jdk/src/java.base/share/native/libfdlibm/e_pow.c
changeset 32761 d7c393b4e0d3
parent 32760 3851193a8c60
parent 32757 79d34d4b9627
child 32762 253adb0f4301
--- a/jdk/src/java.base/share/native/libfdlibm/e_pow.c	Thu Sep 17 09:19:40 2015 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,320 +0,0 @@
-
-/*
- * Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved.
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* __ieee754_pow(x,y) return x**y
- *
- *                    n
- * Method:  Let x =  2   * (1+f)
- *      1. Compute and return log2(x) in two pieces:
- *              log2(x) = w1 + w2,
- *         where w1 has 53-24 = 29 bit trailing zeros.
- *      2. Perform y*log2(x) = n+y' by simulating muti-precision
- *         arithmetic, where |y'|<=0.5.
- *      3. Return x**y = 2**n*exp(y'*log2)
- *
- * Special cases:
- *      1.  (anything) ** 0  is 1
- *      2.  (anything) ** 1  is itself
- *      3.  (anything) ** NAN is NAN
- *      4.  NAN ** (anything except 0) is NAN
- *      5.  +-(|x| > 1) **  +INF is +INF
- *      6.  +-(|x| > 1) **  -INF is +0
- *      7.  +-(|x| < 1) **  +INF is +0
- *      8.  +-(|x| < 1) **  -INF is +INF
- *      9.  +-1         ** +-INF is NAN
- *      10. +0 ** (+anything except 0, NAN)               is +0
- *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
- *      12. +0 ** (-anything except 0, NAN)               is +INF
- *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
- *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- *      15. +INF ** (+anything except 0,NAN) is +INF
- *      16. +INF ** (-anything except 0,NAN) is +0
- *      17. -INF ** (anything)  = -0 ** (-anything)
- *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- *      19. (-anything except 0 and inf) ** (non-integer) is NAN
- *
- * Accuracy:
- *      pow(x,y) returns x**y nearly rounded. In particular
- *                      pow(integer,integer)
- *      always returns the correct integer provided it is
- *      representable.
- *
- * Constants :
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-bp[] = {1.0, 1.5,},
-dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
-dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
-zero    =  0.0,
-one     =  1.0,
-two     =  2.0,
-two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
-huge    =  1.0e300,
-tiny    =  1.0e-300,
-        /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
-L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
-L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
-L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
-L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
-L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
-L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
-P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
-lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
-lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
-lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
-ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
-cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
-cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
-cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
-ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
-ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
-ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
-
-#ifdef __STDC__
-        double __ieee754_pow(double x, double y)
-#else
-        double __ieee754_pow(x,y)
-        double x, y;
-#endif
-{
-        double z,ax,z_h,z_l,p_h,p_l;
-        double y1,t1,t2,r,s,t,u,v,w;
-        int i0,i1,i,j,k,yisint,n;
-        int hx,hy,ix,iy;
-        unsigned lx,ly;
-
-        i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
-        hx = __HI(x); lx = __LO(x);
-        hy = __HI(y); ly = __LO(y);
-        ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
-
-    /* y==zero: x**0 = 1 */
-        if((iy|ly)==0) return one;
-
-    /* +-NaN return x+y */
-        if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
-           iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
-                return x+y;
-
-    /* determine if y is an odd int when x < 0
-     * yisint = 0       ... y is not an integer
-     * yisint = 1       ... y is an odd int
-     * yisint = 2       ... y is an even int
-     */
-        yisint  = 0;
-        if(hx<0) {
-            if(iy>=0x43400000) yisint = 2; /* even integer y */
-            else if(iy>=0x3ff00000) {
-                k = (iy>>20)-0x3ff;        /* exponent */
-                if(k>20) {
-                    j = ly>>(52-k);
-                    if((j<<(52-k))==ly) yisint = 2-(j&1);
-                } else if(ly==0) {
-                    j = iy>>(20-k);
-                    if((j<<(20-k))==iy) yisint = 2-(j&1);
-                }
-            }
-        }
-
-    /* special value of y */
-        if(ly==0) {
-            if (iy==0x7ff00000) {       /* y is +-inf */
-                if(((ix-0x3ff00000)|lx)==0)
-                    return  y - y;      /* inf**+-1 is NaN */
-                else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
-                    return (hy>=0)? y: zero;
-                else                    /* (|x|<1)**-,+inf = inf,0 */
-                    return (hy<0)?-y: zero;
-            }
-            if(iy==0x3ff00000) {        /* y is  +-1 */
-                if(hy<0) return one/x; else return x;
-            }
-            if(hy==0x40000000) return x*x; /* y is  2 */
-            if(hy==0x3fe00000) {        /* y is  0.5 */
-                if(hx>=0)       /* x >= +0 */
-                return sqrt(x);
-            }
-        }
-
-        ax   = fabs(x);
-    /* special value of x */
-        if(lx==0) {
-            if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
-                z = ax;                 /*x is +-0,+-inf,+-1*/
-                if(hy<0) z = one/z;     /* z = (1/|x|) */
-                if(hx<0) {
-                    if(((ix-0x3ff00000)|yisint)==0) {
-                        z = (z-z)/(z-z); /* (-1)**non-int is NaN */
-                    } else if(yisint==1)
-                        z = -1.0*z;             /* (x<0)**odd = -(|x|**odd) */
-                }
-                return z;
-            }
-        }
-
-        n = (hx>>31)+1;
-
-    /* (x<0)**(non-int) is NaN */
-        if((n|yisint)==0) return (x-x)/(x-x);
-
-        s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
-        if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
-
-    /* |y| is huge */
-        if(iy>0x41e00000) { /* if |y| > 2**31 */
-            if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
-                if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
-                if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
-            }
-        /* over/underflow if x is not close to one */
-            if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
-            if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
-        /* now |1-x| is tiny <= 2**-20, suffice to compute
-           log(x) by x-x^2/2+x^3/3-x^4/4 */
-            t = ax-one;         /* t has 20 trailing zeros */
-            w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
-            u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
-            v = t*ivln2_l-w*ivln2;
-            t1 = u+v;
-            __LO(t1) = 0;
-            t2 = v-(t1-u);
-        } else {
-            double ss,s2,s_h,s_l,t_h,t_l;
-            n = 0;
-        /* take care subnormal number */
-            if(ix<0x00100000)
-                {ax *= two53; n -= 53; ix = __HI(ax); }
-            n  += ((ix)>>20)-0x3ff;
-            j  = ix&0x000fffff;
-        /* determine interval */
-            ix = j|0x3ff00000;          /* normalize ix */
-            if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
-            else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
-            else {k=0;n+=1;ix -= 0x00100000;}
-            __HI(ax) = ix;
-
-        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
-            u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
-            v = one/(ax+bp[k]);
-            ss = u*v;
-            s_h = ss;
-            __LO(s_h) = 0;
-        /* t_h=ax+bp[k] High */
-            t_h = zero;
-            __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
-            t_l = ax - (t_h-bp[k]);
-            s_l = v*((u-s_h*t_h)-s_h*t_l);
-        /* compute log(ax) */
-            s2 = ss*ss;
-            r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
-            r += s_l*(s_h+ss);
-            s2  = s_h*s_h;
-            t_h = 3.0+s2+r;
-            __LO(t_h) = 0;
-            t_l = r-((t_h-3.0)-s2);
-        /* u+v = ss*(1+...) */
-            u = s_h*t_h;
-            v = s_l*t_h+t_l*ss;
-        /* 2/(3log2)*(ss+...) */
-            p_h = u+v;
-            __LO(p_h) = 0;
-            p_l = v-(p_h-u);
-            z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
-            z_l = cp_l*p_h+p_l*cp+dp_l[k];
-        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
-            t = (double)n;
-            t1 = (((z_h+z_l)+dp_h[k])+t);
-            __LO(t1) = 0;
-            t2 = z_l-(((t1-t)-dp_h[k])-z_h);
-        }
-
-    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
-        y1  = y;
-        __LO(y1) = 0;
-        p_l = (y-y1)*t1+y*t2;
-        p_h = y1*t1;
-        z = p_l+p_h;
-        j = __HI(z);
-        i = __LO(z);
-        if (j>=0x40900000) {                            /* z >= 1024 */
-            if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
-                return s*huge*huge;                     /* overflow */
-            else {
-                if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */
-            }
-        } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
-            if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
-                return s*tiny*tiny;             /* underflow */
-            else {
-                if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */
-            }
-        }
-    /*
-     * compute 2**(p_h+p_l)
-     */
-        i = j&0x7fffffff;
-        k = (i>>20)-0x3ff;
-        n = 0;
-        if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
-            n = j+(0x00100000>>(k+1));
-            k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
-            t = zero;
-            __HI(t) = (n&~(0x000fffff>>k));
-            n = ((n&0x000fffff)|0x00100000)>>(20-k);
-            if(j<0) n = -n;
-            p_h -= t;
-        }
-        t = p_l+p_h;
-        __LO(t) = 0;
-        u = t*lg2_h;
-        v = (p_l-(t-p_h))*lg2+t*lg2_l;
-        z = u+v;
-        w = v-(z-u);
-        t  = z*z;
-        t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
-        r  = (z*t1)/(t1-two)-(w+z*w);
-        z  = one-(r-z);
-        j  = __HI(z);
-        j += (n<<20);
-        if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
-        else __HI(z) += (n<<20);
-        return s*z;
-}