLOCK_COMMENT("Entry:");
const Register to = rdi; // source array address
const Register value = rdx; // value
const Register count = rsi; // elements count
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ push(rsi);
__ push(rdi);
__ movptr(to , Address(rsp, 12+ 4));
__ movl(value, Address(rsp, 12+ 8));
__ movl(count, Address(rsp, 12+ 12));
__ generate_fill(t, aligned, to, value, count, rax, xmm0);
__ pop(rdi);
__ pop(rsi);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_conjoint_copy(BasicType t, bool aligned,
Address::ScaleFactor sf,
address nooverlap_target,
address* entry, const char *name,
bool dest_uninitialized = false) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
int shift = Address::times_ptr - sf;
const Register src = rax; // source array address
const Register dst = rdx; // destination array address
const Register from = rsi; // source array address
const Register to = rdi; // destination array address
const Register count = rcx; // elements count
const Register end = rax; // array end address
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ push(rsi);
__ push(rdi);
__ movptr(src , Address(rsp, 12+ 4)); // from
__ movptr(dst , Address(rsp, 12+ 8)); // to
__ movl2ptr(count, Address(rsp, 12+12)); // count
if (entry != NULL) {
*entry = __ pc(); // Entry point from generic arraycopy stub.
BLOCK_COMMENT("Entry:");
}
// nooverlap_target expects arguments in rsi and rdi.
__ mov(from, src);
__ mov(to , dst);
// arrays overlap test: dispatch to disjoint stub if necessary.
RuntimeAddress nooverlap(nooverlap_target);
__ cmpptr(dst, src);
__ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
__ jump_cc(Assembler::belowEqual, nooverlap);
__ cmpptr(dst, end);
__ jump_cc(Assembler::aboveEqual, nooverlap);
if (t == T_OBJECT) {
__ testl(count, count);
__ jcc(Assembler::zero, L_0_count);
gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
}
// copy from high to low
__ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
__ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
if (t == T_BYTE || t == T_SHORT) {
// Align the end of destination array at 4 bytes address boundary
__ lea(end, Address(dst, count, sf, 0));
if (t == T_BYTE) {
// One byte misalignment happens only for byte arrays
__ testl(end, 1);
__ jccb(Assembler::zero, L_skip_align1);
__ decrement(count);
__ movb(rdx, Address(from, count, sf, 0));
__ movb(Address(to, count, sf, 0), rdx);
__ BIND(L_skip_align1);
}
// Two bytes misalignment happens only for byte and short (char) arrays
__ testl(end, 2);
__ jccb(Assembler::zero, L_skip_align2);
__ subptr(count, 1<<(shift-1));
__ movw(rdx, Address(from, count, sf, 0));
__ movw(Address(to, count, sf, 0), rdx);
__ BIND(L_skip_align2);
__ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
__ jcc(Assembler::below, L_copy_4_bytes);
}
if (!VM_Version::supports_mmx()) {
__ std();
__ mov(rax, count); // Save 'count'
__ mov(rdx, to); // Save 'to'
__ lea(rsi, Address(from, count, sf, -4));
__ lea(rdi, Address(to , count, sf, -4));
__ shrptr(count, shift); // bytes count
__ rep_mov();
__ cld();
__ mov(count, rax); // restore 'count'
__ andl(count, (1<<shift)-1); // mask the number of rest elements
__ movptr(from, Address(rsp, 12+4)); // reread 'from'
__ mov(to, rdx); // restore 'to'
__ jmpb(L_copy_2_bytes); // all dword were copied
} else {
// Align to 8 bytes the end of array. It is aligned to 4 bytes already.
__ testptr(end, 4);
__ jccb(Assembler::zero, L_copy_8_bytes);
__ subl(count, 1<<shift);
__ movl(rdx, Address(from, count, sf, 0));
__ movl(Address(to, count, sf, 0), rdx);
__ jmpb(L_copy_8_bytes);
__ align(OptoLoopAlignment);
// Move 8 bytes
__ BIND(L_copy_8_bytes_loop);
if (UseXMMForArrayCopy) {
__ movq(xmm0, Address(from, count, sf, 0));
__ movq(Address(to, count, sf, 0), xmm0);
} else {
__ movq(mmx0, Address(from, count, sf, 0));
__ movq(Address(to, count, sf, 0), mmx0);
}
__ BIND(L_copy_8_bytes);
__ subl(count, 2<<shift);
__ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
__ addl(count, 2<<shift);
if (!UseXMMForArrayCopy) {
__ emms();
}
}
__ BIND(L_copy_4_bytes);
// copy prefix qword
__ testl(count, 1<<shift);
__ jccb(Assembler::zero, L_copy_2_bytes);
__ movl(rdx, Address(from, count, sf, -4));
__ movl(Address(to, count, sf, -4), rdx);
if (t == T_BYTE || t == T_SHORT) {
__ subl(count, (1<<shift));
__ BIND(L_copy_2_bytes);
// copy prefix dword
__ testl(count, 1<<(shift-1));
__ jccb(Assembler::zero, L_copy_byte);
__ movw(rdx, Address(from, count, sf, -2));
__ movw(Address(to, count, sf, -2), rdx);
if (t == T_BYTE) {
__ subl(count, 1<<(shift-1));
__ BIND(L_copy_byte);
// copy prefix byte
__ testl(count, 1);
__ jccb(Assembler::zero, L_exit);
__ movb(rdx, Address(from, 0));
__ movb(Address(to, 0), rdx);
__ BIND(L_exit);
} else {
__ BIND(L_copy_byte);
}
} else {
__ BIND(L_copy_2_bytes);
}
if (t == T_OBJECT) {
__ movl2ptr(count, Address(rsp, 12+12)); // reread count
gen_write_ref_array_post_barrier(to, count);
__ BIND(L_0_count);
}
inc_copy_counter_np(t);
__ pop(rdi);
__ pop(rsi);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ xorptr(rax, rax); // return 0
__ ret(0);
return start;
}
address generate_disjoint_long_copy(address* entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_8_bytes, L_copy_8_bytes_loop;
const Register from = rax; // source array address
const Register to = rdx; // destination array address
const Register count = rcx; // elements count
const Register to_from = rdx; // (to - from)
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ movptr(from , Address(rsp, 8+0)); // from
__ movptr(to , Address(rsp, 8+4)); // to
__ movl2ptr(count, Address(rsp, 8+8)); // count
*entry = __ pc(); // Entry point from conjoint arraycopy stub.
BLOCK_COMMENT("Entry:");
__ subptr(to, from); // to --> to_from
if (VM_Version::supports_mmx()) {
if (UseXMMForArrayCopy) {
xmm_copy_forward(from, to_from, count);
} else {
mmx_copy_forward(from, to_from, count);
}
} else {
__ jmpb(L_copy_8_bytes);
__ align(OptoLoopAlignment);
__ BIND(L_copy_8_bytes_loop);
__ fild_d(Address(from, 0));
__ fistp_d(Address(from, to_from, Address::times_1));
__ addptr(from, 8);
__ BIND(L_copy_8_bytes);
__ decrement(count);
__ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
}
inc_copy_counter_np(T_LONG);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ xorptr(rax, rax); // return 0
__ ret(0);
return start;
}
address generate_conjoint_long_copy(address nooverlap_target,
address* entry, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_copy_8_bytes, L_copy_8_bytes_loop;
const Register from = rax; // source array address
const Register to = rdx; // destination array address
const Register count = rcx; // elements count
const Register end_from = rax; // source array end address
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ movptr(from , Address(rsp, 8+0)); // from
__ movptr(to , Address(rsp, 8+4)); // to
__ movl2ptr(count, Address(rsp, 8+8)); // count
*entry = __ pc(); // Entry point from generic arraycopy stub.
BLOCK_COMMENT("Entry:");
// arrays overlap test
__ cmpptr(to, from);
RuntimeAddress nooverlap(nooverlap_target);
__ jump_cc(Assembler::belowEqual, nooverlap);
__ lea(end_from, Address(from, count, Address::times_8, 0));
__ cmpptr(to, end_from);
__ movptr(from, Address(rsp, 8)); // from
__ jump_cc(Assembler::aboveEqual, nooverlap);
__ jmpb(L_copy_8_bytes);
__ align(OptoLoopAlignment);
__ BIND(L_copy_8_bytes_loop);
if (VM_Version::supports_mmx()) {
if (UseXMMForArrayCopy) {
__ movq(xmm0, Address(from, count, Address::times_8));
__ movq(Address(to, count, Address::times_8), xmm0);
} else {
__ movq(mmx0, Address(from, count, Address::times_8));
__ movq(Address(to, count, Address::times_8), mmx0);
}
} else {
__ fild_d(Address(from, count, Address::times_8));
__ fistp_d(Address(to, count, Address::times_8));
}
__ BIND(L_copy_8_bytes);
__ decrement(count);
__ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
__ emms();
}
inc_copy_counter_np(T_LONG);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ xorptr(rax, rax); // return 0
__ ret(0);
return start;
}
// Helper for generating a dynamic type check.
// The sub_klass must be one of {rbx, rdx, rsi}.
// The temp is killed.
void generate_type_check(Register sub_klass,
Address& super_check_offset_addr,
Address& super_klass_addr,
Register temp,
Label* L_success, Label* L_failure) {
BLOCK_COMMENT("type_check:");
Label L_fallthrough;
#define LOCAL_JCC(assembler_con, label_ptr) \
if (label_ptr != NULL) __ jcc(assembler_con, *(label_ptr)); \
else __ jcc(assembler_con, L_fallthrough) /*omit semi*/
// The following is a strange variation of the fast path which requires
// one less register, because needed values are on the argument stack.
// __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
// L_success, L_failure, NULL);
assert_different_registers(sub_klass, temp);
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
// if the pointers are equal, we are done (e.g., String[] elements)
__ cmpptr(sub_klass, super_klass_addr);
LOCAL_JCC(Assembler::equal, L_success);
// check the supertype display:
__ movl2ptr(temp, super_check_offset_addr);
Address super_check_addr(sub_klass, temp, Address::times_1, 0);
__ movptr(temp, super_check_addr); // load displayed supertype
__ cmpptr(temp, super_klass_addr); // test the super type
LOCAL_JCC(Assembler::equal, L_success);
// if it was a primary super, we can just fail immediately
__ cmpl(super_check_offset_addr, sc_offset);
LOCAL_JCC(Assembler::notEqual, L_failure);
// The repne_scan instruction uses fixed registers, which will get spilled.
// We happen to know this works best when super_klass is in rax.
Register super_klass = temp;
__ movptr(super_klass, super_klass_addr);
__ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
L_success, L_failure);
__ bind(L_fallthrough);
if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
#undef LOCAL_JCC
}
//
// Generate checkcasting array copy stub
//
// Input:
// 4(rsp) - source array address
// 8(rsp) - destination array address
// 12(rsp) - element count, can be zero
// 16(rsp) - size_t ckoff (super_check_offset)
// 20(rsp) - oop ckval (super_klass)
//
// Output:
// rax, == 0 - success
// rax, == -1^K - failure, where K is partial transfer count
//
address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Label L_load_element, L_store_element, L_do_card_marks, L_done;
// register use:
// rax, rdx, rcx -- loop control (end_from, end_to, count)
// rdi, rsi -- element access (oop, klass)
// rbx, -- temp
const Register from = rax; // source array address
const Register to = rdx; // destination array address
const Register length = rcx; // elements count
const Register elem = rdi; // each oop copied
const Register elem_klass = rsi; // each elem._klass (sub_klass)
const Register temp = rbx; // lone remaining temp
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ push(rsi);
__ push(rdi);
__ push(rbx);
Address from_arg(rsp, 16+ 4); // from
Address to_arg(rsp, 16+ 8); // to
Address length_arg(rsp, 16+12); // elements count
Address ckoff_arg(rsp, 16+16); // super_check_offset
Address ckval_arg(rsp, 16+20); // super_klass
// Load up:
__ movptr(from, from_arg);
__ movptr(to, to_arg);
__ movl2ptr(length, length_arg);
if (entry != NULL) {
*entry = __ pc(); // Entry point from generic arraycopy stub.
BLOCK_COMMENT("Entry:");
}
//---------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the two arrays are subtypes of Object[] but the
// destination array type is not equal to or a supertype
// of the source type. Each element must be separately
// checked.
// Loop-invariant addresses. They are exclusive end pointers.
Address end_from_addr(from, length, Address::times_ptr, 0);
Address end_to_addr(to, length, Address::times_ptr, 0);
Register end_from = from; // re-use
Register end_to = to; // re-use
Register count = length; // re-use
// Loop-variant addresses. They assume post-incremented count < 0.
Address from_element_addr(end_from, count, Address::times_ptr, 0);
Address to_element_addr(end_to, count, Address::times_ptr, 0);
Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
// Copy from low to high addresses, indexed from the end of each array.
gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
__ lea(end_from, end_from_addr);
__ lea(end_to, end_to_addr);
assert(length == count, ""); // else fix next line:
__ negptr(count); // negate and test the length
__ jccb(Assembler::notZero, L_load_element);
// Empty array: Nothing to do.
__ xorptr(rax, rax); // return 0 on (trivial) success
__ jmp(L_done);
// ======== begin loop ========
// (Loop is rotated; its entry is L_load_element.)
// Loop control:
// for (count = -count; count != 0; count++)
// Base pointers src, dst are biased by 8*count,to last element.
__ align(OptoLoopAlignment);
__ BIND(L_store_element);
__ movptr(to_element_addr, elem); // store the oop
__ increment(count); // increment the count toward zero
__ jccb(Assembler::zero, L_do_card_marks);
// ======== loop entry is here ========
__ BIND(L_load_element);
__ movptr(elem, from_element_addr); // load the oop
__ testptr(elem, elem);
__ jccb(Assembler::zero, L_store_element);
// (Could do a trick here: Remember last successful non-null
// element stored and make a quick oop equality check on it.)
__ movptr(elem_klass, elem_klass_addr); // query the object klass
generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
&L_store_element, NULL);
// (On fall-through, we have failed the element type check.)
// ======== end loop ========
// It was a real error; we must depend on the caller to finish the job.
// Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
// Emit GC store barriers for the oops we have copied (length_arg + count),
// and report their number to the caller.
assert_different_registers(to, count, rax);
Label L_post_barrier;
__ addl(count, length_arg); // transfers = (length - remaining)
__ movl2ptr(rax, count); // save the value
__ notptr(rax); // report (-1^K) to caller (does not affect flags)
__ jccb(Assembler::notZero, L_post_barrier);
__ jmp(L_done); // K == 0, nothing was copied, skip post barrier
// Come here on success only.
__ BIND(L_do_card_marks);
__ xorptr(rax, rax); // return 0 on success
__ movl2ptr(count, length_arg);
__ BIND(L_post_barrier);
__ movptr(to, to_arg); // reload
gen_write_ref_array_post_barrier(to, count);
// Common exit point (success or failure).
__ BIND(L_done);
__ pop(rbx);
__ pop(rdi);
__ pop(rsi);
inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
//
// Generate 'unsafe' array copy stub
// Though just as safe as the other stubs, it takes an unscaled
// size_t argument instead of an element count.
//
// Input:
// 4(rsp) - source array address
// 8(rsp) - destination array address
// 12(rsp) - byte count, can be zero
//
// Output:
// rax, == 0 - success
// rax, == -1 - need to call System.arraycopy
//
// Examines the alignment of the operands and dispatches
// to a long, int, short, or byte copy loop.
//
address generate_unsafe_copy(const char *name,
address byte_copy_entry,
address short_copy_entry,
address int_copy_entry,
address long_copy_entry) {
Label L_long_aligned, L_int_aligned, L_short_aligned;
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
const Register from = rax; // source array address
const Register to = rdx; // destination array address
const Register count = rcx; // elements count
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ push(rsi);
__ push(rdi);
Address from_arg(rsp, 12+ 4); // from
Address to_arg(rsp, 12+ 8); // to
Address count_arg(rsp, 12+12); // byte count
// Load up:
__ movptr(from , from_arg);
__ movptr(to , to_arg);
__ movl2ptr(count, count_arg);
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
const Register bits = rsi;
__ mov(bits, from);
__ orptr(bits, to);
__ orptr(bits, count);
__ testl(bits, BytesPerLong-1);
__ jccb(Assembler::zero, L_long_aligned);
__ testl(bits, BytesPerInt-1);
__ jccb(Assembler::zero, L_int_aligned);
__ testl(bits, BytesPerShort-1);
__ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
__ BIND(L_short_aligned);
__ shrptr(count, LogBytesPerShort); // size => short_count
__ movl(count_arg, count); // update 'count'
__ jump(RuntimeAddress(short_copy_entry));
__ BIND(L_int_aligned);
__ shrptr(count, LogBytesPerInt); // size => int_count
__ movl(count_arg, count); // update 'count'
__ jump(RuntimeAddress(int_copy_entry));
__ BIND(L_long_aligned);
__ shrptr(count, LogBytesPerLong); // size => qword_count
__ movl(count_arg, count); // update 'count'
__ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
__ pop(rsi);
__ jump(RuntimeAddress(long_copy_entry));
return start;
}
// Perform range checks on the proposed arraycopy.
// Smashes src_pos and dst_pos. (Uses them up for temps.)
void arraycopy_range_checks(Register src,
Register src_pos,
Register dst,
Register dst_pos,
Address& length,
Label& L_failed) {
BLOCK_COMMENT("arraycopy_range_checks:");
const Register src_end = src_pos; // source array end position
const Register dst_end = dst_pos; // destination array end position
__ addl(src_end, length); // src_pos + length
__ addl(dst_end, length); // dst_pos + length
// if (src_pos + length > arrayOop(src)->length() ) FAIL;
__ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
// if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
__ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
__ jcc(Assembler::above, L_failed);
BLOCK_COMMENT("arraycopy_range_checks done");
}
//
// Generate generic array copy stubs
//
// Input:
// 4(rsp) - src oop
// 8(rsp) - src_pos
// 12(rsp) - dst oop
// 16(rsp) - dst_pos
// 20(rsp) - element count
//
// Output:
// rax, == 0 - success
// rax, == -1^K - failure, where K is partial transfer count
//
address generate_generic_copy(const char *name,
address entry_jbyte_arraycopy,
address entry_jshort_arraycopy,
address entry_jint_arraycopy,
address entry_oop_arraycopy,
address entry_jlong_arraycopy,
address entry_checkcast_arraycopy) {
Label L_failed, L_failed_0, L_objArray;
{ int modulus = CodeEntryAlignment;
int target = modulus - 5; // 5 = sizeof jmp(L_failed)
int advance = target - (__ offset() % modulus);
if (advance < 0) advance += modulus;
if (advance > 0) __ nop(advance);
}
StubCodeMark mark(this, "StubRoutines", name);
// Short-hop target to L_failed. Makes for denser prologue code.
__ BIND(L_failed_0);
__ jmp(L_failed);
assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
__ align(CodeEntryAlignment);
address start = __ pc();
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ push(rsi);
__ push(rdi);
// bump this on entry, not on exit:
inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
// Input values
Address SRC (rsp, 12+ 4);
Address SRC_POS (rsp, 12+ 8);
Address DST (rsp, 12+12);
Address DST_POS (rsp, 12+16);
Address LENGTH (rsp, 12+20);
//-----------------------------------------------------------------------
// Assembler stub will be used for this call to arraycopy
// if the following conditions are met:
//
// (1) src and dst must not be null.
// (2) src_pos must not be negative.
// (3) dst_pos must not be negative.
// (4) length must not be negative.
// (5) src klass and dst klass should be the same and not NULL.
// (6) src and dst should be arrays.
// (7) src_pos + length must not exceed length of src.
// (8) dst_pos + length must not exceed length of dst.
//
const Register src = rax; // source array oop
const Register src_pos = rsi;
const Register dst = rdx; // destination array oop
const Register dst_pos = rdi;
const Register length = rcx; // transfer count
// if (src == NULL) return -1;
__ movptr(src, SRC); // src oop
__ testptr(src, src);
__ jccb(Assembler::zero, L_failed_0);
// if (src_pos < 0) return -1;
__ movl2ptr(src_pos, SRC_POS); // src_pos
__ testl(src_pos, src_pos);
__ jccb(Assembler::negative, L_failed_0);
// if (dst == NULL) return -1;
__ movptr(dst, DST); // dst oop
__ testptr(dst, dst);
__ jccb(Assembler::zero, L_failed_0);
// if (dst_pos < 0) return -1;
__ movl2ptr(dst_pos, DST_POS); // dst_pos
__ testl(dst_pos, dst_pos);
__ jccb(Assembler::negative, L_failed_0);
// if (length < 0) return -1;
__ movl2ptr(length, LENGTH); // length
__ testl(length, length);
__ jccb(Assembler::negative, L_failed_0);
// if (src->klass() == NULL) return -1;
Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
const Register rcx_src_klass = rcx; // array klass
__ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
#ifdef ASSERT
// assert(src->klass() != NULL);
BLOCK_COMMENT("assert klasses not null");
{ Label L1, L2;
__ testptr(rcx_src_klass, rcx_src_klass);
__ jccb(Assembler::notZero, L2); // it is broken if klass is NULL
__ bind(L1);
__ stop("broken null klass");
__ bind(L2);
__ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
__ jccb(Assembler::equal, L1); // this would be broken also
BLOCK_COMMENT("assert done");
}
#endif //ASSERT
// Load layout helper (32-bits)
//
// |array_tag| | header_size | element_type | |log2_element_size|
// 32 30 24 16 8 2 0
//
// array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
//
int lh_offset = in_bytes(Klass::layout_helper_offset());
Address src_klass_lh_addr(rcx_src_klass, lh_offset);
// Handle objArrays completely differently...
jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
__ cmpl(src_klass_lh_addr, objArray_lh);
__ jcc(Assembler::equal, L_objArray);
// if (src->klass() != dst->klass()) return -1;
__ cmpptr(rcx_src_klass, dst_klass_addr);
__ jccb(Assembler::notEqual, L_failed_0);
const Register rcx_lh = rcx; // layout helper
assert(rcx_lh == rcx_src_klass, "known alias");
__ movl(rcx_lh, src_klass_lh_addr);
// if (!src->is_Array()) return -1;
__ cmpl(rcx_lh, Klass::_lh_neutral_value);
__ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
// At this point, it is known to be a typeArray (array_tag 0x3).
#ifdef ASSERT
{ Label L;
__ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
__ jcc(Assembler::greaterEqual, L); // signed cmp
__ stop("must be a primitive array");
__ bind(L);
}
#endif
assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
// TypeArrayKlass
//
// src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
// dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
//
const Register rsi_offset = rsi; // array offset
const Register src_array = src; // src array offset
const Register dst_array = dst; // dst array offset
const Register rdi_elsize = rdi; // log2 element size
__ mov(rsi_offset, rcx_lh);
__ shrptr(rsi_offset, Klass::_lh_header_size_shift);
__ andptr(rsi_offset, Klass::_lh_header_size_mask); // array_offset
__ addptr(src_array, rsi_offset); // src array offset
__ addptr(dst_array, rsi_offset); // dst array offset
__ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
// next registers should be set before the jump to corresponding stub
const Register from = src; // source array address
const Register to = dst; // destination array address
const Register count = rcx; // elements count
// some of them should be duplicated on stack
#define FROM Address(rsp, 12+ 4)
#define TO Address(rsp, 12+ 8) // Not used now
#define COUNT Address(rsp, 12+12) // Only for oop arraycopy
BLOCK_COMMENT("scale indexes to element size");
__ movl2ptr(rsi, SRC_POS); // src_pos
__ shlptr(rsi); // src_pos << rcx (log2 elsize)
assert(src_array == from, "");
__ addptr(from, rsi); // from = src_array + SRC_POS << log2 elsize
__ movl2ptr(rdi, DST_POS); // dst_pos
__ shlptr(rdi); // dst_pos << rcx (log2 elsize)
assert(dst_array == to, "");
__ addptr(to, rdi); // to = dst_array + DST_POS << log2 elsize
__ movptr(FROM, from); // src_addr
__ mov(rdi_elsize, rcx_lh); // log2 elsize
__ movl2ptr(count, LENGTH); // elements count
BLOCK_COMMENT("choose copy loop based on element size");
__ cmpl(rdi_elsize, 0);
__ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
__ cmpl(rdi_elsize, LogBytesPerShort);
__ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
__ cmpl(rdi_elsize, LogBytesPerInt);
__ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
#ifdef ASSERT
__ cmpl(rdi_elsize, LogBytesPerLong);
__ jccb(Assembler::notEqual, L_failed);
#endif
__ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
__ pop(rsi);
__ jump(RuntimeAddress(entry_jlong_arraycopy));
__ BIND(L_failed);
__ xorptr(rax, rax);
__ notptr(rax); // return -1
__ pop(rdi);
__ pop(rsi);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
// ObjArrayKlass
__ BIND(L_objArray);
// live at this point: rcx_src_klass, src[_pos], dst[_pos]
Label L_plain_copy, L_checkcast_copy;
// test array classes for subtyping
__ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
__ jccb(Assembler::notEqual, L_checkcast_copy);
// Identically typed arrays can be copied without element-wise checks.
assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
__ BIND(L_plain_copy);
__ movl2ptr(count, LENGTH); // elements count
__ movl2ptr(src_pos, SRC_POS); // reload src_pos
__ lea(from, Address(src, src_pos, Address::times_ptr,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
__ movl2ptr(dst_pos, DST_POS); // reload dst_pos
__ lea(to, Address(dst, dst_pos, Address::times_ptr,
arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
__ movptr(FROM, from); // src_addr
__ movptr(TO, to); // dst_addr
__ movl(COUNT, count); // count
__ jump(RuntimeAddress(entry_oop_arraycopy));
__ BIND(L_checkcast_copy);
// live at this point: rcx_src_klass, dst[_pos], src[_pos]
{
// Handy offsets:
int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
int sco_offset = in_bytes(Klass::super_check_offset_offset());
Register rsi_dst_klass = rsi;
Register rdi_temp = rdi;
assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
assert(rdi_temp == dst_pos, "expected alias w/ dst_pos");
Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
// Before looking at dst.length, make sure dst is also an objArray.
__ movptr(rsi_dst_klass, dst_klass_addr);
__ cmpl(dst_klass_lh_addr, objArray_lh);
__ jccb(Assembler::notEqual, L_failed);
// It is safe to examine both src.length and dst.length.
__ movl2ptr(src_pos, SRC_POS); // reload rsi
arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
// (Now src_pos and dst_pos are killed, but not src and dst.)
// We'll need this temp (don't forget to pop it after the type check).
__ push(rbx);
Register rbx_src_klass = rbx;
__ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
__ movptr(rsi_dst_klass, dst_klass_addr);
Address super_check_offset_addr(rsi_dst_klass, sco_offset);
Label L_fail_array_check;
generate_type_check(rbx_src_klass,
super_check_offset_addr, dst_klass_addr,
rdi_temp, NULL, &L_fail_array_check);
// (On fall-through, we have passed the array type check.)
__ pop(rbx);
__ jmp(L_plain_copy);
__ BIND(L_fail_array_check);
// Reshuffle arguments so we can call checkcast_arraycopy:
// match initial saves for checkcast_arraycopy
// push(rsi); // already done; see above
// push(rdi); // already done; see above
// push(rbx); // already done; see above
// Marshal outgoing arguments now, freeing registers.
Address from_arg(rsp, 16+ 4); // from
Address to_arg(rsp, 16+ 8); // to
Address length_arg(rsp, 16+12); // elements count
Address ckoff_arg(rsp, 16+16); // super_check_offset
Address ckval_arg(rsp, 16+20); // super_klass
Address SRC_POS_arg(rsp, 16+ 8);
Address DST_POS_arg(rsp, 16+16);
Address LENGTH_arg(rsp, 16+20);
// push rbx, changed the incoming offsets (why not just use rbp,??)
// assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
__ movptr(rbx, Address(rsi_dst_klass, ek_offset));
__ movl2ptr(length, LENGTH_arg); // reload elements count
__ movl2ptr(src_pos, SRC_POS_arg); // reload src_pos
__ movl2ptr(dst_pos, DST_POS_arg); // reload dst_pos
__ movptr(ckval_arg, rbx); // destination element type
__ movl(rbx, Address(rbx, sco_offset));
__ movl(ckoff_arg, rbx); // corresponding class check offset
__ movl(length_arg, length); // outgoing length argument
__ lea(from, Address(src, src_pos, Address::times_ptr,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ movptr(from_arg, from);
__ lea(to, Address(dst, dst_pos, Address::times_ptr,
arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
__ movptr(to_arg, to);
__ jump(RuntimeAddress(entry_checkcast_arraycopy));
}
return start;
}
void generate_arraycopy_stubs() {
address entry;
address entry_jbyte_arraycopy;
address entry_jshort_arraycopy;
address entry_jint_arraycopy;
address entry_oop_arraycopy;
address entry_jlong_arraycopy;
address entry_checkcast_arraycopy;
StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
generate_disjoint_copy(T_BYTE, true, Address::times_1, &entry,
"arrayof_jbyte_disjoint_arraycopy");
StubRoutines::_arrayof_jbyte_arraycopy =
generate_conjoint_copy(T_BYTE, true, Address::times_1, entry,
NULL, "arrayof_jbyte_arraycopy");
StubRoutines::_jbyte_disjoint_arraycopy =
generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
"jbyte_disjoint_arraycopy");
StubRoutines::_jbyte_arraycopy =
generate_conjoint_copy(T_BYTE, false, Address::times_1, entry,
&entry_jbyte_arraycopy, "jbyte_arraycopy");
StubRoutines::_arrayof_jshort_disjoint_arraycopy =
generate_disjoint_copy(T_SHORT, true, Address::times_2, &entry,
"arrayof_jshort_disjoint_arraycopy");
StubRoutines::_arrayof_jshort_arraycopy =
generate_conjoint_copy(T_SHORT, true, Address::times_2, entry,
NULL, "arrayof_jshort_arraycopy");
StubRoutines::_jshort_disjoint_arraycopy =
generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
"jshort_disjoint_arraycopy");
StubRoutines::_jshort_arraycopy =
generate_conjoint_copy(T_SHORT, false, Address::times_2, entry,
&entry_jshort_arraycopy, "jshort_arraycopy");
// Next arrays are always aligned on 4 bytes at least.
StubRoutines::_jint_disjoint_arraycopy =
generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
"jint_disjoint_arraycopy");
StubRoutines::_jint_arraycopy =
generate_conjoint_copy(T_INT, true, Address::times_4, entry,
&entry_jint_arraycopy, "jint_arraycopy");
StubRoutines::_oop_disjoint_arraycopy =
generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
"oop_disjoint_arraycopy");
StubRoutines::_oop_arraycopy =
generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
&entry_oop_arraycopy, "oop_arraycopy");
StubRoutines::_oop_disjoint_arraycopy_uninit =
generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
"oop_disjoint_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_oop_arraycopy_uninit =
generate_conjoint_copy(T_OBJECT, true, Address::times_ptr, entry,
NULL, "oop_arraycopy_uninit",
/*dest_uninitialized*/true);
StubRoutines::_jlong_disjoint_arraycopy =
generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
StubRoutines::_jlong_arraycopy =
generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
"jlong_arraycopy");
StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy;
StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy;
StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy;
StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy;
StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy;
StubRoutines::_checkcast_arraycopy =
generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
StubRoutines::_checkcast_arraycopy_uninit =
generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
StubRoutines::_unsafe_arraycopy =
generate_unsafe_copy("unsafe_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_jlong_arraycopy);
StubRoutines::_generic_arraycopy =
generate_generic_copy("generic_arraycopy",
entry_jbyte_arraycopy,
entry_jshort_arraycopy,
entry_jint_arraycopy,
entry_oop_arraycopy,
entry_jlong_arraycopy,
entry_checkcast_arraycopy);
}
// AES intrinsic stubs
enum {AESBlockSize = 16};
address generate_key_shuffle_mask() {
__ align(16);
StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
address start = __ pc();
__ emit_data(0x00010203, relocInfo::none, 0 );
__ emit_data(0x04050607, relocInfo::none, 0 );
__ emit_data(0x08090a0b, relocInfo::none, 0 );
__ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
return start;
}
address generate_counter_shuffle_mask() {
__ align(16);
StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask");
address start = __ pc();
__ emit_data(0x0c0d0e0f, relocInfo::none, 0);
__ emit_data(0x08090a0b, relocInfo::none, 0);
__ emit_data(0x04050607, relocInfo::none, 0);
__ emit_data(0x00010203, relocInfo::none, 0);
return start;
}
// Utility routine for loading a 128-bit key word in little endian format
// can optionally specify that the shuffle mask is already in an xmmregister
void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
__ movdqu(xmmdst, Address(key, offset));
if (xmm_shuf_mask != NULL) {
__ pshufb(xmmdst, xmm_shuf_mask);
} else {
__ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
}
}
// aesenc using specified key+offset
// can optionally specify that the shuffle mask is already in an xmmregister
void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
load_key(xmmtmp, key, offset, xmm_shuf_mask);
__ aesenc(xmmdst, xmmtmp);
}
// aesdec using specified key+offset
// can optionally specify that the shuffle mask is already in an xmmregister
void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
load_key(xmmtmp, key, offset, xmm_shuf_mask);
__ aesdec(xmmdst, xmmtmp);
}
// Utility routine for increase 128bit counter (iv in CTR mode)
// XMM_128bit, D3, D2, D1, D0
void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) {
__ pextrd(reg, xmmdst, 0x0);
__ addl(reg, inc_delta);
__ pinsrd(xmmdst, reg, 0x0);
__ jcc(Assembler::carryClear, next_block); // jump if no carry
__ pextrd(reg, xmmdst, 0x01); // Carry-> D1
__ addl(reg, 0x01);
__ pinsrd(xmmdst, reg, 0x01);
__ jcc(Assembler::carryClear, next_block); // jump if no carry
__ pextrd(reg, xmmdst, 0x02); // Carry-> D2
__ addl(reg, 0x01);
__ pinsrd(xmmdst, reg, 0x02);
__ jcc(Assembler::carryClear, next_block); // jump if no carry
__ pextrd(reg, xmmdst, 0x03); // Carry -> D3
__ addl(reg, 0x01);
__ pinsrd(xmmdst, reg, 0x03);
__ BIND(next_block); // next instruction
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_encryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
Label L_doLast;
address start = __ pc();
const Register from = rdx; // source array address
const Register to = rdx; // destination array address
const Register key = rcx; // key array address
const Register keylen = rax;
const Address from_param(rbp, 8+0);
const Address to_param (rbp, 8+4);
const Address key_param (rbp, 8+8);
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_key_shuf_mask = xmm1;
const XMMRegister xmm_temp1 = xmm2;
const XMMRegister xmm_temp2 = xmm3;
const XMMRegister xmm_temp3 = xmm4;
const XMMRegister xmm_temp4 = xmm5;
__ enter(); // required for proper stackwalking of RuntimeStub frame
// For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
// context for the registers used, where all instructions below are using 128-bit mode
// On EVEX without VL and BW, these instructions will all be AVX.
if (VM_Version::supports_avx512vlbw()) {
__ movl(rdx, 0xffff);
__ kmovdl(k1, rdx);
}
__ movptr(from, from_param);
__ movptr(key, key_param);
// keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input
__ movptr(to, to_param);
// For encryption, the java expanded key ordering is just what we need
load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
__ pxor(xmm_result, xmm_temp1);
load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
__ aesenc(xmm_result, xmm_temp3);
__ aesenc(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
__ aesenc(xmm_result, xmm_temp3);
__ aesenc(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
__ cmpl(keylen, 44);
__ jccb(Assembler::equal, L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(keylen, 52);
__ jccb(Assembler::equal, L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenc(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
__ BIND(L_doLast);
__ aesenc(xmm_result, xmm_temp1);
__ aesenclast(xmm_result, xmm_temp2);
__ movdqu(Address(to, 0), xmm_result); // store the result
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
//
address generate_aescrypt_decryptBlock() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
Label L_doLast;
address start = __ pc();
const Register from = rdx; // source array address
const Register to = rdx; // destination array address
const Register key = rcx; // key array address
const Register keylen = rax;
const Address from_param(rbp, 8+0);
const Address to_param (rbp, 8+4);
const Address key_param (rbp, 8+8);
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_key_shuf_mask = xmm1;
const XMMRegister xmm_temp1 = xmm2;
const XMMRegister xmm_temp2 = xmm3;
const XMMRegister xmm_temp3 = xmm4;
const XMMRegister xmm_temp4 = xmm5;
__ enter(); // required for proper stackwalking of RuntimeStub frame
// For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
// context for the registers used, where all instructions below are using 128-bit mode
// On EVEX without VL and BW, these instructions will all be AVX.
if (VM_Version::supports_avx512vlbw()) {
__ movl(rdx, 0xffff);
__ kmovdl(k1, rdx);
}
__ movptr(from, from_param);
__ movptr(key, key_param);
// keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_result, Address(from, 0));
__ movptr(to, to_param);
// for decryption java expanded key ordering is rotated one position from what we want
// so we start from 0x10 here and hit 0x00 last
// we don't know if the key is aligned, hence not using load-execute form
load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
__ pxor (xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
__ aesdec(xmm_result, xmm_temp3);
__ aesdec(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
__ aesdec(xmm_result, xmm_temp3);
__ aesdec(xmm_result, xmm_temp4);
load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
__ cmpl(keylen, 44);
__ jccb(Assembler::equal, L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
__ cmpl(keylen, 52);
__ jccb(Assembler::equal, L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
__ BIND(L_doLast);
__ aesdec(xmm_result, xmm_temp1);
__ aesdec(xmm_result, xmm_temp2);
// for decryption the aesdeclast operation is always on key+0x00
__ aesdeclast(xmm_result, xmm_temp3);
__ movdqu(Address(to, 0), xmm_result); // store the result
__ xorptr(rax, rax); // return 0
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
void handleSOERegisters(bool saving) {
const int saveFrameSizeInBytes = 4 * wordSize;
const Address saved_rbx (rbp, -3 * wordSize);
const Address saved_rsi (rbp, -2 * wordSize);
const Address saved_rdi (rbp, -1 * wordSize);
if (saving) {
__ subptr(rsp, saveFrameSizeInBytes);
__ movptr(saved_rsi, rsi);
__ movptr(saved_rdi, rdi);
__ movptr(saved_rbx, rbx);
} else {
// restoring
__ movptr(rsi, saved_rsi);
__ movptr(rdi, saved_rdi);
__ movptr(rbx, saved_rbx);
}
}
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_cipherBlockChaining_encryptAESCrypt() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
address start = __ pc();
Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
const Register from = rsi; // source array address
const Register to = rdx; // destination array address
const Register key = rcx; // key array address
const Register rvec = rdi; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
const Register len_reg = rbx; // src len (must be multiple of blocksize 16)
const Register pos = rax;
// xmm register assignments for the loops below
const XMMRegister xmm_result = xmm0;
const XMMRegister xmm_temp = xmm1;
// first 6 keys preloaded into xmm2-xmm7
const int XMM_REG_NUM_KEY_FIRST = 2;
const int XMM_REG_NUM_KEY_LAST = 7;
const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
__ enter(); // required for proper stackwalking of RuntimeStub frame
handleSOERegisters(true /*saving*/);
// For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
// context for the registers used, where all instructions below are using 128-bit mode
// On EVEX without VL and BW, these instructions will all be AVX.
if (VM_Version::supports_avx512vlbw()) {
__ movl(rdx, 0xffff);
__ kmovdl(k1, rdx);
}
// load registers from incoming parameters
const Address from_param(rbp, 8+0);
const Address to_param (rbp, 8+4);
const Address key_param (rbp, 8+8);
const Address rvec_param (rbp, 8+12);
const Address len_param (rbp, 8+16);
__ movptr(from , from_param);
__ movptr(to , to_param);
__ movptr(key , key_param);
__ movptr(rvec , rvec_param);
__ movptr(len_reg , len_param);
const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
// load up xmm regs 2 thru 7 with keys 0-5
for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
offset += 0x10;
}
__ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec
// now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
__ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rax, 44);
__ jcc(Assembler::notEqual, L_key_192_256);
// 128 bit code follows here
__ movl(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_128);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
aes_enc_key(xmm_result, xmm_temp, key, key_offset);
}
load_key(xmm_temp, key, 0xa0);
__ aesenclast(xmm_result, xmm_temp);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_128);
__ BIND(L_exit);
__ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object
handleSOERegisters(false /*restoring*/);
__ movptr(rax, len_param); // return length
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
__ BIND(L_key_192_256);
// here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
__ cmpl(rax, 52);
__ jcc(Assembler::notEqual, L_key_256);
// 192-bit code follows here (could be changed to use more xmm registers)
__ movl(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_192);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
aes_enc_key(xmm_result, xmm_temp, key, key_offset);
}
load_key(xmm_temp, key, 0xc0);
__ aesenclast(xmm_result, xmm_temp);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_192);
__ jmp(L_exit);
__ BIND(L_key_256);
// 256-bit code follows here (could be changed to use more xmm registers)
__ movl(pos, 0);
__ align(OptoLoopAlignment);
__ BIND(L_loopTop_256);
__ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input
__ pxor (xmm_result, xmm_temp); // xor with the current r vector
__ pxor (xmm_result, xmm_key0); // do the aes rounds
for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
__ aesenc(xmm_result, as_XMMRegister(rnum));
}
for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
aes_enc_key(xmm_result, xmm_temp, key, key_offset);
}
load_key(xmm_temp, key, 0xe0);
__ aesenclast(xmm_result, xmm_temp);
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jcc(Assembler::notEqual, L_loopTop_256);
__ jmp(L_exit);
return start;
}
// CBC AES Decryption.
// In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
//
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - r vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_cipherBlockChaining_decryptAESCrypt_Parallel() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
address start = __ pc();
const Register from = rsi; // source array address
const Register to = rdx; // destination array address
const Register key = rcx; // key array address
const Register rvec = rdi; // r byte array initialized from initvector array address
// and left with the results of the last encryption block
const Register len_reg = rbx; // src len (must be multiple of blocksize 16)
const Register pos = rax;
const int PARALLEL_FACTOR = 4;
const int ROUNDS[3] = { 10, 12, 14 }; //aes rounds for key128, key192, key256
Label L_exit;
Label L_singleBlock_loopTop[3]; //128, 192, 256
Label L_multiBlock_loopTop[3]; //128, 192, 256
const XMMRegister xmm_prev_block_cipher = xmm0; // holds cipher of previous block
const XMMRegister xmm_key_shuf_mask = xmm1;
const XMMRegister xmm_key_tmp0 = xmm2;
const XMMRegister xmm_key_tmp1 = xmm3;
// registers holding the six results in the parallelized loop
const XMMRegister xmm_result0 = xmm4;
const XMMRegister xmm_result1 = xmm5;
const XMMRegister xmm_result2 = xmm6;
const XMMRegister xmm_result3 = xmm7;
__ enter(); // required for proper stackwalking of RuntimeStub frame
handleSOERegisters(true /*saving*/);
// For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
// context for the registers used, where all instructions below are using 128-bit mode
// On EVEX without VL and BW, these instructions will all be AVX.
if (VM_Version::supports_avx512vlbw()) {
__ movl(rdx, 0xffff);
__ kmovdl(k1, rdx);
}
// load registers from incoming parameters
const Address from_param(rbp, 8+0);
const Address to_param (rbp, 8+4);
const Address key_param (rbp, 8+8);
const Address rvec_param (rbp, 8+12);
const Address len_param (rbp, 8+16);
__ movptr(from , from_param);
__ movptr(to , to_param);
__ movptr(key , key_param);
__ movptr(rvec , rvec_param);
__ movptr(len_reg , len_param);
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec
__ xorptr(pos, pos);
// now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
// rvec is reused
__ movl(rvec, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rvec, 52);
__ jcc(Assembler::equal, L_multiBlock_loopTop[1]);
__ cmpl(rvec, 60);
__ jcc(Assembler::equal, L_multiBlock_loopTop[2]);
#define DoFour(opc, src_reg) \
__ opc(xmm_result0, src_reg); \
__ opc(xmm_result1, src_reg); \
__ opc(xmm_result2, src_reg); \
__ opc(xmm_result3, src_reg); \
for (int k = 0; k < 3; ++k) {
__ align(OptoLoopAlignment);
__ BIND(L_multiBlock_loopTop[k]);
__ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left
__ jcc(Assembler::less, L_singleBlock_loopTop[k]);
__ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers
__ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
__ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
__ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
// the java expanded key ordering is rotated one position from what we want
// so we start from 0x10 here and hit 0x00 last
load_key(xmm_key_tmp0, key, 0x10, xmm_key_shuf_mask);
DoFour(pxor, xmm_key_tmp0); //xor with first key
// do the aes dec rounds
for (int rnum = 1; rnum <= ROUNDS[k];) {
//load two keys at a time
//k1->0x20, ..., k9->0xa0, k10->0x00
load_key(xmm_key_tmp1, key, (rnum + 1) * 0x10, xmm_key_shuf_mask);
load_key(xmm_key_tmp0, key, ((rnum + 2) % (ROUNDS[k] + 1)) * 0x10, xmm_key_shuf_mask); // hit 0x00 last!
DoFour(aesdec, xmm_key_tmp1);
rnum++;
if (rnum != ROUNDS[k]) {
DoFour(aesdec, xmm_key_tmp0);
}
else {
DoFour(aesdeclast, xmm_key_tmp0);
}
rnum++;
}
// for each result, xor with the r vector of previous cipher block
__ pxor(xmm_result0, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize));
__ pxor(xmm_result1, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize));
__ pxor(xmm_result2, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize));
__ pxor(xmm_result3, xmm_prev_block_cipher);
__ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize)); // this will carry over to next set of blocks
// store 4 results into the next 64 bytes of output
__ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
__ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
__ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
__ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
__ addptr(pos, 4 * AESBlockSize);
__ subptr(len_reg, 4 * AESBlockSize);
__ jmp(L_multiBlock_loopTop[k]);
//singleBlock starts here
__ align(OptoLoopAlignment);
__ BIND(L_singleBlock_loopTop[k]);
__ cmpptr(len_reg, 0); // any blocks left?
__ jcc(Assembler::equal, L_exit);
__ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input
__ movdqa(xmm_result1, xmm_result0);
load_key(xmm_key_tmp0, key, 0x10, xmm_key_shuf_mask);
__ pxor(xmm_result0, xmm_key_tmp0);
// do the aes dec rounds
for (int rnum = 1; rnum < ROUNDS[k]; rnum++) {
// the java expanded key ordering is rotated one position from what we want
load_key(xmm_key_tmp0, key, (rnum + 1) * 0x10, xmm_key_shuf_mask);
__ aesdec(xmm_result0, xmm_key_tmp0);
}
load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask);
__ aesdeclast(xmm_result0, xmm_key_tmp0);
__ pxor(xmm_result0, xmm_prev_block_cipher); // xor with the current r vector
__ movdqu(Address(to, pos, Address::times_1, 0), xmm_result0); // store into the next 16 bytes of output
// no need to store r to memory until we exit
__ movdqa(xmm_prev_block_cipher, xmm_result1); // set up next r vector with cipher input from this block
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jmp(L_singleBlock_loopTop[k]);
}//for 128/192/256
__ BIND(L_exit);
__ movptr(rvec, rvec_param); // restore this since reused earlier
__ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object
handleSOERegisters(false /*restoring*/);
__ movptr(rax, len_param); // return length
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// CTR AES crypt.
// In 32-bit stub, parallelize 4 blocks at a time
// Arguments:
//
// Inputs:
// c_rarg0 - source byte array address
// c_rarg1 - destination byte array address
// c_rarg2 - K (key) in little endian int array
// c_rarg3 - counter vector byte array address
// c_rarg4 - input length
//
// Output:
// rax - input length
//
address generate_counterMode_AESCrypt_Parallel() {
assert(UseAES, "need AES instructions and misaligned SSE support");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt");
address start = __ pc();
const Register from = rsi; // source array address
const Register to = rdx; // destination array address
const Register key = rcx; // key array address
const Register counter = rdi; // counter byte array initialized from initvector array address
// and updated with the incremented counter in the end
const Register len_reg = rbx;
const Register pos = rax;
__ enter(); // required for proper stackwalking of RuntimeStub frame
handleSOERegisters(true /*saving*/); // save rbx, rsi, rdi
// For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
// context for the registers used, where all instructions below are using 128-bit mode
// On EVEX without VL and BW, these instructions will all be AVX.
if (VM_Version::supports_avx512vlbw()) {
__ movl(rdx, 0xffff);
__ kmovdl(k1, rdx);
}
// load registers from incoming parameters
const Address from_param(rbp, 8+0);
const Address to_param (rbp, 8+4);
const Address key_param (rbp, 8+8);
const Address rvec_param (rbp, 8+12);
const Address len_param (rbp, 8+16);
const Address saved_counter_param(rbp, 8 + 20);
const Address used_addr_param(rbp, 8 + 24);
__ movptr(from , from_param);
__ movptr(to , to_param);
__ movptr(len_reg , len_param);
// Use the partially used encrpyted counter from last invocation
Label L_exit_preLoop, L_preLoop_start;
// Use the registers 'counter' and 'key' here in this preloop
// to hold of last 2 params 'used' and 'saved_encCounter_start'
Register used = counter;
Register saved_encCounter_start = key;
Register used_addr = saved_encCounter_start;
__ movptr(used_addr, used_addr_param);
__ movptr(used, Address(used_addr, 0));
__ movptr(saved_encCounter_start, saved_counter_param);
__ BIND(L_preLoop_start);
__ cmpptr(used, 16);
__ jcc(Assembler::aboveEqual, L_exit_preLoop);
__ cmpptr(len_reg, 0);
__ jcc(Assembler::lessEqual, L_exit_preLoop);
__ movb(rax, Address(saved_encCounter_start, used));
__ xorb(rax, Address(from, 0));
__ movb(Address(to, 0), rax);
__ addptr(from, 1);
__ addptr(to, 1);
__ addptr(used, 1);
__ subptr(len_reg, 1);
__ jmp(L_preLoop_start);
__ BIND(L_exit_preLoop);
__ movptr(used_addr, used_addr_param);
__ movptr(used_addr, used_addr_param);
__ movl(Address(used_addr, 0), used);
// load the parameters 'key' and 'counter'
__ movptr(key, key_param);
__ movptr(counter, rvec_param);
// xmm register assignments for the loops below
const XMMRegister xmm_curr_counter = xmm0;
const XMMRegister xmm_counter_shuf_mask = xmm1; // need to be reloaded
const XMMRegister xmm_key_shuf_mask = xmm2; // need to be reloaded
const XMMRegister xmm_key = xmm3;
const XMMRegister xmm_result0 = xmm4;
const XMMRegister xmm_result1 = xmm5;
const XMMRegister xmm_result2 = xmm6;
const XMMRegister xmm_result3 = xmm7;
const XMMRegister xmm_from0 = xmm1; //reuse XMM register
const XMMRegister xmm_from1 = xmm2;
const XMMRegister xmm_from2 = xmm3;
const XMMRegister xmm_from3 = xmm4;
//for key_128, key_192, key_256
const int rounds[3] = {10, 12, 14};
Label L_singleBlockLoopTop[3];
Label L_multiBlock_loopTop[3];
Label L_key192_top, L_key256_top;
Label L_incCounter[3][4]; // 3: different key length, 4: 4 blocks at a time
Label L_incCounter_single[3]; //for single block, key128, key192, key256
Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3];
Label L_processTail_extr[3], L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3];
Label L_exit;
const int PARALLEL_FACTOR = 4; //because of the limited register number
// initialize counter with initial counter
__ movdqu(xmm_curr_counter, Address(counter, 0x00));
__ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
__ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled for increase
// key length could be only {11, 13, 15} * 4 = {44, 52, 60}
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
__ cmpl(rax, 52);
__ jcc(Assembler::equal, L_key192_top);
__ cmpl(rax, 60);
__ jcc(Assembler::equal, L_key256_top);
//key128 begins here
__ movptr(pos, 0); // init pos before L_multiBlock_loopTop
#define CTR_DoFour(opc, src_reg) \
__ opc(xmm_result0, src_reg); \
__ opc(xmm_result1, src_reg); \
__ opc(xmm_result2, src_reg); \
__ opc(xmm_result3, src_reg);
// k == 0 : generate code for key_128
// k == 1 : generate code for key_192
// k == 2 : generate code for key_256
for (int k = 0; k < 3; ++k) {
//multi blocks starts here
__ align(OptoLoopAlignment);
__ BIND(L_multiBlock_loopTop[k]);
__ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left
__ jcc(Assembler::less, L_singleBlockLoopTop[k]);
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
//load, then increase counters
CTR_DoFour(movdqa, xmm_curr_counter);
__ push(rbx);
inc_counter(rbx, xmm_result1, 0x01, L_incCounter[k][0]);
inc_counter(rbx, xmm_result2, 0x02, L_incCounter[k][1]);
inc_counter(rbx, xmm_result3, 0x03, L_incCounter[k][2]);
inc_counter(rbx, xmm_curr_counter, 0x04, L_incCounter[k][3]);
__ pop (rbx);
load_key(xmm_key, key, 0x00, xmm_key_shuf_mask); // load Round 0 key. interleaving for better performance
CTR_DoFour(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR
CTR_DoFour(pxor, xmm_key); //PXOR with Round 0 key
for (int i = 1; i < rounds[k]; ++i) {
load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
CTR_DoFour(aesenc, xmm_key);
}
load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
CTR_DoFour(aesenclast, xmm_key);
// get next PARALLEL_FACTOR blocks into xmm_from registers
__ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
__ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize));
__ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize));
// PXOR with input text
__ pxor(xmm_result0, xmm_from0); //result0 is xmm4
__ pxor(xmm_result1, xmm_from1);
__ pxor(xmm_result2, xmm_from2);
// store PARALLEL_FACTOR results into the next 64 bytes of output
__ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
__ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1);
__ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2);
// do it here after xmm_result0 is saved, because xmm_from3 reuse the same register of xmm_result0.
__ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize));
__ pxor(xmm_result3, xmm_from3);
__ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3);
__ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text
__ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length
__ jmp(L_multiBlock_loopTop[k]);
// singleBlock starts here
__ align(OptoLoopAlignment);
__ BIND(L_singleBlockLoopTop[k]);
__ cmpptr(len_reg, 0);
__ jcc(Assembler::equal, L_exit);
__ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
__ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
__ movdqa(xmm_result0, xmm_curr_counter);
load_key(xmm_key, key, 0x00, xmm_key_shuf_mask);
__ push(rbx);//rbx is used for increasing counter
inc_counter(rbx, xmm_curr_counter, 0x01, L_incCounter_single[k]);
__ pop (rbx);
__ pshufb(xmm_result0, xmm_counter_shuf_mask);
__ pxor(xmm_result0, xmm_key);
for (int i = 1; i < rounds[k]; i++) {
load_key(xmm_key, key, (0x10 * i), xmm_key_shuf_mask);
__ aesenc(xmm_result0, xmm_key);
}
load_key(xmm_key, key, (0x10 * rounds[k]), xmm_key_shuf_mask);
__ aesenclast(xmm_result0, xmm_key);
__ cmpptr(len_reg, AESBlockSize);
__ jcc(Assembler::less, L_processTail_insr[k]);
__ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize));
__ pxor(xmm_result0, xmm_from0);
__ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0);
__ addptr(pos, AESBlockSize);
__ subptr(len_reg, AESBlockSize);
__ jmp(L_singleBlockLoopTop[k]);
__ BIND(L_processTail_insr[k]); // Process the tail part of the input array
__ addptr(pos, len_reg); // 1. Insert bytes from src array into xmm_from0 register
__ testptr(len_reg, 8);
__ jcc(Assembler::zero, L_processTail_4_insr[k]);
__ subptr(pos,8);
__ pinsrd(xmm_from0, Address(from, pos), 0);
__ pinsrd(xmm_from0, Address(from, pos, Address::times_1, 4), 1);
__ BIND(L_processTail_4_insr[k]);
__ testptr(len_reg, 4);
__ jcc(Assembler::zero, L_processTail_2_insr[k]);
__ subptr(pos,4);
__ pslldq(xmm_from0, 4);
__ pinsrd(xmm_from0, Address(from, pos), 0);
__ BIND(L_processTail_2_insr[k]);
__ testptr(len_reg, 2);
__ jcc(Assembler::zero, L_processTail_1_insr[k]);
__ subptr(pos, 2);
__ pslldq(xmm_from0, 2);
__ pinsrw(xmm_from0, Address(from, pos), 0);
__ BIND(L_processTail_1_insr[k]);
__ testptr(len_reg, 1);
__ jcc(Assembler::zero, L_processTail_exit_insr[k]);
__ subptr(pos, 1);
__ pslldq(xmm_from0, 1);
__ pinsrb(xmm_from0, Address(from, pos), 0);
__ BIND(L_processTail_exit_insr[k]);
__ movptr(saved_encCounter_start, saved_counter_param);
__ movdqu(Address(saved_encCounter_start, 0), xmm_result0); // 2. Perform pxor of the encrypted counter and plaintext Bytes.
__ pxor(xmm_result0, xmm_from0); // Also the encrypted counter is saved for next invocation.
__ testptr(len_reg, 8);
__ jcc(Assembler::zero, L_processTail_4_extr[k]); // 3. Extract bytes from xmm_result0 into the dest. array
__ pextrd(Address(to, pos), xmm_result0, 0);
__ pextrd(Address(to, pos, Address::times_1, 4), xmm_result0, 1);
__ psrldq(xmm_result0, 8);
__ addptr(pos, 8);
__ BIND(L_processTail_4_extr[k]);
__ testptr(len_reg, 4);
__ jcc(Assembler::zero, L_processTail_2_extr[k]);
__ pextrd(Address(to, pos), xmm_result0, 0);
__ psrldq(xmm_result0, 4);
__ addptr(pos, 4);
__ BIND(L_processTail_2_extr[k]);
__ testptr(len_reg, 2);
__ jcc(Assembler::zero, L_processTail_1_extr[k]);
__ pextrb(Address(to, pos), xmm_result0, 0);
__ pextrb(Address(to, pos, Address::times_1, 1), xmm_result0, 1);
__ psrldq(xmm_result0, 2);
__ addptr(pos, 2);
__ BIND(L_processTail_1_extr[k]);
__ testptr(len_reg, 1);
__ jcc(Assembler::zero, L_processTail_exit_extr[k]);
__ pextrb(Address(to, pos), xmm_result0, 0);
__ BIND(L_processTail_exit_extr[k]);
__ movptr(used_addr, used_addr_param);
__ movl(Address(used_addr, 0), len_reg);
__ jmp(L_exit);
}
__ BIND(L_exit);
__ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()));
__ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back.
__ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back
handleSOERegisters(false /*restoring*/);
__ movptr(rax, len_param); // return length
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
__ BIND (L_key192_top);
__ movptr(pos, 0); // init pos before L_multiBlock_loopTop
__ jmp(L_multiBlock_loopTop[1]); //key192
__ BIND (L_key256_top);
__ movptr(pos, 0); // init pos before L_multiBlock_loopTop
__ jmp(L_multiBlock_loopTop[2]); //key192
return start;
}
address generate_upper_word_mask() {
__ align(64);
StubCodeMark mark(this, "StubRoutines", "upper_word_mask");
address start = __ pc();
__ emit_data(0x00000000, relocInfo::none, 0);
__ emit_data(0x00000000, relocInfo::none, 0);
__ emit_data(0x00000000, relocInfo::none, 0);
__ emit_data(0xFFFFFFFF, relocInfo::none, 0);
return start;
}
address generate_shuffle_byte_flip_mask() {
__ align(64);
StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask");
address start = __ pc();
__ emit_data(0x0c0d0e0f, relocInfo::none, 0);
__ emit_data(0x08090a0b, relocInfo::none, 0);
__ emit_data(0x04050607, relocInfo::none, 0);
__ emit_data(0x00010203, relocInfo::none, 0);
return start;
}
// ofs and limit are use for multi-block byte array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
address generate_sha1_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Register buf = rax;
Register state = rdx;
Register ofs = rcx;
Register limit = rdi;
const Address buf_param(rbp, 8 + 0);
const Address state_param(rbp, 8 + 4);
const Address ofs_param(rbp, 8 + 8);
const Address limit_param(rbp, 8 + 12);
const XMMRegister abcd = xmm0;
const XMMRegister e0 = xmm1;
const XMMRegister e1 = xmm2;
const XMMRegister msg0 = xmm3;
const XMMRegister msg1 = xmm4;
const XMMRegister msg2 = xmm5;
const XMMRegister msg3 = xmm6;
const XMMRegister shuf_mask = xmm7;
__ enter();
__ subptr(rsp, 8 * wordSize);
if (multi_block) {
__ push(limit);
}
__ movptr(buf, buf_param);
__ movptr(state, state_param);
if (multi_block) {
__ movptr(ofs, ofs_param);
__ movptr(limit, limit_param);
}
__ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask,
buf, state, ofs, limit, rsp, multi_block);
if (multi_block) {
__ pop(limit);
}
__ addptr(rsp, 8 * wordSize);
__ leave();
__ ret(0);
return start;
}
address generate_pshuffle_byte_flip_mask() {
__ align(64);
StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask");
address start = __ pc();
__ emit_data(0x00010203, relocInfo::none, 0);
__ emit_data(0x04050607, relocInfo::none, 0);
__ emit_data(0x08090a0b, relocInfo::none, 0);
__ emit_data(0x0c0d0e0f, relocInfo::none, 0);
return start;
}
// ofs and limit are use for multi-block byte array.
// int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
address generate_sha256_implCompress(bool multi_block, const char *name) {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", name);
address start = __ pc();
Register buf = rbx;
Register state = rsi;
Register ofs = rdx;
Register limit = rcx;
const Address buf_param(rbp, 8 + 0);
const Address state_param(rbp, 8 + 4);
const Address ofs_param(rbp, 8 + 8);
const Address limit_param(rbp, 8 + 12);
const XMMRegister msg = xmm0;
const XMMRegister state0 = xmm1;
const XMMRegister state1 = xmm2;
const XMMRegister msgtmp0 = xmm3;
const XMMRegister msgtmp1 = xmm4;
const XMMRegister msgtmp2 = xmm5;
const XMMRegister msgtmp3 = xmm6;
const XMMRegister msgtmp4 = xmm7;
__ enter();
__ subptr(rsp, 8 * wordSize);
handleSOERegisters(true /*saving*/);
__ movptr(buf, buf_param);
__ movptr(state, state_param);
if (multi_block) {
__ movptr(ofs, ofs_param);
__ movptr(limit, limit_param);
}
__ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4,
buf, state, ofs, limit, rsp, multi_block);
handleSOERegisters(false);
__ addptr(rsp, 8 * wordSize);
__ leave();
__ ret(0);
return start;
}
// byte swap x86 long
address generate_ghash_long_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask");
address start = __ pc();
__ emit_data(0x0b0a0908, relocInfo::none, 0);
__ emit_data(0x0f0e0d0c, relocInfo::none, 0);
__ emit_data(0x03020100, relocInfo::none, 0);
__ emit_data(0x07060504, relocInfo::none, 0);
return start;
}
// byte swap x86 byte array
address generate_ghash_byte_swap_mask() {
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask");
address start = __ pc();
__ emit_data(0x0c0d0e0f, relocInfo::none, 0);
__ emit_data(0x08090a0b, relocInfo::none, 0);
__ emit_data(0x04050607, relocInfo::none, 0);
__ emit_data(0x00010203, relocInfo::none, 0);
return start;
}
/* Single and multi-block ghash operations */
address generate_ghash_processBlocks() {
assert(UseGHASHIntrinsics, "need GHASH intrinsics and CLMUL support");
__ align(CodeEntryAlignment);
Label L_ghash_loop, L_exit;
StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks");
address start = __ pc();
const Register state = rdi;
const Register subkeyH = rsi;
const Register data = rdx;
const Register blocks = rcx;
const Address state_param(rbp, 8+0);
const Address subkeyH_param(rbp, 8+4);
const Address data_param(rbp, 8+8);
const Address blocks_param(rbp, 8+12);
const XMMRegister xmm_temp0 = xmm0;
const XMMRegister xmm_temp1 = xmm1;
const XMMRegister xmm_temp2 = xmm2;
const XMMRegister xmm_temp3 = xmm3;
const XMMRegister xmm_temp4 = xmm4;
const XMMRegister xmm_temp5 = xmm5;
const XMMRegister xmm_temp6 = xmm6;
const XMMRegister xmm_temp7 = xmm7;
__ enter();
handleSOERegisters(true); // Save registers
// For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
// context for the registers used, where all instructions below are using 128-bit mode
// On EVEX without VL and BW, these instructions will all be AVX.
if (VM_Version::supports_avx512vlbw()) {
__ movl(rdx, 0xffff);
__ kmovdl(k1, rdx);
}
__ movptr(state, state_param);
__ movptr(subkeyH, subkeyH_param);
__ movptr(data, data_param);
__ movptr(blocks, blocks_param);
__ movdqu(xmm_temp0, Address(state, 0));
__ pshufb(xmm_temp0, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ movdqu(xmm_temp1, Address(subkeyH, 0));
__ pshufb(xmm_temp1, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ BIND(L_ghash_loop);
__ movdqu(xmm_temp2, Address(data, 0));
__ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr()));
__ pxor(xmm_temp0, xmm_temp2);
//
// Multiply with the hash key
//
__ movdqu(xmm_temp3, xmm_temp0);
__ pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0
__ movdqu(xmm_temp4, xmm_temp0);
__ pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1
__ movdqu(xmm_temp5, xmm_temp0);
__ pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0
__ movdqu(xmm_temp6, xmm_temp0);
__ pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1
__ pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0
__ movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5
__ psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right
__ pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left
__ pxor(xmm_temp3, xmm_temp5);
__ pxor(xmm_temp6, xmm_temp4); // Register pair <xmm6:xmm3> holds the result
// of the carry-less multiplication of
// xmm0 by xmm1.
// We shift the result of the multiplication by one bit position
// to the left to cope for the fact that the bits are reversed.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp4, xmm_temp6);
__ pslld (xmm_temp3, 1);
__ pslld(xmm_temp6, 1);
__ psrld(xmm_temp7, 31);
__ psrld(xmm_temp4, 31);
__ movdqu(xmm_temp5, xmm_temp7);
__ pslldq(xmm_temp4, 4);
__ pslldq(xmm_temp7, 4);
__ psrldq(xmm_temp5, 12);
__ por(xmm_temp3, xmm_temp7);
__ por(xmm_temp6, xmm_temp4);
__ por(xmm_temp6, xmm_temp5);
//
// First phase of the reduction
//
// Move xmm3 into xmm4, xmm5, xmm7 in order to perform the shifts
// independently.
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp4, xmm_temp3);
__ movdqu(xmm_temp5, xmm_temp3);
__ pslld(xmm_temp7, 31); // packed right shift shifting << 31
__ pslld(xmm_temp4, 30); // packed right shift shifting << 30
__ pslld(xmm_temp5, 25); // packed right shift shifting << 25
__ pxor(xmm_temp7, xmm_temp4); // xor the shifted versions
__ pxor(xmm_temp7, xmm_temp5);
__ movdqu(xmm_temp4, xmm_temp7);
__ pslldq(xmm_temp7, 12);
__ psrldq(xmm_temp4, 4);
__ pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete
//
// Second phase of the reduction
//
// Make 3 copies of xmm3 in xmm2, xmm5, xmm7 for doing these
// shift operations.
__ movdqu(xmm_temp2, xmm_temp3);
__ movdqu(xmm_temp7, xmm_temp3);
__ movdqu(xmm_temp5, xmm_temp3);
__ psrld(xmm_temp2, 1); // packed left shifting >> 1
__ psrld(xmm_temp7, 2); // packed left shifting >> 2
__ psrld(xmm_temp5, 7); // packed left shifting >> 7
__ pxor(xmm_temp2, xmm_temp7); // xor the shifted versions
__ pxor(xmm_temp2, xmm_temp5);
__ pxor(xmm_temp2, xmm_temp4);
__ pxor(xmm_temp3, xmm_temp2);
__ pxor(xmm_temp6, xmm_temp3); // the result is in xmm6
__ decrement(blocks);
__ jcc(Assembler::zero, L_exit);
__ movdqu(xmm_temp0, xmm_temp6);
__ addptr(data, 16);
__ jmp(L_ghash_loop);
__ BIND(L_exit);
// Byte swap 16-byte result
__ pshufb(xmm_temp6, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr()));
__ movdqu(Address(state, 0), xmm_temp6); // store the result
handleSOERegisters(false); // restore registers
__ leave();
__ ret(0);
return start;
}
/**
* Arguments:
*
* Inputs:
* rsp(4) - int crc
* rsp(8) - byte* buf
* rsp(12) - int length
*
* Ouput:
* rax - int crc result
*/
address generate_updateBytesCRC32() {
assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
address start = __ pc();
const Register crc = rdx; // crc
const Register buf = rsi; // source java byte array address
const Register len = rcx; // length
const Register table = rdi; // crc_table address (reuse register)
const Register tmp = rbx;
assert_different_registers(crc, buf, len, table, tmp, rax);
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ push(rsi);
__ push(rdi);
__ push(rbx);
Address crc_arg(rbp, 8 + 0);
Address buf_arg(rbp, 8 + 4);
Address len_arg(rbp, 8 + 8);
// Load up:
__ movl(crc, crc_arg);
__ movptr(buf, buf_arg);
__ movl(len, len_arg);
__ kernel_crc32(crc, buf, len, table, tmp);
__ movl(rax, crc);
__ pop(rbx);
__ pop(rdi);
__ pop(rsi);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
/**
* Arguments:
*
* Inputs:
* rsp(4) - int crc
* rsp(8) - byte* buf
* rsp(12) - int length
* rsp(16) - table_start - optional (present only when doing a library_calll,
* not used by x86 algorithm)
*
* Ouput:
* rax - int crc result
*/
address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) {
assert(UseCRC32CIntrinsics, "need SSE4_2");
__ align(CodeEntryAlignment);
StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C");
address start = __ pc();
const Register crc = rax; // crc
const Register buf = rcx; // source java byte array address
const Register len = rdx; // length
const Register d = rbx;
const Register g = rsi;
const Register h = rdi;
const Register empty = 0; // will never be used, in order not
// to change a signature for crc32c_IPL_Alg2_Alt2
// between 64/32 I'm just keeping it here
assert_different_registers(crc, buf, len, d, g, h);
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
Address crc_arg(rsp, 4 + 4 + 0); // ESP+4 +
// we need to add additional 4 because __ enter
// have just pushed ebp on a stack
Address buf_arg(rsp, 4 + 4 + 4);
Address len_arg(rsp, 4 + 4 + 8);
// Load up:
__ movl(crc, crc_arg);
__ movl(buf, buf_arg);
__ movl(len, len_arg);
__ push(d);
__ push(g);
__ push(h);
__ crc32c_ipl_alg2_alt2(crc, buf, len,
d, g, h,
empty, empty, empty,
xmm0, xmm1, xmm2,
is_pclmulqdq_supported);
__ pop(h);
__ pop(g);
__ pop(d);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmExp() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmLog() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmLog10() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmPow() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libm_reduce_pi04l() {
address start = __ pc();
BLOCK_COMMENT("Entry:");
__ libm_reduce_pi04l(rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
return start;
}
address generate_libm_sin_cos_huge() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
BLOCK_COMMENT("Entry:");
__ libm_sincos_huge(x0, x1, rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
return start;
}
address generate_libmSin() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rdx);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libmCos() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
address generate_libm_tan_cot_huge() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
BLOCK_COMMENT("Entry:");
__ libm_tancot_huge(x0, x1, rax, rcx, rdx, rbx, rsi, rdi, rbp, rsp);
return start;
}
address generate_libmTan() {
address start = __ pc();
const XMMRegister x0 = xmm0;
const XMMRegister x1 = xmm1;
const XMMRegister x2 = xmm2;
const XMMRegister x3 = xmm3;
const XMMRegister x4 = xmm4;
const XMMRegister x5 = xmm5;
const XMMRegister x6 = xmm6;
const XMMRegister x7 = xmm7;
const Register tmp = rbx;
BLOCK_COMMENT("Entry:");
__ enter(); // required for proper stackwalking of RuntimeStub frame
__ fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp);
__ leave(); // required for proper stackwalking of RuntimeStub frame
__ ret(0);
return start;
}
// Safefetch stubs.
void generate_safefetch(const char* name, int size, address* entry,
address* fault_pc, address* continuation_pc) {
// safefetch signatures:
// int SafeFetch32(int* adr, int errValue);
// intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
StubCodeMark mark(this, "StubRoutines", name);
// Entry point, pc or function descriptor.
*entry = __ pc();
__ movl(rax, Address(rsp, 0x8));
__ movl(rcx, Address(rsp, 0x4));
// Load *adr into eax, may fault.
*fault_pc = __ pc();
switch (size) {
case 4:
// int32_t
__ movl(rax, Address(rcx, 0));
break;
case 8:
// int64_t
Unimplemented();
break;
default:
ShouldNotReachHere();
}
// Return errValue or *adr.
*continuation_pc = __ pc();
__ ret(0);
}
public:
// Information about frame layout at time of blocking runtime call.
// Note that we only have to preserve callee-saved registers since
// the compilers are responsible for supplying a continuation point
// if they expect all registers to be preserved.
enum layout {
thread_off, // last_java_sp
arg1_off,
arg2_off,
rbp_off, // callee saved register
ret_pc,
framesize
};
private:
#undef __
#define __ masm->
//------------------------------------------------------------------------------------------------------------------------
// Continuation point for throwing of implicit exceptions that are not handled in
// the current activation. Fabricates an exception oop and initiates normal
// exception dispatching in this frame.
//
// Previously the compiler (c2) allowed for callee save registers on Java calls.
// This is no longer true after adapter frames were removed but could possibly
// be brought back in the future if the interpreter code was reworked and it
// was deemed worthwhile. The comment below was left to describe what must
// happen here if callee saves were resurrected. As it stands now this stub
// could actually be a vanilla BufferBlob and have now oopMap at all.
// Since it doesn't make much difference we've chosen to leave it the
// way it was in the callee save days and keep the comment.
// If we need to preserve callee-saved values we need a callee-saved oop map and
// therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
// If the compiler needs all registers to be preserved between the fault
// point and the exception handler then it must assume responsibility for that in
// AbstractCompiler::continuation_for_implicit_null_exception or
// continuation_for_implicit_division_by_zero_exception. All other implicit
// exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
// either at call sites or otherwise assume that stack unwinding will be initiated,
// so caller saved registers were assumed volatile in the compiler.
address generate_throw_exception(const char* name, address runtime_entry,
Register arg1 = noreg, Register arg2 = noreg) {
int insts_size = 256;
int locs_size = 32;
CodeBuffer code(name, insts_size, locs_size);
OopMapSet* oop_maps = new OopMapSet();
MacroAssembler* masm = new MacroAssembler(&code);
address start = __ pc();
// This is an inlined and slightly modified version of call_VM
// which has the ability to fetch the return PC out of
// thread-local storage and also sets up last_Java_sp slightly
// differently than the real call_VM
Register java_thread = rbx;
__ get_thread(java_thread);
__ enter(); // required for proper stackwalking of RuntimeStub frame
// pc and rbp, already pushed
__ subptr(rsp, (framesize-2) * wordSize); // prolog
// Frame is now completed as far as size and linkage.
int frame_complete = __ pc() - start;
// push java thread (becomes first argument of C function)
__ movptr(Address(rsp, thread_off * wordSize), java_thread);
if (arg1 != noreg) {
__ movptr(Address(rsp, arg1_off * wordSize), arg1);
}
if (arg2 != noreg) {
assert(arg1 != noreg, "missing reg arg");
__ movptr(Address(rsp, arg2_off * wordSize), arg2);
}
// Set up last_Java_sp and last_Java_fp
__ set_last_Java_frame(java_thread, rsp, rbp, NULL);
// Call runtime
BLOCK_COMMENT("call runtime_entry");
__ call(RuntimeAddress(runtime_entry));
// Generate oop map
OopMap* map = new OopMap(framesize, 0);
oop_maps->add_gc_map(__ pc() - start, map);
// restore the thread (cannot use the pushed argument since arguments
// may be overwritten by C code generated by an optimizing compiler);
// however can use the register value directly if it is callee saved.
__ get_thread(java_thread);
__ reset_last_Java_frame(java_thread, true);
__ leave(); // required for proper stackwalking of RuntimeStub frame
// check for pending exceptions
#ifdef ASSERT
Label L;
__ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
__ jcc(Assembler::notEqual, L);
__ should_not_reach_here();
__ bind(L);
#endif /* ASSERT */
__ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
return stub->entry_point();
}
void create_control_words() {
// Round to nearest, 53-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_std = 0x027F;
// Round to zero, 53-bit mode, exception mased
StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
// Round to nearest, 24-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_24 = 0x007F;
// Round to nearest, 64-bit mode, exceptions masked
StubRoutines::_fpu_cntrl_wrd_64 = 0x037F;
// Round to nearest, 64-bit mode, exceptions masked
StubRoutines::_mxcsr_std = 0x1F80;
// Note: the following two constants are 80-bit values
// layout is critical for correct loading by FPU.
// Bias for strict fp multiply/divide
StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
// Un-Bias for strict fp multiply/divide
StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
}
//---------------------------------------------------------------------------
// Initialization
void generate_initial() {
// Generates all stubs and initializes the entry points
//------------------------------------------------------------------------------------------------------------------------
// entry points that exist in all platforms
// Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
// the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
StubRoutines::_forward_exception_entry = generate_forward_exception();
StubRoutines::_call_stub_entry =
generate_call_stub(StubRoutines::_call_stub_return_address);
// is referenced by megamorphic call
StubRoutines::_catch_exception_entry = generate_catch_exception();
// These are currently used by Solaris/Intel
StubRoutines::_atomic_xchg_entry = generate_atomic_xchg();
// platform dependent
create_control_words();
StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr();
StubRoutines::x86::_verify_fpu_cntrl_wrd_entry = generate_verify_fpu_cntrl_wrd();
StubRoutines::_d2i_wrapper = generate_d2i_wrapper(T_INT,
CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
StubRoutines::_d2l_wrapper = generate_d2i_wrapper(T_LONG,
CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
// Build this early so it's available for the interpreter
StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
StubRoutines::_throw_delayed_StackOverflowError_entry = generate_throw_exception("delayed StackOverflowError throw_exception",
CAST_FROM_FN_PTR(address, SharedRuntime::throw_delayed_StackOverflowError));
if (UseCRC32Intrinsics) {
// set table address before stub generation which use it
StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
}
if (UseCRC32CIntrinsics) {
bool supports_clmul = VM_Version::supports_clmul();
StubRoutines::x86::generate_CRC32C_table(supports_clmul);
StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table;
StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul);
}
if (VM_Version::supports_sse2() && UseLibmIntrinsic && InlineIntrinsics) {
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) ||
vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
StubRoutines::x86::_L_2il0floatpacket_0_adr = (address)StubRoutines::x86::_L_2il0floatpacket_0;
StubRoutines::x86::_Pi4Inv_adr = (address)StubRoutines::x86::_Pi4Inv;
StubRoutines::x86::_Pi4x3_adr = (address)StubRoutines::x86::_Pi4x3;
StubRoutines::x86::_Pi4x4_adr = (address)StubRoutines::x86::_Pi4x4;
StubRoutines::x86::_ones_adr = (address)StubRoutines::x86::_ones;
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) {
StubRoutines::_dexp = generate_libmExp();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) {
StubRoutines::_dlog = generate_libmLog();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) {
StubRoutines::_dlog10 = generate_libmLog10();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) {
StubRoutines::_dpow = generate_libmPow();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) ||
vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
StubRoutines::_dlibm_reduce_pi04l = generate_libm_reduce_pi04l();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) ||
vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
StubRoutines::_dlibm_sin_cos_huge = generate_libm_sin_cos_huge();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) {
StubRoutines::_dsin = generate_libmSin();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) {
StubRoutines::_dcos = generate_libmCos();
}
if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) {
StubRoutines::_dlibm_tan_cot_huge = generate_libm_tan_cot_huge();
StubRoutines::_dtan = generate_libmTan();
}
}
}
void generate_all() {
// Generates all stubs and initializes the entry points
// These entry points require SharedInfo::stack0 to be set up in non-core builds
// and need to be relocatable, so they each fabricate a RuntimeStub internally.
StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
//------------------------------------------------------------------------------------------------------------------------
// entry points that are platform specific
// support for verify_oop (must happen after universe_init)
StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
// arraycopy stubs used by compilers
generate_arraycopy_stubs();
// don't bother generating these AES intrinsic stubs unless global flag is set
if (UseAESIntrinsics) {
StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // might be needed by the others
StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel();
}
if (UseAESCTRIntrinsics) {
StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask();
StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel();
}
if (UseSHA1Intrinsics) {
StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask();
StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask();
StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress");
StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB");
}
if (UseSHA256Intrinsics) {
StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256;
StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask();
StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress");
StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB");
}
// Generate GHASH intrinsics code
if (UseGHASHIntrinsics) {
StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask();
StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask();
StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks();
}
// Safefetch stubs.
generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
&StubRoutines::_safefetch32_fault_pc,
&StubRoutines::_safefetch32_continuation_pc);
StubRoutines::_safefetchN_entry = StubRoutines::_safefetch32_entry;
StubRoutines::_safefetchN_fault_pc = StubRoutines::_safefetch32_fault_pc;
StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
}
public:
StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
if (all) {
generate_all();
} else {
generate_initial();
}
}
}; // end class declaration
void StubGenerator_generate(CodeBuffer* code, bool all) {
StubGenerator g(code, all);
}