hotspot/src/share/vm/gc/g1/g1CollectedHeap.hpp
changeset 30764 fec48bf5a827
parent 30586 23e6e981e89c
child 30871 e90a8de769e4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/gc/g1/g1CollectedHeap.hpp	Wed May 13 15:16:06 2015 +0200
@@ -0,0 +1,1594 @@
+/*
+ * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
+#define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
+
+#include "gc/g1/concurrentMark.hpp"
+#include "gc/g1/evacuationInfo.hpp"
+#include "gc/g1/g1AllocRegion.hpp"
+#include "gc/g1/g1AllocationContext.hpp"
+#include "gc/g1/g1Allocator.hpp"
+#include "gc/g1/g1BiasedArray.hpp"
+#include "gc/g1/g1HRPrinter.hpp"
+#include "gc/g1/g1InCSetState.hpp"
+#include "gc/g1/g1MonitoringSupport.hpp"
+#include "gc/g1/g1SATBCardTableModRefBS.hpp"
+#include "gc/g1/g1YCTypes.hpp"
+#include "gc/g1/hSpaceCounters.hpp"
+#include "gc/g1/heapRegionManager.hpp"
+#include "gc/g1/heapRegionSet.hpp"
+#include "gc/shared/barrierSet.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "memory/memRegion.hpp"
+#include "utilities/stack.hpp"
+
+// A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
+// It uses the "Garbage First" heap organization and algorithm, which
+// may combine concurrent marking with parallel, incremental compaction of
+// heap subsets that will yield large amounts of garbage.
+
+// Forward declarations
+class HeapRegion;
+class HRRSCleanupTask;
+class GenerationSpec;
+class OopsInHeapRegionClosure;
+class G1KlassScanClosure;
+class G1ParScanThreadState;
+class ObjectClosure;
+class SpaceClosure;
+class CompactibleSpaceClosure;
+class Space;
+class G1CollectorPolicy;
+class GenRemSet;
+class G1RemSet;
+class HeapRegionRemSetIterator;
+class ConcurrentMark;
+class ConcurrentMarkThread;
+class ConcurrentG1Refine;
+class ConcurrentGCTimer;
+class GenerationCounters;
+class STWGCTimer;
+class G1NewTracer;
+class G1OldTracer;
+class EvacuationFailedInfo;
+class nmethod;
+class Ticks;
+class FlexibleWorkGang;
+
+typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
+typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
+
+typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
+typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
+
+class YoungList : public CHeapObj<mtGC> {
+private:
+  G1CollectedHeap* _g1h;
+
+  HeapRegion* _head;
+
+  HeapRegion* _survivor_head;
+  HeapRegion* _survivor_tail;
+
+  HeapRegion* _curr;
+
+  uint        _length;
+  uint        _survivor_length;
+
+  size_t      _last_sampled_rs_lengths;
+  size_t      _sampled_rs_lengths;
+
+  void         empty_list(HeapRegion* list);
+
+public:
+  YoungList(G1CollectedHeap* g1h);
+
+  void         push_region(HeapRegion* hr);
+  void         add_survivor_region(HeapRegion* hr);
+
+  void         empty_list();
+  bool         is_empty() { return _length == 0; }
+  uint         length() { return _length; }
+  uint         eden_length() { return length() - survivor_length(); }
+  uint         survivor_length() { return _survivor_length; }
+
+  // Currently we do not keep track of the used byte sum for the
+  // young list and the survivors and it'd be quite a lot of work to
+  // do so. When we'll eventually replace the young list with
+  // instances of HeapRegionLinkedList we'll get that for free. So,
+  // we'll report the more accurate information then.
+  size_t       eden_used_bytes() {
+    assert(length() >= survivor_length(), "invariant");
+    return (size_t) eden_length() * HeapRegion::GrainBytes;
+  }
+  size_t       survivor_used_bytes() {
+    return (size_t) survivor_length() * HeapRegion::GrainBytes;
+  }
+
+  void rs_length_sampling_init();
+  bool rs_length_sampling_more();
+  void rs_length_sampling_next();
+
+  void reset_sampled_info() {
+    _last_sampled_rs_lengths =   0;
+  }
+  size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
+
+  // for development purposes
+  void reset_auxilary_lists();
+  void clear() { _head = NULL; _length = 0; }
+
+  void clear_survivors() {
+    _survivor_head    = NULL;
+    _survivor_tail    = NULL;
+    _survivor_length  = 0;
+  }
+
+  HeapRegion* first_region() { return _head; }
+  HeapRegion* first_survivor_region() { return _survivor_head; }
+  HeapRegion* last_survivor_region() { return _survivor_tail; }
+
+  // debugging
+  bool          check_list_well_formed();
+  bool          check_list_empty(bool check_sample = true);
+  void          print();
+};
+
+// The G1 STW is alive closure.
+// An instance is embedded into the G1CH and used as the
+// (optional) _is_alive_non_header closure in the STW
+// reference processor. It is also extensively used during
+// reference processing during STW evacuation pauses.
+class G1STWIsAliveClosure: public BoolObjectClosure {
+  G1CollectedHeap* _g1;
+public:
+  G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
+  bool do_object_b(oop p);
+};
+
+class RefineCardTableEntryClosure;
+
+class G1RegionMappingChangedListener : public G1MappingChangedListener {
+ private:
+  void reset_from_card_cache(uint start_idx, size_t num_regions);
+ public:
+  virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
+};
+
+class G1CollectedHeap : public CollectedHeap {
+  friend class VM_CollectForMetadataAllocation;
+  friend class VM_G1CollectForAllocation;
+  friend class VM_G1CollectFull;
+  friend class VM_G1IncCollectionPause;
+  friend class VMStructs;
+  friend class MutatorAllocRegion;
+  friend class SurvivorGCAllocRegion;
+  friend class OldGCAllocRegion;
+  friend class G1Allocator;
+
+  // Closures used in implementation.
+  friend class G1ParScanThreadState;
+  friend class G1ParTask;
+  friend class G1ParGCAllocator;
+  friend class G1PrepareCompactClosure;
+
+  // Other related classes.
+  friend class HeapRegionClaimer;
+
+  // Testing classes.
+  friend class G1CheckCSetFastTableClosure;
+
+private:
+  FlexibleWorkGang* _workers;
+
+  static size_t _humongous_object_threshold_in_words;
+
+  // The secondary free list which contains regions that have been
+  // freed up during the cleanup process. This will be appended to
+  // the master free list when appropriate.
+  FreeRegionList _secondary_free_list;
+
+  // It keeps track of the old regions.
+  HeapRegionSet _old_set;
+
+  // It keeps track of the humongous regions.
+  HeapRegionSet _humongous_set;
+
+  void eagerly_reclaim_humongous_regions();
+
+  // The number of regions we could create by expansion.
+  uint _expansion_regions;
+
+  // The block offset table for the G1 heap.
+  G1BlockOffsetSharedArray* _bot_shared;
+
+  // Tears down the region sets / lists so that they are empty and the
+  // regions on the heap do not belong to a region set / list. The
+  // only exception is the humongous set which we leave unaltered. If
+  // free_list_only is true, it will only tear down the master free
+  // list. It is called before a Full GC (free_list_only == false) or
+  // before heap shrinking (free_list_only == true).
+  void tear_down_region_sets(bool free_list_only);
+
+  // Rebuilds the region sets / lists so that they are repopulated to
+  // reflect the contents of the heap. The only exception is the
+  // humongous set which was not torn down in the first place. If
+  // free_list_only is true, it will only rebuild the master free
+  // list. It is called after a Full GC (free_list_only == false) or
+  // after heap shrinking (free_list_only == true).
+  void rebuild_region_sets(bool free_list_only);
+
+  // Callback for region mapping changed events.
+  G1RegionMappingChangedListener _listener;
+
+  // The sequence of all heap regions in the heap.
+  HeapRegionManager _hrm;
+
+  // Class that handles the different kinds of allocations.
+  G1Allocator* _allocator;
+
+  // Statistics for each allocation context
+  AllocationContextStats _allocation_context_stats;
+
+  // PLAB sizing policy for survivors.
+  PLABStats _survivor_plab_stats;
+
+  // PLAB sizing policy for tenured objects.
+  PLABStats _old_plab_stats;
+
+  // It specifies whether we should attempt to expand the heap after a
+  // region allocation failure. If heap expansion fails we set this to
+  // false so that we don't re-attempt the heap expansion (it's likely
+  // that subsequent expansion attempts will also fail if one fails).
+  // Currently, it is only consulted during GC and it's reset at the
+  // start of each GC.
+  bool _expand_heap_after_alloc_failure;
+
+  // It resets the mutator alloc region before new allocations can take place.
+  void init_mutator_alloc_region();
+
+  // It releases the mutator alloc region.
+  void release_mutator_alloc_region();
+
+  // It initializes the GC alloc regions at the start of a GC.
+  void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
+
+  // It releases the GC alloc regions at the end of a GC.
+  void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
+
+  // It does any cleanup that needs to be done on the GC alloc regions
+  // before a Full GC.
+  void abandon_gc_alloc_regions();
+
+  // Helper for monitoring and management support.
+  G1MonitoringSupport* _g1mm;
+
+  // Records whether the region at the given index is (still) a
+  // candidate for eager reclaim.  Only valid for humongous start
+  // regions; other regions have unspecified values.  Humongous start
+  // regions are initialized at start of collection pause, with
+  // candidates removed from the set as they are found reachable from
+  // roots or the young generation.
+  class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
+   protected:
+    bool default_value() const { return false; }
+   public:
+    void clear() { G1BiasedMappedArray<bool>::clear(); }
+    void set_candidate(uint region, bool value) {
+      set_by_index(region, value);
+    }
+    bool is_candidate(uint region) {
+      return get_by_index(region);
+    }
+  };
+
+  HumongousReclaimCandidates _humongous_reclaim_candidates;
+  // Stores whether during humongous object registration we found candidate regions.
+  // If not, we can skip a few steps.
+  bool _has_humongous_reclaim_candidates;
+
+  volatile unsigned _gc_time_stamp;
+
+  size_t* _surviving_young_words;
+
+  G1HRPrinter _hr_printer;
+
+  void setup_surviving_young_words();
+  void update_surviving_young_words(size_t* surv_young_words);
+  void cleanup_surviving_young_words();
+
+  // It decides whether an explicit GC should start a concurrent cycle
+  // instead of doing a STW GC. Currently, a concurrent cycle is
+  // explicitly started if:
+  // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
+  // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
+  // (c) cause == _g1_humongous_allocation
+  bool should_do_concurrent_full_gc(GCCause::Cause cause);
+
+  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
+  // concurrent cycles) we have started.
+  volatile uint _old_marking_cycles_started;
+
+  // Keeps track of how many "old marking cycles" (i.e., Full GCs or
+  // concurrent cycles) we have completed.
+  volatile uint _old_marking_cycles_completed;
+
+  bool _concurrent_cycle_started;
+  bool _heap_summary_sent;
+
+  // This is a non-product method that is helpful for testing. It is
+  // called at the end of a GC and artificially expands the heap by
+  // allocating a number of dead regions. This way we can induce very
+  // frequent marking cycles and stress the cleanup / concurrent
+  // cleanup code more (as all the regions that will be allocated by
+  // this method will be found dead by the marking cycle).
+  void allocate_dummy_regions() PRODUCT_RETURN;
+
+  // Clear RSets after a compaction. It also resets the GC time stamps.
+  void clear_rsets_post_compaction();
+
+  // If the HR printer is active, dump the state of the regions in the
+  // heap after a compaction.
+  void print_hrm_post_compaction();
+
+  // Create a memory mapper for auxiliary data structures of the given size and
+  // translation factor.
+  static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
+                                                         size_t size,
+                                                         size_t translation_factor);
+
+  double verify(bool guard, const char* msg);
+  void verify_before_gc();
+  void verify_after_gc();
+
+  void log_gc_header();
+  void log_gc_footer(double pause_time_sec);
+
+  // These are macros so that, if the assert fires, we get the correct
+  // line number, file, etc.
+
+#define heap_locking_asserts_err_msg(_extra_message_)                         \
+  err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
+          (_extra_message_),                                                  \
+          BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
+          BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
+          BOOL_TO_STR(Thread::current()->is_VM_thread()))
+
+#define assert_heap_locked()                                                  \
+  do {                                                                        \
+    assert(Heap_lock->owned_by_self(),                                        \
+           heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
+  } while (0)
+
+#define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
+  do {                                                                        \
+    assert(Heap_lock->owned_by_self() ||                                      \
+           (SafepointSynchronize::is_at_safepoint() &&                        \
+             ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
+           heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
+                                        "should be at a safepoint"));         \
+  } while (0)
+
+#define assert_heap_locked_and_not_at_safepoint()                             \
+  do {                                                                        \
+    assert(Heap_lock->owned_by_self() &&                                      \
+                                    !SafepointSynchronize::is_at_safepoint(), \
+          heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
+                                       "should not be at a safepoint"));      \
+  } while (0)
+
+#define assert_heap_not_locked()                                              \
+  do {                                                                        \
+    assert(!Heap_lock->owned_by_self(),                                       \
+        heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
+  } while (0)
+
+#define assert_heap_not_locked_and_not_at_safepoint()                         \
+  do {                                                                        \
+    assert(!Heap_lock->owned_by_self() &&                                     \
+                                    !SafepointSynchronize::is_at_safepoint(), \
+      heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
+                                   "should not be at a safepoint"));          \
+  } while (0)
+
+#define assert_at_safepoint(_should_be_vm_thread_)                            \
+  do {                                                                        \
+    assert(SafepointSynchronize::is_at_safepoint() &&                         \
+              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
+           heap_locking_asserts_err_msg("should be at a safepoint"));         \
+  } while (0)
+
+#define assert_not_at_safepoint()                                             \
+  do {                                                                        \
+    assert(!SafepointSynchronize::is_at_safepoint(),                          \
+           heap_locking_asserts_err_msg("should not be at a safepoint"));     \
+  } while (0)
+
+protected:
+
+  // The young region list.
+  YoungList*  _young_list;
+
+  // The current policy object for the collector.
+  G1CollectorPolicy* _g1_policy;
+
+  // This is the second level of trying to allocate a new region. If
+  // new_region() didn't find a region on the free_list, this call will
+  // check whether there's anything available on the
+  // secondary_free_list and/or wait for more regions to appear on
+  // that list, if _free_regions_coming is set.
+  HeapRegion* new_region_try_secondary_free_list(bool is_old);
+
+  // Try to allocate a single non-humongous HeapRegion sufficient for
+  // an allocation of the given word_size. If do_expand is true,
+  // attempt to expand the heap if necessary to satisfy the allocation
+  // request. If the region is to be used as an old region or for a
+  // humongous object, set is_old to true. If not, to false.
+  HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
+
+  // Initialize a contiguous set of free regions of length num_regions
+  // and starting at index first so that they appear as a single
+  // humongous region.
+  HeapWord* humongous_obj_allocate_initialize_regions(uint first,
+                                                      uint num_regions,
+                                                      size_t word_size,
+                                                      AllocationContext_t context);
+
+  // Attempt to allocate a humongous object of the given size. Return
+  // NULL if unsuccessful.
+  HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
+
+  // The following two methods, allocate_new_tlab() and
+  // mem_allocate(), are the two main entry points from the runtime
+  // into the G1's allocation routines. They have the following
+  // assumptions:
+  //
+  // * They should both be called outside safepoints.
+  //
+  // * They should both be called without holding the Heap_lock.
+  //
+  // * All allocation requests for new TLABs should go to
+  //   allocate_new_tlab().
+  //
+  // * All non-TLAB allocation requests should go to mem_allocate().
+  //
+  // * If either call cannot satisfy the allocation request using the
+  //   current allocating region, they will try to get a new one. If
+  //   this fails, they will attempt to do an evacuation pause and
+  //   retry the allocation.
+  //
+  // * If all allocation attempts fail, even after trying to schedule
+  //   an evacuation pause, allocate_new_tlab() will return NULL,
+  //   whereas mem_allocate() will attempt a heap expansion and/or
+  //   schedule a Full GC.
+  //
+  // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
+  //   should never be called with word_size being humongous. All
+  //   humongous allocation requests should go to mem_allocate() which
+  //   will satisfy them with a special path.
+
+  virtual HeapWord* allocate_new_tlab(size_t word_size);
+
+  virtual HeapWord* mem_allocate(size_t word_size,
+                                 bool*  gc_overhead_limit_was_exceeded);
+
+  // The following three methods take a gc_count_before_ret
+  // parameter which is used to return the GC count if the method
+  // returns NULL. Given that we are required to read the GC count
+  // while holding the Heap_lock, and these paths will take the
+  // Heap_lock at some point, it's easier to get them to read the GC
+  // count while holding the Heap_lock before they return NULL instead
+  // of the caller (namely: mem_allocate()) having to also take the
+  // Heap_lock just to read the GC count.
+
+  // First-level mutator allocation attempt: try to allocate out of
+  // the mutator alloc region without taking the Heap_lock. This
+  // should only be used for non-humongous allocations.
+  inline HeapWord* attempt_allocation(size_t word_size,
+                                      uint* gc_count_before_ret,
+                                      uint* gclocker_retry_count_ret);
+
+  // Second-level mutator allocation attempt: take the Heap_lock and
+  // retry the allocation attempt, potentially scheduling a GC
+  // pause. This should only be used for non-humongous allocations.
+  HeapWord* attempt_allocation_slow(size_t word_size,
+                                    AllocationContext_t context,
+                                    uint* gc_count_before_ret,
+                                    uint* gclocker_retry_count_ret);
+
+  // Takes the Heap_lock and attempts a humongous allocation. It can
+  // potentially schedule a GC pause.
+  HeapWord* attempt_allocation_humongous(size_t word_size,
+                                         uint* gc_count_before_ret,
+                                         uint* gclocker_retry_count_ret);
+
+  // Allocation attempt that should be called during safepoints (e.g.,
+  // at the end of a successful GC). expect_null_mutator_alloc_region
+  // specifies whether the mutator alloc region is expected to be NULL
+  // or not.
+  HeapWord* attempt_allocation_at_safepoint(size_t word_size,
+                                            AllocationContext_t context,
+                                            bool expect_null_mutator_alloc_region);
+
+  // It dirties the cards that cover the block so that so that the post
+  // write barrier never queues anything when updating objects on this
+  // block. It is assumed (and in fact we assert) that the block
+  // belongs to a young region.
+  inline void dirty_young_block(HeapWord* start, size_t word_size);
+
+  // Allocate blocks during garbage collection. Will ensure an
+  // allocation region, either by picking one or expanding the
+  // heap, and then allocate a block of the given size. The block
+  // may not be a humongous - it must fit into a single heap region.
+  inline HeapWord* par_allocate_during_gc(InCSetState dest,
+                                          size_t word_size,
+                                          AllocationContext_t context);
+  // Ensure that no further allocations can happen in "r", bearing in mind
+  // that parallel threads might be attempting allocations.
+  void par_allocate_remaining_space(HeapRegion* r);
+
+  // Allocation attempt during GC for a survivor object / PLAB.
+  inline HeapWord* survivor_attempt_allocation(size_t word_size,
+                                               AllocationContext_t context);
+
+  // Allocation attempt during GC for an old object / PLAB.
+  inline HeapWord* old_attempt_allocation(size_t word_size,
+                                          AllocationContext_t context);
+
+  // These methods are the "callbacks" from the G1AllocRegion class.
+
+  // For mutator alloc regions.
+  HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
+  void retire_mutator_alloc_region(HeapRegion* alloc_region,
+                                   size_t allocated_bytes);
+
+  // For GC alloc regions.
+  HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
+                                  InCSetState dest);
+  void retire_gc_alloc_region(HeapRegion* alloc_region,
+                              size_t allocated_bytes, InCSetState dest);
+
+  // - if explicit_gc is true, the GC is for a System.gc() or a heap
+  //   inspection request and should collect the entire heap
+  // - if clear_all_soft_refs is true, all soft references should be
+  //   cleared during the GC
+  // - if explicit_gc is false, word_size describes the allocation that
+  //   the GC should attempt (at least) to satisfy
+  // - it returns false if it is unable to do the collection due to the
+  //   GC locker being active, true otherwise
+  bool do_collection(bool explicit_gc,
+                     bool clear_all_soft_refs,
+                     size_t word_size);
+
+  // Callback from VM_G1CollectFull operation.
+  // Perform a full collection.
+  virtual void do_full_collection(bool clear_all_soft_refs);
+
+  // Resize the heap if necessary after a full collection.  If this is
+  // after a collect-for allocation, "word_size" is the allocation size,
+  // and will be considered part of the used portion of the heap.
+  void resize_if_necessary_after_full_collection(size_t word_size);
+
+  // Callback from VM_G1CollectForAllocation operation.
+  // This function does everything necessary/possible to satisfy a
+  // failed allocation request (including collection, expansion, etc.)
+  HeapWord* satisfy_failed_allocation(size_t word_size,
+                                      AllocationContext_t context,
+                                      bool* succeeded);
+
+  // Attempting to expand the heap sufficiently
+  // to support an allocation of the given "word_size".  If
+  // successful, perform the allocation and return the address of the
+  // allocated block, or else "NULL".
+  HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
+
+  // Process any reference objects discovered during
+  // an incremental evacuation pause.
+  void process_discovered_references(uint no_of_gc_workers);
+
+  // Enqueue any remaining discovered references
+  // after processing.
+  void enqueue_discovered_references(uint no_of_gc_workers);
+
+public:
+  FlexibleWorkGang* workers() const { return _workers; }
+
+  G1Allocator* allocator() {
+    return _allocator;
+  }
+
+  G1MonitoringSupport* g1mm() {
+    assert(_g1mm != NULL, "should have been initialized");
+    return _g1mm;
+  }
+
+  // Expand the garbage-first heap by at least the given size (in bytes!).
+  // Returns true if the heap was expanded by the requested amount;
+  // false otherwise.
+  // (Rounds up to a HeapRegion boundary.)
+  bool expand(size_t expand_bytes);
+
+  // Returns the PLAB statistics for a given destination.
+  inline PLABStats* alloc_buffer_stats(InCSetState dest);
+
+  // Determines PLAB size for a given destination.
+  inline size_t desired_plab_sz(InCSetState dest);
+
+  inline AllocationContextStats& allocation_context_stats();
+
+  // Do anything common to GC's.
+  void gc_prologue(bool full);
+  void gc_epilogue(bool full);
+
+  // Modify the reclaim candidate set and test for presence.
+  // These are only valid for starts_humongous regions.
+  inline void set_humongous_reclaim_candidate(uint region, bool value);
+  inline bool is_humongous_reclaim_candidate(uint region);
+
+  // Remove from the reclaim candidate set.  Also remove from the
+  // collection set so that later encounters avoid the slow path.
+  inline void set_humongous_is_live(oop obj);
+
+  // Register the given region to be part of the collection set.
+  inline void register_humongous_region_with_cset(uint index);
+  // Register regions with humongous objects (actually on the start region) in
+  // the in_cset_fast_test table.
+  void register_humongous_regions_with_cset();
+  // We register a region with the fast "in collection set" test. We
+  // simply set to true the array slot corresponding to this region.
+  void register_young_region_with_cset(HeapRegion* r) {
+    _in_cset_fast_test.set_in_young(r->hrm_index());
+  }
+  void register_old_region_with_cset(HeapRegion* r) {
+    _in_cset_fast_test.set_in_old(r->hrm_index());
+  }
+  void clear_in_cset(const HeapRegion* hr) {
+    _in_cset_fast_test.clear(hr);
+  }
+
+  void clear_cset_fast_test() {
+    _in_cset_fast_test.clear();
+  }
+
+  // This is called at the start of either a concurrent cycle or a Full
+  // GC to update the number of old marking cycles started.
+  void increment_old_marking_cycles_started();
+
+  // This is called at the end of either a concurrent cycle or a Full
+  // GC to update the number of old marking cycles completed. Those two
+  // can happen in a nested fashion, i.e., we start a concurrent
+  // cycle, a Full GC happens half-way through it which ends first,
+  // and then the cycle notices that a Full GC happened and ends
+  // too. The concurrent parameter is a boolean to help us do a bit
+  // tighter consistency checking in the method. If concurrent is
+  // false, the caller is the inner caller in the nesting (i.e., the
+  // Full GC). If concurrent is true, the caller is the outer caller
+  // in this nesting (i.e., the concurrent cycle). Further nesting is
+  // not currently supported. The end of this call also notifies
+  // the FullGCCount_lock in case a Java thread is waiting for a full
+  // GC to happen (e.g., it called System.gc() with
+  // +ExplicitGCInvokesConcurrent).
+  void increment_old_marking_cycles_completed(bool concurrent);
+
+  uint old_marking_cycles_completed() {
+    return _old_marking_cycles_completed;
+  }
+
+  void register_concurrent_cycle_start(const Ticks& start_time);
+  void register_concurrent_cycle_end();
+  void trace_heap_after_concurrent_cycle();
+
+  G1YCType yc_type();
+
+  G1HRPrinter* hr_printer() { return &_hr_printer; }
+
+  // Frees a non-humongous region by initializing its contents and
+  // adding it to the free list that's passed as a parameter (this is
+  // usually a local list which will be appended to the master free
+  // list later). The used bytes of freed regions are accumulated in
+  // pre_used. If par is true, the region's RSet will not be freed
+  // up. The assumption is that this will be done later.
+  // The locked parameter indicates if the caller has already taken
+  // care of proper synchronization. This may allow some optimizations.
+  void free_region(HeapRegion* hr,
+                   FreeRegionList* free_list,
+                   bool par,
+                   bool locked = false);
+
+  // Frees a humongous region by collapsing it into individual regions
+  // and calling free_region() for each of them. The freed regions
+  // will be added to the free list that's passed as a parameter (this
+  // is usually a local list which will be appended to the master free
+  // list later). The used bytes of freed regions are accumulated in
+  // pre_used. If par is true, the region's RSet will not be freed
+  // up. The assumption is that this will be done later.
+  void free_humongous_region(HeapRegion* hr,
+                             FreeRegionList* free_list,
+                             bool par);
+protected:
+
+  // Shrink the garbage-first heap by at most the given size (in bytes!).
+  // (Rounds down to a HeapRegion boundary.)
+  virtual void shrink(size_t expand_bytes);
+  void shrink_helper(size_t expand_bytes);
+
+  #if TASKQUEUE_STATS
+  static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
+  void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
+  void reset_taskqueue_stats();
+  #endif // TASKQUEUE_STATS
+
+  // Schedule the VM operation that will do an evacuation pause to
+  // satisfy an allocation request of word_size. *succeeded will
+  // return whether the VM operation was successful (it did do an
+  // evacuation pause) or not (another thread beat us to it or the GC
+  // locker was active). Given that we should not be holding the
+  // Heap_lock when we enter this method, we will pass the
+  // gc_count_before (i.e., total_collections()) as a parameter since
+  // it has to be read while holding the Heap_lock. Currently, both
+  // methods that call do_collection_pause() release the Heap_lock
+  // before the call, so it's easy to read gc_count_before just before.
+  HeapWord* do_collection_pause(size_t         word_size,
+                                uint           gc_count_before,
+                                bool*          succeeded,
+                                GCCause::Cause gc_cause);
+
+  // The guts of the incremental collection pause, executed by the vm
+  // thread. It returns false if it is unable to do the collection due
+  // to the GC locker being active, true otherwise
+  bool do_collection_pause_at_safepoint(double target_pause_time_ms);
+
+  // Actually do the work of evacuating the collection set.
+  void evacuate_collection_set(EvacuationInfo& evacuation_info);
+
+  // The g1 remembered set of the heap.
+  G1RemSet* _g1_rem_set;
+
+  // A set of cards that cover the objects for which the Rsets should be updated
+  // concurrently after the collection.
+  DirtyCardQueueSet _dirty_card_queue_set;
+
+  // The closure used to refine a single card.
+  RefineCardTableEntryClosure* _refine_cte_cl;
+
+  // A DirtyCardQueueSet that is used to hold cards that contain
+  // references into the current collection set. This is used to
+  // update the remembered sets of the regions in the collection
+  // set in the event of an evacuation failure.
+  DirtyCardQueueSet _into_cset_dirty_card_queue_set;
+
+  // After a collection pause, make the regions in the CS into free
+  // regions.
+  void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
+
+  // Abandon the current collection set without recording policy
+  // statistics or updating free lists.
+  void abandon_collection_set(HeapRegion* cs_head);
+
+  // The concurrent marker (and the thread it runs in.)
+  ConcurrentMark* _cm;
+  ConcurrentMarkThread* _cmThread;
+  bool _mark_in_progress;
+
+  // The concurrent refiner.
+  ConcurrentG1Refine* _cg1r;
+
+  // The parallel task queues
+  RefToScanQueueSet *_task_queues;
+
+  // True iff a evacuation has failed in the current collection.
+  bool _evacuation_failed;
+
+  EvacuationFailedInfo* _evacuation_failed_info_array;
+
+  // Failed evacuations cause some logical from-space objects to have
+  // forwarding pointers to themselves.  Reset them.
+  void remove_self_forwarding_pointers();
+
+  // Together, these store an object with a preserved mark, and its mark value.
+  Stack<oop, mtGC>     _objs_with_preserved_marks;
+  Stack<markOop, mtGC> _preserved_marks_of_objs;
+
+  // Preserve the mark of "obj", if necessary, in preparation for its mark
+  // word being overwritten with a self-forwarding-pointer.
+  void preserve_mark_if_necessary(oop obj, markOop m);
+
+  // The stack of evac-failure objects left to be scanned.
+  GrowableArray<oop>*    _evac_failure_scan_stack;
+  // The closure to apply to evac-failure objects.
+
+  OopsInHeapRegionClosure* _evac_failure_closure;
+  // Set the field above.
+  void
+  set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
+    _evac_failure_closure = evac_failure_closure;
+  }
+
+  // Push "obj" on the scan stack.
+  void push_on_evac_failure_scan_stack(oop obj);
+  // Process scan stack entries until the stack is empty.
+  void drain_evac_failure_scan_stack();
+  // True iff an invocation of "drain_scan_stack" is in progress; to
+  // prevent unnecessary recursion.
+  bool _drain_in_progress;
+
+  // Do any necessary initialization for evacuation-failure handling.
+  // "cl" is the closure that will be used to process evac-failure
+  // objects.
+  void init_for_evac_failure(OopsInHeapRegionClosure* cl);
+  // Do any necessary cleanup for evacuation-failure handling data
+  // structures.
+  void finalize_for_evac_failure();
+
+  // An attempt to evacuate "obj" has failed; take necessary steps.
+  oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
+  void handle_evacuation_failure_common(oop obj, markOop m);
+
+#ifndef PRODUCT
+  // Support for forcing evacuation failures. Analogous to
+  // PromotionFailureALot for the other collectors.
+
+  // Records whether G1EvacuationFailureALot should be in effect
+  // for the current GC
+  bool _evacuation_failure_alot_for_current_gc;
+
+  // Used to record the GC number for interval checking when
+  // determining whether G1EvaucationFailureALot is in effect
+  // for the current GC.
+  size_t _evacuation_failure_alot_gc_number;
+
+  // Count of the number of evacuations between failures.
+  volatile size_t _evacuation_failure_alot_count;
+
+  // Set whether G1EvacuationFailureALot should be in effect
+  // for the current GC (based upon the type of GC and which
+  // command line flags are set);
+  inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
+                                                  bool during_initial_mark,
+                                                  bool during_marking);
+
+  inline void set_evacuation_failure_alot_for_current_gc();
+
+  // Return true if it's time to cause an evacuation failure.
+  inline bool evacuation_should_fail();
+
+  // Reset the G1EvacuationFailureALot counters.  Should be called at
+  // the end of an evacuation pause in which an evacuation failure occurred.
+  inline void reset_evacuation_should_fail();
+#endif // !PRODUCT
+
+  // ("Weak") Reference processing support.
+  //
+  // G1 has 2 instances of the reference processor class. One
+  // (_ref_processor_cm) handles reference object discovery
+  // and subsequent processing during concurrent marking cycles.
+  //
+  // The other (_ref_processor_stw) handles reference object
+  // discovery and processing during full GCs and incremental
+  // evacuation pauses.
+  //
+  // During an incremental pause, reference discovery will be
+  // temporarily disabled for _ref_processor_cm and will be
+  // enabled for _ref_processor_stw. At the end of the evacuation
+  // pause references discovered by _ref_processor_stw will be
+  // processed and discovery will be disabled. The previous
+  // setting for reference object discovery for _ref_processor_cm
+  // will be re-instated.
+  //
+  // At the start of marking:
+  //  * Discovery by the CM ref processor is verified to be inactive
+  //    and it's discovered lists are empty.
+  //  * Discovery by the CM ref processor is then enabled.
+  //
+  // At the end of marking:
+  //  * Any references on the CM ref processor's discovered
+  //    lists are processed (possibly MT).
+  //
+  // At the start of full GC we:
+  //  * Disable discovery by the CM ref processor and
+  //    empty CM ref processor's discovered lists
+  //    (without processing any entries).
+  //  * Verify that the STW ref processor is inactive and it's
+  //    discovered lists are empty.
+  //  * Temporarily set STW ref processor discovery as single threaded.
+  //  * Temporarily clear the STW ref processor's _is_alive_non_header
+  //    field.
+  //  * Finally enable discovery by the STW ref processor.
+  //
+  // The STW ref processor is used to record any discovered
+  // references during the full GC.
+  //
+  // At the end of a full GC we:
+  //  * Enqueue any reference objects discovered by the STW ref processor
+  //    that have non-live referents. This has the side-effect of
+  //    making the STW ref processor inactive by disabling discovery.
+  //  * Verify that the CM ref processor is still inactive
+  //    and no references have been placed on it's discovered
+  //    lists (also checked as a precondition during initial marking).
+
+  // The (stw) reference processor...
+  ReferenceProcessor* _ref_processor_stw;
+
+  STWGCTimer* _gc_timer_stw;
+  ConcurrentGCTimer* _gc_timer_cm;
+
+  G1OldTracer* _gc_tracer_cm;
+  G1NewTracer* _gc_tracer_stw;
+
+  // During reference object discovery, the _is_alive_non_header
+  // closure (if non-null) is applied to the referent object to
+  // determine whether the referent is live. If so then the
+  // reference object does not need to be 'discovered' and can
+  // be treated as a regular oop. This has the benefit of reducing
+  // the number of 'discovered' reference objects that need to
+  // be processed.
+  //
+  // Instance of the is_alive closure for embedding into the
+  // STW reference processor as the _is_alive_non_header field.
+  // Supplying a value for the _is_alive_non_header field is
+  // optional but doing so prevents unnecessary additions to
+  // the discovered lists during reference discovery.
+  G1STWIsAliveClosure _is_alive_closure_stw;
+
+  // The (concurrent marking) reference processor...
+  ReferenceProcessor* _ref_processor_cm;
+
+  // Instance of the concurrent mark is_alive closure for embedding
+  // into the Concurrent Marking reference processor as the
+  // _is_alive_non_header field. Supplying a value for the
+  // _is_alive_non_header field is optional but doing so prevents
+  // unnecessary additions to the discovered lists during reference
+  // discovery.
+  G1CMIsAliveClosure _is_alive_closure_cm;
+
+  // Cache used by G1CollectedHeap::start_cset_region_for_worker().
+  HeapRegion** _worker_cset_start_region;
+
+  // Time stamp to validate the regions recorded in the cache
+  // used by G1CollectedHeap::start_cset_region_for_worker().
+  // The heap region entry for a given worker is valid iff
+  // the associated time stamp value matches the current value
+  // of G1CollectedHeap::_gc_time_stamp.
+  uint* _worker_cset_start_region_time_stamp;
+
+  volatile bool _free_regions_coming;
+
+public:
+
+  void set_refine_cte_cl_concurrency(bool concurrent);
+
+  RefToScanQueue *task_queue(uint i) const;
+
+  // A set of cards where updates happened during the GC
+  DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
+
+  // A DirtyCardQueueSet that is used to hold cards that contain
+  // references into the current collection set. This is used to
+  // update the remembered sets of the regions in the collection
+  // set in the event of an evacuation failure.
+  DirtyCardQueueSet& into_cset_dirty_card_queue_set()
+        { return _into_cset_dirty_card_queue_set; }
+
+  // Create a G1CollectedHeap with the specified policy.
+  // Must call the initialize method afterwards.
+  // May not return if something goes wrong.
+  G1CollectedHeap(G1CollectorPolicy* policy);
+
+  // Initialize the G1CollectedHeap to have the initial and
+  // maximum sizes and remembered and barrier sets
+  // specified by the policy object.
+  jint initialize();
+
+  virtual void stop();
+
+  // Return the (conservative) maximum heap alignment for any G1 heap
+  static size_t conservative_max_heap_alignment();
+
+  // Does operations required after initialization has been done.
+  void post_initialize();
+
+  // Initialize weak reference processing.
+  void ref_processing_init();
+
+  // Explicitly import set_par_threads into this scope
+  using CollectedHeap::set_par_threads;
+  // Set _n_par_threads according to a policy TBD.
+  void set_par_threads();
+
+  virtual Name kind() const {
+    return CollectedHeap::G1CollectedHeap;
+  }
+
+  // The current policy object for the collector.
+  G1CollectorPolicy* g1_policy() const { return _g1_policy; }
+
+  virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
+
+  // Adaptive size policy.  No such thing for g1.
+  virtual AdaptiveSizePolicy* size_policy() { return NULL; }
+
+  // The rem set and barrier set.
+  G1RemSet* g1_rem_set() const { return _g1_rem_set; }
+
+  unsigned get_gc_time_stamp() {
+    return _gc_time_stamp;
+  }
+
+  inline void reset_gc_time_stamp();
+
+  void check_gc_time_stamps() PRODUCT_RETURN;
+
+  inline void increment_gc_time_stamp();
+
+  // Reset the given region's GC timestamp. If it's starts humongous,
+  // also reset the GC timestamp of its corresponding
+  // continues humongous regions too.
+  void reset_gc_time_stamps(HeapRegion* hr);
+
+  void iterate_dirty_card_closure(CardTableEntryClosure* cl,
+                                  DirtyCardQueue* into_cset_dcq,
+                                  bool concurrent, uint worker_i);
+
+  // The shared block offset table array.
+  G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
+
+  // Reference Processing accessors
+
+  // The STW reference processor....
+  ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
+
+  // The Concurrent Marking reference processor...
+  ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
+
+  ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
+  G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
+
+  virtual size_t capacity() const;
+  virtual size_t used() const;
+  // This should be called when we're not holding the heap lock. The
+  // result might be a bit inaccurate.
+  size_t used_unlocked() const;
+  size_t recalculate_used() const;
+
+  // These virtual functions do the actual allocation.
+  // Some heaps may offer a contiguous region for shared non-blocking
+  // allocation, via inlined code (by exporting the address of the top and
+  // end fields defining the extent of the contiguous allocation region.)
+  // But G1CollectedHeap doesn't yet support this.
+
+  virtual bool is_maximal_no_gc() const {
+    return _hrm.available() == 0;
+  }
+
+  // The current number of regions in the heap.
+  uint num_regions() const { return _hrm.length(); }
+
+  // The max number of regions in the heap.
+  uint max_regions() const { return _hrm.max_length(); }
+
+  // The number of regions that are completely free.
+  uint num_free_regions() const { return _hrm.num_free_regions(); }
+
+  MemoryUsage get_auxiliary_data_memory_usage() const {
+    return _hrm.get_auxiliary_data_memory_usage();
+  }
+
+  // The number of regions that are not completely free.
+  uint num_used_regions() const { return num_regions() - num_free_regions(); }
+
+  void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
+  void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
+  void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
+  void verify_dirty_young_regions() PRODUCT_RETURN;
+
+#ifndef PRODUCT
+  // Make sure that the given bitmap has no marked objects in the
+  // range [from,limit). If it does, print an error message and return
+  // false. Otherwise, just return true. bitmap_name should be "prev"
+  // or "next".
+  bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
+                                HeapWord* from, HeapWord* limit);
+
+  // Verify that the prev / next bitmap range [tams,end) for the given
+  // region has no marks. Return true if all is well, false if errors
+  // are detected.
+  bool verify_bitmaps(const char* caller, HeapRegion* hr);
+#endif // PRODUCT
+
+  // If G1VerifyBitmaps is set, verify that the marking bitmaps for
+  // the given region do not have any spurious marks. If errors are
+  // detected, print appropriate error messages and crash.
+  void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
+
+  // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
+  // have any spurious marks. If errors are detected, print
+  // appropriate error messages and crash.
+  void check_bitmaps(const char* caller) PRODUCT_RETURN;
+
+  // Do sanity check on the contents of the in-cset fast test table.
+  bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
+
+  // verify_region_sets() performs verification over the region
+  // lists. It will be compiled in the product code to be used when
+  // necessary (i.e., during heap verification).
+  void verify_region_sets();
+
+  // verify_region_sets_optional() is planted in the code for
+  // list verification in non-product builds (and it can be enabled in
+  // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
+#if HEAP_REGION_SET_FORCE_VERIFY
+  void verify_region_sets_optional() {
+    verify_region_sets();
+  }
+#else // HEAP_REGION_SET_FORCE_VERIFY
+  void verify_region_sets_optional() { }
+#endif // HEAP_REGION_SET_FORCE_VERIFY
+
+#ifdef ASSERT
+  bool is_on_master_free_list(HeapRegion* hr) {
+    return _hrm.is_free(hr);
+  }
+#endif // ASSERT
+
+  // Wrapper for the region list operations that can be called from
+  // methods outside this class.
+
+  void secondary_free_list_add(FreeRegionList* list) {
+    _secondary_free_list.add_ordered(list);
+  }
+
+  void append_secondary_free_list() {
+    _hrm.insert_list_into_free_list(&_secondary_free_list);
+  }
+
+  void append_secondary_free_list_if_not_empty_with_lock() {
+    // If the secondary free list looks empty there's no reason to
+    // take the lock and then try to append it.
+    if (!_secondary_free_list.is_empty()) {
+      MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
+      append_secondary_free_list();
+    }
+  }
+
+  inline void old_set_remove(HeapRegion* hr);
+
+  size_t non_young_capacity_bytes() {
+    return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
+  }
+
+  void set_free_regions_coming();
+  void reset_free_regions_coming();
+  bool free_regions_coming() { return _free_regions_coming; }
+  void wait_while_free_regions_coming();
+
+  // Determine whether the given region is one that we are using as an
+  // old GC alloc region.
+  bool is_old_gc_alloc_region(HeapRegion* hr) {
+    return _allocator->is_retained_old_region(hr);
+  }
+
+  // Perform a collection of the heap; intended for use in implementing
+  // "System.gc".  This probably implies as full a collection as the
+  // "CollectedHeap" supports.
+  virtual void collect(GCCause::Cause cause);
+
+  // The same as above but assume that the caller holds the Heap_lock.
+  void collect_locked(GCCause::Cause cause);
+
+  virtual bool copy_allocation_context_stats(const jint* contexts,
+                                             jlong* totals,
+                                             jbyte* accuracy,
+                                             jint len);
+
+  // True iff an evacuation has failed in the most-recent collection.
+  bool evacuation_failed() { return _evacuation_failed; }
+
+  void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
+  void prepend_to_freelist(FreeRegionList* list);
+  void decrement_summary_bytes(size_t bytes);
+
+  // Returns "TRUE" iff "p" points into the committed areas of the heap.
+  virtual bool is_in(const void* p) const;
+#ifdef ASSERT
+  // Returns whether p is in one of the available areas of the heap. Slow but
+  // extensive version.
+  bool is_in_exact(const void* p) const;
+#endif
+
+  // Return "TRUE" iff the given object address is within the collection
+  // set. Slow implementation.
+  inline bool obj_in_cs(oop obj);
+
+  inline bool is_in_cset(const HeapRegion *hr);
+  inline bool is_in_cset(oop obj);
+
+  inline bool is_in_cset_or_humongous(const oop obj);
+
+ private:
+  // This array is used for a quick test on whether a reference points into
+  // the collection set or not. Each of the array's elements denotes whether the
+  // corresponding region is in the collection set or not.
+  G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
+
+ public:
+
+  inline InCSetState in_cset_state(const oop obj);
+
+  // Return "TRUE" iff the given object address is in the reserved
+  // region of g1.
+  bool is_in_g1_reserved(const void* p) const {
+    return _hrm.reserved().contains(p);
+  }
+
+  // Returns a MemRegion that corresponds to the space that has been
+  // reserved for the heap
+  MemRegion g1_reserved() const {
+    return _hrm.reserved();
+  }
+
+  virtual bool is_in_closed_subset(const void* p) const;
+
+  G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
+    return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
+  }
+
+  // This resets the card table to all zeros.  It is used after
+  // a collection pause which used the card table to claim cards.
+  void cleanUpCardTable();
+
+  // Iteration functions.
+
+  // Iterate over all objects, calling "cl.do_object" on each.
+  virtual void object_iterate(ObjectClosure* cl);
+
+  virtual void safe_object_iterate(ObjectClosure* cl) {
+    object_iterate(cl);
+  }
+
+  // Iterate over heap regions, in address order, terminating the
+  // iteration early if the "doHeapRegion" method returns "true".
+  void heap_region_iterate(HeapRegionClosure* blk) const;
+
+  // Return the region with the given index. It assumes the index is valid.
+  inline HeapRegion* region_at(uint index) const;
+
+  // Calculate the region index of the given address. Given address must be
+  // within the heap.
+  inline uint addr_to_region(HeapWord* addr) const;
+
+  inline HeapWord* bottom_addr_for_region(uint index) const;
+
+  // Iterate over the heap regions in parallel. Assumes that this will be called
+  // in parallel by ParallelGCThreads worker threads with distinct worker ids
+  // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
+  // to each of the regions, by attempting to claim the region using the
+  // HeapRegionClaimer and, if successful, applying the closure to the claimed
+  // region. The concurrent argument should be set to true if iteration is
+  // performed concurrently, during which no assumptions are made for consistent
+  // attributes of the heap regions (as they might be modified while iterating).
+  void heap_region_par_iterate(HeapRegionClosure* cl,
+                               uint worker_id,
+                               HeapRegionClaimer* hrclaimer,
+                               bool concurrent = false) const;
+
+  // Clear the cached cset start regions and (more importantly)
+  // the time stamps. Called when we reset the GC time stamp.
+  void clear_cset_start_regions();
+
+  // Given the id of a worker, obtain or calculate a suitable
+  // starting region for iterating over the current collection set.
+  HeapRegion* start_cset_region_for_worker(uint worker_i);
+
+  // Iterate over the regions (if any) in the current collection set.
+  void collection_set_iterate(HeapRegionClosure* blk);
+
+  // As above but starting from region r
+  void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
+
+  HeapRegion* next_compaction_region(const HeapRegion* from) const;
+
+  // Returns the HeapRegion that contains addr. addr must not be NULL.
+  template <class T>
+  inline HeapRegion* heap_region_containing_raw(const T addr) const;
+
+  // Returns the HeapRegion that contains addr. addr must not be NULL.
+  // If addr is within a humongous continues region, it returns its humongous start region.
+  template <class T>
+  inline HeapRegion* heap_region_containing(const T addr) const;
+
+  // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
+  // each address in the (reserved) heap is a member of exactly
+  // one block.  The defining characteristic of a block is that it is
+  // possible to find its size, and thus to progress forward to the next
+  // block.  (Blocks may be of different sizes.)  Thus, blocks may
+  // represent Java objects, or they might be free blocks in a
+  // free-list-based heap (or subheap), as long as the two kinds are
+  // distinguishable and the size of each is determinable.
+
+  // Returns the address of the start of the "block" that contains the
+  // address "addr".  We say "blocks" instead of "object" since some heaps
+  // may not pack objects densely; a chunk may either be an object or a
+  // non-object.
+  virtual HeapWord* block_start(const void* addr) const;
+
+  // Requires "addr" to be the start of a chunk, and returns its size.
+  // "addr + size" is required to be the start of a new chunk, or the end
+  // of the active area of the heap.
+  virtual size_t block_size(const HeapWord* addr) const;
+
+  // Requires "addr" to be the start of a block, and returns "TRUE" iff
+  // the block is an object.
+  virtual bool block_is_obj(const HeapWord* addr) const;
+
+  // Section on thread-local allocation buffers (TLABs)
+  // See CollectedHeap for semantics.
+
+  bool supports_tlab_allocation() const;
+  size_t tlab_capacity(Thread* ignored) const;
+  size_t tlab_used(Thread* ignored) const;
+  size_t max_tlab_size() const;
+  size_t unsafe_max_tlab_alloc(Thread* ignored) const;
+
+  // Can a compiler initialize a new object without store barriers?
+  // This permission only extends from the creation of a new object
+  // via a TLAB up to the first subsequent safepoint. If such permission
+  // is granted for this heap type, the compiler promises to call
+  // defer_store_barrier() below on any slow path allocation of
+  // a new object for which such initializing store barriers will
+  // have been elided. G1, like CMS, allows this, but should be
+  // ready to provide a compensating write barrier as necessary
+  // if that storage came out of a non-young region. The efficiency
+  // of this implementation depends crucially on being able to
+  // answer very efficiently in constant time whether a piece of
+  // storage in the heap comes from a young region or not.
+  // See ReduceInitialCardMarks.
+  virtual bool can_elide_tlab_store_barriers() const {
+    return true;
+  }
+
+  virtual bool card_mark_must_follow_store() const {
+    return true;
+  }
+
+  inline bool is_in_young(const oop obj);
+
+  virtual bool is_scavengable(const void* addr);
+
+  // We don't need barriers for initializing stores to objects
+  // in the young gen: for the SATB pre-barrier, there is no
+  // pre-value that needs to be remembered; for the remembered-set
+  // update logging post-barrier, we don't maintain remembered set
+  // information for young gen objects.
+  virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
+
+  // Returns "true" iff the given word_size is "very large".
+  static bool is_humongous(size_t word_size) {
+    // Note this has to be strictly greater-than as the TLABs
+    // are capped at the humongous threshold and we want to
+    // ensure that we don't try to allocate a TLAB as
+    // humongous and that we don't allocate a humongous
+    // object in a TLAB.
+    return word_size > _humongous_object_threshold_in_words;
+  }
+
+  // Update mod union table with the set of dirty cards.
+  void updateModUnion();
+
+  // Set the mod union bits corresponding to the given memRegion.  Note
+  // that this is always a safe operation, since it doesn't clear any
+  // bits.
+  void markModUnionRange(MemRegion mr);
+
+  // Records the fact that a marking phase is no longer in progress.
+  void set_marking_complete() {
+    _mark_in_progress = false;
+  }
+  void set_marking_started() {
+    _mark_in_progress = true;
+  }
+  bool mark_in_progress() {
+    return _mark_in_progress;
+  }
+
+  // Print the maximum heap capacity.
+  virtual size_t max_capacity() const;
+
+  virtual jlong millis_since_last_gc();
+
+
+  // Convenience function to be used in situations where the heap type can be
+  // asserted to be this type.
+  static G1CollectedHeap* heap();
+
+  void set_region_short_lived_locked(HeapRegion* hr);
+  // add appropriate methods for any other surv rate groups
+
+  YoungList* young_list() const { return _young_list; }
+
+  // debugging
+  bool check_young_list_well_formed() {
+    return _young_list->check_list_well_formed();
+  }
+
+  bool check_young_list_empty(bool check_heap,
+                              bool check_sample = true);
+
+  // *** Stuff related to concurrent marking.  It's not clear to me that so
+  // many of these need to be public.
+
+  // The functions below are helper functions that a subclass of
+  // "CollectedHeap" can use in the implementation of its virtual
+  // functions.
+  // This performs a concurrent marking of the live objects in a
+  // bitmap off to the side.
+  void doConcurrentMark();
+
+  bool isMarkedPrev(oop obj) const;
+  bool isMarkedNext(oop obj) const;
+
+  // Determine if an object is dead, given the object and also
+  // the region to which the object belongs. An object is dead
+  // iff a) it was not allocated since the last mark and b) it
+  // is not marked.
+  bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
+    return
+      !hr->obj_allocated_since_prev_marking(obj) &&
+      !isMarkedPrev(obj);
+  }
+
+  // This function returns true when an object has been
+  // around since the previous marking and hasn't yet
+  // been marked during this marking.
+  bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
+    return
+      !hr->obj_allocated_since_next_marking(obj) &&
+      !isMarkedNext(obj);
+  }
+
+  // Determine if an object is dead, given only the object itself.
+  // This will find the region to which the object belongs and
+  // then call the region version of the same function.
+
+  // Added if it is NULL it isn't dead.
+
+  inline bool is_obj_dead(const oop obj) const;
+
+  inline bool is_obj_ill(const oop obj) const;
+
+  bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
+  HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
+  bool is_marked(oop obj, VerifyOption vo);
+  const char* top_at_mark_start_str(VerifyOption vo);
+
+  ConcurrentMark* concurrent_mark() const { return _cm; }
+
+  // Refinement
+
+  ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
+
+  // The dirty cards region list is used to record a subset of regions
+  // whose cards need clearing. The list if populated during the
+  // remembered set scanning and drained during the card table
+  // cleanup. Although the methods are reentrant, population/draining
+  // phases must not overlap. For synchronization purposes the last
+  // element on the list points to itself.
+  HeapRegion* _dirty_cards_region_list;
+  void push_dirty_cards_region(HeapRegion* hr);
+  HeapRegion* pop_dirty_cards_region();
+
+  // Optimized nmethod scanning support routines
+
+  // Register the given nmethod with the G1 heap.
+  virtual void register_nmethod(nmethod* nm);
+
+  // Unregister the given nmethod from the G1 heap.
+  virtual void unregister_nmethod(nmethod* nm);
+
+  // Free up superfluous code root memory.
+  void purge_code_root_memory();
+
+  // Rebuild the strong code root lists for each region
+  // after a full GC.
+  void rebuild_strong_code_roots();
+
+  // Delete entries for dead interned string and clean up unreferenced symbols
+  // in symbol table, possibly in parallel.
+  void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
+
+  // Parallel phase of unloading/cleaning after G1 concurrent mark.
+  void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
+
+  // Redirty logged cards in the refinement queue.
+  void redirty_logged_cards();
+  // Verification
+
+  // The following is just to alert the verification code
+  // that a full collection has occurred and that the
+  // remembered sets are no longer up to date.
+  bool _full_collection;
+  void set_full_collection() { _full_collection = true;}
+  void clear_full_collection() {_full_collection = false;}
+  bool full_collection() {return _full_collection;}
+
+  // Perform any cleanup actions necessary before allowing a verification.
+  virtual void prepare_for_verify();
+
+  // Perform verification.
+
+  // vo == UsePrevMarking  -> use "prev" marking information,
+  // vo == UseNextMarking -> use "next" marking information
+  // vo == UseMarkWord    -> use the mark word in the object header
+  //
+  // NOTE: Only the "prev" marking information is guaranteed to be
+  // consistent most of the time, so most calls to this should use
+  // vo == UsePrevMarking.
+  // Currently, there is only one case where this is called with
+  // vo == UseNextMarking, which is to verify the "next" marking
+  // information at the end of remark.
+  // Currently there is only one place where this is called with
+  // vo == UseMarkWord, which is to verify the marking during a
+  // full GC.
+  void verify(bool silent, VerifyOption vo);
+
+  // Override; it uses the "prev" marking information
+  virtual void verify(bool silent);
+
+  // The methods below are here for convenience and dispatch the
+  // appropriate method depending on value of the given VerifyOption
+  // parameter. The values for that parameter, and their meanings,
+  // are the same as those above.
+
+  bool is_obj_dead_cond(const oop obj,
+                        const HeapRegion* hr,
+                        const VerifyOption vo) const;
+
+  bool is_obj_dead_cond(const oop obj,
+                        const VerifyOption vo) const;
+
+  // Printing
+
+  virtual void print_on(outputStream* st) const;
+  virtual void print_extended_on(outputStream* st) const;
+  virtual void print_on_error(outputStream* st) const;
+
+  virtual void print_gc_threads_on(outputStream* st) const;
+  virtual void gc_threads_do(ThreadClosure* tc) const;
+
+  // Override
+  void print_tracing_info() const;
+
+  // The following two methods are helpful for debugging RSet issues.
+  void print_cset_rsets() PRODUCT_RETURN;
+  void print_all_rsets() PRODUCT_RETURN;
+
+public:
+  size_t pending_card_num();
+  size_t cards_scanned();
+
+protected:
+  size_t _max_heap_capacity;
+};
+
+#endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP