--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc/g1/g1ParScanThreadState.cpp Wed May 13 15:16:06 2015 +0200
@@ -0,0 +1,303 @@
+/*
+ * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "gc/g1/g1CollectedHeap.inline.hpp"
+#include "gc/g1/g1OopClosures.inline.hpp"
+#include "gc/g1/g1ParScanThreadState.inline.hpp"
+#include "gc/g1/g1StringDedup.hpp"
+#include "gc/shared/taskqueue.inline.hpp"
+#include "oops/oop.inline.hpp"
+#include "runtime/prefetch.inline.hpp"
+
+G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
+ : _g1h(g1h),
+ _refs(g1h->task_queue(queue_num)),
+ _dcq(&g1h->dirty_card_queue_set()),
+ _ct_bs(g1h->g1_barrier_set()),
+ _g1_rem(g1h->g1_rem_set()),
+ _hash_seed(17), _queue_num(queue_num),
+ _term_attempts(0),
+ _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
+ _age_table(false), _scanner(g1h, rp),
+ _strong_roots_time(0), _term_time(0) {
+ _scanner.set_par_scan_thread_state(this);
+ // we allocate G1YoungSurvRateNumRegions plus one entries, since
+ // we "sacrifice" entry 0 to keep track of surviving bytes for
+ // non-young regions (where the age is -1)
+ // We also add a few elements at the beginning and at the end in
+ // an attempt to eliminate cache contention
+ uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
+ uint array_length = PADDING_ELEM_NUM +
+ real_length +
+ PADDING_ELEM_NUM;
+ _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
+ if (_surviving_young_words_base == NULL)
+ vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
+ "Not enough space for young surv histo.");
+ _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
+ memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
+
+ _g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
+
+ _dest[InCSetState::NotInCSet] = InCSetState::NotInCSet;
+ // The dest for Young is used when the objects are aged enough to
+ // need to be moved to the next space.
+ _dest[InCSetState::Young] = InCSetState::Old;
+ _dest[InCSetState::Old] = InCSetState::Old;
+
+ _start = os::elapsedTime();
+}
+
+G1ParScanThreadState::~G1ParScanThreadState() {
+ _g1_par_allocator->retire_alloc_buffers();
+ delete _g1_par_allocator;
+ FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
+}
+
+void
+G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
+{
+ st->print_raw_cr("GC Termination Stats");
+ st->print_raw_cr(" elapsed --strong roots-- -------termination-------"
+ " ------waste (KiB)------");
+ st->print_raw_cr("thr ms ms % ms % attempts"
+ " total alloc undo");
+ st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
+ " ------- ------- -------");
+}
+
+void
+G1ParScanThreadState::print_termination_stats(int i,
+ outputStream* const st) const
+{
+ const double elapsed_ms = elapsed_time() * 1000.0;
+ const double s_roots_ms = strong_roots_time() * 1000.0;
+ const double term_ms = term_time() * 1000.0;
+ size_t alloc_buffer_waste = 0;
+ size_t undo_waste = 0;
+ _g1_par_allocator->waste(alloc_buffer_waste, undo_waste);
+ st->print_cr("%3d %9.2f %9.2f %6.2f "
+ "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
+ SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
+ i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
+ term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
+ (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
+ alloc_buffer_waste * HeapWordSize / K,
+ undo_waste * HeapWordSize / K);
+}
+
+#ifdef ASSERT
+bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
+ assert(ref != NULL, "invariant");
+ assert(UseCompressedOops, "sanity");
+ assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
+ oop p = oopDesc::load_decode_heap_oop(ref);
+ assert(_g1h->is_in_g1_reserved(p),
+ err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
+ return true;
+}
+
+bool G1ParScanThreadState::verify_ref(oop* ref) const {
+ assert(ref != NULL, "invariant");
+ if (has_partial_array_mask(ref)) {
+ // Must be in the collection set--it's already been copied.
+ oop p = clear_partial_array_mask(ref);
+ assert(_g1h->obj_in_cs(p),
+ err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
+ } else {
+ oop p = oopDesc::load_decode_heap_oop(ref);
+ assert(_g1h->is_in_g1_reserved(p),
+ err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
+ }
+ return true;
+}
+
+bool G1ParScanThreadState::verify_task(StarTask ref) const {
+ if (ref.is_narrow()) {
+ return verify_ref((narrowOop*) ref);
+ } else {
+ return verify_ref((oop*) ref);
+ }
+}
+#endif // ASSERT
+
+void G1ParScanThreadState::trim_queue() {
+ assert(_evac_failure_cl != NULL, "not set");
+
+ StarTask ref;
+ do {
+ // Drain the overflow stack first, so other threads can steal.
+ while (_refs->pop_overflow(ref)) {
+ dispatch_reference(ref);
+ }
+
+ while (_refs->pop_local(ref)) {
+ dispatch_reference(ref);
+ }
+ } while (!_refs->is_empty());
+}
+
+HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
+ InCSetState* dest,
+ size_t word_sz,
+ AllocationContext_t const context) {
+ assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
+ assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
+
+ // Right now we only have two types of regions (young / old) so
+ // let's keep the logic here simple. We can generalize it when necessary.
+ if (dest->is_young()) {
+ HeapWord* const obj_ptr = _g1_par_allocator->allocate(InCSetState::Old,
+ word_sz, context);
+ if (obj_ptr == NULL) {
+ return NULL;
+ }
+ // Make sure that we won't attempt to copy any other objects out
+ // of a survivor region (given that apparently we cannot allocate
+ // any new ones) to avoid coming into this slow path.
+ _tenuring_threshold = 0;
+ dest->set_old();
+ return obj_ptr;
+ } else {
+ assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
+ // no other space to try.
+ return NULL;
+ }
+}
+
+InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
+ if (state.is_young()) {
+ age = !m->has_displaced_mark_helper() ? m->age()
+ : m->displaced_mark_helper()->age();
+ if (age < _tenuring_threshold) {
+ return state;
+ }
+ }
+ return dest(state);
+}
+
+oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
+ oop const old,
+ markOop const old_mark) {
+ const size_t word_sz = old->size();
+ HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
+ // +1 to make the -1 indexes valid...
+ const int young_index = from_region->young_index_in_cset()+1;
+ assert( (from_region->is_young() && young_index > 0) ||
+ (!from_region->is_young() && young_index == 0), "invariant" );
+ const AllocationContext_t context = from_region->allocation_context();
+
+ uint age = 0;
+ InCSetState dest_state = next_state(state, old_mark, age);
+ HeapWord* obj_ptr = _g1_par_allocator->plab_allocate(dest_state, word_sz, context);
+
+ // PLAB allocations should succeed most of the time, so we'll
+ // normally check against NULL once and that's it.
+ if (obj_ptr == NULL) {
+ obj_ptr = _g1_par_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context);
+ if (obj_ptr == NULL) {
+ obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context);
+ if (obj_ptr == NULL) {
+ // This will either forward-to-self, or detect that someone else has
+ // installed a forwarding pointer.
+ return _g1h->handle_evacuation_failure_par(this, old);
+ }
+ }
+ }
+
+ assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
+ assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
+
+#ifndef PRODUCT
+ // Should this evacuation fail?
+ if (_g1h->evacuation_should_fail()) {
+ // Doing this after all the allocation attempts also tests the
+ // undo_allocation() method too.
+ _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
+ return _g1h->handle_evacuation_failure_par(this, old);
+ }
+#endif // !PRODUCT
+
+ // We're going to allocate linearly, so might as well prefetch ahead.
+ Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
+
+ const oop obj = oop(obj_ptr);
+ const oop forward_ptr = old->forward_to_atomic(obj);
+ if (forward_ptr == NULL) {
+ Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
+
+ if (dest_state.is_young()) {
+ if (age < markOopDesc::max_age) {
+ age++;
+ }
+ if (old_mark->has_displaced_mark_helper()) {
+ // In this case, we have to install the mark word first,
+ // otherwise obj looks to be forwarded (the old mark word,
+ // which contains the forward pointer, was copied)
+ obj->set_mark(old_mark);
+ markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
+ old_mark->set_displaced_mark_helper(new_mark);
+ } else {
+ obj->set_mark(old_mark->set_age(age));
+ }
+ age_table()->add(age, word_sz);
+ } else {
+ obj->set_mark(old_mark);
+ }
+
+ if (G1StringDedup::is_enabled()) {
+ const bool is_from_young = state.is_young();
+ const bool is_to_young = dest_state.is_young();
+ assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
+ "sanity");
+ assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
+ "sanity");
+ G1StringDedup::enqueue_from_evacuation(is_from_young,
+ is_to_young,
+ queue_num(),
+ obj);
+ }
+
+ size_t* const surv_young_words = surviving_young_words();
+ surv_young_words[young_index] += word_sz;
+
+ if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
+ // We keep track of the next start index in the length field of
+ // the to-space object. The actual length can be found in the
+ // length field of the from-space object.
+ arrayOop(obj)->set_length(0);
+ oop* old_p = set_partial_array_mask(old);
+ push_on_queue(old_p);
+ } else {
+ HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
+ _scanner.set_region(to_region);
+ obj->oop_iterate_backwards(&_scanner);
+ }
+ return obj;
+ } else {
+ _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
+ return forward_ptr;
+ }
+}