jdk/src/java.base/share/native/libzip/zlib-1.2.8/zlib.h
changeset 44221 a26be46f6bac
parent 44170 40f9a2b0c304
parent 43915 4a79ad46e578
child 44223 14252cb702f5
--- a/jdk/src/java.base/share/native/libzip/zlib-1.2.8/zlib.h	Thu Mar 09 21:35:18 2017 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1792 +0,0 @@
-/*
- * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
- *
- * This code is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License version 2 only, as
- * published by the Free Software Foundation.  Oracle designates this
- * particular file as subject to the "Classpath" exception as provided
- * by Oracle in the LICENSE file that accompanied this code.
- *
- * This code is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
- * version 2 for more details (a copy is included in the LICENSE file that
- * accompanied this code).
- *
- * You should have received a copy of the GNU General Public License version
- * 2 along with this work; if not, write to the Free Software Foundation,
- * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
- *
- * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
- * or visit www.oracle.com if you need additional information or have any
- * questions.
- */
-
-/* zlib.h -- interface of the 'zlib' general purpose compression library
-  version 1.2.8, April 28th, 2013
-
-  Copyright (C) 1995-2013 Jean-loup Gailly and Mark Adler
-
-  This software is provided 'as-is', without any express or implied
-  warranty.  In no event will the authors be held liable for any damages
-  arising from the use of this software.
-
-  Permission is granted to anyone to use this software for any purpose,
-  including commercial applications, and to alter it and redistribute it
-  freely, subject to the following restrictions:
-
-  1. The origin of this software must not be misrepresented; you must not
-     claim that you wrote the original software. If you use this software
-     in a product, an acknowledgment in the product documentation would be
-     appreciated but is not required.
-  2. Altered source versions must be plainly marked as such, and must not be
-     misrepresented as being the original software.
-  3. This notice may not be removed or altered from any source distribution.
-
-  Jean-loup Gailly        Mark Adler
-  jloup@gzip.org          madler@alumni.caltech.edu
-
-
-  The data format used by the zlib library is described by RFCs (Request for
-  Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950
-  (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format).
-*/
-
-#ifndef ZLIB_H
-#define ZLIB_H
-
-#include "zconf.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#define ZLIB_VERSION "1.2.8"
-#define ZLIB_VERNUM 0x1280
-#define ZLIB_VER_MAJOR 1
-#define ZLIB_VER_MINOR 2
-#define ZLIB_VER_REVISION 8
-#define ZLIB_VER_SUBREVISION 0
-
-/*
-    The 'zlib' compression library provides in-memory compression and
-  decompression functions, including integrity checks of the uncompressed data.
-  This version of the library supports only one compression method (deflation)
-  but other algorithms will be added later and will have the same stream
-  interface.
-
-    Compression can be done in a single step if the buffers are large enough,
-  or can be done by repeated calls of the compression function.  In the latter
-  case, the application must provide more input and/or consume the output
-  (providing more output space) before each call.
-
-    The compressed data format used by default by the in-memory functions is
-  the zlib format, which is a zlib wrapper documented in RFC 1950, wrapped
-  around a deflate stream, which is itself documented in RFC 1951.
-
-    The library also supports reading and writing files in gzip (.gz) format
-  with an interface similar to that of stdio using the functions that start
-  with "gz".  The gzip format is different from the zlib format.  gzip is a
-  gzip wrapper, documented in RFC 1952, wrapped around a deflate stream.
-
-    This library can optionally read and write gzip streams in memory as well.
-
-    The zlib format was designed to be compact and fast for use in memory
-  and on communications channels.  The gzip format was designed for single-
-  file compression on file systems, has a larger header than zlib to maintain
-  directory information, and uses a different, slower check method than zlib.
-
-    The library does not install any signal handler.  The decoder checks
-  the consistency of the compressed data, so the library should never crash
-  even in case of corrupted input.
-*/
-
-typedef voidpf (*alloc_func) OF((voidpf opaque, uInt items, uInt size));
-typedef void   (*free_func)  OF((voidpf opaque, voidpf address));
-
-struct internal_state;
-
-typedef struct z_stream_s {
-    z_const Bytef *next_in;     /* next input byte */
-    uInt     avail_in;  /* number of bytes available at next_in */
-    uLong    total_in;  /* total number of input bytes read so far */
-
-    Bytef    *next_out; /* next output byte should be put there */
-    uInt     avail_out; /* remaining free space at next_out */
-    uLong    total_out; /* total number of bytes output so far */
-
-    z_const char *msg;  /* last error message, NULL if no error */
-    struct internal_state FAR *state; /* not visible by applications */
-
-    alloc_func zalloc;  /* used to allocate the internal state */
-    free_func  zfree;   /* used to free the internal state */
-    voidpf     opaque;  /* private data object passed to zalloc and zfree */
-
-    int     data_type;  /* best guess about the data type: binary or text */
-    uLong   adler;      /* adler32 value of the uncompressed data */
-    uLong   reserved;   /* reserved for future use */
-} z_stream;
-
-typedef z_stream FAR *z_streamp;
-
-/*
-     gzip header information passed to and from zlib routines.  See RFC 1952
-  for more details on the meanings of these fields.
-*/
-typedef struct gz_header_s {
-    int     text;       /* true if compressed data believed to be text */
-    uLong   time;       /* modification time */
-    int     xflags;     /* extra flags (not used when writing a gzip file) */
-    int     os;         /* operating system */
-    Bytef   *extra;     /* pointer to extra field or Z_NULL if none */
-    uInt    extra_len;  /* extra field length (valid if extra != Z_NULL) */
-    uInt    extra_max;  /* space at extra (only when reading header) */
-    Bytef   *name;      /* pointer to zero-terminated file name or Z_NULL */
-    uInt    name_max;   /* space at name (only when reading header) */
-    Bytef   *comment;   /* pointer to zero-terminated comment or Z_NULL */
-    uInt    comm_max;   /* space at comment (only when reading header) */
-    int     hcrc;       /* true if there was or will be a header crc */
-    int     done;       /* true when done reading gzip header (not used
-                           when writing a gzip file) */
-} gz_header;
-
-typedef gz_header FAR *gz_headerp;
-
-/*
-     The application must update next_in and avail_in when avail_in has dropped
-   to zero.  It must update next_out and avail_out when avail_out has dropped
-   to zero.  The application must initialize zalloc, zfree and opaque before
-   calling the init function.  All other fields are set by the compression
-   library and must not be updated by the application.
-
-     The opaque value provided by the application will be passed as the first
-   parameter for calls of zalloc and zfree.  This can be useful for custom
-   memory management.  The compression library attaches no meaning to the
-   opaque value.
-
-     zalloc must return Z_NULL if there is not enough memory for the object.
-   If zlib is used in a multi-threaded application, zalloc and zfree must be
-   thread safe.
-
-     On 16-bit systems, the functions zalloc and zfree must be able to allocate
-   exactly 65536 bytes, but will not be required to allocate more than this if
-   the symbol MAXSEG_64K is defined (see zconf.h).  WARNING: On MSDOS, pointers
-   returned by zalloc for objects of exactly 65536 bytes *must* have their
-   offset normalized to zero.  The default allocation function provided by this
-   library ensures this (see zutil.c).  To reduce memory requirements and avoid
-   any allocation of 64K objects, at the expense of compression ratio, compile
-   the library with -DMAX_WBITS=14 (see zconf.h).
-
-     The fields total_in and total_out can be used for statistics or progress
-   reports.  After compression, total_in holds the total size of the
-   uncompressed data and may be saved for use in the decompressor (particularly
-   if the decompressor wants to decompress everything in a single step).
-*/
-
-                        /* constants */
-
-#define Z_NO_FLUSH      0
-#define Z_PARTIAL_FLUSH 1
-#define Z_SYNC_FLUSH    2
-#define Z_FULL_FLUSH    3
-#define Z_FINISH        4
-#define Z_BLOCK         5
-#define Z_TREES         6
-/* Allowed flush values; see deflate() and inflate() below for details */
-
-#define Z_OK            0
-#define Z_STREAM_END    1
-#define Z_NEED_DICT     2
-#define Z_ERRNO        (-1)
-#define Z_STREAM_ERROR (-2)
-#define Z_DATA_ERROR   (-3)
-#define Z_MEM_ERROR    (-4)
-#define Z_BUF_ERROR    (-5)
-#define Z_VERSION_ERROR (-6)
-/* Return codes for the compression/decompression functions. Negative values
- * are errors, positive values are used for special but normal events.
- */
-
-#define Z_NO_COMPRESSION         0
-#define Z_BEST_SPEED             1
-#define Z_BEST_COMPRESSION       9
-#define Z_DEFAULT_COMPRESSION  (-1)
-/* compression levels */
-
-#define Z_FILTERED            1
-#define Z_HUFFMAN_ONLY        2
-#define Z_RLE                 3
-#define Z_FIXED               4
-#define Z_DEFAULT_STRATEGY    0
-/* compression strategy; see deflateInit2() below for details */
-
-#define Z_BINARY   0
-#define Z_TEXT     1
-#define Z_ASCII    Z_TEXT   /* for compatibility with 1.2.2 and earlier */
-#define Z_UNKNOWN  2
-/* Possible values of the data_type field (though see inflate()) */
-
-#define Z_DEFLATED   8
-/* The deflate compression method (the only one supported in this version) */
-
-#define Z_NULL  0  /* for initializing zalloc, zfree, opaque */
-
-#define zlib_version zlibVersion()
-/* for compatibility with versions < 1.0.2 */
-
-
-                        /* basic functions */
-
-ZEXTERN const char * ZEXPORT zlibVersion OF((void));
-/* The application can compare zlibVersion and ZLIB_VERSION for consistency.
-   If the first character differs, the library code actually used is not
-   compatible with the zlib.h header file used by the application.  This check
-   is automatically made by deflateInit and inflateInit.
- */
-
-/*
-ZEXTERN int ZEXPORT deflateInit OF((z_streamp strm, int level));
-
-     Initializes the internal stream state for compression.  The fields
-   zalloc, zfree and opaque must be initialized before by the caller.  If
-   zalloc and zfree are set to Z_NULL, deflateInit updates them to use default
-   allocation functions.
-
-     The compression level must be Z_DEFAULT_COMPRESSION, or between 0 and 9:
-   1 gives best speed, 9 gives best compression, 0 gives no compression at all
-   (the input data is simply copied a block at a time).  Z_DEFAULT_COMPRESSION
-   requests a default compromise between speed and compression (currently
-   equivalent to level 6).
-
-     deflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_STREAM_ERROR if level is not a valid compression level, or
-   Z_VERSION_ERROR if the zlib library version (zlib_version) is incompatible
-   with the version assumed by the caller (ZLIB_VERSION).  msg is set to null
-   if there is no error message.  deflateInit does not perform any compression:
-   this will be done by deflate().
-*/
-
-
-ZEXTERN int ZEXPORT deflate OF((z_streamp strm, int flush));
-/*
-    deflate compresses as much data as possible, and stops when the input
-  buffer becomes empty or the output buffer becomes full.  It may introduce
-  some output latency (reading input without producing any output) except when
-  forced to flush.
-
-    The detailed semantics are as follows.  deflate performs one or both of the
-  following actions:
-
-  - Compress more input starting at next_in and update next_in and avail_in
-    accordingly.  If not all input can be processed (because there is not
-    enough room in the output buffer), next_in and avail_in are updated and
-    processing will resume at this point for the next call of deflate().
-
-  - Provide more output starting at next_out and update next_out and avail_out
-    accordingly.  This action is forced if the parameter flush is non zero.
-    Forcing flush frequently degrades the compression ratio, so this parameter
-    should be set only when necessary (in interactive applications).  Some
-    output may be provided even if flush is not set.
-
-    Before the call of deflate(), the application should ensure that at least
-  one of the actions is possible, by providing more input and/or consuming more
-  output, and updating avail_in or avail_out accordingly; avail_out should
-  never be zero before the call.  The application can consume the compressed
-  output when it wants, for example when the output buffer is full (avail_out
-  == 0), or after each call of deflate().  If deflate returns Z_OK and with
-  zero avail_out, it must be called again after making room in the output
-  buffer because there might be more output pending.
-
-    Normally the parameter flush is set to Z_NO_FLUSH, which allows deflate to
-  decide how much data to accumulate before producing output, in order to
-  maximize compression.
-
-    If the parameter flush is set to Z_SYNC_FLUSH, all pending output is
-  flushed to the output buffer and the output is aligned on a byte boundary, so
-  that the decompressor can get all input data available so far.  (In
-  particular avail_in is zero after the call if enough output space has been
-  provided before the call.) Flushing may degrade compression for some
-  compression algorithms and so it should be used only when necessary.  This
-  completes the current deflate block and follows it with an empty stored block
-  that is three bits plus filler bits to the next byte, followed by four bytes
-  (00 00 ff ff).
-
-    If flush is set to Z_PARTIAL_FLUSH, all pending output is flushed to the
-  output buffer, but the output is not aligned to a byte boundary.  All of the
-  input data so far will be available to the decompressor, as for Z_SYNC_FLUSH.
-  This completes the current deflate block and follows it with an empty fixed
-  codes block that is 10 bits long.  This assures that enough bytes are output
-  in order for the decompressor to finish the block before the empty fixed code
-  block.
-
-    If flush is set to Z_BLOCK, a deflate block is completed and emitted, as
-  for Z_SYNC_FLUSH, but the output is not aligned on a byte boundary, and up to
-  seven bits of the current block are held to be written as the next byte after
-  the next deflate block is completed.  In this case, the decompressor may not
-  be provided enough bits at this point in order to complete decompression of
-  the data provided so far to the compressor.  It may need to wait for the next
-  block to be emitted.  This is for advanced applications that need to control
-  the emission of deflate blocks.
-
-    If flush is set to Z_FULL_FLUSH, all output is flushed as with
-  Z_SYNC_FLUSH, and the compression state is reset so that decompression can
-  restart from this point if previous compressed data has been damaged or if
-  random access is desired.  Using Z_FULL_FLUSH too often can seriously degrade
-  compression.
-
-    If deflate returns with avail_out == 0, this function must be called again
-  with the same value of the flush parameter and more output space (updated
-  avail_out), until the flush is complete (deflate returns with non-zero
-  avail_out).  In the case of a Z_FULL_FLUSH or Z_SYNC_FLUSH, make sure that
-  avail_out is greater than six to avoid repeated flush markers due to
-  avail_out == 0 on return.
-
-    If the parameter flush is set to Z_FINISH, pending input is processed,
-  pending output is flushed and deflate returns with Z_STREAM_END if there was
-  enough output space; if deflate returns with Z_OK, this function must be
-  called again with Z_FINISH and more output space (updated avail_out) but no
-  more input data, until it returns with Z_STREAM_END or an error.  After
-  deflate has returned Z_STREAM_END, the only possible operations on the stream
-  are deflateReset or deflateEnd.
-
-    Z_FINISH can be used immediately after deflateInit if all the compression
-  is to be done in a single step.  In this case, avail_out must be at least the
-  value returned by deflateBound (see below).  Then deflate is guaranteed to
-  return Z_STREAM_END.  If not enough output space is provided, deflate will
-  not return Z_STREAM_END, and it must be called again as described above.
-
-    deflate() sets strm->adler to the adler32 checksum of all input read
-  so far (that is, total_in bytes).
-
-    deflate() may update strm->data_type if it can make a good guess about
-  the input data type (Z_BINARY or Z_TEXT).  In doubt, the data is considered
-  binary.  This field is only for information purposes and does not affect the
-  compression algorithm in any manner.
-
-    deflate() returns Z_OK if some progress has been made (more input
-  processed or more output produced), Z_STREAM_END if all input has been
-  consumed and all output has been produced (only when flush is set to
-  Z_FINISH), Z_STREAM_ERROR if the stream state was inconsistent (for example
-  if next_in or next_out was Z_NULL), Z_BUF_ERROR if no progress is possible
-  (for example avail_in or avail_out was zero).  Note that Z_BUF_ERROR is not
-  fatal, and deflate() can be called again with more input and more output
-  space to continue compressing.
-*/
-
-
-ZEXTERN int ZEXPORT deflateEnd OF((z_streamp strm));
-/*
-     All dynamically allocated data structures for this stream are freed.
-   This function discards any unprocessed input and does not flush any pending
-   output.
-
-     deflateEnd returns Z_OK if success, Z_STREAM_ERROR if the
-   stream state was inconsistent, Z_DATA_ERROR if the stream was freed
-   prematurely (some input or output was discarded).  In the error case, msg
-   may be set but then points to a static string (which must not be
-   deallocated).
-*/
-
-
-/*
-ZEXTERN int ZEXPORT inflateInit OF((z_streamp strm));
-
-     Initializes the internal stream state for decompression.  The fields
-   next_in, avail_in, zalloc, zfree and opaque must be initialized before by
-   the caller.  If next_in is not Z_NULL and avail_in is large enough (the
-   exact value depends on the compression method), inflateInit determines the
-   compression method from the zlib header and allocates all data structures
-   accordingly; otherwise the allocation will be deferred to the first call of
-   inflate.  If zalloc and zfree are set to Z_NULL, inflateInit updates them to
-   use default allocation functions.
-
-     inflateInit returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
-   version assumed by the caller, or Z_STREAM_ERROR if the parameters are
-   invalid, such as a null pointer to the structure.  msg is set to null if
-   there is no error message.  inflateInit does not perform any decompression
-   apart from possibly reading the zlib header if present: actual decompression
-   will be done by inflate().  (So next_in and avail_in may be modified, but
-   next_out and avail_out are unused and unchanged.) The current implementation
-   of inflateInit() does not process any header information -- that is deferred
-   until inflate() is called.
-*/
-
-
-ZEXTERN int ZEXPORT inflate OF((z_streamp strm, int flush));
-/*
-    inflate decompresses as much data as possible, and stops when the input
-  buffer becomes empty or the output buffer becomes full.  It may introduce
-  some output latency (reading input without producing any output) except when
-  forced to flush.
-
-  The detailed semantics are as follows.  inflate performs one or both of the
-  following actions:
-
-  - Decompress more input starting at next_in and update next_in and avail_in
-    accordingly.  If not all input can be processed (because there is not
-    enough room in the output buffer), next_in is updated and processing will
-    resume at this point for the next call of inflate().
-
-  - Provide more output starting at next_out and update next_out and avail_out
-    accordingly.  inflate() provides as much output as possible, until there is
-    no more input data or no more space in the output buffer (see below about
-    the flush parameter).
-
-    Before the call of inflate(), the application should ensure that at least
-  one of the actions is possible, by providing more input and/or consuming more
-  output, and updating the next_* and avail_* values accordingly.  The
-  application can consume the uncompressed output when it wants, for example
-  when the output buffer is full (avail_out == 0), or after each call of
-  inflate().  If inflate returns Z_OK and with zero avail_out, it must be
-  called again after making room in the output buffer because there might be
-  more output pending.
-
-    The flush parameter of inflate() can be Z_NO_FLUSH, Z_SYNC_FLUSH, Z_FINISH,
-  Z_BLOCK, or Z_TREES.  Z_SYNC_FLUSH requests that inflate() flush as much
-  output as possible to the output buffer.  Z_BLOCK requests that inflate()
-  stop if and when it gets to the next deflate block boundary.  When decoding
-  the zlib or gzip format, this will cause inflate() to return immediately
-  after the header and before the first block.  When doing a raw inflate,
-  inflate() will go ahead and process the first block, and will return when it
-  gets to the end of that block, or when it runs out of data.
-
-    The Z_BLOCK option assists in appending to or combining deflate streams.
-  Also to assist in this, on return inflate() will set strm->data_type to the
-  number of unused bits in the last byte taken from strm->next_in, plus 64 if
-  inflate() is currently decoding the last block in the deflate stream, plus
-  128 if inflate() returned immediately after decoding an end-of-block code or
-  decoding the complete header up to just before the first byte of the deflate
-  stream.  The end-of-block will not be indicated until all of the uncompressed
-  data from that block has been written to strm->next_out.  The number of
-  unused bits may in general be greater than seven, except when bit 7 of
-  data_type is set, in which case the number of unused bits will be less than
-  eight.  data_type is set as noted here every time inflate() returns for all
-  flush options, and so can be used to determine the amount of currently
-  consumed input in bits.
-
-    The Z_TREES option behaves as Z_BLOCK does, but it also returns when the
-  end of each deflate block header is reached, before any actual data in that
-  block is decoded.  This allows the caller to determine the length of the
-  deflate block header for later use in random access within a deflate block.
-  256 is added to the value of strm->data_type when inflate() returns
-  immediately after reaching the end of the deflate block header.
-
-    inflate() should normally be called until it returns Z_STREAM_END or an
-  error.  However if all decompression is to be performed in a single step (a
-  single call of inflate), the parameter flush should be set to Z_FINISH.  In
-  this case all pending input is processed and all pending output is flushed;
-  avail_out must be large enough to hold all of the uncompressed data for the
-  operation to complete.  (The size of the uncompressed data may have been
-  saved by the compressor for this purpose.) The use of Z_FINISH is not
-  required to perform an inflation in one step.  However it may be used to
-  inform inflate that a faster approach can be used for the single inflate()
-  call.  Z_FINISH also informs inflate to not maintain a sliding window if the
-  stream completes, which reduces inflate's memory footprint.  If the stream
-  does not complete, either because not all of the stream is provided or not
-  enough output space is provided, then a sliding window will be allocated and
-  inflate() can be called again to continue the operation as if Z_NO_FLUSH had
-  been used.
-
-     In this implementation, inflate() always flushes as much output as
-  possible to the output buffer, and always uses the faster approach on the
-  first call.  So the effects of the flush parameter in this implementation are
-  on the return value of inflate() as noted below, when inflate() returns early
-  when Z_BLOCK or Z_TREES is used, and when inflate() avoids the allocation of
-  memory for a sliding window when Z_FINISH is used.
-
-     If a preset dictionary is needed after this call (see inflateSetDictionary
-  below), inflate sets strm->adler to the Adler-32 checksum of the dictionary
-  chosen by the compressor and returns Z_NEED_DICT; otherwise it sets
-  strm->adler to the Adler-32 checksum of all output produced so far (that is,
-  total_out bytes) and returns Z_OK, Z_STREAM_END or an error code as described
-  below.  At the end of the stream, inflate() checks that its computed adler32
-  checksum is equal to that saved by the compressor and returns Z_STREAM_END
-  only if the checksum is correct.
-
-    inflate() can decompress and check either zlib-wrapped or gzip-wrapped
-  deflate data.  The header type is detected automatically, if requested when
-  initializing with inflateInit2().  Any information contained in the gzip
-  header is not retained, so applications that need that information should
-  instead use raw inflate, see inflateInit2() below, or inflateBack() and
-  perform their own processing of the gzip header and trailer.  When processing
-  gzip-wrapped deflate data, strm->adler32 is set to the CRC-32 of the output
-  producted so far.  The CRC-32 is checked against the gzip trailer.
-
-    inflate() returns Z_OK if some progress has been made (more input processed
-  or more output produced), Z_STREAM_END if the end of the compressed data has
-  been reached and all uncompressed output has been produced, Z_NEED_DICT if a
-  preset dictionary is needed at this point, Z_DATA_ERROR if the input data was
-  corrupted (input stream not conforming to the zlib format or incorrect check
-  value), Z_STREAM_ERROR if the stream structure was inconsistent (for example
-  next_in or next_out was Z_NULL), Z_MEM_ERROR if there was not enough memory,
-  Z_BUF_ERROR if no progress is possible or if there was not enough room in the
-  output buffer when Z_FINISH is used.  Note that Z_BUF_ERROR is not fatal, and
-  inflate() can be called again with more input and more output space to
-  continue decompressing.  If Z_DATA_ERROR is returned, the application may
-  then call inflateSync() to look for a good compression block if a partial
-  recovery of the data is desired.
-*/
-
-
-ZEXTERN int ZEXPORT inflateEnd OF((z_streamp strm));
-/*
-     All dynamically allocated data structures for this stream are freed.
-   This function discards any unprocessed input and does not flush any pending
-   output.
-
-     inflateEnd returns Z_OK if success, Z_STREAM_ERROR if the stream state
-   was inconsistent.  In the error case, msg may be set but then points to a
-   static string (which must not be deallocated).
-*/
-
-
-                        /* Advanced functions */
-
-/*
-    The following functions are needed only in some special applications.
-*/
-
-/*
-ZEXTERN int ZEXPORT deflateInit2 OF((z_streamp strm,
-                                     int  level,
-                                     int  method,
-                                     int  windowBits,
-                                     int  memLevel,
-                                     int  strategy));
-
-     This is another version of deflateInit with more compression options.  The
-   fields next_in, zalloc, zfree and opaque must be initialized before by the
-   caller.
-
-     The method parameter is the compression method.  It must be Z_DEFLATED in
-   this version of the library.
-
-     The windowBits parameter is the base two logarithm of the window size
-   (the size of the history buffer).  It should be in the range 8..15 for this
-   version of the library.  Larger values of this parameter result in better
-   compression at the expense of memory usage.  The default value is 15 if
-   deflateInit is used instead.
-
-     windowBits can also be -8..-15 for raw deflate.  In this case, -windowBits
-   determines the window size.  deflate() will then generate raw deflate data
-   with no zlib header or trailer, and will not compute an adler32 check value.
-
-     windowBits can also be greater than 15 for optional gzip encoding.  Add
-   16 to windowBits to write a simple gzip header and trailer around the
-   compressed data instead of a zlib wrapper.  The gzip header will have no
-   file name, no extra data, no comment, no modification time (set to zero), no
-   header crc, and the operating system will be set to 255 (unknown).  If a
-   gzip stream is being written, strm->adler is a crc32 instead of an adler32.
-
-     The memLevel parameter specifies how much memory should be allocated
-   for the internal compression state.  memLevel=1 uses minimum memory but is
-   slow and reduces compression ratio; memLevel=9 uses maximum memory for
-   optimal speed.  The default value is 8.  See zconf.h for total memory usage
-   as a function of windowBits and memLevel.
-
-     The strategy parameter is used to tune the compression algorithm.  Use the
-   value Z_DEFAULT_STRATEGY for normal data, Z_FILTERED for data produced by a
-   filter (or predictor), Z_HUFFMAN_ONLY to force Huffman encoding only (no
-   string match), or Z_RLE to limit match distances to one (run-length
-   encoding).  Filtered data consists mostly of small values with a somewhat
-   random distribution.  In this case, the compression algorithm is tuned to
-   compress them better.  The effect of Z_FILTERED is to force more Huffman
-   coding and less string matching; it is somewhat intermediate between
-   Z_DEFAULT_STRATEGY and Z_HUFFMAN_ONLY.  Z_RLE is designed to be almost as
-   fast as Z_HUFFMAN_ONLY, but give better compression for PNG image data.  The
-   strategy parameter only affects the compression ratio but not the
-   correctness of the compressed output even if it is not set appropriately.
-   Z_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler
-   decoder for special applications.
-
-     deflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_STREAM_ERROR if any parameter is invalid (such as an invalid
-   method), or Z_VERSION_ERROR if the zlib library version (zlib_version) is
-   incompatible with the version assumed by the caller (ZLIB_VERSION).  msg is
-   set to null if there is no error message.  deflateInit2 does not perform any
-   compression: this will be done by deflate().
-*/
-
-ZEXTERN int ZEXPORT deflateSetDictionary OF((z_streamp strm,
-                                             const Bytef *dictionary,
-                                             uInt  dictLength));
-/*
-     Initializes the compression dictionary from the given byte sequence
-   without producing any compressed output.  When using the zlib format, this
-   function must be called immediately after deflateInit, deflateInit2 or
-   deflateReset, and before any call of deflate.  When doing raw deflate, this
-   function must be called either before any call of deflate, or immediately
-   after the completion of a deflate block, i.e. after all input has been
-   consumed and all output has been delivered when using any of the flush
-   options Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, or Z_FULL_FLUSH.  The
-   compressor and decompressor must use exactly the same dictionary (see
-   inflateSetDictionary).
-
-     The dictionary should consist of strings (byte sequences) that are likely
-   to be encountered later in the data to be compressed, with the most commonly
-   used strings preferably put towards the end of the dictionary.  Using a
-   dictionary is most useful when the data to be compressed is short and can be
-   predicted with good accuracy; the data can then be compressed better than
-   with the default empty dictionary.
-
-     Depending on the size of the compression data structures selected by
-   deflateInit or deflateInit2, a part of the dictionary may in effect be
-   discarded, for example if the dictionary is larger than the window size
-   provided in deflateInit or deflateInit2.  Thus the strings most likely to be
-   useful should be put at the end of the dictionary, not at the front.  In
-   addition, the current implementation of deflate will use at most the window
-   size minus 262 bytes of the provided dictionary.
-
-     Upon return of this function, strm->adler is set to the adler32 value
-   of the dictionary; the decompressor may later use this value to determine
-   which dictionary has been used by the compressor.  (The adler32 value
-   applies to the whole dictionary even if only a subset of the dictionary is
-   actually used by the compressor.) If a raw deflate was requested, then the
-   adler32 value is not computed and strm->adler is not set.
-
-     deflateSetDictionary returns Z_OK if success, or Z_STREAM_ERROR if a
-   parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
-   inconsistent (for example if deflate has already been called for this stream
-   or if not at a block boundary for raw deflate).  deflateSetDictionary does
-   not perform any compression: this will be done by deflate().
-*/
-
-ZEXTERN int ZEXPORT deflateCopy OF((z_streamp dest,
-                                    z_streamp source));
-/*
-     Sets the destination stream as a complete copy of the source stream.
-
-     This function can be useful when several compression strategies will be
-   tried, for example when there are several ways of pre-processing the input
-   data with a filter.  The streams that will be discarded should then be freed
-   by calling deflateEnd.  Note that deflateCopy duplicates the internal
-   compression state which can be quite large, so this strategy is slow and can
-   consume lots of memory.
-
-     deflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
-   enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
-   (such as zalloc being Z_NULL).  msg is left unchanged in both source and
-   destination.
-*/
-
-ZEXTERN int ZEXPORT deflateReset OF((z_streamp strm));
-/*
-     This function is equivalent to deflateEnd followed by deflateInit,
-   but does not free and reallocate all the internal compression state.  The
-   stream will keep the same compression level and any other attributes that
-   may have been set by deflateInit2.
-
-     deflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent (such as zalloc or state being Z_NULL).
-*/
-
-ZEXTERN int ZEXPORT deflateParams OF((z_streamp strm,
-                                      int level,
-                                      int strategy));
-/*
-     Dynamically update the compression level and compression strategy.  The
-   interpretation of level and strategy is as in deflateInit2.  This can be
-   used to switch between compression and straight copy of the input data, or
-   to switch to a different kind of input data requiring a different strategy.
-   If the compression level is changed, the input available so far is
-   compressed with the old level (and may be flushed); the new level will take
-   effect only at the next call of deflate().
-
-     Before the call of deflateParams, the stream state must be set as for
-   a call of deflate(), since the currently available input may have to be
-   compressed and flushed.  In particular, strm->avail_out must be non-zero.
-
-     deflateParams returns Z_OK if success, Z_STREAM_ERROR if the source
-   stream state was inconsistent or if a parameter was invalid, Z_BUF_ERROR if
-   strm->avail_out was zero.
-*/
-
-ZEXTERN int ZEXPORT deflateTune OF((z_streamp strm,
-                                    int good_length,
-                                    int max_lazy,
-                                    int nice_length,
-                                    int max_chain));
-/*
-     Fine tune deflate's internal compression parameters.  This should only be
-   used by someone who understands the algorithm used by zlib's deflate for
-   searching for the best matching string, and even then only by the most
-   fanatic optimizer trying to squeeze out the last compressed bit for their
-   specific input data.  Read the deflate.c source code for the meaning of the
-   max_lazy, good_length, nice_length, and max_chain parameters.
-
-     deflateTune() can be called after deflateInit() or deflateInit2(), and
-   returns Z_OK on success, or Z_STREAM_ERROR for an invalid deflate stream.
- */
-
-ZEXTERN uLong ZEXPORT deflateBound OF((z_streamp strm,
-                                       uLong sourceLen));
-/*
-     deflateBound() returns an upper bound on the compressed size after
-   deflation of sourceLen bytes.  It must be called after deflateInit() or
-   deflateInit2(), and after deflateSetHeader(), if used.  This would be used
-   to allocate an output buffer for deflation in a single pass, and so would be
-   called before deflate().  If that first deflate() call is provided the
-   sourceLen input bytes, an output buffer allocated to the size returned by
-   deflateBound(), and the flush value Z_FINISH, then deflate() is guaranteed
-   to return Z_STREAM_END.  Note that it is possible for the compressed size to
-   be larger than the value returned by deflateBound() if flush options other
-   than Z_FINISH or Z_NO_FLUSH are used.
-*/
-
-ZEXTERN int ZEXPORT deflatePending OF((z_streamp strm,
-                                       unsigned *pending,
-                                       int *bits));
-/*
-     deflatePending() returns the number of bytes and bits of output that have
-   been generated, but not yet provided in the available output.  The bytes not
-   provided would be due to the available output space having being consumed.
-   The number of bits of output not provided are between 0 and 7, where they
-   await more bits to join them in order to fill out a full byte.  If pending
-   or bits are Z_NULL, then those values are not set.
-
-     deflatePending returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent.
- */
-
-ZEXTERN int ZEXPORT deflatePrime OF((z_streamp strm,
-                                     int bits,
-                                     int value));
-/*
-     deflatePrime() inserts bits in the deflate output stream.  The intent
-   is that this function is used to start off the deflate output with the bits
-   leftover from a previous deflate stream when appending to it.  As such, this
-   function can only be used for raw deflate, and must be used before the first
-   deflate() call after a deflateInit2() or deflateReset().  bits must be less
-   than or equal to 16, and that many of the least significant bits of value
-   will be inserted in the output.
-
-     deflatePrime returns Z_OK if success, Z_BUF_ERROR if there was not enough
-   room in the internal buffer to insert the bits, or Z_STREAM_ERROR if the
-   source stream state was inconsistent.
-*/
-
-ZEXTERN int ZEXPORT deflateSetHeader OF((z_streamp strm,
-                                         gz_headerp head));
-/*
-     deflateSetHeader() provides gzip header information for when a gzip
-   stream is requested by deflateInit2().  deflateSetHeader() may be called
-   after deflateInit2() or deflateReset() and before the first call of
-   deflate().  The text, time, os, extra field, name, and comment information
-   in the provided gz_header structure are written to the gzip header (xflag is
-   ignored -- the extra flags are set according to the compression level).  The
-   caller must assure that, if not Z_NULL, name and comment are terminated with
-   a zero byte, and that if extra is not Z_NULL, that extra_len bytes are
-   available there.  If hcrc is true, a gzip header crc is included.  Note that
-   the current versions of the command-line version of gzip (up through version
-   1.3.x) do not support header crc's, and will report that it is a "multi-part
-   gzip file" and give up.
-
-     If deflateSetHeader is not used, the default gzip header has text false,
-   the time set to zero, and os set to 255, with no extra, name, or comment
-   fields.  The gzip header is returned to the default state by deflateReset().
-
-     deflateSetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent.
-*/
-
-/*
-ZEXTERN int ZEXPORT inflateInit2 OF((z_streamp strm,
-                                     int  windowBits));
-
-     This is another version of inflateInit with an extra parameter.  The
-   fields next_in, avail_in, zalloc, zfree and opaque must be initialized
-   before by the caller.
-
-     The windowBits parameter is the base two logarithm of the maximum window
-   size (the size of the history buffer).  It should be in the range 8..15 for
-   this version of the library.  The default value is 15 if inflateInit is used
-   instead.  windowBits must be greater than or equal to the windowBits value
-   provided to deflateInit2() while compressing, or it must be equal to 15 if
-   deflateInit2() was not used.  If a compressed stream with a larger window
-   size is given as input, inflate() will return with the error code
-   Z_DATA_ERROR instead of trying to allocate a larger window.
-
-     windowBits can also be zero to request that inflate use the window size in
-   the zlib header of the compressed stream.
-
-     windowBits can also be -8..-15 for raw inflate.  In this case, -windowBits
-   determines the window size.  inflate() will then process raw deflate data,
-   not looking for a zlib or gzip header, not generating a check value, and not
-   looking for any check values for comparison at the end of the stream.  This
-   is for use with other formats that use the deflate compressed data format
-   such as zip.  Those formats provide their own check values.  If a custom
-   format is developed using the raw deflate format for compressed data, it is
-   recommended that a check value such as an adler32 or a crc32 be applied to
-   the uncompressed data as is done in the zlib, gzip, and zip formats.  For
-   most applications, the zlib format should be used as is.  Note that comments
-   above on the use in deflateInit2() applies to the magnitude of windowBits.
-
-     windowBits can also be greater than 15 for optional gzip decoding.  Add
-   32 to windowBits to enable zlib and gzip decoding with automatic header
-   detection, or add 16 to decode only the gzip format (the zlib format will
-   return a Z_DATA_ERROR).  If a gzip stream is being decoded, strm->adler is a
-   crc32 instead of an adler32.
-
-     inflateInit2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_VERSION_ERROR if the zlib library version is incompatible with the
-   version assumed by the caller, or Z_STREAM_ERROR if the parameters are
-   invalid, such as a null pointer to the structure.  msg is set to null if
-   there is no error message.  inflateInit2 does not perform any decompression
-   apart from possibly reading the zlib header if present: actual decompression
-   will be done by inflate().  (So next_in and avail_in may be modified, but
-   next_out and avail_out are unused and unchanged.) The current implementation
-   of inflateInit2() does not process any header information -- that is
-   deferred until inflate() is called.
-*/
-
-ZEXTERN int ZEXPORT inflateSetDictionary OF((z_streamp strm,
-                                             const Bytef *dictionary,
-                                             uInt  dictLength));
-/*
-     Initializes the decompression dictionary from the given uncompressed byte
-   sequence.  This function must be called immediately after a call of inflate,
-   if that call returned Z_NEED_DICT.  The dictionary chosen by the compressor
-   can be determined from the adler32 value returned by that call of inflate.
-   The compressor and decompressor must use exactly the same dictionary (see
-   deflateSetDictionary).  For raw inflate, this function can be called at any
-   time to set the dictionary.  If the provided dictionary is smaller than the
-   window and there is already data in the window, then the provided dictionary
-   will amend what's there.  The application must insure that the dictionary
-   that was used for compression is provided.
-
-     inflateSetDictionary returns Z_OK if success, Z_STREAM_ERROR if a
-   parameter is invalid (e.g.  dictionary being Z_NULL) or the stream state is
-   inconsistent, Z_DATA_ERROR if the given dictionary doesn't match the
-   expected one (incorrect adler32 value).  inflateSetDictionary does not
-   perform any decompression: this will be done by subsequent calls of
-   inflate().
-*/
-
-ZEXTERN int ZEXPORT inflateGetDictionary OF((z_streamp strm,
-                                             Bytef *dictionary,
-                                             uInt  *dictLength));
-/*
-     Returns the sliding dictionary being maintained by inflate.  dictLength is
-   set to the number of bytes in the dictionary, and that many bytes are copied
-   to dictionary.  dictionary must have enough space, where 32768 bytes is
-   always enough.  If inflateGetDictionary() is called with dictionary equal to
-   Z_NULL, then only the dictionary length is returned, and nothing is copied.
-   Similary, if dictLength is Z_NULL, then it is not set.
-
-     inflateGetDictionary returns Z_OK on success, or Z_STREAM_ERROR if the
-   stream state is inconsistent.
-*/
-
-ZEXTERN int ZEXPORT inflateSync OF((z_streamp strm));
-/*
-     Skips invalid compressed data until a possible full flush point (see above
-   for the description of deflate with Z_FULL_FLUSH) can be found, or until all
-   available input is skipped.  No output is provided.
-
-     inflateSync searches for a 00 00 FF FF pattern in the compressed data.
-   All full flush points have this pattern, but not all occurrences of this
-   pattern are full flush points.
-
-     inflateSync returns Z_OK if a possible full flush point has been found,
-   Z_BUF_ERROR if no more input was provided, Z_DATA_ERROR if no flush point
-   has been found, or Z_STREAM_ERROR if the stream structure was inconsistent.
-   In the success case, the application may save the current current value of
-   total_in which indicates where valid compressed data was found.  In the
-   error case, the application may repeatedly call inflateSync, providing more
-   input each time, until success or end of the input data.
-*/
-
-ZEXTERN int ZEXPORT inflateCopy OF((z_streamp dest,
-                                    z_streamp source));
-/*
-     Sets the destination stream as a complete copy of the source stream.
-
-     This function can be useful when randomly accessing a large stream.  The
-   first pass through the stream can periodically record the inflate state,
-   allowing restarting inflate at those points when randomly accessing the
-   stream.
-
-     inflateCopy returns Z_OK if success, Z_MEM_ERROR if there was not
-   enough memory, Z_STREAM_ERROR if the source stream state was inconsistent
-   (such as zalloc being Z_NULL).  msg is left unchanged in both source and
-   destination.
-*/
-
-ZEXTERN int ZEXPORT inflateReset OF((z_streamp strm));
-/*
-     This function is equivalent to inflateEnd followed by inflateInit,
-   but does not free and reallocate all the internal decompression state.  The
-   stream will keep attributes that may have been set by inflateInit2.
-
-     inflateReset returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent (such as zalloc or state being Z_NULL).
-*/
-
-ZEXTERN int ZEXPORT inflateReset2 OF((z_streamp strm,
-                                      int windowBits));
-/*
-     This function is the same as inflateReset, but it also permits changing
-   the wrap and window size requests.  The windowBits parameter is interpreted
-   the same as it is for inflateInit2.
-
-     inflateReset2 returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent (such as zalloc or state being Z_NULL), or if
-   the windowBits parameter is invalid.
-*/
-
-ZEXTERN int ZEXPORT inflatePrime OF((z_streamp strm,
-                                     int bits,
-                                     int value));
-/*
-     This function inserts bits in the inflate input stream.  The intent is
-   that this function is used to start inflating at a bit position in the
-   middle of a byte.  The provided bits will be used before any bytes are used
-   from next_in.  This function should only be used with raw inflate, and
-   should be used before the first inflate() call after inflateInit2() or
-   inflateReset().  bits must be less than or equal to 16, and that many of the
-   least significant bits of value will be inserted in the input.
-
-     If bits is negative, then the input stream bit buffer is emptied.  Then
-   inflatePrime() can be called again to put bits in the buffer.  This is used
-   to clear out bits leftover after feeding inflate a block description prior
-   to feeding inflate codes.
-
-     inflatePrime returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent.
-*/
-
-ZEXTERN long ZEXPORT inflateMark OF((z_streamp strm));
-/*
-     This function returns two values, one in the lower 16 bits of the return
-   value, and the other in the remaining upper bits, obtained by shifting the
-   return value down 16 bits.  If the upper value is -1 and the lower value is
-   zero, then inflate() is currently decoding information outside of a block.
-   If the upper value is -1 and the lower value is non-zero, then inflate is in
-   the middle of a stored block, with the lower value equaling the number of
-   bytes from the input remaining to copy.  If the upper value is not -1, then
-   it is the number of bits back from the current bit position in the input of
-   the code (literal or length/distance pair) currently being processed.  In
-   that case the lower value is the number of bytes already emitted for that
-   code.
-
-     A code is being processed if inflate is waiting for more input to complete
-   decoding of the code, or if it has completed decoding but is waiting for
-   more output space to write the literal or match data.
-
-     inflateMark() is used to mark locations in the input data for random
-   access, which may be at bit positions, and to note those cases where the
-   output of a code may span boundaries of random access blocks.  The current
-   location in the input stream can be determined from avail_in and data_type
-   as noted in the description for the Z_BLOCK flush parameter for inflate.
-
-     inflateMark returns the value noted above or -1 << 16 if the provided
-   source stream state was inconsistent.
-*/
-
-ZEXTERN int ZEXPORT inflateGetHeader OF((z_streamp strm,
-                                         gz_headerp head));
-/*
-     inflateGetHeader() requests that gzip header information be stored in the
-   provided gz_header structure.  inflateGetHeader() may be called after
-   inflateInit2() or inflateReset(), and before the first call of inflate().
-   As inflate() processes the gzip stream, head->done is zero until the header
-   is completed, at which time head->done is set to one.  If a zlib stream is
-   being decoded, then head->done is set to -1 to indicate that there will be
-   no gzip header information forthcoming.  Note that Z_BLOCK or Z_TREES can be
-   used to force inflate() to return immediately after header processing is
-   complete and before any actual data is decompressed.
-
-     The text, time, xflags, and os fields are filled in with the gzip header
-   contents.  hcrc is set to true if there is a header CRC.  (The header CRC
-   was valid if done is set to one.) If extra is not Z_NULL, then extra_max
-   contains the maximum number of bytes to write to extra.  Once done is true,
-   extra_len contains the actual extra field length, and extra contains the
-   extra field, or that field truncated if extra_max is less than extra_len.
-   If name is not Z_NULL, then up to name_max characters are written there,
-   terminated with a zero unless the length is greater than name_max.  If
-   comment is not Z_NULL, then up to comm_max characters are written there,
-   terminated with a zero unless the length is greater than comm_max.  When any
-   of extra, name, or comment are not Z_NULL and the respective field is not
-   present in the header, then that field is set to Z_NULL to signal its
-   absence.  This allows the use of deflateSetHeader() with the returned
-   structure to duplicate the header.  However if those fields are set to
-   allocated memory, then the application will need to save those pointers
-   elsewhere so that they can be eventually freed.
-
-     If inflateGetHeader is not used, then the header information is simply
-   discarded.  The header is always checked for validity, including the header
-   CRC if present.  inflateReset() will reset the process to discard the header
-   information.  The application would need to call inflateGetHeader() again to
-   retrieve the header from the next gzip stream.
-
-     inflateGetHeader returns Z_OK if success, or Z_STREAM_ERROR if the source
-   stream state was inconsistent.
-*/
-
-/*
-ZEXTERN int ZEXPORT inflateBackInit OF((z_streamp strm, int windowBits,
-                                        unsigned char FAR *window));
-
-     Initialize the internal stream state for decompression using inflateBack()
-   calls.  The fields zalloc, zfree and opaque in strm must be initialized
-   before the call.  If zalloc and zfree are Z_NULL, then the default library-
-   derived memory allocation routines are used.  windowBits is the base two
-   logarithm of the window size, in the range 8..15.  window is a caller
-   supplied buffer of that size.  Except for special applications where it is
-   assured that deflate was used with small window sizes, windowBits must be 15
-   and a 32K byte window must be supplied to be able to decompress general
-   deflate streams.
-
-     See inflateBack() for the usage of these routines.
-
-     inflateBackInit will return Z_OK on success, Z_STREAM_ERROR if any of
-   the parameters are invalid, Z_MEM_ERROR if the internal state could not be
-   allocated, or Z_VERSION_ERROR if the version of the library does not match
-   the version of the header file.
-*/
-
-typedef unsigned (*in_func) OF((void FAR *,
-                                z_const unsigned char FAR * FAR *));
-typedef int (*out_func) OF((void FAR *, unsigned char FAR *, unsigned));
-
-ZEXTERN int ZEXPORT inflateBack OF((z_streamp strm,
-                                    in_func in, void FAR *in_desc,
-                                    out_func out, void FAR *out_desc));
-/*
-     inflateBack() does a raw inflate with a single call using a call-back
-   interface for input and output.  This is potentially more efficient than
-   inflate() for file i/o applications, in that it avoids copying between the
-   output and the sliding window by simply making the window itself the output
-   buffer.  inflate() can be faster on modern CPUs when used with large
-   buffers.  inflateBack() trusts the application to not change the output
-   buffer passed by the output function, at least until inflateBack() returns.
-
-     inflateBackInit() must be called first to allocate the internal state
-   and to initialize the state with the user-provided window buffer.
-   inflateBack() may then be used multiple times to inflate a complete, raw
-   deflate stream with each call.  inflateBackEnd() is then called to free the
-   allocated state.
-
-     A raw deflate stream is one with no zlib or gzip header or trailer.
-   This routine would normally be used in a utility that reads zip or gzip
-   files and writes out uncompressed files.  The utility would decode the
-   header and process the trailer on its own, hence this routine expects only
-   the raw deflate stream to decompress.  This is different from the normal
-   behavior of inflate(), which expects either a zlib or gzip header and
-   trailer around the deflate stream.
-
-     inflateBack() uses two subroutines supplied by the caller that are then
-   called by inflateBack() for input and output.  inflateBack() calls those
-   routines until it reads a complete deflate stream and writes out all of the
-   uncompressed data, or until it encounters an error.  The function's
-   parameters and return types are defined above in the in_func and out_func
-   typedefs.  inflateBack() will call in(in_desc, &buf) which should return the
-   number of bytes of provided input, and a pointer to that input in buf.  If
-   there is no input available, in() must return zero--buf is ignored in that
-   case--and inflateBack() will return a buffer error.  inflateBack() will call
-   out(out_desc, buf, len) to write the uncompressed data buf[0..len-1].  out()
-   should return zero on success, or non-zero on failure.  If out() returns
-   non-zero, inflateBack() will return with an error.  Neither in() nor out()
-   are permitted to change the contents of the window provided to
-   inflateBackInit(), which is also the buffer that out() uses to write from.
-   The length written by out() will be at most the window size.  Any non-zero
-   amount of input may be provided by in().
-
-     For convenience, inflateBack() can be provided input on the first call by
-   setting strm->next_in and strm->avail_in.  If that input is exhausted, then
-   in() will be called.  Therefore strm->next_in must be initialized before
-   calling inflateBack().  If strm->next_in is Z_NULL, then in() will be called
-   immediately for input.  If strm->next_in is not Z_NULL, then strm->avail_in
-   must also be initialized, and then if strm->avail_in is not zero, input will
-   initially be taken from strm->next_in[0 ..  strm->avail_in - 1].
-
-     The in_desc and out_desc parameters of inflateBack() is passed as the
-   first parameter of in() and out() respectively when they are called.  These
-   descriptors can be optionally used to pass any information that the caller-
-   supplied in() and out() functions need to do their job.
-
-     On return, inflateBack() will set strm->next_in and strm->avail_in to
-   pass back any unused input that was provided by the last in() call.  The
-   return values of inflateBack() can be Z_STREAM_END on success, Z_BUF_ERROR
-   if in() or out() returned an error, Z_DATA_ERROR if there was a format error
-   in the deflate stream (in which case strm->msg is set to indicate the nature
-   of the error), or Z_STREAM_ERROR if the stream was not properly initialized.
-   In the case of Z_BUF_ERROR, an input or output error can be distinguished
-   using strm->next_in which will be Z_NULL only if in() returned an error.  If
-   strm->next_in is not Z_NULL, then the Z_BUF_ERROR was due to out() returning
-   non-zero.  (in() will always be called before out(), so strm->next_in is
-   assured to be defined if out() returns non-zero.) Note that inflateBack()
-   cannot return Z_OK.
-*/
-
-ZEXTERN int ZEXPORT inflateBackEnd OF((z_streamp strm));
-/*
-     All memory allocated by inflateBackInit() is freed.
-
-     inflateBackEnd() returns Z_OK on success, or Z_STREAM_ERROR if the stream
-   state was inconsistent.
-*/
-
-ZEXTERN uLong ZEXPORT zlibCompileFlags OF((void));
-/* Return flags indicating compile-time options.
-
-    Type sizes, two bits each, 00 = 16 bits, 01 = 32, 10 = 64, 11 = other:
-     1.0: size of uInt
-     3.2: size of uLong
-     5.4: size of voidpf (pointer)
-     7.6: size of z_off_t
-
-    Compiler, assembler, and debug options:
-     8: DEBUG
-     9: ASMV or ASMINF -- use ASM code
-     10: ZLIB_WINAPI -- exported functions use the WINAPI calling convention
-     11: 0 (reserved)
-
-    One-time table building (smaller code, but not thread-safe if true):
-     12: BUILDFIXED -- build static block decoding tables when needed
-     13: DYNAMIC_CRC_TABLE -- build CRC calculation tables when needed
-     14,15: 0 (reserved)
-
-    Library content (indicates missing functionality):
-     16: NO_GZCOMPRESS -- gz* functions cannot compress (to avoid linking
-                          deflate code when not needed)
-     17: NO_GZIP -- deflate can't write gzip streams, and inflate can't detect
-                    and decode gzip streams (to avoid linking crc code)
-     18-19: 0 (reserved)
-
-    Operation variations (changes in library functionality):
-     20: PKZIP_BUG_WORKAROUND -- slightly more permissive inflate
-     21: FASTEST -- deflate algorithm with only one, lowest compression level
-     22,23: 0 (reserved)
-
-    The sprintf variant used by gzprintf (zero is best):
-     24: 0 = vs*, 1 = s* -- 1 means limited to 20 arguments after the format
-     25: 0 = *nprintf, 1 = *printf -- 1 means gzprintf() not secure!
-     26: 0 = returns value, 1 = void -- 1 means inferred string length returned
-
-    Remainder:
-     27-31: 0 (reserved)
- */
-
-#ifndef Z_SOLO
-
-                        /* utility functions */
-
-/*
-     The following utility functions are implemented on top of the basic
-   stream-oriented functions.  To simplify the interface, some default options
-   are assumed (compression level and memory usage, standard memory allocation
-   functions).  The source code of these utility functions can be modified if
-   you need special options.
-*/
-
-ZEXTERN int ZEXPORT compress OF((Bytef *dest,   uLongf *destLen,
-                                 const Bytef *source, uLong sourceLen));
-/*
-     Compresses the source buffer into the destination buffer.  sourceLen is
-   the byte length of the source buffer.  Upon entry, destLen is the total size
-   of the destination buffer, which must be at least the value returned by
-   compressBound(sourceLen).  Upon exit, destLen is the actual size of the
-   compressed buffer.
-
-     compress returns Z_OK if success, Z_MEM_ERROR if there was not
-   enough memory, Z_BUF_ERROR if there was not enough room in the output
-   buffer.
-*/
-
-ZEXTERN int ZEXPORT compress2 OF((Bytef *dest,   uLongf *destLen,
-                                  const Bytef *source, uLong sourceLen,
-                                  int level));
-/*
-     Compresses the source buffer into the destination buffer.  The level
-   parameter has the same meaning as in deflateInit.  sourceLen is the byte
-   length of the source buffer.  Upon entry, destLen is the total size of the
-   destination buffer, which must be at least the value returned by
-   compressBound(sourceLen).  Upon exit, destLen is the actual size of the
-   compressed buffer.
-
-     compress2 returns Z_OK if success, Z_MEM_ERROR if there was not enough
-   memory, Z_BUF_ERROR if there was not enough room in the output buffer,
-   Z_STREAM_ERROR if the level parameter is invalid.
-*/
-
-ZEXTERN uLong ZEXPORT compressBound OF((uLong sourceLen));
-/*
-     compressBound() returns an upper bound on the compressed size after
-   compress() or compress2() on sourceLen bytes.  It would be used before a
-   compress() or compress2() call to allocate the destination buffer.
-*/
-
-ZEXTERN int ZEXPORT uncompress OF((Bytef *dest,   uLongf *destLen,
-                                   const Bytef *source, uLong sourceLen));
-/*
-     Decompresses the source buffer into the destination buffer.  sourceLen is
-   the byte length of the source buffer.  Upon entry, destLen is the total size
-   of the destination buffer, which must be large enough to hold the entire
-   uncompressed data.  (The size of the uncompressed data must have been saved
-   previously by the compressor and transmitted to the decompressor by some
-   mechanism outside the scope of this compression library.) Upon exit, destLen
-   is the actual size of the uncompressed buffer.
-
-     uncompress returns Z_OK if success, Z_MEM_ERROR if there was not
-   enough memory, Z_BUF_ERROR if there was not enough room in the output
-   buffer, or Z_DATA_ERROR if the input data was corrupted or incomplete.  In
-   the case where there is not enough room, uncompress() will fill the output
-   buffer with the uncompressed data up to that point.
-*/
-
-                        /* gzip file access functions */
-
-/*
-     This library supports reading and writing files in gzip (.gz) format with
-   an interface similar to that of stdio, using the functions that start with
-   "gz".  The gzip format is different from the zlib format.  gzip is a gzip
-   wrapper, documented in RFC 1952, wrapped around a deflate stream.
-*/
-
-typedef struct gzFile_s *gzFile;    /* semi-opaque gzip file descriptor */
-
-/*
-ZEXTERN gzFile ZEXPORT gzopen OF((const char *path, const char *mode));
-
-     Opens a gzip (.gz) file for reading or writing.  The mode parameter is as
-   in fopen ("rb" or "wb") but can also include a compression level ("wb9") or
-   a strategy: 'f' for filtered data as in "wb6f", 'h' for Huffman-only
-   compression as in "wb1h", 'R' for run-length encoding as in "wb1R", or 'F'
-   for fixed code compression as in "wb9F".  (See the description of
-   deflateInit2 for more information about the strategy parameter.)  'T' will
-   request transparent writing or appending with no compression and not using
-   the gzip format.
-
-     "a" can be used instead of "w" to request that the gzip stream that will
-   be written be appended to the file.  "+" will result in an error, since
-   reading and writing to the same gzip file is not supported.  The addition of
-   "x" when writing will create the file exclusively, which fails if the file
-   already exists.  On systems that support it, the addition of "e" when
-   reading or writing will set the flag to close the file on an execve() call.
-
-     These functions, as well as gzip, will read and decode a sequence of gzip
-   streams in a file.  The append function of gzopen() can be used to create
-   such a file.  (Also see gzflush() for another way to do this.)  When
-   appending, gzopen does not test whether the file begins with a gzip stream,
-   nor does it look for the end of the gzip streams to begin appending.  gzopen
-   will simply append a gzip stream to the existing file.
-
-     gzopen can be used to read a file which is not in gzip format; in this
-   case gzread will directly read from the file without decompression.  When
-   reading, this will be detected automatically by looking for the magic two-
-   byte gzip header.
-
-     gzopen returns NULL if the file could not be opened, if there was
-   insufficient memory to allocate the gzFile state, or if an invalid mode was
-   specified (an 'r', 'w', or 'a' was not provided, or '+' was provided).
-   errno can be checked to determine if the reason gzopen failed was that the
-   file could not be opened.
-*/
-
-ZEXTERN gzFile ZEXPORT gzdopen OF((int fd, const char *mode));
-/*
-     gzdopen associates a gzFile with the file descriptor fd.  File descriptors
-   are obtained from calls like open, dup, creat, pipe or fileno (if the file
-   has been previously opened with fopen).  The mode parameter is as in gzopen.
-
-     The next call of gzclose on the returned gzFile will also close the file
-   descriptor fd, just like fclose(fdopen(fd, mode)) closes the file descriptor
-   fd.  If you want to keep fd open, use fd = dup(fd_keep); gz = gzdopen(fd,
-   mode);.  The duplicated descriptor should be saved to avoid a leak, since
-   gzdopen does not close fd if it fails.  If you are using fileno() to get the
-   file descriptor from a FILE *, then you will have to use dup() to avoid
-   double-close()ing the file descriptor.  Both gzclose() and fclose() will
-   close the associated file descriptor, so they need to have different file
-   descriptors.
-
-     gzdopen returns NULL if there was insufficient memory to allocate the
-   gzFile state, if an invalid mode was specified (an 'r', 'w', or 'a' was not
-   provided, or '+' was provided), or if fd is -1.  The file descriptor is not
-   used until the next gz* read, write, seek, or close operation, so gzdopen
-   will not detect if fd is invalid (unless fd is -1).
-*/
-
-ZEXTERN int ZEXPORT gzbuffer OF((gzFile file, unsigned size));
-/*
-     Set the internal buffer size used by this library's functions.  The
-   default buffer size is 8192 bytes.  This function must be called after
-   gzopen() or gzdopen(), and before any other calls that read or write the
-   file.  The buffer memory allocation is always deferred to the first read or
-   write.  Two buffers are allocated, either both of the specified size when
-   writing, or one of the specified size and the other twice that size when
-   reading.  A larger buffer size of, for example, 64K or 128K bytes will
-   noticeably increase the speed of decompression (reading).
-
-     The new buffer size also affects the maximum length for gzprintf().
-
-     gzbuffer() returns 0 on success, or -1 on failure, such as being called
-   too late.
-*/
-
-ZEXTERN int ZEXPORT gzsetparams OF((gzFile file, int level, int strategy));
-/*
-     Dynamically update the compression level or strategy.  See the description
-   of deflateInit2 for the meaning of these parameters.
-
-     gzsetparams returns Z_OK if success, or Z_STREAM_ERROR if the file was not
-   opened for writing.
-*/
-
-ZEXTERN int ZEXPORT gzread OF((gzFile file, voidp buf, unsigned len));
-/*
-     Reads the given number of uncompressed bytes from the compressed file.  If
-   the input file is not in gzip format, gzread copies the given number of
-   bytes into the buffer directly from the file.
-
-     After reaching the end of a gzip stream in the input, gzread will continue
-   to read, looking for another gzip stream.  Any number of gzip streams may be
-   concatenated in the input file, and will all be decompressed by gzread().
-   If something other than a gzip stream is encountered after a gzip stream,
-   that remaining trailing garbage is ignored (and no error is returned).
-
-     gzread can be used to read a gzip file that is being concurrently written.
-   Upon reaching the end of the input, gzread will return with the available
-   data.  If the error code returned by gzerror is Z_OK or Z_BUF_ERROR, then
-   gzclearerr can be used to clear the end of file indicator in order to permit
-   gzread to be tried again.  Z_OK indicates that a gzip stream was completed
-   on the last gzread.  Z_BUF_ERROR indicates that the input file ended in the
-   middle of a gzip stream.  Note that gzread does not return -1 in the event
-   of an incomplete gzip stream.  This error is deferred until gzclose(), which
-   will return Z_BUF_ERROR if the last gzread ended in the middle of a gzip
-   stream.  Alternatively, gzerror can be used before gzclose to detect this
-   case.
-
-     gzread returns the number of uncompressed bytes actually read, less than
-   len for end of file, or -1 for error.
-*/
-
-ZEXTERN int ZEXPORT gzwrite OF((gzFile file,
-                                voidpc buf, unsigned len));
-/*
-     Writes the given number of uncompressed bytes into the compressed file.
-   gzwrite returns the number of uncompressed bytes written or 0 in case of
-   error.
-*/
-
-ZEXTERN int ZEXPORTVA gzprintf Z_ARG((gzFile file, const char *format, ...));
-/*
-     Converts, formats, and writes the arguments to the compressed file under
-   control of the format string, as in fprintf.  gzprintf returns the number of
-   uncompressed bytes actually written, or 0 in case of error.  The number of
-   uncompressed bytes written is limited to 8191, or one less than the buffer
-   size given to gzbuffer().  The caller should assure that this limit is not
-   exceeded.  If it is exceeded, then gzprintf() will return an error (0) with
-   nothing written.  In this case, there may also be a buffer overflow with
-   unpredictable consequences, which is possible only if zlib was compiled with
-   the insecure functions sprintf() or vsprintf() because the secure snprintf()
-   or vsnprintf() functions were not available.  This can be determined using
-   zlibCompileFlags().
-*/
-
-ZEXTERN int ZEXPORT gzputs OF((gzFile file, const char *s));
-/*
-     Writes the given null-terminated string to the compressed file, excluding
-   the terminating null character.
-
-     gzputs returns the number of characters written, or -1 in case of error.
-*/
-
-ZEXTERN char * ZEXPORT gzgets OF((gzFile file, char *buf, int len));
-/*
-     Reads bytes from the compressed file until len-1 characters are read, or a
-   newline character is read and transferred to buf, or an end-of-file
-   condition is encountered.  If any characters are read or if len == 1, the
-   string is terminated with a null character.  If no characters are read due
-   to an end-of-file or len < 1, then the buffer is left untouched.
-
-     gzgets returns buf which is a null-terminated string, or it returns NULL
-   for end-of-file or in case of error.  If there was an error, the contents at
-   buf are indeterminate.
-*/
-
-ZEXTERN int ZEXPORT gzputc OF((gzFile file, int c));
-/*
-     Writes c, converted to an unsigned char, into the compressed file.  gzputc
-   returns the value that was written, or -1 in case of error.
-*/
-
-ZEXTERN int ZEXPORT gzgetc OF((gzFile file));
-/*
-     Reads one byte from the compressed file.  gzgetc returns this byte or -1
-   in case of end of file or error.  This is implemented as a macro for speed.
-   As such, it does not do all of the checking the other functions do.  I.e.
-   it does not check to see if file is NULL, nor whether the structure file
-   points to has been clobbered or not.
-*/
-
-ZEXTERN int ZEXPORT gzungetc OF((int c, gzFile file));
-/*
-     Push one character back onto the stream to be read as the first character
-   on the next read.  At least one character of push-back is allowed.
-   gzungetc() returns the character pushed, or -1 on failure.  gzungetc() will
-   fail if c is -1, and may fail if a character has been pushed but not read
-   yet.  If gzungetc is used immediately after gzopen or gzdopen, at least the
-   output buffer size of pushed characters is allowed.  (See gzbuffer above.)
-   The pushed character will be discarded if the stream is repositioned with
-   gzseek() or gzrewind().
-*/
-
-ZEXTERN int ZEXPORT gzflush OF((gzFile file, int flush));
-/*
-     Flushes all pending output into the compressed file.  The parameter flush
-   is as in the deflate() function.  The return value is the zlib error number
-   (see function gzerror below).  gzflush is only permitted when writing.
-
-     If the flush parameter is Z_FINISH, the remaining data is written and the
-   gzip stream is completed in the output.  If gzwrite() is called again, a new
-   gzip stream will be started in the output.  gzread() is able to read such
-   concatented gzip streams.
-
-     gzflush should be called only when strictly necessary because it will
-   degrade compression if called too often.
-*/
-
-/*
-ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile file,
-                                   z_off_t offset, int whence));
-
-     Sets the starting position for the next gzread or gzwrite on the given
-   compressed file.  The offset represents a number of bytes in the
-   uncompressed data stream.  The whence parameter is defined as in lseek(2);
-   the value SEEK_END is not supported.
-
-     If the file is opened for reading, this function is emulated but can be
-   extremely slow.  If the file is opened for writing, only forward seeks are
-   supported; gzseek then compresses a sequence of zeroes up to the new
-   starting position.
-
-     gzseek returns the resulting offset location as measured in bytes from
-   the beginning of the uncompressed stream, or -1 in case of error, in
-   particular if the file is opened for writing and the new starting position
-   would be before the current position.
-*/
-
-ZEXTERN int ZEXPORT    gzrewind OF((gzFile file));
-/*
-     Rewinds the given file. This function is supported only for reading.
-
-     gzrewind(file) is equivalent to (int)gzseek(file, 0L, SEEK_SET)
-*/
-
-/*
-ZEXTERN z_off_t ZEXPORT    gztell OF((gzFile file));
-
-     Returns the starting position for the next gzread or gzwrite on the given
-   compressed file.  This position represents a number of bytes in the
-   uncompressed data stream, and is zero when starting, even if appending or
-   reading a gzip stream from the middle of a file using gzdopen().
-
-     gztell(file) is equivalent to gzseek(file, 0L, SEEK_CUR)
-*/
-
-/*
-ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile file));
-
-     Returns the current offset in the file being read or written.  This offset
-   includes the count of bytes that precede the gzip stream, for example when
-   appending or when using gzdopen() for reading.  When reading, the offset
-   does not include as yet unused buffered input.  This information can be used
-   for a progress indicator.  On error, gzoffset() returns -1.
-*/
-
-ZEXTERN int ZEXPORT gzeof OF((gzFile file));
-/*
-     Returns true (1) if the end-of-file indicator has been set while reading,
-   false (0) otherwise.  Note that the end-of-file indicator is set only if the
-   read tried to go past the end of the input, but came up short.  Therefore,
-   just like feof(), gzeof() may return false even if there is no more data to
-   read, in the event that the last read request was for the exact number of
-   bytes remaining in the input file.  This will happen if the input file size
-   is an exact multiple of the buffer size.
-
-     If gzeof() returns true, then the read functions will return no more data,
-   unless the end-of-file indicator is reset by gzclearerr() and the input file
-   has grown since the previous end of file was detected.
-*/
-
-ZEXTERN int ZEXPORT gzdirect OF((gzFile file));
-/*
-     Returns true (1) if file is being copied directly while reading, or false
-   (0) if file is a gzip stream being decompressed.
-
-     If the input file is empty, gzdirect() will return true, since the input
-   does not contain a gzip stream.
-
-     If gzdirect() is used immediately after gzopen() or gzdopen() it will
-   cause buffers to be allocated to allow reading the file to determine if it
-   is a gzip file.  Therefore if gzbuffer() is used, it should be called before
-   gzdirect().
-
-     When writing, gzdirect() returns true (1) if transparent writing was
-   requested ("wT" for the gzopen() mode), or false (0) otherwise.  (Note:
-   gzdirect() is not needed when writing.  Transparent writing must be
-   explicitly requested, so the application already knows the answer.  When
-   linking statically, using gzdirect() will include all of the zlib code for
-   gzip file reading and decompression, which may not be desired.)
-*/
-
-ZEXTERN int ZEXPORT    gzclose OF((gzFile file));
-/*
-     Flushes all pending output if necessary, closes the compressed file and
-   deallocates the (de)compression state.  Note that once file is closed, you
-   cannot call gzerror with file, since its structures have been deallocated.
-   gzclose must not be called more than once on the same file, just as free
-   must not be called more than once on the same allocation.
-
-     gzclose will return Z_STREAM_ERROR if file is not valid, Z_ERRNO on a
-   file operation error, Z_MEM_ERROR if out of memory, Z_BUF_ERROR if the
-   last read ended in the middle of a gzip stream, or Z_OK on success.
-*/
-
-ZEXTERN int ZEXPORT gzclose_r OF((gzFile file));
-ZEXTERN int ZEXPORT gzclose_w OF((gzFile file));
-/*
-     Same as gzclose(), but gzclose_r() is only for use when reading, and
-   gzclose_w() is only for use when writing or appending.  The advantage to
-   using these instead of gzclose() is that they avoid linking in zlib
-   compression or decompression code that is not used when only reading or only
-   writing respectively.  If gzclose() is used, then both compression and
-   decompression code will be included the application when linking to a static
-   zlib library.
-*/
-
-ZEXTERN const char * ZEXPORT gzerror OF((gzFile file, int *errnum));
-/*
-     Returns the error message for the last error which occurred on the given
-   compressed file.  errnum is set to zlib error number.  If an error occurred
-   in the file system and not in the compression library, errnum is set to
-   Z_ERRNO and the application may consult errno to get the exact error code.
-
-     The application must not modify the returned string.  Future calls to
-   this function may invalidate the previously returned string.  If file is
-   closed, then the string previously returned by gzerror will no longer be
-   available.
-
-     gzerror() should be used to distinguish errors from end-of-file for those
-   functions above that do not distinguish those cases in their return values.
-*/
-
-ZEXTERN void ZEXPORT gzclearerr OF((gzFile file));
-/*
-     Clears the error and end-of-file flags for file.  This is analogous to the
-   clearerr() function in stdio.  This is useful for continuing to read a gzip
-   file that is being written concurrently.
-*/
-
-#endif /* !Z_SOLO */
-
-                        /* checksum functions */
-
-/*
-     These functions are not related to compression but are exported
-   anyway because they might be useful in applications using the compression
-   library.
-*/
-
-ZEXTERN uLong ZEXPORT adler32 OF((uLong adler, const Bytef *buf, uInt len));
-/*
-     Update a running Adler-32 checksum with the bytes buf[0..len-1] and
-   return the updated checksum.  If buf is Z_NULL, this function returns the
-   required initial value for the checksum.
-
-     An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
-   much faster.
-
-   Usage example:
-
-     uLong adler = adler32(0L, Z_NULL, 0);
-
-     while (read_buffer(buffer, length) != EOF) {
-       adler = adler32(adler, buffer, length);
-     }
-     if (adler != original_adler) error();
-*/
-
-/*
-ZEXTERN uLong ZEXPORT adler32_combine OF((uLong adler1, uLong adler2,
-                                          z_off_t len2));
-
-     Combine two Adler-32 checksums into one.  For two sequences of bytes, seq1
-   and seq2 with lengths len1 and len2, Adler-32 checksums were calculated for
-   each, adler1 and adler2.  adler32_combine() returns the Adler-32 checksum of
-   seq1 and seq2 concatenated, requiring only adler1, adler2, and len2.  Note
-   that the z_off_t type (like off_t) is a signed integer.  If len2 is
-   negative, the result has no meaning or utility.
-*/
-
-ZEXTERN uLong ZEXPORT crc32   OF((uLong crc, const Bytef *buf, uInt len));
-/*
-     Update a running CRC-32 with the bytes buf[0..len-1] and return the
-   updated CRC-32.  If buf is Z_NULL, this function returns the required
-   initial value for the crc.  Pre- and post-conditioning (one's complement) is
-   performed within this function so it shouldn't be done by the application.
-
-   Usage example:
-
-     uLong crc = crc32(0L, Z_NULL, 0);
-
-     while (read_buffer(buffer, length) != EOF) {
-       crc = crc32(crc, buffer, length);
-     }
-     if (crc != original_crc) error();
-*/
-
-/*
-ZEXTERN uLong ZEXPORT crc32_combine OF((uLong crc1, uLong crc2, z_off_t len2));
-
-     Combine two CRC-32 check values into one.  For two sequences of bytes,
-   seq1 and seq2 with lengths len1 and len2, CRC-32 check values were
-   calculated for each, crc1 and crc2.  crc32_combine() returns the CRC-32
-   check value of seq1 and seq2 concatenated, requiring only crc1, crc2, and
-   len2.
-*/
-
-
-                        /* various hacks, don't look :) */
-
-/* deflateInit and inflateInit are macros to allow checking the zlib version
- * and the compiler's view of z_stream:
- */
-ZEXTERN int ZEXPORT deflateInit_ OF((z_streamp strm, int level,
-                                     const char *version, int stream_size));
-ZEXTERN int ZEXPORT inflateInit_ OF((z_streamp strm,
-                                     const char *version, int stream_size));
-ZEXTERN int ZEXPORT deflateInit2_ OF((z_streamp strm, int  level, int  method,
-                                      int windowBits, int memLevel,
-                                      int strategy, const char *version,
-                                      int stream_size));
-ZEXTERN int ZEXPORT inflateInit2_ OF((z_streamp strm, int  windowBits,
-                                      const char *version, int stream_size));
-ZEXTERN int ZEXPORT inflateBackInit_ OF((z_streamp strm, int windowBits,
-                                         unsigned char FAR *window,
-                                         const char *version,
-                                         int stream_size));
-#define deflateInit(strm, level) \
-        deflateInit_((strm), (level), ZLIB_VERSION, (int)sizeof(z_stream))
-#define inflateInit(strm) \
-        inflateInit_((strm), ZLIB_VERSION, (int)sizeof(z_stream))
-#define deflateInit2(strm, level, method, windowBits, memLevel, strategy) \
-        deflateInit2_((strm),(level),(method),(windowBits),(memLevel),\
-                      (strategy), ZLIB_VERSION, (int)sizeof(z_stream))
-#define inflateInit2(strm, windowBits) \
-        inflateInit2_((strm), (windowBits), ZLIB_VERSION, \
-                      (int)sizeof(z_stream))
-#define inflateBackInit(strm, windowBits, window) \
-        inflateBackInit_((strm), (windowBits), (window), \
-                      ZLIB_VERSION, (int)sizeof(z_stream))
-
-#ifndef Z_SOLO
-
-/* gzgetc() macro and its supporting function and exposed data structure.  Note
- * that the real internal state is much larger than the exposed structure.
- * This abbreviated structure exposes just enough for the gzgetc() macro.  The
- * user should not mess with these exposed elements, since their names or
- * behavior could change in the future, perhaps even capriciously.  They can
- * only be used by the gzgetc() macro.  You have been warned.
- */
-struct gzFile_s {
-    unsigned have;
-    unsigned char *next;
-    z_off64_t pos;
-};
-ZEXTERN int ZEXPORT gzgetc_ OF((gzFile file));  /* backward compatibility */
-#ifdef Z_PREFIX_SET
-#  undef z_gzgetc
-#  define z_gzgetc(g) \
-          ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g))
-#else
-#  define gzgetc(g) \
-          ((g)->have ? ((g)->have--, (g)->pos++, *((g)->next)++) : gzgetc(g))
-#endif
-
-/* provide 64-bit offset functions if _LARGEFILE64_SOURCE defined, and/or
- * change the regular functions to 64 bits if _FILE_OFFSET_BITS is 64 (if
- * both are true, the application gets the *64 functions, and the regular
- * functions are changed to 64 bits) -- in case these are set on systems
- * without large file support, _LFS64_LARGEFILE must also be true
- */
-#ifdef Z_LARGE64
-   ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
-   ZEXTERN z_off64_t ZEXPORT gzseek64 OF((gzFile, z_off64_t, int));
-   ZEXTERN z_off64_t ZEXPORT gztell64 OF((gzFile));
-   ZEXTERN z_off64_t ZEXPORT gzoffset64 OF((gzFile));
-   ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off64_t));
-   ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off64_t));
-#endif
-
-#if !defined(ZLIB_INTERNAL) && defined(Z_WANT64)
-#  ifdef Z_PREFIX_SET
-#    define z_gzopen z_gzopen64
-#    define z_gzseek z_gzseek64
-#    define z_gztell z_gztell64
-#    define z_gzoffset z_gzoffset64
-#    define z_adler32_combine z_adler32_combine64
-#    define z_crc32_combine z_crc32_combine64
-#  else
-#    define gzopen gzopen64
-#    define gzseek gzseek64
-#    define gztell gztell64
-#    define gzoffset gzoffset64
-#    define adler32_combine adler32_combine64
-#    define crc32_combine crc32_combine64
-#  endif
-#  ifndef Z_LARGE64
-     ZEXTERN gzFile ZEXPORT gzopen64 OF((const char *, const char *));
-     ZEXTERN z_off_t ZEXPORT gzseek64 OF((gzFile, z_off_t, int));
-     ZEXTERN z_off_t ZEXPORT gztell64 OF((gzFile));
-     ZEXTERN z_off_t ZEXPORT gzoffset64 OF((gzFile));
-     ZEXTERN uLong ZEXPORT adler32_combine64 OF((uLong, uLong, z_off_t));
-     ZEXTERN uLong ZEXPORT crc32_combine64 OF((uLong, uLong, z_off_t));
-#  endif
-#else
-   ZEXTERN gzFile ZEXPORT gzopen OF((const char *, const char *));
-   ZEXTERN z_off_t ZEXPORT gzseek OF((gzFile, z_off_t, int));
-   ZEXTERN z_off_t ZEXPORT gztell OF((gzFile));
-   ZEXTERN z_off_t ZEXPORT gzoffset OF((gzFile));
-   ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
-   ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
-#endif
-
-#else /* Z_SOLO */
-
-   ZEXTERN uLong ZEXPORT adler32_combine OF((uLong, uLong, z_off_t));
-   ZEXTERN uLong ZEXPORT crc32_combine OF((uLong, uLong, z_off_t));
-
-#endif /* !Z_SOLO */
-
-/* hack for buggy compilers */
-#if !defined(ZUTIL_H) && !defined(NO_DUMMY_DECL)
-    struct internal_state {int dummy;};
-#endif
-
-/* undocumented functions */
-ZEXTERN const char   * ZEXPORT zError           OF((int));
-ZEXTERN int            ZEXPORT inflateSyncPoint OF((z_streamp));
-ZEXTERN const z_crc_t FAR * ZEXPORT get_crc_table    OF((void));
-ZEXTERN int            ZEXPORT inflateUndermine OF((z_streamp, int));
-ZEXTERN int            ZEXPORT inflateResetKeep OF((z_streamp));
-ZEXTERN int            ZEXPORT deflateResetKeep OF((z_streamp));
-#if defined(_WIN32) && !defined(Z_SOLO)
-ZEXTERN gzFile         ZEXPORT gzopen_w OF((const wchar_t *path,
-                                            const char *mode));
-#endif
-#if defined(STDC) || defined(Z_HAVE_STDARG_H)
-#  ifndef Z_SOLO
-ZEXTERN int            ZEXPORTVA gzvprintf Z_ARG((gzFile file,
-                                                  const char *format,
-                                                  va_list va));
-#  endif
-#endif
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* ZLIB_H */