jdk/src/share/native/com/sun/java/util/jar/pack/unpack.cpp
changeset 2 90ce3da70b43
child 2602 5b394a4b6ce1
child 1082 53833ff90c45
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/native/com/sun/java/util/jar/pack/unpack.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,4721 @@
+/*
+ * Copyright 2001-2005 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Sun designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Sun in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ */
+
+// -*- C++ -*-
+// Program for unpacking specially compressed Java packages.
+// John R. Rose
+
+#include <sys/types.h>
+
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdarg.h>
+
+#include <limits.h>
+#include <time.h>
+
+
+
+
+#include "defines.h"
+#include "bytes.h"
+#include "utils.h"
+#include "coding.h"
+#include "bands.h"
+
+#include "constants.h"
+
+#include "zip.h"
+
+#include "unpack.h"
+
+
+// tags, in canonical order:
+static const byte TAGS_IN_ORDER[] = {
+  CONSTANT_Utf8,
+  CONSTANT_Integer,
+  CONSTANT_Float,
+  CONSTANT_Long,
+  CONSTANT_Double,
+  CONSTANT_String,
+  CONSTANT_Class,
+  CONSTANT_Signature,
+  CONSTANT_NameandType,
+  CONSTANT_Fieldref,
+  CONSTANT_Methodref,
+  CONSTANT_InterfaceMethodref
+};
+#define N_TAGS_IN_ORDER (sizeof TAGS_IN_ORDER)
+
+#ifndef PRODUCT
+static const char* TAG_NAME[] = {
+  "*None",
+  "Utf8",
+  "*Unicode",
+  "Integer",
+  "Float",
+  "Long",
+  "Double",
+  "Class",
+  "String",
+  "Fieldref",
+  "Methodref",
+  "InterfaceMethodref",
+  "NameandType",
+  "*Signature",
+  0
+};
+
+static const char* ATTR_CONTEXT_NAME[] = {  // match ATTR_CONTEXT_NAME, etc.
+  "class", "field", "method", "code"
+};
+
+#else
+
+#define ATTR_CONTEXT_NAME ((const char**)null)
+
+#endif
+
+
+// REQUESTED must be -2 for u2 and REQUESTED_LDC must be -1 for u1
+enum { NOT_REQUESTED = 0, REQUESTED = -2, REQUESTED_LDC = -1 };
+
+#define NO_INORD ((uint)-1)
+
+struct entry {
+  byte tag;
+
+  #if 0
+  byte bits;
+  enum {
+    //EB_EXTRA = 1,
+    EB_SUPER = 2
+  };
+  #endif
+  unsigned short nrefs;  // pack w/ tag
+
+  int  outputIndex;
+  uint inord;   // &cp.entries[cp.tag_base[this->tag]+this->inord] == this
+
+  entry* *refs;
+
+  // put last to pack best
+  union {
+    bytes b;
+    int i;
+    jlong l;
+  } value;
+
+  void requestOutputIndex(cpool& cp, int req = REQUESTED);
+  int getOutputIndex() {
+    assert(outputIndex > NOT_REQUESTED);
+    return outputIndex;
+  }
+
+  entry* ref(int refnum) {
+    assert((uint)refnum < nrefs);
+    return refs[refnum];
+  }
+
+  const char* utf8String() {
+    assert(tagMatches(CONSTANT_Utf8));
+    assert(value.b.len == strlen((const char*)value.b.ptr));
+    return (const char*)value.b.ptr;
+  }
+
+  entry* className() {
+    assert(tagMatches(CONSTANT_Class));
+    return ref(0);
+  }
+
+  entry* memberClass() {
+    assert(tagMatches(CONSTANT_Member));
+    return ref(0);
+  }
+
+  entry* memberDescr() {
+    assert(tagMatches(CONSTANT_Member));
+    return ref(1);
+  }
+
+  entry* descrName() {
+    assert(tagMatches(CONSTANT_NameandType));
+    return ref(0);
+  }
+
+  entry* descrType() {
+    assert(tagMatches(CONSTANT_NameandType));
+    return ref(1);
+  }
+
+  int typeSize();
+
+  bytes& asUtf8();
+  int    asInteger() { assert(tag == CONSTANT_Integer); return value.i; }
+
+  bool isUtf8(bytes& b) { return tagMatches(CONSTANT_Utf8) && value.b.equals(b); }
+
+  bool isDoubleWord() { return tag == CONSTANT_Double || tag == CONSTANT_Long; }
+
+  bool tagMatches(byte tag2) {
+    return (tag2 == tag)
+      || (tag2 == CONSTANT_Utf8 && tag == CONSTANT_Signature)
+      #ifndef PRODUCT
+      || (tag2 == CONSTANT_Literal
+          && tag >= CONSTANT_Integer && tag <= CONSTANT_String && tag != CONSTANT_Class)
+      || (tag2 == CONSTANT_Member
+          && tag >= CONSTANT_Fieldref && tag <= CONSTANT_InterfaceMethodref)
+      #endif
+      ;
+  }
+
+#ifdef PRODUCT
+  char* string() { return 0; }
+#else
+  char* string();  // see far below
+#endif
+};
+
+entry* cpindex::get(uint i) {
+  if (i >= len)
+    return null;
+  else if (base1 != null)
+    // primary index
+    return &base1[i];
+  else
+    // secondary index
+    return base2[i];
+}
+
+inline bytes& entry::asUtf8() {
+  assert(tagMatches(CONSTANT_Utf8));
+  return value.b;
+}
+
+int entry::typeSize() {
+  assert(tagMatches(CONSTANT_Utf8));
+  const char* sigp = (char*) value.b.ptr;
+  switch (*sigp) {
+  case '(': sigp++; break;  // skip opening '('
+  case 'D':
+  case 'J': return 2; // double field
+  default:  return 1; // field
+  }
+  int siglen = 0;
+  for (;;) {
+    int ch = *sigp++;
+    switch (ch) {
+    case 'D': case 'J':
+      siglen += 1;
+      break;
+    case '[':
+      // Skip rest of array info.
+      while (ch == '[') { ch = *sigp++; }
+      if (ch != 'L')  break;
+      // else fall through
+    case 'L':
+      sigp = strchr(sigp, ';');
+      if (sigp == null) {
+          unpack_abort("bad data");
+          return 0;
+      }
+      sigp += 1;
+      break;
+    case ')':  // closing ')'
+      return siglen;
+    }
+    siglen += 1;
+  }
+}
+
+inline cpindex* cpool::getFieldIndex(entry* classRef) {
+  assert(classRef->tagMatches(CONSTANT_Class));
+  assert((uint)classRef->inord < tag_count[CONSTANT_Class]);
+  return &member_indexes[classRef->inord*2+0];
+}
+inline cpindex* cpool::getMethodIndex(entry* classRef) {
+  assert(classRef->tagMatches(CONSTANT_Class));
+  assert((uint)classRef->inord < tag_count[CONSTANT_Class]);
+  return &member_indexes[classRef->inord*2+1];
+}
+
+struct inner_class {
+  entry* inner;
+  entry* outer;
+  entry* name;
+  int    flags;
+  inner_class* next_sibling;
+  bool   requested;
+};
+
+// Here is where everything gets deallocated:
+void unpacker::free() {
+  int i;
+  assert(jniobj == null); // caller resp.
+  assert(infileptr == null);  // caller resp.
+  if (jarout != null)  jarout->reset();
+  if (gzin != null)    { gzin->free(); gzin = null; }
+  if (free_input)  input.free();
+  // free everybody ever allocated with U_NEW or (recently) with T_NEW
+  assert(smallbuf.base()  == null || mallocs.contains(smallbuf.base()));
+  assert(tsmallbuf.base() == null || tmallocs.contains(tsmallbuf.base()));
+  mallocs.freeAll();
+  tmallocs.freeAll();
+  smallbuf.init();
+  tsmallbuf.init();
+  bcimap.free();
+  class_fixup_type.free();
+  class_fixup_offset.free();
+  class_fixup_ref.free();
+  code_fixup_type.free();
+  code_fixup_offset.free();
+  code_fixup_source.free();
+  requested_ics.free();
+  cur_classfile_head.free();
+  cur_classfile_tail.free();
+  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
+    attr_defs[i].free();
+
+  // free CP state
+  cp.outputEntries.free();
+  for (i = 0; i < CONSTANT_Limit; i++)
+    cp.tag_extras[i].free();
+}
+
+// input handling
+// Attempts to advance rplimit so that (rplimit-rp) is at least 'more'.
+// Will eagerly read ahead by larger chunks, if possible.
+// Returns false if (rplimit-rp) is not at least 'more',
+// unless rplimit hits input.limit().
+bool unpacker::ensure_input(jlong more) {
+  julong want = more - input_remaining();
+  if ((jlong)want <= 0)          return true;  // it's already in the buffer
+  if (rplimit == input.limit())  return true;  // not expecting any more
+
+  if (read_input_fn == null) {
+    // assume it is already all there
+    bytes_read += input.limit() - rplimit;
+    rplimit = input.limit();
+    return true;
+  }
+  CHECK_0;
+
+  julong remaining = (input.limit() - rplimit);  // how much left to read?
+  byte* rpgoal = (want >= remaining)? input.limit(): rplimit + (size_t)want;
+  enum { CHUNK_SIZE = (1<<14) };
+  julong fetch = want;
+  if (fetch < CHUNK_SIZE)
+    fetch = CHUNK_SIZE;
+  if (fetch > remaining*3/4)
+    fetch = remaining;
+  // Try to fetch at least "more" bytes.
+  while ((jlong)fetch > 0) {
+    jlong nr = (*read_input_fn)(this, rplimit, fetch, remaining);
+    if (nr <= 0) {
+      return (rplimit >= rpgoal);
+    }
+    remaining -= nr;
+    rplimit += nr;
+    fetch -= nr;
+    bytes_read += nr;
+    assert(remaining == (input.limit() - rplimit));
+  }
+  return true;
+}
+
+// output handling
+
+fillbytes* unpacker::close_output(fillbytes* which) {
+  assert(wp != null);
+  if (which == null) {
+    if (wpbase == cur_classfile_head.base()) {
+      which = &cur_classfile_head;
+    } else {
+      which = &cur_classfile_tail;
+    }
+  }
+  assert(wpbase  == which->base());
+  assert(wplimit == which->end());
+  which->setLimit(wp);
+  wp      = null;
+  wplimit = null;
+  //wpbase = null;
+  return which;
+}
+
+//maybe_inline
+void unpacker::ensure_put_space(size_t size) {
+  if (wp + size <= wplimit)  return;
+  // Determine which segment needs expanding.
+  fillbytes* which = close_output();
+  byte* wp0 = which->grow(size);
+  wpbase  = which->base();
+  wplimit = which->end();
+  wp = wp0;
+}
+
+maybe_inline
+byte* unpacker::put_space(size_t size) {
+  byte* wp0 = wp;
+  byte* wp1 = wp0 + size;
+  if (wp1 > wplimit) {
+    ensure_put_space(size);
+    wp0 = wp;
+    wp1 = wp0 + size;
+  }
+  wp = wp1;
+  return wp0;
+}
+
+maybe_inline
+void unpacker::putu2_at(byte* wp, int n) {
+  if (n != (unsigned short)n) {
+    unpack_abort(ERROR_OVERFLOW);
+    return;
+  }
+  wp[0] = (n) >> 8;
+  wp[1] = (n) >> 0;
+}
+
+maybe_inline
+void unpacker::putu4_at(byte* wp, int n) {
+  wp[0] = (n) >> 24;
+  wp[1] = (n) >> 16;
+  wp[2] = (n) >> 8;
+  wp[3] = (n) >> 0;
+}
+
+maybe_inline
+void unpacker::putu8_at(byte* wp, jlong n) {
+  putu4_at(wp+0, (int)((julong)n >> 32));
+  putu4_at(wp+4, (int)((julong)n >> 0));
+}
+
+maybe_inline
+void unpacker::putu2(int n) {
+  putu2_at(put_space(2), n);
+}
+
+maybe_inline
+void unpacker::putu4(int n) {
+  putu4_at(put_space(4), n);
+}
+
+maybe_inline
+void unpacker::putu8(jlong n) {
+  putu8_at(put_space(8), n);
+}
+
+maybe_inline
+int unpacker::putref_index(entry* e, int size) {
+  if (e == null)
+    return 0;
+  else if (e->outputIndex > NOT_REQUESTED)
+    return e->outputIndex;
+  else if (e->tag == CONSTANT_Signature)
+    return putref_index(e->ref(0), size);
+  else {
+    e->requestOutputIndex(cp, -size);
+    // Later on we'll fix the bits.
+    class_fixup_type.addByte(size);
+    class_fixup_offset.add(wpoffset());
+    class_fixup_ref.add(e);
+    return !assert(1) ? 0 : 0x20+size;  // 0x22 is easy to eyeball
+  }
+}
+
+maybe_inline
+void unpacker::putref(entry* e) {
+  int oidx = putref_index(e, 2);
+  putu2_at(put_space(2), oidx);
+}
+
+maybe_inline
+void unpacker::putu1ref(entry* e) {
+  int oidx = putref_index(e, 1);
+  putu1_at(put_space(1), oidx);
+}
+
+
+static int total_cp_size[] = {0, 0};
+static int largest_cp_ref[] = {0, 0};
+static int hash_probes[] = {0, 0};
+
+// Allocation of small and large blocks.
+
+enum { CHUNK = (1 << 14), SMALL = (1 << 9) };
+
+// Call malloc.  Try to combine small blocks and free much later.
+void* unpacker::alloc_heap(size_t size, bool smallOK, bool temp) {
+  CHECK_0;
+  if (!smallOK || size > SMALL) {
+    void* res = must_malloc(size);
+    (temp ? &tmallocs : &mallocs)->add(res);
+    return res;
+  }
+  fillbytes& xsmallbuf = *(temp ? &tsmallbuf : &smallbuf);
+  if (!xsmallbuf.canAppend(size+1)) {
+    xsmallbuf.init(CHUNK);
+    (temp ? &tmallocs : &mallocs)->add(xsmallbuf.base());
+  }
+  int growBy = size;
+  growBy += -growBy & 7;  // round up mod 8
+  return xsmallbuf.grow(growBy);
+}
+
+maybe_inline
+void unpacker::saveTo(bytes& b, byte* ptr, size_t len) {
+  b.ptr = U_NEW(byte, len+1);
+  if (aborting()) {
+    b.len = 0;
+    return;
+  }
+  b.len = len;
+  b.copyFrom(ptr, len);
+}
+
+// Read up through band_headers.
+// Do the archive_size dance to set the size of the input mega-buffer.
+void unpacker::read_file_header() {
+  // Read file header to determine file type and total size.
+  enum {
+    MAGIC_BYTES = 4,
+    AH_LENGTH_0 = 3,  //minver, majver, options are outside of archive_size
+    AH_LENGTH   = 26, //maximum archive header length (w/ all fields)
+    // Length contributions from optional header fields:
+    AH_FILE_HEADER_LEN = 5, // sizehi/lo/next/modtime/files
+    AH_CP_NUMBER_LEN = 4,  // int/float/long/double
+    AH_SPECIAL_FORMAT_LEN = 2, // layouts/band-headers
+    AH_LENGTH_MIN = AH_LENGTH
+        -(AH_FILE_HEADER_LEN+AH_SPECIAL_FORMAT_LEN+AH_CP_NUMBER_LEN),
+    FIRST_READ  = MAGIC_BYTES + AH_LENGTH_MIN
+  };
+  bool foreign_buf = (read_input_fn == null);
+  byte initbuf[FIRST_READ + C_SLOP + 200];  // 200 is for JAR I/O
+  if (foreign_buf) {
+    // inbytes is all there is
+    input.set(inbytes);
+    rp      = input.base();
+    rplimit = input.limit();
+  } else {
+    // inbytes, if not empty, contains some read-ahead we must use first
+    // ensure_input will take care of copying it into initbuf,
+    // then querying read_input_fn for any additional data needed.
+    // However, the caller must assume that we use up all of inbytes.
+    // There is no way to tell the caller that we used only part of them.
+    // Therefore, the caller must use only a bare minimum of read-ahead.
+    if (inbytes.len > FIRST_READ) {
+      abort("too much pushback");
+      return;
+    }
+    input.set(initbuf, sizeof(initbuf));
+    input.b.clear();
+    input.b.copyFrom(inbytes);
+    rplimit = rp = input.base();
+    rplimit += inbytes.len;
+    bytes_read += inbytes.len;
+  }
+  // Read only 19 bytes, which is certain to contain #archive_size fields,
+  // but is certain not to overflow past the archive_header.
+  input.b.len = FIRST_READ;
+  if (!ensure_input(FIRST_READ))
+    abort("EOF reading archive magic number");
+
+  if (rp[0] == 'P' && rp[1] == 'K') {
+#ifdef UNPACK_JNI
+    // Java driver must handle this case before we get this far.
+    abort("encountered a JAR header in unpacker");
+#else
+    // In the Unix-style program, we simply simulate a copy command.
+    // Copy until EOF; assume the JAR file is the last segment.
+    fprintf(errstrm, "Copy-mode.\n");
+    for (;;) {
+      jarout->write_data(rp, input_remaining());
+      if (foreign_buf)
+        break;  // one-time use of a passed in buffer
+      if (input.size() < CHUNK) {
+        // Get some breathing room.
+        input.set(U_NEW(byte, (size_t) CHUNK + C_SLOP), (size_t) CHUNK);
+        CHECK;
+      }
+      rp = rplimit = input.base();
+      if (!ensure_input(1))
+        break;
+    }
+    jarout->closeJarFile(false);
+#endif
+    return;
+  }
+
+  // Read the magic number.
+  magic = 0;
+  for (int i1 = 0; i1 < sizeof(magic); i1++) {
+    magic <<= 8;
+    magic += (*rp++ & 0xFF);
+  }
+
+  // Read the first 3 values from the header.
+  value_stream hdr;
+  int          hdrVals = 0;
+  int          hdrValsSkipped = 0;  // debug only
+  hdr.init(rp, rplimit, UNSIGNED5_spec);
+  minver = hdr.getInt();
+  majver = hdr.getInt();
+  hdrVals += 2;
+
+  if (magic != JAVA_PACKAGE_MAGIC ||
+      (majver != JAVA5_PACKAGE_MAJOR_VERSION  &&
+       majver != JAVA6_PACKAGE_MAJOR_VERSION) ||
+      (minver != JAVA5_PACKAGE_MINOR_VERSION  &&
+       minver != JAVA6_PACKAGE_MINOR_VERSION)) {
+    char message[200];
+    sprintf(message, "@" ERROR_FORMAT ": magic/ver = "
+            "%08X/%d.%d should be %08X/%d.%d OR %08X/%d.%d\n",
+            magic, majver, minver,
+            JAVA_PACKAGE_MAGIC, JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION,
+            JAVA_PACKAGE_MAGIC, JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION);
+    abort(message);
+  }
+  CHECK;
+
+  archive_options = hdr.getInt();
+  hdrVals += 1;
+  assert(hdrVals == AH_LENGTH_0);  // first three fields only
+
+#define ORBIT(bit) |(bit)
+  int OPTION_LIMIT = (0 ARCHIVE_BIT_DO(ORBIT));
+#undef ORBIT
+  if ((archive_options & ~OPTION_LIMIT) != 0) {
+    fprintf(errstrm, "Warning: Illegal archive options 0x%x\n",
+            archive_options);
+    // Do not abort.  If the format really changes, version numbers will bump.
+    //abort("illegal archive options");
+  }
+
+  if ((archive_options & AO_HAVE_FILE_HEADERS) != 0) {
+    uint hi = hdr.getInt();
+    uint lo = hdr.getInt();
+    archive_size = band::makeLong(hi, lo);
+    hdrVals += 2;
+  } else {
+    hdrValsSkipped += 2;
+  }
+
+  if (archive_size != (size_t)archive_size) {
+    // Silly size specified.
+    abort("archive too large");
+    return;
+  }
+
+  // Now we can size the whole archive.
+  // Read everything else into a mega-buffer.
+  rp = hdr.rp;
+  int header_size_0 = (rp - input.base()); // used-up header (4byte + 3int)
+  int header_size_1 = (rplimit - rp);      // buffered unused initial fragment
+  int header_size   = header_size_0+header_size_1;
+  unsized_bytes_read = header_size_0;
+  CHECK;
+  if (foreign_buf) {
+    if (archive_size > header_size_1) {
+      abort("EOF reading fixed input buffer");
+      return;
+    }
+  } else if (archive_size > 0) {
+    input.set(U_NEW(byte, (size_t) header_size_0 + archive_size + C_SLOP),
+              (size_t) header_size_0 + archive_size);
+    assert(input.limit()[0] == 0);
+    // Move all the bytes we read initially into the real buffer.
+    input.b.copyFrom(initbuf, header_size);
+    rp      = input.b.ptr + header_size_0;
+    rplimit = input.b.ptr + header_size;
+  } else {
+    // It's more complicated and painful.
+    // A zero archive_size means that we must read until EOF.
+    assert(archive_size == 0);
+    input.init(CHUNK*2);
+    CHECK;
+    input.b.len = input.allocated;
+    rp = rplimit = input.base();
+    // Set up input buffer as if we already read the header:
+    input.b.copyFrom(initbuf, header_size);
+    rplimit += header_size;
+    while (ensure_input(input.limit() - rp)) {
+      size_t dataSoFar = input_remaining();
+      size_t nextSize = dataSoFar + CHUNK;
+      input.ensureSize(nextSize);
+      CHECK;
+      input.b.len = input.allocated;
+      rp = rplimit = input.base();
+      rplimit += dataSoFar;
+    }
+    size_t dataSize = (rplimit - input.base());
+    input.b.len = dataSize;
+    input.grow(C_SLOP);
+    CHECK;
+    free_input = true;  // free it later
+    input.b.len = dataSize;
+    assert(input.limit()[0] == 0);
+    rp = rplimit = input.base();
+    rplimit += dataSize;
+    rp += header_size_0;  // already scanned these bytes...
+  }
+  live_input = true;    // mark as "do not reuse"
+  if (aborting()) {
+    abort("cannot allocate large input buffer for package file");
+    return;
+  }
+
+  // read the rest of the header fields
+  ensure_input((AH_LENGTH-AH_LENGTH_0) * B_MAX);
+  CHECK;
+  hdr.rp      = rp;
+  hdr.rplimit = rplimit;
+
+  if ((archive_options & AO_HAVE_FILE_HEADERS) != 0) {
+    archive_next_count = hdr.getInt();
+    archive_modtime = hdr.getInt();
+    file_count = hdr.getInt();
+    hdrVals += 3;
+  } else {
+    hdrValsSkipped += 3;
+  }
+
+  if ((archive_options & AO_HAVE_SPECIAL_FORMATS) != 0) {
+    band_headers_size = hdr.getInt();
+    attr_definition_count = hdr.getInt();
+    hdrVals += 2;
+  } else {
+    hdrValsSkipped += 2;
+  }
+
+  int cp_counts[N_TAGS_IN_ORDER];
+  for (int k = 0; k < N_TAGS_IN_ORDER; k++) {
+    if (!(archive_options & AO_HAVE_CP_NUMBERS)) {
+      switch (TAGS_IN_ORDER[k]) {
+      case CONSTANT_Integer:
+      case CONSTANT_Float:
+      case CONSTANT_Long:
+      case CONSTANT_Double:
+        cp_counts[k] = 0;
+        hdrValsSkipped += 1;
+        continue;
+      }
+    }
+    cp_counts[k] = hdr.getInt();
+    hdrVals += 1;
+  }
+
+  ic_count = hdr.getInt();
+  default_class_minver = hdr.getInt();
+  default_class_majver = hdr.getInt();
+  class_count = hdr.getInt();
+  hdrVals += 4;
+
+  // done with archive_header
+  hdrVals += hdrValsSkipped;
+  assert(hdrVals == AH_LENGTH);
+#ifndef PRODUCT
+  int assertSkipped = AH_LENGTH - AH_LENGTH_MIN;
+  if ((archive_options & AO_HAVE_FILE_HEADERS) != 0)
+    assertSkipped -= AH_FILE_HEADER_LEN;
+  if ((archive_options & AO_HAVE_SPECIAL_FORMATS) != 0)
+    assertSkipped -= AH_SPECIAL_FORMAT_LEN;
+  if ((archive_options & AO_HAVE_CP_NUMBERS) != 0)
+    assertSkipped -= AH_CP_NUMBER_LEN;
+  assert(hdrValsSkipped == assertSkipped);
+#endif //PRODUCT
+
+  rp = hdr.rp;
+  if (rp > rplimit)
+    abort("EOF reading archive header");
+
+  // Now size the CP.
+  assert(N_TAGS_IN_ORDER == cpool::NUM_COUNTS);
+  cp.init(this, cp_counts);
+  CHECK;
+
+  default_file_modtime = archive_modtime;
+  if (default_file_modtime == 0 && !(archive_options & AO_HAVE_FILE_MODTIME))
+    default_file_modtime = DEFAULT_ARCHIVE_MODTIME;  // taken from driver
+  if ((archive_options & AO_DEFLATE_HINT) != 0)
+    default_file_options |= FO_DEFLATE_HINT;
+
+  // meta-bytes, if any, immediately follow archive header
+  //band_headers.readData(band_headers_size);
+  ensure_input(band_headers_size);
+  if (input_remaining() < band_headers_size) {
+    abort("EOF reading band headers");
+    return;
+  }
+  bytes band_headers;
+  // The "1+" allows an initial byte to be pushed on the front.
+  band_headers.set(1+U_NEW(byte, 1+band_headers_size+C_SLOP),
+                   band_headers_size);
+  CHECK;
+  // Start scanning band headers here:
+  band_headers.copyFrom(rp, band_headers.len);
+  rp += band_headers.len;
+  assert(rp <= rplimit);
+  meta_rp = band_headers.ptr;
+  // Put evil meta-codes at the end of the band headers,
+  // so we are sure to throw an error if we run off the end.
+  bytes::of(band_headers.limit(), C_SLOP).clear(_meta_error);
+}
+
+
+void unpacker::finish() {
+  if (verbose >= 1) {
+    fprintf(errstrm,
+            "A total of %lld bytes were read in %d segment(s).\n",
+            bytes_read_before_reset+bytes_read,
+            segments_read_before_reset+1);
+    fprintf(errstrm,
+            "A total of %lld file content bytes were written.\n",
+            bytes_written_before_reset+bytes_written);
+    fprintf(errstrm,
+            "A total of %d files (of which %d are classes) were written to output.\n",
+            files_written_before_reset+files_written,
+            classes_written_before_reset+classes_written);
+  }
+  if (jarout != null)
+    jarout->closeJarFile(true);
+  if (errstrm != null) {
+    if (errstrm == stdout || errstrm == stderr) {
+      fflush(errstrm);
+    } else {
+      fclose(errstrm);
+    }
+    errstrm = null;
+    errstrm_name = null;
+  }
+}
+
+
+// Cf. PackageReader.readConstantPoolCounts
+void cpool::init(unpacker* u_, int counts[NUM_COUNTS]) {
+  this->u = u_;
+
+  // Fill-pointer for CP.
+  int next_entry = 0;
+
+  // Size the constant pool:
+  for (int k = 0; k < N_TAGS_IN_ORDER; k++) {
+    byte tag = TAGS_IN_ORDER[k];
+    int  len = counts[k];
+    tag_count[tag] = len;
+    tag_base[tag] = next_entry;
+    next_entry += len;
+    // Detect and defend against constant pool size overflow.
+    // (Pack200 forbids the sum of CP counts to exceed 2^29-1.)
+    enum {
+      CP_SIZE_LIMIT = (1<<29),
+      IMPLICIT_ENTRY_COUNT = 1  // empty Utf8 string
+    };
+    if (len >= (1<<29) || len < 0
+        || next_entry >= CP_SIZE_LIMIT+IMPLICIT_ENTRY_COUNT) {
+      abort("archive too large:  constant pool limit exceeded");
+      return;
+    }
+  }
+
+  // Close off the end of the CP:
+  nentries = next_entry;
+
+  // place a limit on future CP growth:
+  int generous = 0;
+  generous += u->ic_count*3; // implicit name, outer, outer.utf8
+  generous += 40;  // WKUs, misc
+  generous += u->class_count;  // implicit SourceFile strings
+  maxentries = nentries + generous;
+
+  // Note that this CP does not include "empty" entries
+  // for longs and doubles.  Those are introduced when
+  // the entries are renumbered for classfile output.
+
+  entries = U_NEW(entry, maxentries);
+  CHECK;
+
+  first_extra_entry = &entries[nentries];
+
+  // Initialize the standard indexes.
+  tag_count[CONSTANT_All] = nentries;
+  tag_base[ CONSTANT_All] = 0;
+  for (int tag = 0; tag < CONSTANT_Limit; tag++) {
+    entry* cpMap = &entries[tag_base[tag]];
+    tag_index[tag].init(tag_count[tag], cpMap, tag);
+  }
+
+  // Initialize hashTab to a generous power-of-two size.
+  uint pow2 = 1;
+  uint target = maxentries + maxentries/2;  // 60% full
+  while (pow2 < target)  pow2 <<= 1;
+  hashTab = U_NEW(entry*, hashTabLength = pow2);
+}
+
+static byte* store_Utf8_char(byte* cp, unsigned short ch) {
+  if (ch >= 0x001 && ch <= 0x007F) {
+    *cp++ = (byte) ch;
+  } else if (ch <= 0x07FF) {
+    *cp++ = (byte) (0xC0 | ((ch >>  6) & 0x1F));
+    *cp++ = (byte) (0x80 | ((ch >>  0) & 0x3F));
+  } else {
+    *cp++ = (byte) (0xE0 | ((ch >> 12) & 0x0F));
+    *cp++ = (byte) (0x80 | ((ch >>  6) & 0x3F));
+    *cp++ = (byte) (0x80 | ((ch >>  0) & 0x3F));
+  }
+  return cp;
+}
+
+static byte* skip_Utf8_chars(byte* cp, int len) {
+  for (;; cp++) {
+    int ch = *cp & 0xFF;
+    if ((ch & 0xC0) != 0x80) {
+      if (len-- == 0)
+        return cp;
+      if (ch < 0x80 && len == 0)
+        return cp+1;
+    }
+  }
+}
+
+static int compare_Utf8_chars(bytes& b1, bytes& b2) {
+  int l1 = b1.len;
+  int l2 = b2.len;
+  int l0 = (l1 < l2) ? l1 : l2;
+  byte* p1 = b1.ptr;
+  byte* p2 = b2.ptr;
+  int c0 = 0;
+  for (int i = 0; i < l0; i++) {
+    int c1 = p1[i] & 0xFF;
+    int c2 = p2[i] & 0xFF;
+    if (c1 != c2) {
+      // Before returning the obvious answer,
+      // check to see if c1 or c2 is part of a 0x0000,
+      // which encodes as {0xC0,0x80}.  The 0x0000 is the
+      // lowest-sorting Java char value, and yet it encodes
+      // as if it were the first char after 0x7F, which causes
+      // strings containing nulls to sort too high.  All other
+      // comparisons are consistent between Utf8 and Java chars.
+      if (c1 == 0xC0 && (p1[i+1] & 0xFF) == 0x80)  c1 = 0;
+      if (c2 == 0xC0 && (p2[i+1] & 0xFF) == 0x80)  c2 = 0;
+      if (c0 == 0xC0) {
+        assert(((c1|c2) & 0xC0) == 0x80);  // c1 & c2 are extension chars
+        if (c1 == 0x80)  c1 = 0;  // will sort below c2
+        if (c2 == 0x80)  c2 = 0;  // will sort below c1
+      }
+      return c1 - c2;
+    }
+    c0 = c1;  // save away previous char
+  }
+  // common prefix is identical; return length difference if any
+  return l1 - l2;
+}
+
+// Cf. PackageReader.readUtf8Bands
+local_inline
+void unpacker::read_Utf8_values(entry* cpMap, int len) {
+  // Implicit first Utf8 string is the empty string.
+  enum {
+    // certain bands begin with implicit zeroes
+    PREFIX_SKIP_2 = 2,
+    SUFFIX_SKIP_1 = 1
+  };
+
+  int i;
+
+  // First band:  Read lengths of shared prefixes.
+  if (len > PREFIX_SKIP_2)
+    cp_Utf8_prefix.readData(len - PREFIX_SKIP_2);
+
+  // Second band:  Read lengths of unshared suffixes:
+  if (len > SUFFIX_SKIP_1)
+    cp_Utf8_suffix.readData(len - SUFFIX_SKIP_1);
+
+  bytes* allsuffixes = T_NEW(bytes, len);
+  CHECK;
+
+  int nbigsuf = 0;
+  fillbytes charbuf;    // buffer to allocate small strings
+  charbuf.init();
+
+  // Third band:  Read the char values in the unshared suffixes:
+  cp_Utf8_chars.readData(cp_Utf8_suffix.getIntTotal());
+  for (i = 0; i < len; i++) {
+    int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
+    if (suffix < 0) {
+      abort("bad utf8 suffix");
+      return;
+    }
+    if (suffix == 0 && i >= SUFFIX_SKIP_1) {
+      // chars are packed in cp_Utf8_big_chars
+      nbigsuf += 1;
+      continue;
+    }
+    bytes& chars  = allsuffixes[i];
+    uint size3    = suffix * 3;     // max Utf8 length
+    bool isMalloc = (suffix > SMALL);
+    if (isMalloc) {
+      chars.malloc(size3);
+    } else {
+      if (!charbuf.canAppend(size3+1)) {
+        assert(charbuf.allocated == 0 || tmallocs.contains(charbuf.base()));
+        charbuf.init(CHUNK);  // Reset to new buffer.
+        tmallocs.add(charbuf.base());
+      }
+      chars.set(charbuf.grow(size3+1), size3);
+    }
+    CHECK;
+    byte* chp = chars.ptr;
+    for (int j = 0; j < suffix; j++) {
+      unsigned short ch = cp_Utf8_chars.getInt();
+      chp = store_Utf8_char(chp, ch);
+    }
+    // shrink to fit:
+    if (isMalloc) {
+      chars.realloc(chp - chars.ptr);
+      CHECK;
+      tmallocs.add(chars.ptr); // free it later
+    } else {
+      int shrink = chars.limit() - chp;
+      chars.len -= shrink;
+      charbuf.b.len -= shrink;  // ungrow to reclaim buffer space
+      // Note that we did not reclaim the final '\0'.
+      assert(chars.limit() == charbuf.limit()-1);
+      assert(strlen((char*)chars.ptr) == chars.len);
+    }
+  }
+  //cp_Utf8_chars.done();
+  if (assert(1))  charbuf.b.set(null, 0); // tidy
+
+  // Fourth band:  Go back and size the specially packed strings.
+  int maxlen = 0;
+  cp_Utf8_big_suffix.readData(nbigsuf);
+  cp_Utf8_suffix.rewind();
+  for (i = 0; i < len; i++) {
+    int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
+    int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
+    if (prefix < 0 || prefix+suffix < 0) {
+       abort("bad utf8 prefix");
+       return;
+    }
+    bytes& chars = allsuffixes[i];
+    if (suffix == 0 && i >= SUFFIX_SKIP_1) {
+      suffix = cp_Utf8_big_suffix.getInt();
+      assert(chars.ptr == null);
+      chars.len = suffix;  // just a momentary hack
+    } else {
+      assert(chars.ptr != null);
+    }
+    if (maxlen < prefix + suffix) {
+      maxlen = prefix + suffix;
+    }
+  }
+  //cp_Utf8_suffix.done();      // will use allsuffixes[i].len (ptr!=null)
+  //cp_Utf8_big_suffix.done();  // will use allsuffixes[i].len
+
+  // Fifth band(s):  Get the specially packed characters.
+  cp_Utf8_big_suffix.rewind();
+  for (i = 0; i < len; i++) {
+    bytes& chars = allsuffixes[i];
+    if (chars.ptr != null)  continue;  // already input
+    int suffix = chars.len;  // pick up the hack
+    uint size3 = suffix * 3;
+    if (suffix == 0)  continue;  // done with empty string
+    chars.malloc(size3);
+    byte* chp = chars.ptr;
+    band saved_band = cp_Utf8_big_chars;
+    cp_Utf8_big_chars.readData(suffix);
+    for (int j = 0; j < suffix; j++) {
+      unsigned short ch = cp_Utf8_big_chars.getInt();
+      chp = store_Utf8_char(chp, ch);
+    }
+    chars.realloc(chp - chars.ptr);
+    CHECK;
+    tmallocs.add(chars.ptr);  // free it later
+    //cp_Utf8_big_chars.done();
+    cp_Utf8_big_chars = saved_band;  // reset the band for the next string
+  }
+  cp_Utf8_big_chars.readData(0);  // zero chars
+  //cp_Utf8_big_chars.done();
+
+  // Finally, sew together all the prefixes and suffixes.
+  bytes bigbuf;
+  bigbuf.malloc(maxlen * 3 + 1);  // max Utf8 length, plus slop for null
+  CHECK;
+  int prevlen = 0;  // previous string length (in chars)
+  tmallocs.add(bigbuf.ptr);  // free after this block
+  cp_Utf8_prefix.rewind();
+  for (i = 0; i < len; i++) {
+    bytes& chars = allsuffixes[i];
+    int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
+    int suffix = chars.len;
+    byte* fillp;
+    // by induction, the buffer is already filled with the prefix
+    // make sure the prefix value is not corrupted, though:
+    if (prefix > prevlen) {
+       abort("utf8 prefix overflow");
+       return;
+    }
+    fillp = skip_Utf8_chars(bigbuf.ptr, prefix);
+    // copy the suffix into the same buffer:
+    fillp = chars.writeTo(fillp);
+    assert(bigbuf.inBounds(fillp));
+    *fillp = 0;  // bigbuf must contain a well-formed Utf8 string
+    int length = fillp - bigbuf.ptr;
+    bytes& value = cpMap[i].value.b;
+    value.set(U_NEW(byte, length+1), length);
+    value.copyFrom(bigbuf.ptr, length);
+    CHECK;
+    // Index all Utf8 strings
+    entry* &htref = cp.hashTabRef(CONSTANT_Utf8, value);
+    if (htref == null) {
+      // Note that if two identical strings are transmitted,
+      // the first is taken to be the canonical one.
+      htref = &cpMap[i];
+    }
+    prevlen = prefix + suffix;
+  }
+  //cp_Utf8_prefix.done();
+
+  // Free intermediate buffers.
+  free_temps();
+}
+
+local_inline
+void unpacker::read_single_words(band& cp_band, entry* cpMap, int len) {
+  cp_band.readData(len);
+  for (int i = 0; i < len; i++) {
+    cpMap[i].value.i = cp_band.getInt();  // coding handles signs OK
+  }
+}
+
+maybe_inline
+void unpacker::read_double_words(band& cp_bands, entry* cpMap, int len) {
+  band& cp_band_hi = cp_bands;
+  band& cp_band_lo = cp_bands.nextBand();
+  cp_band_hi.readData(len);
+  cp_band_lo.readData(len);
+  for (int i = 0; i < len; i++) {
+    cpMap[i].value.l = cp_band_hi.getLong(cp_band_lo, true);
+  }
+  //cp_band_hi.done();
+  //cp_band_lo.done();
+}
+
+maybe_inline
+void unpacker::read_single_refs(band& cp_band, byte refTag, entry* cpMap, int len) {
+  assert(refTag == CONSTANT_Utf8);
+  cp_band.setIndexByTag(refTag);
+  cp_band.readData(len);
+  CHECK;
+  int indexTag = (cp_band.bn == e_cp_Class) ? CONSTANT_Class : 0;
+  for (int i = 0; i < len; i++) {
+    entry& e = cpMap[i];
+    e.refs = U_NEW(entry*, e.nrefs = 1);
+    entry* utf = cp_band.getRef();
+    CHECK;
+    e.refs[0] = utf;
+    e.value.b = utf->value.b;  // copy value of Utf8 string to self
+    if (indexTag != 0) {
+      // Maintain cross-reference:
+      entry* &htref = cp.hashTabRef(indexTag, e.value.b);
+      if (htref == null) {
+        // Note that if two identical classes are transmitted,
+        // the first is taken to be the canonical one.
+        htref = &e;
+      }
+    }
+  }
+  //cp_band.done();
+}
+
+maybe_inline
+void unpacker::read_double_refs(band& cp_band, byte ref1Tag, byte ref2Tag,
+                                entry* cpMap, int len) {
+  band& cp_band1 = cp_band;
+  band& cp_band2 = cp_band.nextBand();
+  cp_band1.setIndexByTag(ref1Tag);
+  cp_band2.setIndexByTag(ref2Tag);
+  cp_band1.readData(len);
+  cp_band2.readData(len);
+  CHECK;
+  for (int i = 0; i < len; i++) {
+    entry& e = cpMap[i];
+    e.refs = U_NEW(entry*, e.nrefs = 2);
+    e.refs[0] = cp_band1.getRef();
+    e.refs[1] = cp_band2.getRef();
+    CHECK;
+  }
+  //cp_band1.done();
+  //cp_band2.done();
+}
+
+// Cf. PackageReader.readSignatureBands
+maybe_inline
+void unpacker::read_signature_values(entry* cpMap, int len) {
+  cp_Signature_form.setIndexByTag(CONSTANT_Utf8);
+  cp_Signature_form.readData(len);
+  CHECK;
+  int ncTotal = 0;
+  int i;
+  for (i = 0; i < len; i++) {
+    entry& e = cpMap[i];
+    entry& form = *cp_Signature_form.getRef();
+    CHECK;
+    int nc = 0;
+
+    for ( const char* ncp = form.utf8String() ; *ncp; ncp++) {
+      if (*ncp == 'L')  nc++;
+    }
+
+    ncTotal += nc;
+    e.refs = U_NEW(entry*, cpMap[i].nrefs = 1 + nc);
+    CHECK;
+    e.refs[0] = &form;
+  }
+  //cp_Signature_form.done();
+  cp_Signature_classes.setIndexByTag(CONSTANT_Class);
+  cp_Signature_classes.readData(ncTotal);
+  for (i = 0; i < len; i++) {
+    entry& e = cpMap[i];
+    for (int j = 1; j < e.nrefs; j++) {
+      e.refs[j] = cp_Signature_classes.getRef();
+      CHECK;
+    }
+  }
+  //cp_Signature_classes.done();
+}
+
+// Cf. PackageReader.readConstantPool
+void unpacker::read_cp() {
+  byte* rp0 = rp;
+
+  int i;
+
+  for (int k = 0; k < N_TAGS_IN_ORDER; k++) {
+    byte tag = TAGS_IN_ORDER[k];
+    int  len = cp.tag_count[tag];
+    int base = cp.tag_base[tag];
+
+    printcr(1,"Reading %d %s entries...", len, NOT_PRODUCT(TAG_NAME[tag])+0);
+    entry* cpMap = &cp.entries[base];
+    for (i = 0; i < len; i++) {
+      cpMap[i].tag = tag;
+      cpMap[i].inord = i;
+    }
+
+    switch (tag) {
+    case CONSTANT_Utf8:
+      read_Utf8_values(cpMap, len);
+      break;
+    case CONSTANT_Integer:
+      read_single_words(cp_Int, cpMap, len);
+      break;
+    case CONSTANT_Float:
+      read_single_words(cp_Float, cpMap, len);
+      break;
+    case CONSTANT_Long:
+      read_double_words(cp_Long_hi /*& cp_Long_lo*/, cpMap, len);
+      break;
+    case CONSTANT_Double:
+      read_double_words(cp_Double_hi /*& cp_Double_lo*/, cpMap, len);
+      break;
+    case CONSTANT_String:
+      read_single_refs(cp_String, CONSTANT_Utf8, cpMap, len);
+      break;
+    case CONSTANT_Class:
+      read_single_refs(cp_Class, CONSTANT_Utf8, cpMap, len);
+      break;
+    case CONSTANT_Signature:
+      read_signature_values(cpMap, len);
+      break;
+    case CONSTANT_NameandType:
+      read_double_refs(cp_Descr_name /*& cp_Descr_type*/,
+                       CONSTANT_Utf8, CONSTANT_Signature,
+                       cpMap, len);
+      break;
+    case CONSTANT_Fieldref:
+      read_double_refs(cp_Field_class /*& cp_Field_desc*/,
+                       CONSTANT_Class, CONSTANT_NameandType,
+                       cpMap, len);
+      break;
+    case CONSTANT_Methodref:
+      read_double_refs(cp_Method_class /*& cp_Method_desc*/,
+                       CONSTANT_Class, CONSTANT_NameandType,
+                       cpMap, len);
+      break;
+    case CONSTANT_InterfaceMethodref:
+      read_double_refs(cp_Imethod_class /*& cp_Imethod_desc*/,
+                       CONSTANT_Class, CONSTANT_NameandType,
+                       cpMap, len);
+      break;
+    default:
+      assert(false);
+      break;
+    }
+
+    // Initialize the tag's CP index right away, since it might be needed
+    // in the next pass to initialize the CP for another tag.
+#ifndef PRODUCT
+    cpindex* ix = &cp.tag_index[tag];
+    assert(ix->ixTag == tag);
+    assert(ix->len   == len);
+    assert(ix->base1 == cpMap);
+#endif
+    CHECK;
+  }
+
+  cp.expandSignatures();
+  CHECK;
+  cp.initMemberIndexes();
+  CHECK;
+
+  printcr(1,"parsed %d constant pool entries in %d bytes", cp.nentries, (rp - rp0));
+
+  #define SNAME(n,s) #s "\0"
+  const char* symNames = (
+    ALL_ATTR_DO(SNAME)
+    "<init>"
+  );
+  #undef SNAME
+
+  for (int sn = 0; sn < cpool::s_LIMIT; sn++) {
+    assert(symNames[0] >= '0' && symNames[0] <= 'Z');  // sanity
+    bytes name; name.set(symNames);
+    if (name.len > 0 && name.ptr[0] != '0') {
+      cp.sym[sn] = cp.ensureUtf8(name);
+      printcr(4, "well-known sym %d=%s", sn, cp.sym[sn]->string());
+    }
+    symNames += name.len + 1;  // skip trailing null to next name
+  }
+
+  band::initIndexes(this);
+}
+
+static band* no_bands[] = { null };  // shared empty body
+
+inline
+band& unpacker::attr_definitions::fixed_band(int e_class_xxx) {
+  return u->all_bands[xxx_flags_hi_bn + (e_class_xxx-e_class_flags_hi)];
+}
+inline band& unpacker::attr_definitions::xxx_flags_hi()
+  { return fixed_band(e_class_flags_hi); }
+inline band& unpacker::attr_definitions::xxx_flags_lo()
+  { return fixed_band(e_class_flags_lo); }
+inline band& unpacker::attr_definitions::xxx_attr_count()
+  { return fixed_band(e_class_attr_count); }
+inline band& unpacker::attr_definitions::xxx_attr_indexes()
+  { return fixed_band(e_class_attr_indexes); }
+inline band& unpacker::attr_definitions::xxx_attr_calls()
+  { return fixed_band(e_class_attr_calls); }
+
+
+inline
+unpacker::layout_definition*
+unpacker::attr_definitions::defineLayout(int idx,
+                                         entry* nameEntry,
+                                         const char* layout) {
+  const char* name = nameEntry->value.b.strval();
+  layout_definition* lo = defineLayout(idx, name, layout);
+  CHECK_0;
+  lo->nameEntry = nameEntry;
+  return lo;
+}
+
+unpacker::layout_definition*
+unpacker::attr_definitions::defineLayout(int idx,
+                                         const char* name,
+                                         const char* layout) {
+  assert(flag_limit != 0);  // must be set up already
+  if (idx >= 0) {
+    // Fixed attr.
+    if (idx >= flag_limit)
+      abort("attribute index too large");
+    if (isRedefined(idx))
+      abort("redefined attribute index");
+    redef |= ((julong)1<<idx);
+  } else {
+    idx = flag_limit + overflow_count.length();
+    overflow_count.add(0);  // make a new counter
+  }
+  layout_definition* lo = U_NEW(layout_definition, 1);
+  CHECK_0;
+  lo->idx = idx;
+  lo->name = name;
+  lo->layout = layout;
+  for (int adds = (idx+1) - layouts.length(); adds > 0; adds--) {
+    layouts.add(null);
+  }
+  CHECK_0;
+  layouts.get(idx) = lo;
+  return lo;
+}
+
+band**
+unpacker::attr_definitions::buildBands(unpacker::layout_definition* lo) {
+  int i;
+  if (lo->elems != null)
+    return lo->bands();
+  if (lo->layout[0] == '\0') {
+    lo->elems = no_bands;
+  } else {
+    // Create bands for this attribute by parsing the layout.
+    bool hasCallables = lo->hasCallables();
+    bands_made = 0x10000;  // base number for bands made
+    const char* lp = lo->layout;
+    lp = parseLayout(lp, lo->elems, -1);
+    CHECK_0;
+    if (lp[0] != '\0' || band_stack.length() > 0) {
+      abort("garbage at end of layout");
+    }
+    band_stack.popTo(0);
+    CHECK_0;
+
+    // Fix up callables to point at their callees.
+    band** bands = lo->elems;
+    assert(bands == lo->bands());
+    int num_callables = 0;
+    if (hasCallables) {
+      while (bands[num_callables] != null) {
+        if (bands[num_callables]->le_kind != EK_CBLE) {
+          abort("garbage mixed with callables");
+          break;
+        }
+        num_callables += 1;
+      }
+    }
+    for (i = 0; i < calls_to_link.length(); i++) {
+      band& call = *(band*) calls_to_link.get(i);
+      assert(call.le_kind == EK_CALL);
+      // Determine the callee.
+      int call_num = call.le_len;
+      if (call_num < 0 || call_num >= num_callables) {
+        abort("bad call in layout");
+        break;
+      }
+      band& cble = *bands[call_num];
+      // Link the call to it.
+      call.le_body[0] = &cble;
+      // Distinguish backward calls and callables:
+      assert(cble.le_kind == EK_CBLE);
+      assert(cble.le_len == call_num);
+      cble.le_back |= call.le_back;
+    }
+    calls_to_link.popTo(0);
+  }
+  return lo->elems;
+}
+
+/* attribute layout language parser
+
+  attribute_layout:
+        ( layout_element )* | ( callable )+
+  layout_element:
+        ( integral | replication | union | call | reference )
+
+  callable:
+        '[' body ']'
+  body:
+        ( layout_element )+
+
+  integral:
+        ( unsigned_int | signed_int | bc_index | bc_offset | flag )
+  unsigned_int:
+        uint_type
+  signed_int:
+        'S' uint_type
+  any_int:
+        ( unsigned_int | signed_int )
+  bc_index:
+        ( 'P' uint_type | 'PO' uint_type )
+  bc_offset:
+        'O' any_int
+  flag:
+        'F' uint_type
+  uint_type:
+        ( 'B' | 'H' | 'I' | 'V' )
+
+  replication:
+        'N' uint_type '[' body ']'
+
+  union:
+        'T' any_int (union_case)* '(' ')' '[' (body)? ']'
+  union_case:
+        '(' union_case_tag (',' union_case_tag)* ')' '[' (body)? ']'
+  union_case_tag:
+        ( numeral | numeral '-' numeral )
+  call:
+        '(' numeral ')'
+
+  reference:
+        reference_type ( 'N' )? uint_type
+  reference_type:
+        ( constant_ref | schema_ref | utf8_ref | untyped_ref )
+  constant_ref:
+        ( 'KI' | 'KJ' | 'KF' | 'KD' | 'KS' | 'KQ' )
+  schema_ref:
+        ( 'RC' | 'RS' | 'RD' | 'RF' | 'RM' | 'RI' )
+  utf8_ref:
+        'RU'
+  untyped_ref:
+        'RQ'
+
+  numeral:
+        '(' ('-')? (digit)+ ')'
+  digit:
+        ( '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' )
+
+*/
+
+const char*
+unpacker::attr_definitions::parseIntLayout(const char* lp, band* &res,
+                                           byte le_kind, bool can_be_signed) {
+  const char* lp0 = lp;
+  band* b = U_NEW(band, 1);
+  CHECK_(lp);
+  char le = *lp++;
+  int spec = UNSIGNED5_spec;
+  if (le == 'S' && can_be_signed) {
+    // Note:  This is the last use of sign.  There is no 'EF_SIGN'.
+    spec = SIGNED5_spec;
+    le = *lp++;
+  } else if (le == 'B') {
+    spec = BYTE1_spec;  // unsigned byte
+  }
+  b->init(u, bands_made++, spec);
+  b->le_kind = le_kind;
+  int le_len = 0;
+  switch (le) {
+  case 'B': le_len = 1; break;
+  case 'H': le_len = 2; break;
+  case 'I': le_len = 4; break;
+  case 'V': le_len = 0; break;
+  default:  abort("bad layout element");
+  }
+  b->le_len = le_len;
+  band_stack.add(b);
+  res = b;
+  return lp;
+}
+
+const char*
+unpacker::attr_definitions::parseNumeral(const char* lp, int &res) {
+  const char* lp0 = lp;
+  bool sgn = false;
+  if (*lp == '0') { res = 0; return lp+1; }  // special case '0'
+  if (*lp == '-') { sgn = true; lp++; }
+  const char* dp = lp;
+  int con = 0;
+  while (*dp >= '0' && *dp <= '9') {
+    int con0 = con;
+    con *= 10;
+    con += (*dp++) - '0';
+    if (con <= con0) { con = -1; break; }  //  numeral overflow
+  }
+  if (lp == dp) {
+    abort("missing numeral in layout");
+    return "";
+  }
+  lp = dp;
+  if (con < 0 && !(sgn && con == -con)) {
+    // (Portability note:  Misses the error if int is not 32 bits.)
+    abort("numeral overflow");
+    return "" ;
+  }
+  if (sgn)  con = -con;
+  res = con;
+  return lp;
+}
+
+band**
+unpacker::attr_definitions::popBody(int bs_base) {
+  // Return everything that was pushed, as a null-terminated pointer array.
+  int bs_limit = band_stack.length();
+  if (bs_base == bs_limit) {
+    return no_bands;
+  } else {
+    int nb = bs_limit - bs_base;
+    band** res = U_NEW(band*, nb+1);
+    CHECK_(no_bands);
+    for (int i = 0; i < nb; i++) {
+      band* b = (band*) band_stack.get(bs_base + i);
+      res[i] = b;
+    }
+    band_stack.popTo(bs_base);
+    return res;
+  }
+}
+
+const char*
+unpacker::attr_definitions::parseLayout(const char* lp, band** &res,
+                                        int curCble) {
+  const char* lp0 = lp;
+  int bs_base = band_stack.length();
+  bool top_level = (bs_base == 0);
+  band* b;
+  enum { can_be_signed = true };  // optional arg to parseIntLayout
+
+  for (bool done = false; !done; ) {
+    switch (*lp++) {
+    case 'B': case 'H': case 'I': case 'V': // unsigned_int
+    case 'S': // signed_int
+      --lp;  // reparse
+    case 'F':
+      lp = parseIntLayout(lp, b, EK_INT);
+      break;
+    case 'P':
+      {
+        int le_bci = EK_BCI;
+        if (*lp == 'O') {
+          ++lp;
+          le_bci = EK_BCID;
+        }
+        assert(*lp != 'S');  // no PSH, etc.
+        lp = parseIntLayout(lp, b, EK_INT);
+        b->le_bci = le_bci;
+        if (le_bci == EK_BCI)
+          b->defc = coding::findBySpec(BCI5_spec);
+        else
+          b->defc = coding::findBySpec(BRANCH5_spec);
+      }
+      break;
+    case 'O':
+      lp = parseIntLayout(lp, b, EK_INT, can_be_signed);
+      b->le_bci = EK_BCO;
+      b->defc = coding::findBySpec(BRANCH5_spec);
+      break;
+    case 'N': // replication: 'N' uint '[' elem ... ']'
+      lp = parseIntLayout(lp, b, EK_REPL);
+      assert(*lp == '[');
+      ++lp;
+      lp = parseLayout(lp, b->le_body, curCble);
+      CHECK_(lp);
+      break;
+    case 'T': // union: 'T' any_int union_case* '(' ')' '[' body ']'
+      lp = parseIntLayout(lp, b, EK_UN, can_be_signed);
+      {
+        int union_base = band_stack.length();
+        for (;;) {   // for each case
+          band& k_case = *U_NEW(band, 1);
+          CHECK_(lp);
+          band_stack.add(&k_case);
+          k_case.le_kind = EK_CASE;
+          k_case.bn = bands_made++;
+          if (*lp++ != '(') {
+            abort("bad union case");
+            return "";
+          }
+          if (*lp++ != ')') {
+            --lp;  // reparse
+            // Read some case values.  (Use band_stack for temp. storage.)
+            int case_base = band_stack.length();
+            for (;;) {
+              int caseval = 0;
+              lp = parseNumeral(lp, caseval);
+              band_stack.add((void*)caseval);
+              if (*lp == '-') {
+                // new in version 160, allow (1-5) for (1,2,3,4,5)
+                if (u->majver < JAVA6_PACKAGE_MAJOR_VERSION) {
+                  abort("bad range in union case label (old archive format)");
+                  return "";
+                }
+                int caselimit = caseval;
+                lp++;
+                lp = parseNumeral(lp, caselimit);
+                if (caseval >= caselimit
+                    || (uint)(caselimit - caseval) > 0x10000) {
+                  // Note:  0x10000 is arbitrary implementation restriction.
+                  // We can remove it later if it's important to.
+                  abort("bad range in union case label");
+                  return "";
+                }
+                for (;;) {
+                  ++caseval;
+                  band_stack.add((void*)caseval);
+                  if (caseval == caselimit)  break;
+                }
+              }
+              if (*lp != ',')  break;
+              lp++;
+            }
+            if (*lp++ != ')') {
+              abort("bad case label");
+              return "";
+            }
+            // save away the case labels
+            int ntags = band_stack.length() - case_base;
+            int* tags = U_NEW(int, 1+ntags);
+            CHECK_(lp);
+            k_case.le_casetags = tags;
+            *tags++ = ntags;
+            for (int i = 0; i < ntags; i++) {
+              *tags++ = ptrlowbits(band_stack.get(case_base+i));
+            }
+            band_stack.popTo(case_base);
+            CHECK_(lp);
+          }
+          // Got le_casetags.  Now grab the body.
+          assert(*lp == '[');
+          ++lp;
+          lp = parseLayout(lp, k_case.le_body, curCble);
+          CHECK_(lp);
+          if (k_case.le_casetags == null)  break;  // done
+        }
+        b->le_body = popBody(union_base);
+      }
+      break;
+    case '(': // call: '(' -?NN* ')'
+      {
+        band& call = *U_NEW(band, 1);
+        CHECK_(lp);
+        band_stack.add(&call);
+        call.le_kind = EK_CALL;
+        call.bn = bands_made++;
+        call.le_body = U_NEW(band*, 2); // fill in later
+        int call_num = 0;
+        lp = parseNumeral(lp, call_num);
+        call.le_back = (call_num <= 0);
+        call_num += curCble;  // numeral is self-relative offset
+        call.le_len = call_num;  //use le_len as scratch
+        calls_to_link.add(&call);
+        CHECK_(lp);
+        if (*lp++ != ')') {
+          abort("bad call label");
+          return "";
+        }
+      }
+      break;
+    case 'K': // reference_type: constant_ref
+    case 'R': // reference_type: schema_ref
+      {
+        int ixTag = CONSTANT_None;
+        if (lp[-1] == 'K') {
+          switch (*lp++) {
+          case 'I': ixTag = CONSTANT_Integer; break;
+          case 'J': ixTag = CONSTANT_Long; break;
+          case 'F': ixTag = CONSTANT_Float; break;
+          case 'D': ixTag = CONSTANT_Double; break;
+          case 'S': ixTag = CONSTANT_String; break;
+          case 'Q': ixTag = CONSTANT_Literal; break;
+          }
+        } else {
+          switch (*lp++) {
+          case 'C': ixTag = CONSTANT_Class; break;
+          case 'S': ixTag = CONSTANT_Signature; break;
+          case 'D': ixTag = CONSTANT_NameandType; break;
+          case 'F': ixTag = CONSTANT_Fieldref; break;
+          case 'M': ixTag = CONSTANT_Methodref; break;
+          case 'I': ixTag = CONSTANT_InterfaceMethodref; break;
+          case 'U': ixTag = CONSTANT_Utf8; break; //utf8_ref
+          case 'Q': ixTag = CONSTANT_All; break; //untyped_ref
+          }
+        }
+        if (ixTag == CONSTANT_None) {
+          abort("bad reference layout");
+          break;
+        }
+        bool nullOK = false;
+        if (*lp == 'N') {
+          nullOK = true;
+          lp++;
+        }
+        lp = parseIntLayout(lp, b, EK_REF);
+        b->defc = coding::findBySpec(UNSIGNED5_spec);
+        b->initRef(ixTag, nullOK);
+      }
+      break;
+    case '[':
+      {
+        // [callable1][callable2]...
+        if (!top_level) {
+          abort("bad nested callable");
+          break;
+        }
+        curCble += 1;
+        NOT_PRODUCT(int call_num = band_stack.length() - bs_base);
+        band& cble = *U_NEW(band, 1);
+        CHECK_(lp);
+        band_stack.add(&cble);
+        cble.le_kind = EK_CBLE;
+        NOT_PRODUCT(cble.le_len = call_num);
+        cble.bn = bands_made++;
+        lp = parseLayout(lp, cble.le_body, curCble);
+      }
+      break;
+    case ']':
+      // Hit a closing brace.  This ends whatever body we were in.
+      done = true;
+      break;
+    case '\0':
+      // Hit a null.  Also ends the (top-level) body.
+      --lp;  // back up, so caller can see the null also
+      done = true;
+      break;
+    default:
+      abort("bad layout");
+      break;
+    }
+    CHECK_(lp);
+  }
+
+  // Return the accumulated bands:
+  res = popBody(bs_base);
+  return lp;
+}
+
+void unpacker::read_attr_defs() {
+  int i;
+
+  // Tell each AD which attrc it is and where its fixed flags are:
+  attr_defs[ATTR_CONTEXT_CLASS].attrc            = ATTR_CONTEXT_CLASS;
+  attr_defs[ATTR_CONTEXT_CLASS].xxx_flags_hi_bn  = e_class_flags_hi;
+  attr_defs[ATTR_CONTEXT_FIELD].attrc            = ATTR_CONTEXT_FIELD;
+  attr_defs[ATTR_CONTEXT_FIELD].xxx_flags_hi_bn  = e_field_flags_hi;
+  attr_defs[ATTR_CONTEXT_METHOD].attrc           = ATTR_CONTEXT_METHOD;
+  attr_defs[ATTR_CONTEXT_METHOD].xxx_flags_hi_bn = e_method_flags_hi;
+  attr_defs[ATTR_CONTEXT_CODE].attrc             = ATTR_CONTEXT_CODE;
+  attr_defs[ATTR_CONTEXT_CODE].xxx_flags_hi_bn   = e_code_flags_hi;
+
+  // Decide whether bands for the optional high flag words are present.
+  attr_defs[ATTR_CONTEXT_CLASS]
+    .setHaveLongFlags((archive_options & AO_HAVE_CLASS_FLAGS_HI) != 0);
+  attr_defs[ATTR_CONTEXT_FIELD]
+    .setHaveLongFlags((archive_options & AO_HAVE_FIELD_FLAGS_HI) != 0);
+  attr_defs[ATTR_CONTEXT_METHOD]
+    .setHaveLongFlags((archive_options & AO_HAVE_METHOD_FLAGS_HI) != 0);
+  attr_defs[ATTR_CONTEXT_CODE]
+    .setHaveLongFlags((archive_options & AO_HAVE_CODE_FLAGS_HI) != 0);
+
+  // Set up built-in attrs.
+  // (The simple ones are hard-coded.  The metadata layouts are not.)
+  const char* md_layout = (
+    // parameter annotations:
+#define MDL0 \
+    "[NB[(1)]]"
+    MDL0
+    // annotations:
+#define MDL1 \
+    "[NH[(1)]]" \
+    "[RSHNH[RUH(1)]]"
+    MDL1
+    // member_value:
+    "[TB"
+      "(66,67,73,83,90)[KIH]"
+      "(68)[KDH]"
+      "(70)[KFH]"
+      "(74)[KJH]"
+      "(99)[RSH]"
+      "(101)[RSHRUH]"
+      "(115)[RUH]"
+      "(91)[NH[(0)]]"
+      "(64)["
+        // nested annotation:
+        "RSH"
+        "NH[RUH(0)]"
+        "]"
+      "()[]"
+    "]"
+    );
+
+  const char* md_layout_P = md_layout;
+  const char* md_layout_A = md_layout+strlen(MDL0);
+  const char* md_layout_V = md_layout+strlen(MDL0 MDL1);
+  assert(0 == strncmp(&md_layout_A[-3], ")]][", 4));
+  assert(0 == strncmp(&md_layout_V[-3], ")]][", 4));
+
+  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
+    attr_definitions& ad = attr_defs[i];
+    ad.defineLayout(X_ATTR_RuntimeVisibleAnnotations,
+                    "RuntimeVisibleAnnotations", md_layout_A);
+    ad.defineLayout(X_ATTR_RuntimeInvisibleAnnotations,
+                    "RuntimeInvisibleAnnotations", md_layout_A);
+    if (i != ATTR_CONTEXT_METHOD)  continue;
+    ad.defineLayout(METHOD_ATTR_RuntimeVisibleParameterAnnotations,
+                    "RuntimeVisibleParameterAnnotations", md_layout_P);
+    ad.defineLayout(METHOD_ATTR_RuntimeInvisibleParameterAnnotations,
+                    "RuntimeInvisibleParameterAnnotations", md_layout_P);
+    ad.defineLayout(METHOD_ATTR_AnnotationDefault,
+                    "AnnotationDefault", md_layout_V);
+  }
+
+  attr_definition_headers.readData(attr_definition_count);
+  attr_definition_name.readData(attr_definition_count);
+  attr_definition_layout.readData(attr_definition_count);
+
+  CHECK;
+
+  // Initialize correct predef bits, to distinguish predefs from new defs.
+#define ORBIT(n,s) |((julong)1<<n)
+  attr_defs[ATTR_CONTEXT_CLASS].predef
+    = (0 X_ATTR_DO(ORBIT) CLASS_ATTR_DO(ORBIT));
+  attr_defs[ATTR_CONTEXT_FIELD].predef
+    = (0 X_ATTR_DO(ORBIT) FIELD_ATTR_DO(ORBIT));
+  attr_defs[ATTR_CONTEXT_METHOD].predef
+    = (0 X_ATTR_DO(ORBIT) METHOD_ATTR_DO(ORBIT));
+  attr_defs[ATTR_CONTEXT_CODE].predef
+    = (0 O_ATTR_DO(ORBIT) CODE_ATTR_DO(ORBIT));
+#undef ORBIT
+  // Clear out the redef bits, folding them back into predef.
+  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
+    attr_defs[i].predef |= attr_defs[i].redef;
+    attr_defs[i].redef = 0;
+  }
+
+  // Now read the transmitted locally defined attrs.
+  // This will set redef bits again.
+  for (i = 0; i < attr_definition_count; i++) {
+    int    header  = attr_definition_headers.getByte();
+    int    attrc   = ADH_BYTE_CONTEXT(header);
+    int    idx     = ADH_BYTE_INDEX(header);
+    entry* name    = attr_definition_name.getRef();
+    entry* layout  = attr_definition_layout.getRef();
+    CHECK;
+    attr_defs[attrc].defineLayout(idx, name, layout->value.b.strval());
+  }
+}
+
+#define NO_ENTRY_YET ((entry*)-1)
+
+static bool isDigitString(bytes& x, int beg, int end) {
+  if (beg == end)  return false;  // null string
+  byte* xptr = x.ptr;
+  for (int i = beg; i < end; i++) {
+    char ch = xptr[i];
+    if (!(ch >= '0' && ch <= '9'))  return false;
+  }
+  return true;
+}
+
+enum {  // constants for parsing class names
+  SLASH_MIN = '.',
+  SLASH_MAX = '/',
+  DOLLAR_MIN = 0,
+  DOLLAR_MAX = '-'
+};
+
+static int lastIndexOf(int chmin, int chmax, bytes& x, int pos) {
+  byte* ptr = x.ptr;
+  for (byte* cp = ptr + pos; --cp >= ptr; ) {
+    assert(x.inBounds(cp));
+    if (*cp >= chmin && *cp <= chmax)
+      return cp - ptr;
+  }
+  return -1;
+}
+
+maybe_inline
+inner_class* cpool::getIC(entry* inner) {
+  if (inner == null)  return null;
+  assert(inner->tag == CONSTANT_Class);
+  if (inner->inord == NO_INORD)  return null;
+  inner_class* ic = ic_index[inner->inord];
+  assert(ic == null || ic->inner == inner);
+  return ic;
+}
+
+maybe_inline
+inner_class* cpool::getFirstChildIC(entry* outer) {
+  if (outer == null)  return null;
+  assert(outer->tag == CONSTANT_Class);
+  if (outer->inord == NO_INORD)  return null;
+  inner_class* ic = ic_child_index[outer->inord];
+  assert(ic == null || ic->outer == outer);
+  return ic;
+}
+
+maybe_inline
+inner_class* cpool::getNextChildIC(inner_class* child) {
+  inner_class* ic = child->next_sibling;
+  assert(ic == null || ic->outer == child->outer);
+  return ic;
+}
+
+void unpacker::read_ics() {
+  int i;
+  int index_size = cp.tag_count[CONSTANT_Class];
+  inner_class** ic_index       = U_NEW(inner_class*, index_size);
+  inner_class** ic_child_index = U_NEW(inner_class*, index_size);
+  cp.ic_index = ic_index;
+  cp.ic_child_index = ic_child_index;
+  ics = U_NEW(inner_class, ic_count);
+  ic_this_class.readData(ic_count);
+  ic_flags.readData(ic_count);
+  CHECK;
+  // Scan flags to get count of long-form bands.
+  int long_forms = 0;
+  for (i = 0; i < ic_count; i++) {
+    int flags = ic_flags.getInt();  // may be long form!
+    if ((flags & ACC_IC_LONG_FORM) != 0) {
+      long_forms += 1;
+      ics[i].name = NO_ENTRY_YET;
+    }
+    flags &= ~ACC_IC_LONG_FORM;
+    entry* inner = ic_this_class.getRef();
+    CHECK;
+    uint inord = inner->inord;
+    assert(inord < cp.tag_count[CONSTANT_Class]);
+    if (ic_index[inord] != null) {
+      abort("identical inner class");
+      break;
+    }
+    ic_index[inord] = &ics[i];
+    ics[i].inner = inner;
+    ics[i].flags = flags;
+    assert(cp.getIC(inner) == &ics[i]);
+  }
+  CHECK;
+  //ic_this_class.done();
+  //ic_flags.done();
+  ic_outer_class.readData(long_forms);
+  ic_name.readData(long_forms);
+  for (i = 0; i < ic_count; i++) {
+    if (ics[i].name == NO_ENTRY_YET) {
+      // Long form.
+      ics[i].outer = ic_outer_class.getRefN();
+      ics[i].name  = ic_name.getRefN();
+    } else {
+      // Fill in outer and name based on inner.
+      bytes& n = ics[i].inner->value.b;
+      bytes pkgOuter;
+      bytes number;
+      bytes name;
+      // Parse n into pkgOuter and name (and number).
+      printcr(5, "parse short IC name %s", n.ptr);
+      int dollar1, dollar2;  // pointers to $ in the pattern
+      // parse n = (<pkg>/)*<outer>($<number>)?($<name>)?
+      int nlen = n.len;
+      int pkglen = lastIndexOf(SLASH_MIN,  SLASH_MAX,  n, nlen) + 1;
+      dollar2    = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, nlen);
+      if (dollar2 < 0) {
+         abort();
+         return;
+      }
+      assert(dollar2 >= pkglen);
+      if (isDigitString(n, dollar2+1, nlen)) {
+        // n = (<pkg>/)*<outer>$<number>
+        number = n.slice(dollar2+1, nlen);
+        name.set(null,0);
+        dollar1 = dollar2;
+      } else if (pkglen < (dollar1
+                           = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, dollar2-1))
+                 && isDigitString(n, dollar1+1, dollar2)) {
+        // n = (<pkg>/)*<outer>$<number>$<name>
+        number = n.slice(dollar1+1, dollar2);
+        name = n.slice(dollar2+1, nlen);
+      } else {
+        // n = (<pkg>/)*<outer>$<name>
+        dollar1 = dollar2;
+        number.set(null,0);
+        name = n.slice(dollar2+1, nlen);
+      }
+      if (number.ptr == null)
+        pkgOuter = n.slice(0, dollar1);
+      else
+        pkgOuter.set(null,0);
+      printcr(5,"=> %s$ 0%s $%s",
+              pkgOuter.string(), number.string(), name.string());
+
+      if (pkgOuter.ptr != null)
+        ics[i].outer = cp.ensureClass(pkgOuter);
+
+      if (name.ptr != null)
+        ics[i].name = cp.ensureUtf8(name);
+    }
+
+    // update child/sibling list
+    if (ics[i].outer != null) {
+      uint outord = ics[i].outer->inord;
+      if (outord != NO_INORD) {
+        assert(outord < cp.tag_count[CONSTANT_Class]);
+        ics[i].next_sibling = ic_child_index[outord];
+        ic_child_index[outord] = &ics[i];
+      }
+    }
+  }
+  //ic_outer_class.done();
+  //ic_name.done();
+}
+
+void unpacker::read_classes() {
+  int i;
+  printcr(1,"  ...scanning %d classes...", class_count);
+  class_this.readData(class_count);
+  class_super.readData(class_count);
+  class_interface_count.readData(class_count);
+  class_interface.readData(class_interface_count.getIntTotal());
+
+  CHECK;
+
+  #if 0
+  // Make a little mark on super-classes.
+  for (i = 0; i < class_count; i++) {
+    entry* e = class_super.getRefN();
+    if (e != null)  e->bits |= entry::EB_SUPER;
+  }
+  class_super.rewind();
+  #endif
+
+  // Members.
+  class_field_count.readData(class_count);
+  class_method_count.readData(class_count);
+
+  CHECK;
+
+  int field_count = class_field_count.getIntTotal();
+  int method_count = class_method_count.getIntTotal();
+
+  field_descr.readData(field_count);
+  read_attrs(ATTR_CONTEXT_FIELD, field_count);
+
+  method_descr.readData(method_count);
+  read_attrs(ATTR_CONTEXT_METHOD, method_count);
+
+  CHECK;
+
+  read_attrs(ATTR_CONTEXT_CLASS, class_count);
+
+  read_code_headers();
+
+  printcr(1,"scanned %d classes, %d fields, %d methods, %d code headers",
+          class_count, field_count, method_count, code_count);
+}
+
+maybe_inline
+int unpacker::attr_definitions::predefCount(uint idx) {
+  return isPredefined(idx) ? flag_count[idx] : 0;
+}
+
+void unpacker::read_attrs(int attrc, int obj_count) {
+  attr_definitions& ad = attr_defs[attrc];
+  assert(ad.attrc == attrc);
+
+  int i, idx, count;
+
+  CHECK;
+
+  bool haveLongFlags = ad.haveLongFlags();
+
+  band& xxx_flags_hi = ad.xxx_flags_hi();
+  assert(endsWith(xxx_flags_hi.name, "_flags_hi"));
+  if (haveLongFlags)
+    xxx_flags_hi.readData(obj_count);
+
+  band& xxx_flags_lo = ad.xxx_flags_lo();
+  assert(endsWith(xxx_flags_lo.name, "_flags_lo"));
+  xxx_flags_lo.readData(obj_count);
+
+  // pre-scan flags, counting occurrences of each index bit
+  julong indexMask = ad.flagIndexMask();  // which flag bits are index bits?
+  for (i = 0; i < obj_count; i++) {
+    julong indexBits = xxx_flags_hi.getLong(xxx_flags_lo, haveLongFlags);
+    if ((indexBits & ~indexMask) > (ushort)-1) {
+      abort("undefined attribute flag bit");
+      return;
+    }
+    indexBits &= indexMask;  // ignore classfile flag bits
+    for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
+      ad.flag_count[idx] += (indexBits & 1);
+    }
+  }
+  // we'll scan these again later for output:
+  xxx_flags_lo.rewind();
+  xxx_flags_hi.rewind();
+
+  band& xxx_attr_count = ad.xxx_attr_count();
+  assert(endsWith(xxx_attr_count.name, "_attr_count"));
+  // There is one count element for each 1<<16 bit set in flags:
+  xxx_attr_count.readData(ad.predefCount(X_ATTR_OVERFLOW));
+
+  band& xxx_attr_indexes = ad.xxx_attr_indexes();
+  assert(endsWith(xxx_attr_indexes.name, "_attr_indexes"));
+  int overflowIndexCount = xxx_attr_count.getIntTotal();
+  xxx_attr_indexes.readData(overflowIndexCount);
+  // pre-scan attr indexes, counting occurrences of each value
+  for (i = 0; i < overflowIndexCount; i++) {
+    idx = xxx_attr_indexes.getInt();
+    if (!ad.isIndex(idx)) {
+      abort("attribute index out of bounds");
+      return;
+    }
+    ad.getCount(idx) += 1;
+  }
+  xxx_attr_indexes.rewind();  // we'll scan it again later for output
+
+  // We will need a backward call count for each used backward callable.
+  int backwardCounts = 0;
+  for (idx = 0; idx < ad.layouts.length(); idx++) {
+    layout_definition* lo = ad.getLayout(idx);
+    if (lo != null && ad.getCount(idx) != 0) {
+      // Build the bands lazily, only when they are used.
+      band** bands = ad.buildBands(lo);
+      CHECK;
+      if (lo->hasCallables()) {
+        for (i = 0; bands[i] != null; i++) {
+          if (bands[i]->le_back) {
+            assert(bands[i]->le_kind == EK_CBLE);
+            backwardCounts += 1;
+          }
+        }
+      }
+    }
+  }
+  ad.xxx_attr_calls().readData(backwardCounts);
+
+  // Read built-in bands.
+  // Mostly, these are hand-coded equivalents to readBandData().
+  switch (attrc) {
+  case ATTR_CONTEXT_CLASS:
+
+    count = ad.predefCount(CLASS_ATTR_SourceFile);
+    class_SourceFile_RUN.readData(count);
+
+    count = ad.predefCount(CLASS_ATTR_EnclosingMethod);
+    class_EnclosingMethod_RC.readData(count);
+    class_EnclosingMethod_RDN.readData(count);
+
+    count = ad.predefCount(X_ATTR_Signature);
+    class_Signature_RS.readData(count);
+
+    ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
+    ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
+
+    count = ad.predefCount(CLASS_ATTR_InnerClasses);
+    class_InnerClasses_N.readData(count);
+    count = class_InnerClasses_N.getIntTotal();
+    class_InnerClasses_RC.readData(count);
+    class_InnerClasses_F.readData(count);
+    // Drop remaining columns wherever flags are zero:
+    count -= class_InnerClasses_F.getIntCount(0);
+    class_InnerClasses_outer_RCN.readData(count);
+    class_InnerClasses_name_RUN.readData(count);
+
+    count = ad.predefCount(CLASS_ATTR_ClassFile_version);
+    class_ClassFile_version_minor_H.readData(count);
+    class_ClassFile_version_major_H.readData(count);
+    break;
+
+  case ATTR_CONTEXT_FIELD:
+
+    count = ad.predefCount(FIELD_ATTR_ConstantValue);
+    field_ConstantValue_KQ.readData(count);
+
+    count = ad.predefCount(X_ATTR_Signature);
+    field_Signature_RS.readData(count);
+
+    ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
+    ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
+    break;
+
+  case ATTR_CONTEXT_METHOD:
+
+    code_count = ad.predefCount(METHOD_ATTR_Code);
+    // Code attrs are handled very specially below...
+
+    count = ad.predefCount(METHOD_ATTR_Exceptions);
+    method_Exceptions_N.readData(count);
+    count = method_Exceptions_N.getIntTotal();
+    method_Exceptions_RC.readData(count);
+
+    count = ad.predefCount(X_ATTR_Signature);
+    method_Signature_RS.readData(count);
+
+    ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
+    ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
+    ad.readBandData(METHOD_ATTR_RuntimeVisibleParameterAnnotations);
+    ad.readBandData(METHOD_ATTR_RuntimeInvisibleParameterAnnotations);
+    ad.readBandData(METHOD_ATTR_AnnotationDefault);
+    break;
+
+  case ATTR_CONTEXT_CODE:
+    // (keep this code aligned with its brother in unpacker::write_attrs)
+    count = ad.predefCount(CODE_ATTR_StackMapTable);
+    // disable this feature in old archives!
+    if (count != 0 && majver < JAVA6_PACKAGE_MAJOR_VERSION) {
+      abort("undefined StackMapTable attribute (old archive format)");
+      return;
+    }
+    code_StackMapTable_N.readData(count);
+    count = code_StackMapTable_N.getIntTotal();
+    code_StackMapTable_frame_T.readData(count);
+    // the rest of it depends in a complicated way on frame tags
+    {
+      int fat_frame_count = 0;
+      int offset_count = 0;
+      int type_count = 0;
+      for (int k = 0; k < count; k++) {
+        int tag = code_StackMapTable_frame_T.getByte();
+        if (tag <= 127) {
+          // (64-127)  [(2)]
+          if (tag >= 64)  type_count++;
+        } else if (tag <= 251) {
+          // (247)     [(1)(2)]
+          // (248-251) [(1)]
+          if (tag >= 247)  offset_count++;
+          if (tag == 247)  type_count++;
+        } else if (tag <= 254) {
+          // (252)     [(1)(2)]
+          // (253)     [(1)(2)(2)]
+          // (254)     [(1)(2)(2)(2)]
+          offset_count++;
+          type_count += (tag - 251);
+        } else {
+          // (255)     [(1)NH[(2)]NH[(2)]]
+          fat_frame_count++;
+        }
+      }
+
+      // done pre-scanning frame tags:
+      code_StackMapTable_frame_T.rewind();
+
+      // deal completely with fat frames:
+      offset_count += fat_frame_count;
+      code_StackMapTable_local_N.readData(fat_frame_count);
+      type_count += code_StackMapTable_local_N.getIntTotal();
+      code_StackMapTable_stack_N.readData(fat_frame_count);
+      type_count += code_StackMapTable_stack_N.getIntTotal();
+      // read the rest:
+      code_StackMapTable_offset.readData(offset_count);
+      code_StackMapTable_T.readData(type_count);
+      // (7) [RCH]
+      count = code_StackMapTable_T.getIntCount(7);
+      code_StackMapTable_RC.readData(count);
+      // (8) [PH]
+      count = code_StackMapTable_T.getIntCount(8);
+      code_StackMapTable_P.readData(count);
+    }
+
+    count = ad.predefCount(CODE_ATTR_LineNumberTable);
+    code_LineNumberTable_N.readData(count);
+    count = code_LineNumberTable_N.getIntTotal();
+    code_LineNumberTable_bci_P.readData(count);
+    code_LineNumberTable_line.readData(count);
+
+    count = ad.predefCount(CODE_ATTR_LocalVariableTable);
+    code_LocalVariableTable_N.readData(count);
+    count = code_LocalVariableTable_N.getIntTotal();
+    code_LocalVariableTable_bci_P.readData(count);
+    code_LocalVariableTable_span_O.readData(count);
+    code_LocalVariableTable_name_RU.readData(count);
+    code_LocalVariableTable_type_RS.readData(count);
+    code_LocalVariableTable_slot.readData(count);
+
+    count = ad.predefCount(CODE_ATTR_LocalVariableTypeTable);
+    code_LocalVariableTypeTable_N.readData(count);
+    count = code_LocalVariableTypeTable_N.getIntTotal();
+    code_LocalVariableTypeTable_bci_P.readData(count);
+    code_LocalVariableTypeTable_span_O.readData(count);
+    code_LocalVariableTypeTable_name_RU.readData(count);
+    code_LocalVariableTypeTable_type_RS.readData(count);
+    code_LocalVariableTypeTable_slot.readData(count);
+    break;
+  }
+
+  // Read compressor-defined bands.
+  for (idx = 0; idx < ad.layouts.length(); idx++) {
+    if (ad.getLayout(idx) == null)
+      continue;  // none at this fixed index <32
+    if (idx < ad.flag_limit && ad.isPredefined(idx))
+      continue;  // already handled
+    if (ad.getCount(idx) == 0)
+      continue;  // no attributes of this type (then why transmit layouts?)
+    ad.readBandData(idx);
+  }
+}
+
+void unpacker::attr_definitions::readBandData(int idx) {
+  int j;
+  uint count = getCount(idx);
+  if (count == 0)  return;
+  layout_definition* lo = getLayout(idx);
+  if (lo != null) {
+    printcr(1, "counted %d [redefined = %d predefined = %d] attributes of type %s.%s",
+            count, isRedefined(idx), isPredefined(idx),
+            ATTR_CONTEXT_NAME[attrc], lo->name);
+  }
+  bool hasCallables = lo->hasCallables();
+  band** bands = lo->bands();
+  if (!hasCallables) {
+    // Read through the rest of the bands in a regular way.
+    readBandData(bands, count);
+  } else {
+    // Deal with the callables.
+    // First set up the forward entry count for each callable.
+    // This is stored on band::length of the callable.
+    bands[0]->expectMoreLength(count);
+    for (j = 0; bands[j] != null; j++) {
+      band& j_cble = *bands[j];
+      assert(j_cble.le_kind == EK_CBLE);
+      if (j_cble.le_back) {
+        // Add in the predicted effects of backward calls, too.
+        int back_calls = xxx_attr_calls().getInt();
+        j_cble.expectMoreLength(back_calls);
+        // In a moment, more forward calls may increment j_cble.length.
+      }
+    }
+    // Now consult whichever callables have non-zero entry counts.
+    readBandData(bands, -1);
+  }
+}
+
+// Recursive helper to the previous function:
+void unpacker::attr_definitions::readBandData(band** body, uint count) {
+  int i, j, k;
+  for (j = 0; body[j] != null; j++) {
+    band& b = *body[j];
+    if (b.defc != null) {
+      // It has data, so read it.
+      b.readData(count);
+    }
+    switch (b.le_kind) {
+    case EK_REPL:
+      {
+        int reps = b.getIntTotal();
+        readBandData(b.le_body, reps);
+      }
+      break;
+    case EK_UN:
+      {
+        int remaining = count;
+        for (k = 0; b.le_body[k] != null; k++) {
+          band& k_case = *b.le_body[k];
+          int   k_count = 0;
+          if (k_case.le_casetags == null) {
+            k_count = remaining;  // last (empty) case
+          } else {
+            int* tags = k_case.le_casetags;
+            int ntags = *tags++;  // 1st element is length (why not?)
+            while (ntags-- > 0) {
+              int tag = *tags++;
+              k_count += b.getIntCount(tag);
+            }
+          }
+          readBandData(k_case.le_body, k_count);
+          remaining -= k_count;
+        }
+        assert(remaining == 0);
+      }
+      break;
+    case EK_CALL:
+      // Push the count forward, if it is not a backward call.
+      if (!b.le_back) {
+        band& cble = *b.le_body[0];
+        assert(cble.le_kind == EK_CBLE);
+        cble.expectMoreLength(count);
+      }
+      break;
+    case EK_CBLE:
+      assert(count == -1);  // incoming count is meaningless
+      k = b.length;
+      assert(k >= 0);
+      // This is intended and required for non production mode.
+      assert((b.length = -1)); // make it unable to accept more calls now.
+      readBandData(b.le_body, k);
+      break;
+    }
+  }
+}
+
+static inline
+band** findMatchingCase(int matchTag, band** cases) {
+  for (int k = 0; cases[k] != null; k++) {
+    band& k_case = *cases[k];
+    if (k_case.le_casetags != null) {
+      // If it has tags, it must match a tag.
+      int* tags = k_case.le_casetags;
+      int ntags = *tags++;  // 1st element is length
+      for (; ntags > 0; ntags--) {
+        int tag = *tags++;
+        if (tag == matchTag)
+          break;
+      }
+      if (ntags == 0)
+        continue;   // does not match
+    }
+    return k_case.le_body;
+  }
+  return null;
+}
+
+// write attribute band data:
+void unpacker::putlayout(band** body) {
+  int i;
+  int prevBII = -1;
+  int prevBCI = -1;
+  for (i = 0; body[i] != null; i++) {
+    band& b = *body[i];
+    byte le_kind = b.le_kind;
+
+    // Handle scalar part, if any.
+    int    x = 0;
+    entry* e = null;
+    if (b.defc != null) {
+      // It has data, so unparse an element.
+      if (b.ixTag != CONSTANT_None) {
+        assert(le_kind == EK_REF);
+        if (b.ixTag == CONSTANT_Literal)
+          e = b.getRefUsing(cp.getKQIndex());
+        else
+          e = b.getRefN();
+        switch (b.le_len) {
+        case 0: break;
+        case 1: putu1ref(e); break;
+        case 2: putref(e); break;
+        case 4: putu2(0); putref(e); break;
+        default: assert(false);
+        }
+      } else {
+        assert(le_kind == EK_INT || le_kind == EK_REPL || le_kind == EK_UN);
+        x = b.getInt();
+
+        assert(!b.le_bci || prevBCI == to_bci(prevBII));
+        switch (b.le_bci) {
+        case EK_BCI:   // PH:  transmit R(bci), store bci
+          x = to_bci(prevBII = x);
+          prevBCI = x;
+          break;
+        case EK_BCID:  // POH: transmit D(R(bci)), store bci
+          x = to_bci(prevBII += x);
+          prevBCI = x;
+          break;
+        case EK_BCO:   // OH:  transmit D(R(bci)), store D(bci)
+          x = to_bci(prevBII += x) - prevBCI;
+          prevBCI += x;
+          break;
+        }
+        assert(!b.le_bci || prevBCI == to_bci(prevBII));
+
+        switch (b.le_len) {
+        case 0: break;
+        case 1: putu1(x); break;
+        case 2: putu2(x); break;
+        case 4: putu4(x); break;
+        default: assert(false);
+        }
+      }
+    }
+
+    // Handle subparts, if any.
+    switch (le_kind) {
+    case EK_REPL:
+      // x is the repeat count
+      while (x-- > 0) {
+        putlayout(b.le_body);
+      }
+      break;
+    case EK_UN:
+      // x is the tag
+      putlayout(findMatchingCase(x, b.le_body));
+      break;
+    case EK_CALL:
+      {
+        band& cble = *b.le_body[0];
+        assert(cble.le_kind == EK_CBLE);
+        assert(cble.le_len == b.le_len);
+        putlayout(cble.le_body);
+      }
+      break;
+
+    #ifndef PRODUCT
+    case EK_CBLE:
+    case EK_CASE:
+      assert(false);  // should not reach here
+    #endif
+    }
+  }
+}
+
+void unpacker::read_files() {
+  file_name.readData(file_count);
+  if ((archive_options & AO_HAVE_FILE_SIZE_HI) != 0)
+    file_size_hi.readData(file_count);
+  file_size_lo.readData(file_count);
+  if ((archive_options & AO_HAVE_FILE_MODTIME) != 0)
+    file_modtime.readData(file_count);
+  int allFiles = file_count + class_count;
+  if ((archive_options & AO_HAVE_FILE_OPTIONS) != 0) {
+    file_options.readData(file_count);
+    // FO_IS_CLASS_STUB might be set, causing overlap between classes and files
+    for (int i = 0; i < file_count; i++) {
+      if ((file_options.getInt() & FO_IS_CLASS_STUB) != 0) {
+        allFiles -= 1;  // this one counts as both class and file
+      }
+    }
+    file_options.rewind();
+  }
+  assert((default_file_options & FO_IS_CLASS_STUB) == 0);
+  files_remaining = allFiles;
+}
+
+maybe_inline
+void unpacker::get_code_header(int& max_stack,
+                               int& max_na_locals,
+                               int& handler_count,
+                               int& cflags) {
+  int sc = code_headers.getByte();
+  if (sc == 0) {
+    max_stack = max_na_locals = handler_count = cflags = -1;
+    return;
+  }
+  // Short code header is the usual case:
+  int nh;
+  int mod;
+  if (sc < 1 + 12*12) {
+    sc -= 1;
+    nh = 0;
+    mod = 12;
+  } else if (sc < 1 + 12*12 + 8*8) {
+    sc -= 1 + 12*12;
+    nh = 1;
+    mod = 8;
+  } else {
+    assert(sc < 1 + 12*12 + 8*8 + 7*7);
+    sc -= 1 + 12*12 + 8*8;
+    nh = 2;
+    mod = 7;
+  }
+  max_stack     = sc % mod;
+  max_na_locals = sc / mod;  // caller must add static, siglen
+  handler_count = nh;
+  if ((archive_options & AO_HAVE_ALL_CODE_FLAGS) != 0)
+    cflags      = -1;
+  else
+    cflags      = 0;  // this one has no attributes
+}
+
+// Cf. PackageReader.readCodeHeaders
+void unpacker::read_code_headers() {
+  code_headers.readData(code_count);
+  CHECK;
+  int totalHandlerCount = 0;
+  int totalFlagsCount   = 0;
+  for (int i = 0; i < code_count; i++) {
+    int max_stack, max_locals, handler_count, cflags;
+    get_code_header(max_stack, max_locals, handler_count, cflags);
+    if (max_stack < 0)      code_max_stack.expectMoreLength(1);
+    if (max_locals < 0)     code_max_na_locals.expectMoreLength(1);
+    if (handler_count < 0)  code_handler_count.expectMoreLength(1);
+    else                    totalHandlerCount += handler_count;
+    if (cflags < 0)         totalFlagsCount += 1;
+  }
+  code_headers.rewind();  // replay later during writing
+
+  code_max_stack.readData();
+  code_max_na_locals.readData();
+  code_handler_count.readData();
+  totalHandlerCount += code_handler_count.getIntTotal();
+
+  // Read handler specifications.
+  // Cf. PackageReader.readCodeHandlers.
+  code_handler_start_P.readData(totalHandlerCount);
+  code_handler_end_PO.readData(totalHandlerCount);
+  code_handler_catch_PO.readData(totalHandlerCount);
+  code_handler_class_RCN.readData(totalHandlerCount);
+
+  read_attrs(ATTR_CONTEXT_CODE, totalFlagsCount);
+}
+
+static inline bool is_in_range(uint n, uint min, uint max) {
+  return n - min <= max - min;  // unsigned arithmetic!
+}
+static inline bool is_field_op(int bc) {
+  return is_in_range(bc, bc_getstatic, bc_putfield);
+}
+static inline bool is_invoke_init_op(int bc) {
+  return is_in_range(bc, _invokeinit_op, _invokeinit_limit-1);
+}
+static inline bool is_self_linker_op(int bc) {
+  return is_in_range(bc, _self_linker_op, _self_linker_limit-1);
+}
+static bool is_branch_op(int bc) {
+  return is_in_range(bc, bc_ifeq,   bc_jsr)
+      || is_in_range(bc, bc_ifnull, bc_jsr_w);
+}
+static bool is_local_slot_op(int bc) {
+  return is_in_range(bc, bc_iload,  bc_aload)
+      || is_in_range(bc, bc_istore, bc_astore)
+      || bc == bc_iinc || bc == bc_ret;
+}
+band* unpacker::ref_band_for_op(int bc) {
+  switch (bc) {
+  case bc_ildc:
+  case bc_ildc_w:
+    return &bc_intref;
+  case bc_fldc:
+  case bc_fldc_w:
+    return &bc_floatref;
+  case bc_lldc2_w:
+    return &bc_longref;
+  case bc_dldc2_w:
+    return &bc_doubleref;
+  case bc_aldc:
+  case bc_aldc_w:
+    return &bc_stringref;
+  case bc_cldc:
+  case bc_cldc_w:
+    return &bc_classref;
+
+  case bc_getstatic:
+  case bc_putstatic:
+  case bc_getfield:
+  case bc_putfield:
+    return &bc_fieldref;
+
+  case bc_invokevirtual:
+  case bc_invokespecial:
+  case bc_invokestatic:
+    return &bc_methodref;
+  case bc_invokeinterface:
+    return &bc_imethodref;
+
+  case bc_new:
+  case bc_anewarray:
+  case bc_checkcast:
+  case bc_instanceof:
+  case bc_multianewarray:
+    return &bc_classref;
+  }
+  return null;
+}
+
+maybe_inline
+band* unpacker::ref_band_for_self_op(int bc, bool& isAloadVar, int& origBCVar) {
+  if (!is_self_linker_op(bc))  return null;
+  int idx = (bc - _self_linker_op);
+  bool isSuper = (idx >= _self_linker_super_flag);
+  if (isSuper)  idx -= _self_linker_super_flag;
+  bool isAload = (idx >= _self_linker_aload_flag);
+  if (isAload)  idx -= _self_linker_aload_flag;
+  int origBC = _first_linker_op + idx;
+  bool isField = is_field_op(origBC);
+  isAloadVar = isAload;
+  origBCVar  = _first_linker_op + idx;
+  if (!isSuper)
+    return isField? &bc_thisfield: &bc_thismethod;
+  else
+    return isField? &bc_superfield: &bc_supermethod;
+}
+
+// Cf. PackageReader.readByteCodes
+inline  // called exactly once => inline
+void unpacker::read_bcs() {
+  printcr(3, "reading compressed bytecodes and operands for %d codes...",
+          code_count);
+
+  // read from bc_codes and bc_case_count
+  fillbytes all_switch_ops;
+  all_switch_ops.init();
+  CHECK;
+
+  // Read directly from rp/rplimit.
+  //Do this later:  bc_codes.readData(...)
+  byte* rp0 = rp;
+
+  band* bc_which;
+  byte* opptr = rp;
+  byte* oplimit = rplimit;
+
+  bool  isAload;  // passed by ref and then ignored
+  int   junkBC;   // passed by ref and then ignored
+  for (int k = 0; k < code_count; k++) {
+    // Scan one method:
+    for (;;) {
+      if (opptr+2 > oplimit) {
+        rp = opptr;
+        ensure_input(2);
+        oplimit = rplimit;
+        rp = rp0;  // back up
+      }
+      if (opptr == oplimit) { abort(); break; }
+      int bc = *opptr++ & 0xFF;
+      bool isWide = false;
+      if (bc == bc_wide) {
+        if (opptr == oplimit) { abort(); break; }
+        bc = *opptr++ & 0xFF;
+        isWide = true;
+      }
+      // Adjust expectations of various band sizes.
+      switch (bc) {
+      case bc_tableswitch:
+      case bc_lookupswitch:
+        all_switch_ops.addByte(bc);
+        break;
+      case bc_iinc:
+        bc_local.expectMoreLength(1);
+        bc_which = isWide ? &bc_short : &bc_byte;
+        bc_which->expectMoreLength(1);
+        break;
+      case bc_sipush:
+        bc_short.expectMoreLength(1);
+        break;
+      case bc_bipush:
+        bc_byte.expectMoreLength(1);
+        break;
+      case bc_newarray:
+        bc_byte.expectMoreLength(1);
+        break;
+      case bc_multianewarray:
+        assert(ref_band_for_op(bc) == &bc_classref);
+        bc_classref.expectMoreLength(1);
+        bc_byte.expectMoreLength(1);
+        break;
+      case bc_ref_escape:
+        bc_escrefsize.expectMoreLength(1);
+        bc_escref.expectMoreLength(1);
+        break;
+      case bc_byte_escape:
+        bc_escsize.expectMoreLength(1);
+        // bc_escbyte will have to be counted too
+        break;
+      default:
+        if (is_invoke_init_op(bc)) {
+          bc_initref.expectMoreLength(1);
+          break;
+        }
+        bc_which = ref_band_for_self_op(bc, isAload, junkBC);
+        if (bc_which != null) {
+          bc_which->expectMoreLength(1);
+          break;
+        }
+        if (is_branch_op(bc)) {
+          bc_label.expectMoreLength(1);
+          break;
+        }
+        bc_which = ref_band_for_op(bc);
+        if (bc_which != null) {
+          bc_which->expectMoreLength(1);
+          assert(bc != bc_multianewarray);  // handled elsewhere
+          break;
+        }
+        if (is_local_slot_op(bc)) {
+          bc_local.expectMoreLength(1);
+          break;
+        }
+        break;
+      case bc_end_marker:
+        // Increment k and test against code_count.
+        goto doneScanningMethod;
+      }
+    }
+  doneScanningMethod:{}
+    if (aborting())  break;
+  }
+
+  // Go through the formality, so we can use it in a regular fashion later:
+  assert(rp == rp0);
+  bc_codes.readData(opptr - rp);
+
+  int i = 0;
+
+  // To size instruction bands correctly, we need info on switches:
+  bc_case_count.readData(all_switch_ops.size());
+  for (i = 0; i < all_switch_ops.size(); i++) {
+    int caseCount = bc_case_count.getInt();
+    int bc        = all_switch_ops.getByte(i);
+    bc_label.expectMoreLength(1+caseCount); // default label + cases
+    bc_case_value.expectMoreLength(bc == bc_tableswitch ? 1 : caseCount);
+    printcr(2, "switch bc=%d caseCount=%d", bc, caseCount);
+  }
+  bc_case_count.rewind();  // uses again for output
+
+  all_switch_ops.free();
+
+  for (i = e_bc_case_value; i <= e_bc_escsize; i++) {
+    all_bands[i].readData();
+  }
+
+  // The bc_escbyte band is counted by the immediately previous band.
+  bc_escbyte.readData(bc_escsize.getIntTotal());
+
+  printcr(3, "scanned %d opcode and %d operand bytes for %d codes...",
+          (int)(bc_codes.size()),
+          (int)(bc_escsize.maxRP() - bc_case_value.minRP()),
+          code_count);
+}
+
+void unpacker::read_bands() {
+  byte* rp0 = rp;
+  int i;
+
+  read_file_header();
+  CHECK;
+
+  if (cp.nentries == 0) {
+    // read_file_header failed to read a CP, because it copied a JAR.
+    return;
+  }
+
+  // Do this after the file header has been read:
+  check_options();
+
+  read_cp();
+  CHECK;
+  read_attr_defs();
+  CHECK;
+  read_ics();
+  CHECK;
+  read_classes();
+  CHECK;
+  read_bcs();
+  CHECK;
+  read_files();
+}
+
+/// CP routines
+
+entry*& cpool::hashTabRef(byte tag, bytes& b) {
+  printcr(5, "hashTabRef tag=%d %s[%d]", tag, b.string(), b.len);
+  uint hash = tag + b.len;
+  for (int i = 0; i < b.len; i++) {
+    hash = hash * 31 + (0xFF & b.ptr[i]);
+  }
+  entry**  ht = hashTab;
+  int    hlen = hashTabLength;
+  assert((hlen & (hlen-1)) == 0);  // must be power of 2
+  uint hash1 = hash & (hlen-1);    // == hash % hlen
+  uint hash2 = 0;                  // lazily computed (requires mod op.)
+  int probes = 0;
+  while (ht[hash1] != null) {
+    entry& e = *ht[hash1];
+    if (e.value.b.equals(b) && e.tag == tag)
+      break;
+    if (hash2 == 0)
+      // Note:  hash2 must be relatively prime to hlen, hence the "|1".
+      hash2 = (((hash % 499) & (hlen-1)) | 1);
+    hash1 += hash2;
+    if (hash1 >= hlen)  hash1 -= hlen;
+    assert(hash1 < hlen);
+    assert(++probes < hlen);
+  }
+  #ifndef PRODUCT
+  hash_probes[0] += 1;
+  hash_probes[1] += probes;
+  #endif
+  printcr(5, " => @%d %p", hash1, ht[hash1]);
+  return ht[hash1];
+}
+
+maybe_inline
+static void insert_extra(entry* e, ptrlist& extras) {
+  // This ordering helps implement the Pack200 requirement
+  // of a predictable CP order in the class files produced.
+  e->inord = NO_INORD;  // mark as an "extra"
+  extras.add(e);
+  // Note:  We will sort the list (by string-name) later.
+}
+
+entry* cpool::ensureUtf8(bytes& b) {
+  entry*& ix = hashTabRef(CONSTANT_Utf8, b);
+  if (ix != null)  return ix;
+  // Make one.
+  if (nentries == maxentries) {
+    abort("cp utf8 overflow");
+    return &entries[tag_base[CONSTANT_Utf8]];  // return something
+  }
+  entry& e = entries[nentries++];
+  e.tag = CONSTANT_Utf8;
+  u->saveTo(e.value.b, b);
+  assert(&e >= first_extra_entry);
+  insert_extra(&e, tag_extras[CONSTANT_Utf8]);
+  printcr(4,"ensureUtf8 miss %s", e.string());
+  return ix = &e;
+}
+
+entry* cpool::ensureClass(bytes& b) {
+  entry*& ix = hashTabRef(CONSTANT_Class, b);
+  if (ix != null)  return ix;
+  // Make one.
+  if (nentries == maxentries) {
+    abort("cp class overflow");
+    return &entries[tag_base[CONSTANT_Class]];  // return something
+  }
+  entry& e = entries[nentries++];
+  e.tag = CONSTANT_Class;
+  e.nrefs = 1;
+  e.refs = U_NEW(entry*, 1);
+  ix = &e;  // hold my spot in the index
+  entry* utf = ensureUtf8(b);
+  e.refs[0] = utf;
+  e.value.b = utf->value.b;
+  assert(&e >= first_extra_entry);
+  insert_extra(&e, tag_extras[CONSTANT_Class]);
+  printcr(4,"ensureClass miss %s", e.string());
+  return &e;
+}
+
+void cpool::expandSignatures() {
+  int i;
+  int nsigs = 0;
+  int nreused = 0;
+  int first_sig = tag_base[CONSTANT_Signature];
+  int sig_limit = tag_count[CONSTANT_Signature] + first_sig;
+  fillbytes buf;
+  buf.init(1<<10);
+  CHECK;
+  for (i = first_sig; i < sig_limit; i++) {
+    entry& e = entries[i];
+    assert(e.tag == CONSTANT_Signature);
+    int refnum = 0;
+    bytes form = e.refs[refnum++]->asUtf8();
+    buf.empty();
+    for (int j = 0; j < form.len; j++) {
+      int c = form.ptr[j];
+      buf.addByte(c);
+      if (c == 'L') {
+        entry* cls = e.refs[refnum++];
+        buf.append(cls->className()->asUtf8());
+      }
+    }
+    assert(refnum == e.nrefs);
+    bytes& sig = buf.b;
+    printcr(5,"signature %d %s -> %s", i, form.ptr, sig.ptr);
+
+    // try to find a pre-existing Utf8:
+    entry* &e2 = hashTabRef(CONSTANT_Utf8, sig);
+    if (e2 != null) {
+      assert(e2->isUtf8(sig));
+      e.value.b = e2->value.b;
+      e.refs[0] = e2;
+      e.nrefs = 1;
+      printcr(5,"signature replaced %d => %s", i, e.string());
+      nreused++;
+    } else {
+      // there is no other replacement; reuse this CP entry as a Utf8
+      u->saveTo(e.value.b, sig);
+      e.tag = CONSTANT_Utf8;
+      e.nrefs = 0;
+      e2 = &e;
+      printcr(5,"signature changed %d => %s", e.inord, e.string());
+    }
+    nsigs++;
+  }
+  printcr(1,"expanded %d signatures (reused %d utfs)", nsigs, nreused);
+  buf.free();
+
+  // go expunge all references to remaining signatures:
+  for (i = 0; i < nentries; i++) {
+    entry& e = entries[i];
+    for (int j = 0; j < e.nrefs; j++) {
+      entry*& e2 = e.refs[j];
+      if (e2 != null && e2->tag == CONSTANT_Signature)
+        e2 = e2->refs[0];
+    }
+  }
+}
+
+void cpool::initMemberIndexes() {
+  // This function does NOT refer to any class schema.
+  // It is totally internal to the cpool.
+  int i, j, len;
+
+  // Get the pre-existing indexes:
+  int   nclasses = tag_count[CONSTANT_Class];
+  entry* classes = tag_base[CONSTANT_Class] + entries;
+  int   nfields  = tag_count[CONSTANT_Fieldref];
+  entry* fields  = tag_base[CONSTANT_Fieldref] + entries;
+  int   nmethods = tag_count[CONSTANT_Methodref];
+  entry* methods = tag_base[CONSTANT_Methodref] + entries;
+
+  int*     field_counts  = T_NEW(int, nclasses);
+  int*     method_counts = T_NEW(int, nclasses);
+  cpindex* all_indexes   = U_NEW(cpindex, nclasses*2);
+  entry**  field_ix      = U_NEW(entry*, nfields+nclasses);
+  entry**  method_ix     = U_NEW(entry*, nmethods+nclasses);
+
+  for (j = 0; j < nfields; j++) {
+    entry& f = fields[j];
+    i = f.memberClass()->inord;
+    assert((uint)i < nclasses);
+    field_counts[i]++;
+  }
+  for (j = 0; j < nmethods; j++) {
+    entry& m = methods[j];
+    i = m.memberClass()->inord;
+    assert((uint)i < nclasses);
+    method_counts[i]++;
+  }
+
+  int fbase = 0, mbase = 0;
+  for (i = 0; i < nclasses; i++) {
+    int fc = field_counts[i];
+    int mc = method_counts[i];
+    all_indexes[i*2+0].init(fc, field_ix+fbase,
+                            CONSTANT_Fieldref  + SUBINDEX_BIT);
+    all_indexes[i*2+1].init(mc, method_ix+mbase,
+                            CONSTANT_Methodref + SUBINDEX_BIT);
+    // reuse field_counts and member_counts as fill pointers:
+    field_counts[i] = fbase;
+    method_counts[i] = mbase;
+    printcr(3, "class %d fields @%d[%d] methods @%d[%d]",
+            i, fbase, fc, mbase, mc);
+    fbase += fc+1;
+    mbase += mc+1;
+    // (the +1 leaves a space between every subarray)
+  }
+  assert(fbase == nfields+nclasses);
+  assert(mbase == nmethods+nclasses);
+
+  for (j = 0; j < nfields; j++) {
+    entry& f = fields[j];
+    i = f.memberClass()->inord;
+    field_ix[field_counts[i]++] = &f;
+  }
+  for (j = 0; j < nmethods; j++) {
+    entry& m = methods[j];
+    i = m.memberClass()->inord;
+    method_ix[method_counts[i]++] = &m;
+  }
+
+  member_indexes = all_indexes;
+
+#ifndef PRODUCT
+  // Test the result immediately on every class and field.
+  int fvisited = 0, mvisited = 0;
+  int prevord;
+  for (i = 0; i < nclasses; i++) {
+    entry*   cls = &classes[i];
+    cpindex* fix = getFieldIndex(cls);
+    cpindex* mix = getMethodIndex(cls);
+    printcr(2, "field and method index for %s [%d] [%d]",
+            cls->string(), mix->len, fix->len);
+    prevord = -1;
+    for (j = 0, len = fix->len; j < len; j++) {
+      entry* f = fix->get(j);
+      assert(f != null);
+      printcr(3, "- field %s", f->string());
+      assert(f->memberClass() == cls);
+      assert(prevord < (int)f->inord);
+      prevord = f->inord;
+      fvisited++;
+    }
+    assert(fix->base2[j] == null);
+    prevord = -1;
+    for (j = 0, len = mix->len; j < len; j++) {
+      entry* m = mix->get(j);
+      assert(m != null);
+      printcr(3, "- method %s", m->string());
+      assert(m->memberClass() == cls);
+      assert(prevord < (int)m->inord);
+      prevord = m->inord;
+      mvisited++;
+    }
+    assert(mix->base2[j] == null);
+  }
+  assert(fvisited == nfields);
+  assert(mvisited == nmethods);
+#endif
+
+  // Free intermediate buffers.
+  u->free_temps();
+}
+
+void entry::requestOutputIndex(cpool& cp, int req) {
+  assert(outputIndex <= NOT_REQUESTED);  // must not have assigned indexes yet
+  if (tag == CONSTANT_Signature) {
+    ref(0)->requestOutputIndex(cp, req);
+    return;
+  }
+  assert(req == REQUESTED || req == REQUESTED_LDC);
+  if (outputIndex != NOT_REQUESTED) {
+    if (req == REQUESTED_LDC)
+      outputIndex = req;  // this kind has precedence
+    return;
+  }
+  outputIndex = req;
+  //assert(!cp.outputEntries.contains(this));
+  assert(tag != CONSTANT_Signature);
+  cp.outputEntries.add(this);
+  for (int j = 0; j < nrefs; j++) {
+    ref(j)->requestOutputIndex(cp);
+  }
+}
+
+void cpool::resetOutputIndexes() {
+  int i;
+  int    noes =           outputEntries.length();
+  entry** oes = (entry**) outputEntries.base();
+  for (i = 0; i < noes; i++) {
+    entry& e = *oes[i];
+    e.outputIndex = NOT_REQUESTED;
+  }
+  outputIndexLimit = 0;
+  outputEntries.empty();
+#ifndef PRODUCT
+  // they must all be clear now
+  for (i = 0; i < nentries; i++)
+    assert(entries[i].outputIndex == NOT_REQUESTED);
+#endif
+}
+
+static const byte TAG_ORDER[CONSTANT_Limit] = {
+  0, 1, 0, 2, 3, 4, 5, 7, 6, 10, 11, 12, 9, 8
+};
+
+extern "C"
+int outputEntry_cmp(const void* e1p, const void* e2p) {
+  // Sort entries according to the Pack200 rules for deterministic
+  // constant pool ordering.
+  //
+  // The four sort keys as follows, in order of decreasing importance:
+  //   1. ldc first, then non-ldc guys
+  //   2. normal cp_All entries by input order (i.e., address order)
+  //   3. after that, extra entries by lexical order (as in tag_extras[*])
+  entry& e1 = *(entry*) *(void**) e1p;
+  entry& e2 = *(entry*) *(void**) e2p;
+  int   oi1 = e1.outputIndex;
+  int   oi2 = e2.outputIndex;
+  assert(oi1 == REQUESTED || oi1 == REQUESTED_LDC);
+  assert(oi2 == REQUESTED || oi2 == REQUESTED_LDC);
+  if (oi1 != oi2) {
+    if (oi1 == REQUESTED_LDC)  return 0-1;
+    if (oi2 == REQUESTED_LDC)  return 1-0;
+    // Else fall through; neither is an ldc request.
+  }
+  if (e1.inord != NO_INORD || e2.inord != NO_INORD) {
+    // One or both is normal.  Use input order.
+    if (&e1 > &e2)  return 1-0;
+    if (&e1 < &e2)  return 0-1;
+    return 0;  // equal pointers
+  }
+  // Both are extras.  Sort by tag and then by value.
+  if (e1.tag != e2.tag) {
+    return TAG_ORDER[e1.tag] - TAG_ORDER[e2.tag];
+  }
+  // If the tags are the same, use string comparison.
+  return compare_Utf8_chars(e1.value.b, e2.value.b);
+}
+
+void cpool::computeOutputIndexes() {
+  int i;
+
+#ifndef PRODUCT
+  // outputEntries must be a complete list of those requested:
+  static uint checkStart = 0;
+  int checkStep = 1;
+  if (nentries > 100)  checkStep = nentries / 100;
+  for (i = (checkStart++ % checkStep); i < nentries; i += checkStep) {
+    entry& e = entries[i];
+    if (e.outputIndex != NOT_REQUESTED) {
+      assert(outputEntries.contains(&e));
+    } else {
+      assert(!outputEntries.contains(&e));
+    }
+  }
+
+  // check hand-initialization of TAG_ORDER
+  for (i = 0; i < N_TAGS_IN_ORDER; i++) {
+    byte tag = TAGS_IN_ORDER[i];
+    assert(TAG_ORDER[tag] == i+1);
+  }
+#endif
+
+  int    noes =           outputEntries.length();
+  entry** oes = (entry**) outputEntries.base();
+
+  // Sort the output constant pool into the order required by Pack200.
+  PTRLIST_QSORT(outputEntries, outputEntry_cmp);
+
+  // Allocate a new index for each entry that needs one.
+  // We do this in two passes, one for LDC entries and one for the rest.
+  int nextIndex = 1;  // always skip index #0 in output cpool
+  for (i = 0; i < noes; i++) {
+    entry& e = *oes[i];
+    assert(e.outputIndex == REQUESTED || e.outputIndex == REQUESTED_LDC);
+    e.outputIndex = nextIndex++;
+    if (e.isDoubleWord())  nextIndex++;  // do not use the next index
+  }
+  outputIndexLimit = nextIndex;
+  printcr(3,"renumbering CP to %d entries", outputIndexLimit);
+}
+
+#ifndef PRODUCT
+// debugging goo
+
+unpacker* debug_u;
+
+static bytes& getbuf(int len) {  // for debugging only!
+  static int bn = 0;
+  static bytes bufs[8] = { 0 };
+  bytes& buf = bufs[bn++ & 7];
+  while (buf.len < len+10)
+    buf.realloc(buf.len ? buf.len * 2 : 1000);
+  buf.ptr[0] = 0;  // for the sake of strcat
+  return buf;
+}
+
+char* entry::string() {
+  bytes buf;
+  switch (tag) {
+  case CONSTANT_None:
+    return (char*)"<empty>";
+  case CONSTANT_Signature:
+    if (value.b.ptr == null)
+      return ref(0)->string();
+    // else fall through:
+  case CONSTANT_Utf8:
+    buf = value.b;
+    break;
+  case CONSTANT_Integer:
+  case CONSTANT_Float:
+    buf = getbuf(12);
+    sprintf((char*)buf.ptr, "0x%08x", value.i);
+    break;
+  case CONSTANT_Long:
+  case CONSTANT_Double:
+    buf = getbuf(24);
+    sprintf((char*)buf.ptr, "0x%016llx", value.l);
+    break;
+  default:
+    if (nrefs == 0) {
+      buf = getbuf(20);
+      sprintf((char*)buf.ptr, "<tag=%d>", tag);
+    } else if (nrefs == 1) {
+      return refs[0]->string();
+    } else {
+      char* s1 = refs[0]->string();
+      char* s2 = refs[1]->string();
+      buf = getbuf(strlen(s1) + 1 + strlen(s2) + 4 + 1);
+      buf.strcat(s1).strcat(" ").strcat(s2);
+      if (nrefs > 2)  buf.strcat(" ...");
+    }
+  }
+  return (char*)buf.ptr;
+}
+
+void print_cp_entry(int i) {
+  entry& e = debug_u->cp.entries[i];
+  char buf[30];
+  sprintf(buf, ((uint)e.tag < CONSTANT_Limit)? TAG_NAME[e.tag]: "%d", e.tag);
+  printf(" %d\t%s %s\n", i, buf, e.string());
+}
+
+void print_cp_entries(int beg, int end) {
+  for (int i = beg; i < end; i++)
+    print_cp_entry(i);
+}
+
+void print_cp() {
+  print_cp_entries(0, debug_u->cp.nentries);
+}
+
+#endif
+
+// Unpacker Start
+
+const char str_tf[] = "true\0false";
+#undef STR_TRUE
+#undef STR_FALSE
+#define STR_TRUE   (&str_tf[0])
+#define STR_FALSE  (&str_tf[5])
+
+const char* unpacker::get_option(const char* prop) {
+  if (prop == null )  return null;
+  if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
+    return deflate_hint_or_zero == 0? null : STR_TF(deflate_hint_or_zero > 0);
+#ifdef HAVE_STRIP
+  } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
+    return STR_TF(strip_compile);
+  } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
+    return STR_TF(strip_debug);
+  } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
+    return STR_TF(strip_jcov);
+#endif /*HAVE_STRIP*/
+  } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
+    return STR_TF(remove_packfile);
+  } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
+    return saveIntStr(verbose);
+  } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
+    return (modification_time_or_zero == 0)? null:
+      saveIntStr(modification_time_or_zero);
+  } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
+    return log_file;
+  } else {
+    return NULL; // unknown option ignore
+  }
+}
+
+bool unpacker::set_option(const char* prop, const char* value) {
+  if (prop == NULL)  return false;
+  if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
+    deflate_hint_or_zero = ( (value == null || strcmp(value, "keep") == 0)
+                                ? 0: BOOL_TF(value) ? +1: -1);
+#ifdef HAVE_STRIP
+  } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
+    strip_compile = STR_TF(value);
+  } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
+    strip_debug = STR_TF(value);
+  } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
+    strip_jcov = STR_TF(value);
+#endif /*HAVE_STRIP*/
+  } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
+    remove_packfile = STR_TF(value);
+  } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
+    verbose = (value == null)? 0: atoi(value);
+  } else if (strcmp(prop, DEBUG_VERBOSE ".bands") == 0) {
+#ifndef PRODUCT
+    verbose_bands = (value == null)? 0: atoi(value);
+#endif
+  } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
+    if (value == null || (strcmp(value, "keep") == 0)) {
+      modification_time_or_zero = 0;
+    } else if (strcmp(value, "now") == 0) {
+      time_t now;
+      time(&now);
+      modification_time_or_zero = (int) now;
+    } else {
+      modification_time_or_zero = atoi(value);
+      if (modification_time_or_zero == 0)
+        modification_time_or_zero = 1;  // make non-zero
+    }
+  } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
+    log_file = (value == null)? value: saveStr(value);
+  } else {
+    return false; // unknown option ignore
+  }
+  return true;
+}
+
+// Deallocate all internal storage and reset to a clean state.
+// Do not disturb any input or output connections, including
+// infileptr, infileno, inbytes, read_input_fn, jarout, or errstrm.
+// Do not reset any unpack options.
+void unpacker::reset() {
+  bytes_read_before_reset      += bytes_read;
+  bytes_written_before_reset   += bytes_written;
+  files_written_before_reset   += files_written;
+  classes_written_before_reset += classes_written;
+  segments_read_before_reset   += 1;
+  if (verbose >= 2) {
+    fprintf(errstrm,
+            "After segment %d, %lld bytes read and %lld bytes written.\n",
+            segments_read_before_reset-1,
+            bytes_read_before_reset, bytes_written_before_reset);
+    fprintf(errstrm,
+            "After segment %d, %d files (of which %d are classes) written to output.\n",
+            segments_read_before_reset-1,
+            files_written_before_reset, classes_written_before_reset);
+    if (archive_next_count != 0) {
+      fprintf(errstrm,
+              "After segment %d, %d segment%s remaining (estimated).\n",
+              segments_read_before_reset-1,
+              archive_next_count, archive_next_count==1?"":"s");
+    }
+  }
+
+  unpacker save_u = (*this);  // save bytewise image
+  infileptr = null;  // make asserts happy
+  jniobj = null;  // make asserts happy
+  jarout = null;  // do not close the output jar
+  gzin = null;  // do not close the input gzip stream
+  bytes esn;
+  if (errstrm_name != null) {
+    esn.saveFrom(errstrm_name);
+  } else {
+    esn.set(null, 0);
+  }
+  this->free();
+  mtrace('s', 0, 0);  // note the boundary between segments
+  this->init(read_input_fn);
+
+  // restore selected interface state:
+#define SAVE(x) this->x = save_u.x
+  SAVE(jniobj);
+  SAVE(jnienv);
+  SAVE(infileptr);  // buffered
+  SAVE(infileno);   // unbuffered
+  SAVE(inbytes);    // direct
+  SAVE(jarout);
+  SAVE(gzin);
+  //SAVE(read_input_fn);
+  SAVE(errstrm);
+  SAVE(verbose);  // verbose level, 0 means no output
+  SAVE(strip_compile);
+  SAVE(strip_debug);
+  SAVE(strip_jcov);
+  SAVE(remove_packfile);
+  SAVE(deflate_hint_or_zero);  // ==0 means not set, otherwise -1 or 1
+  SAVE(modification_time_or_zero);
+  SAVE(bytes_read_before_reset);
+  SAVE(bytes_written_before_reset);
+  SAVE(files_written_before_reset);
+  SAVE(classes_written_before_reset);
+  SAVE(segments_read_before_reset);
+#undef SAVE
+  if (esn.len > 0) {
+    errstrm_name = saveStr(esn.strval());
+    esn.free();
+  }
+  log_file = errstrm_name;
+  // Note:  If we use strip_names, watch out:  They get nuked here.
+}
+
+void unpacker::init(read_input_fn_t input_fn) {
+  int i;
+  NOT_PRODUCT(debug_u = this);
+  BYTES_OF(*this).clear();
+  if (assert(1))  free();  // just to make sure freeing is idempotent
+  this->u = this;    // self-reference for U_NEW macro
+  errstrm = stdout;  // default error-output
+  log_file = LOGFILE_STDOUT;
+  read_input_fn = input_fn;
+  all_bands = band::makeBands(this);
+  // Make a default jar buffer; caller may safely overwrite it.
+  jarout = U_NEW(jar, 1);
+  jarout->init(this);
+  for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
+    attr_defs[i].u = u;  // set up outer ptr
+}
+
+const char* unpacker::get_abort_message() {
+   return abort_message;
+}
+
+void unpacker::dump_options() {
+  static const char* opts[] = {
+    UNPACK_LOG_FILE,
+    UNPACK_DEFLATE_HINT,
+#ifdef HAVE_STRIP
+    UNPACK_STRIP_COMPILE,
+    UNPACK_STRIP_DEBUG,
+    UNPACK_STRIP_JCOV,
+#endif /*HAVE_STRIP*/
+    UNPACK_REMOVE_PACKFILE,
+    DEBUG_VERBOSE,
+    UNPACK_MODIFICATION_TIME,
+    null
+  };
+  for (int i = 0; opts[i] != null; i++) {
+    const char* str = get_option(opts[i]);
+    if (str == null) {
+      if (verbose == 0)  continue;
+      str = "(not set)";
+    }
+    fprintf(errstrm, "%s=%s\n", opts[i], str);
+  }
+}
+
+
+// Usage: unpack a byte buffer
+// packptr is a reference to byte buffer containing a
+// packed file and len is the length of the buffer.
+// If null, the callback is used to fill an internal buffer.
+void unpacker::start(void* packptr, size_t len) {
+  NOT_PRODUCT(debug_u = this);
+  if (packptr != null && len != 0) {
+    inbytes.set((byte*) packptr, len);
+  }
+  read_bands();
+}
+
+void unpacker::check_options() {
+  const char* strue  = "true";
+  const char* sfalse = "false";
+  if (deflate_hint_or_zero != 0) {
+    bool force_deflate_hint = (deflate_hint_or_zero > 0);
+    if (force_deflate_hint)
+      default_file_options |= FO_DEFLATE_HINT;
+    else
+      default_file_options &= ~FO_DEFLATE_HINT;
+    // Turn off per-file deflate hint by force.
+    suppress_file_options |= FO_DEFLATE_HINT;
+  }
+  if (modification_time_or_zero != 0) {
+    default_file_modtime = modification_time_or_zero;
+    // Turn off per-file modtime by force.
+    archive_options &= ~AO_HAVE_FILE_MODTIME;
+  }
+  // %%% strip_compile, etc...
+}
+
+// classfile writing
+
+void unpacker::reset_cur_classfile() {
+  // set defaults
+  cur_class_minver = default_class_minver;
+  cur_class_majver = default_class_majver;
+
+  // reset constant pool state
+  cp.resetOutputIndexes();
+
+  // reset fixups
+  class_fixup_type.empty();
+  class_fixup_offset.empty();
+  class_fixup_ref.empty();
+  requested_ics.empty();
+}
+
+cpindex* cpool::getKQIndex() {
+  char ch = '?';
+  if (u->cur_descr != null) {
+    entry* type = u->cur_descr->descrType();
+    ch = type->value.b.ptr[0];
+  }
+  byte tag = CONSTANT_Integer;
+  switch (ch) {
+  case 'L': tag = CONSTANT_String;   break;
+  case 'I': tag = CONSTANT_Integer;  break;
+  case 'J': tag = CONSTANT_Long;     break;
+  case 'F': tag = CONSTANT_Float;    break;
+  case 'D': tag = CONSTANT_Double;   break;
+  case 'B': case 'S': case 'C':
+  case 'Z': tag = CONSTANT_Integer;  break;
+  default:  abort("bad KQ reference"); break;
+  }
+  return getIndex(tag);
+}
+
+uint unpacker::to_bci(uint bii) {
+  uint  len =         bcimap.length();
+  uint* map = (uint*) bcimap.base();
+  assert(len > 0);  // must be initialized before using to_bci
+  if (bii < len)
+    return map[bii];
+  // Else it's a fractional or out-of-range BCI.
+  uint key = bii-len;
+  for (int i = len; ; i--) {
+    if (map[i-1]-(i-1) <= key)
+      break;
+    else
+      --bii;
+  }
+  return bii;
+}
+
+void unpacker::put_stackmap_type() {
+  int tag = code_StackMapTable_T.getByte();
+  putu1(tag);
+  switch (tag) {
+  case 7: // (7) [RCH]
+    putref(code_StackMapTable_RC.getRef());
+    break;
+  case 8: // (8) [PH]
+    putu2(to_bci(code_StackMapTable_P.getInt()));
+    break;
+  }
+}
+
+// Functions for writing code.
+
+maybe_inline
+void unpacker::put_label(int curIP, int size) {
+  code_fixup_type.addByte(size);
+  code_fixup_offset.add(put_empty(size));
+  code_fixup_source.add(curIP);
+}
+
+inline  // called exactly once => inline
+void unpacker::write_bc_ops() {
+  bcimap.empty();
+  code_fixup_type.empty();
+  code_fixup_offset.empty();
+  code_fixup_source.empty();
+
+  band* bc_which;
+
+  byte*  opptr = bc_codes.curRP();
+  // No need for oplimit, since the codes are pre-counted.
+
+  size_t codeBase = wpoffset();
+
+  bool   isAload;  // copy-out result
+  int    origBC;
+
+  entry* thisClass  = cur_class;
+  entry* superClass = cur_super;
+  entry* newClass   = null;  // class of last _new opcode
+
+  // overwrite any prior index on these bands; it changes w/ current class:
+  bc_thisfield.setIndex(    cp.getFieldIndex( thisClass));
+  bc_thismethod.setIndex(   cp.getMethodIndex(thisClass));
+  if (superClass != null) {
+    bc_superfield.setIndex( cp.getFieldIndex( superClass));
+    bc_supermethod.setIndex(cp.getMethodIndex(superClass));
+  } else {
+    NOT_PRODUCT(bc_superfield.setIndex(null));
+    NOT_PRODUCT(bc_supermethod.setIndex(null));
+  }
+
+  for (int curIP = 0; ; curIP++) {
+    int curPC = wpoffset() - codeBase;
+    bcimap.add(curPC);
+    ensure_put_space(10);  // covers most instrs w/o further bounds check
+    int bc = *opptr++ & 0xFF;
+
+    putu1_fast(bc);
+    // Note:  See '--wp' below for pseudo-bytecodes like bc_end_marker.
+
+    bool isWide = false;
+    if (bc == bc_wide) {
+      bc = *opptr++ & 0xFF;
+      putu1_fast(bc);
+      isWide = true;
+    }
+    switch (bc) {
+    case bc_end_marker:
+      --wp;  // not really part of the code
+      assert(opptr <= bc_codes.maxRP());
+      bc_codes.curRP() = opptr;  // advance over this in bc_codes
+      goto doneScanningMethod;
+    case bc_tableswitch: // apc:  (df, lo, hi, (hi-lo+1)*(label))
+    case bc_lookupswitch: // apc:  (df, nc, nc*(case, label))
+      {
+        int caseCount = bc_case_count.getInt();
+        while (((wpoffset() - codeBase) % 4) != 0)  putu1_fast(0);
+        ensure_put_space(30 + caseCount*8);
+        put_label(curIP, 4);  //int df = bc_label.getInt();
+        if (bc == bc_tableswitch) {
+          int lo = bc_case_value.getInt();
+          int hi = lo + caseCount-1;
+          putu4(lo);
+          putu4(hi);
+          for (int j = 0; j < caseCount; j++) {
+            put_label(curIP, 4); //int lVal = bc_label.getInt();
+            //int cVal = lo + j;
+          }
+        } else {
+          putu4(caseCount);
+          for (int j = 0; j < caseCount; j++) {
+            int cVal = bc_case_value.getInt();
+            putu4(cVal);
+            put_label(curIP, 4); //int lVal = bc_label.getInt();
+          }
+        }
+        assert(to_bci(curIP) == curPC);
+        continue;
+      }
+    case bc_iinc:
+      {
+        int local = bc_local.getInt();
+        int delta = (isWide ? bc_short : bc_byte).getInt();
+        if (isWide) {
+          putu2(local);
+          putu2(delta);
+        } else {
+          putu1_fast(local);
+          putu1_fast(delta);
+        }
+        continue;
+      }
+    case bc_sipush:
+      {
+        int val = bc_short.getInt();
+        putu2(val);
+        continue;
+      }
+    case bc_bipush:
+    case bc_newarray:
+      {
+        int val = bc_byte.getByte();
+        putu1_fast(val);
+        continue;
+      }
+    case bc_ref_escape:
+      {
+        // Note that insnMap has one entry for this.
+        --wp;  // not really part of the code
+        int size = bc_escrefsize.getInt();
+        entry* ref = bc_escref.getRefN();
+        CHECK;
+        switch (size) {
+        case 1: putu1ref(ref); break;
+        case 2: putref(ref);   break;
+        default: assert(false);
+        }
+        continue;
+      }
+    case bc_byte_escape:
+      {
+        // Note that insnMap has one entry for all these bytes.
+        --wp;  // not really part of the code
+        int size = bc_escsize.getInt();
+        ensure_put_space(size);
+        for (int j = 0; j < size; j++)
+          putu1_fast(bc_escbyte.getByte());
+        continue;
+      }
+    default:
+      if (is_invoke_init_op(bc)) {
+        origBC = bc_invokespecial;
+        entry* classRef;
+        switch (bc - _invokeinit_op) {
+        case _invokeinit_self_option:   classRef = thisClass;  break;
+        case _invokeinit_super_option:  classRef = superClass; break;
+        default: assert(bc == _invokeinit_op+_invokeinit_new_option);
+        case _invokeinit_new_option:    classRef = newClass;   break;
+        }
+        wp[-1] = origBC;  // overwrite with origBC
+        int coding = bc_initref.getInt();
+        // Find the nth overloading of <init> in classRef.
+        entry*   ref = null;
+        cpindex* ix = (classRef == null)? null: cp.getMethodIndex(classRef);
+        for (int j = 0, which_init = 0; ; j++) {
+          ref = (ix == null)? null: ix->get(j);
+          if (ref == null)  break;  // oops, bad input
+          assert(ref->tag == CONSTANT_Methodref);
+          if (ref->memberDescr()->descrName() == cp.sym[cpool::s_lt_init_gt]) {
+            if (which_init++ == coding)  break;
+          }
+        }
+        putref(ref);
+        continue;
+      }
+      bc_which = ref_band_for_self_op(bc, isAload, origBC);
+      if (bc_which != null) {
+        if (!isAload) {
+          wp[-1] = origBC;  // overwrite with origBC
+        } else {
+          wp[-1] = bc_aload_0;  // overwrite with _aload_0
+          // Note: insnMap keeps the _aload_0 separate.
+          bcimap.add(++curPC);
+          ++curIP;
+          putu1_fast(origBC);
+        }
+        entry* ref = bc_which->getRef();
+        CHECK;
+        putref(ref);
+        continue;
+      }
+      if (is_branch_op(bc)) {
+        //int lVal = bc_label.getInt();
+        if (bc < bc_goto_w) {
+          put_label(curIP, 2);  //putu2(lVal & 0xFFFF);
+        } else {
+          assert(bc <= bc_jsr_w);
+          put_label(curIP, 4);  //putu4(lVal);
+        }
+        assert(to_bci(curIP) == curPC);
+        continue;
+      }
+      bc_which = ref_band_for_op(bc);
+      if (bc_which != null) {
+        entry* ref = bc_which->getRefCommon(bc_which->ix, bc_which->nullOK);
+        CHECK;
+        if (ref == null && bc_which == &bc_classref) {
+          // Shorthand for class self-references.
+          ref = thisClass;
+        }
+        origBC = bc;
+        switch (bc) {
+        case bc_ildc:
+        case bc_cldc:
+        case bc_fldc:
+        case bc_aldc:
+          origBC = bc_ldc;
+          break;
+        case bc_ildc_w:
+        case bc_cldc_w:
+        case bc_fldc_w:
+        case bc_aldc_w:
+          origBC = bc_ldc_w;
+          break;
+        case bc_lldc2_w:
+        case bc_dldc2_w:
+          origBC = bc_ldc2_w;
+          break;
+        case bc_new:
+          newClass = ref;
+          break;
+        }
+        wp[-1] = origBC;  // overwrite with origBC
+        if (origBC == bc_ldc) {
+          putu1ref(ref);
+        } else {
+          putref(ref);
+        }
+        if (origBC == bc_multianewarray) {
+          // Copy the trailing byte also.
+          int val = bc_byte.getByte();
+          putu1_fast(val);
+        } else if (origBC == bc_invokeinterface) {
+          int argSize = ref->memberDescr()->descrType()->typeSize();
+          putu1_fast(1 + argSize);
+          putu1_fast(0);
+        }
+        continue;
+      }
+      if (is_local_slot_op(bc)) {
+        int local = bc_local.getInt();
+        if (isWide) {
+          putu2(local);
+          if (bc == bc_iinc) {
+            int iVal = bc_short.getInt();
+            putu2(iVal);
+          }
+        } else {
+          putu1_fast(local);
+          if (bc == bc_iinc) {
+            int iVal = bc_byte.getByte();
+            putu1_fast(iVal);
+          }
+        }
+        continue;
+      }
+      // Random bytecode.  Just copy it.
+      assert(bc < bc_bytecode_limit);
+    }
+  }
+ doneScanningMethod:{}
+  //bcimap.add(curPC);  // PC limit is already also in map, from bc_end_marker
+
+  // Armed with a bcimap, we can now fix up all the labels.
+  for (int i = 0; i < code_fixup_type.size(); i++) {
+    int   type   = code_fixup_type.getByte(i);
+    byte* bp     = wp_at(code_fixup_offset.get(i));
+    int   curIP  = code_fixup_source.get(i);
+    int   destIP = curIP + bc_label.getInt();
+    int   span   = to_bci(destIP) - to_bci(curIP);
+    switch (type) {
+    case 2: putu2_at(bp, (ushort)span); break;
+    case 4: putu4_at(bp,         span); break;
+    default: assert(false);
+    }
+  }
+}
+
+inline  // called exactly once => inline
+void unpacker::write_code() {
+  int i, j;
+
+  int max_stack, max_locals, handler_count, cflags;
+  get_code_header(max_stack, max_locals, handler_count, cflags);
+
+  if (max_stack < 0)      max_stack = code_max_stack.getInt();
+  if (max_locals < 0)     max_locals = code_max_na_locals.getInt();
+  if (handler_count < 0)  handler_count = code_handler_count.getInt();
+
+  int siglen = cur_descr->descrType()->typeSize();
+  CHECK;
+  if ((cur_descr_flags & ACC_STATIC) == 0)  siglen++;
+  max_locals += siglen;
+
+  putu2(max_stack);
+  putu2(max_locals);
+  size_t bcbase = put_empty(4);
+
+  // Write the bytecodes themselves.
+  write_bc_ops();
+  CHECK;
+
+  byte* bcbasewp = wp_at(bcbase);
+  putu4_at(bcbasewp, wp - (bcbasewp+4));  // size of code attr
+
+  putu2(handler_count);
+  for (j = 0; j < handler_count; j++) {
+    int bii = code_handler_start_P.getInt();
+    putu2(to_bci(bii));
+    bii    += code_handler_end_PO.getInt();
+    putu2(to_bci(bii));
+    bii    += code_handler_catch_PO.getInt();
+    putu2(to_bci(bii));
+    putref(code_handler_class_RCN.getRefN());
+    CHECK;
+  }
+
+  julong indexBits = cflags;
+  if (cflags < 0) {
+    bool haveLongFlags = attr_defs[ATTR_CONTEXT_CODE].haveLongFlags();
+    indexBits = code_flags_hi.getLong(code_flags_lo, haveLongFlags);
+  }
+  write_attrs(ATTR_CONTEXT_CODE, indexBits);
+}
+
+int unpacker::write_attrs(int attrc, julong indexBits) {
+  CHECK_0;
+  if (indexBits == 0) {
+    // Quick short-circuit.
+    putu2(0);
+    return 0;
+  }
+
+  attr_definitions& ad = attr_defs[attrc];
+
+  int i, j, j2, idx, count;
+
+  int oiCount = 0;
+  if (ad.isPredefined(X_ATTR_OVERFLOW)
+      && (indexBits & ((julong)1<<X_ATTR_OVERFLOW)) != 0) {
+    indexBits -= ((julong)1<<X_ATTR_OVERFLOW);
+    oiCount = ad.xxx_attr_count().getInt();
+  }
+
+  int bitIndexes[X_ATTR_LIMIT_FLAGS_HI];
+  int biCount = 0;
+
+  // Fill bitIndexes with index bits, in order.
+  for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
+    if ((indexBits & 1) != 0)
+      bitIndexes[biCount++] = idx;
+  }
+  assert(biCount <= lengthof(bitIndexes));
+
+  // Write a provisional attribute count, perhaps to be corrected later.
+  int naOffset = wpoffset();
+  int na0 = biCount + oiCount;
+  putu2(na0);
+
+  int na = 0;
+  for (i = 0; i < na0; i++) {
+    if (i < biCount)
+      idx = bitIndexes[i];
+    else
+      idx = ad.xxx_attr_indexes().getInt();
+    assert(ad.isIndex(idx));
+    entry* aname = null;
+    entry* ref;  // scratch
+    size_t abase = put_empty(2+4);
+    CHECK_0;
+    if (idx < ad.flag_limit && ad.isPredefined(idx)) {
+      // Switch on the attrc and idx simultaneously.
+      switch (ADH_BYTE(attrc, idx)) {
+
+      case ADH_BYTE(ATTR_CONTEXT_CLASS,  X_ATTR_OVERFLOW):
+      case ADH_BYTE(ATTR_CONTEXT_FIELD,  X_ATTR_OVERFLOW):
+      case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_OVERFLOW):
+      case ADH_BYTE(ATTR_CONTEXT_CODE,   X_ATTR_OVERFLOW):
+        // no attribute at all, so back up on this one
+        wp = wp_at(abase);
+        continue;
+
+      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_ClassFile_version):
+        cur_class_minver = class_ClassFile_version_minor_H.getInt();
+        cur_class_majver = class_ClassFile_version_major_H.getInt();
+        // back up; not a real attribute
+        wp = wp_at(abase);
+        continue;
+
+      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_InnerClasses):
+        // note the existence of this attr, but save for later
+        if (cur_class_has_local_ics)
+          abort("too many InnerClasses attrs");
+        cur_class_has_local_ics = true;
+        wp = wp_at(abase);
+        continue;
+
+      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_SourceFile):
+        aname = cp.sym[cpool::s_SourceFile];
+        ref = class_SourceFile_RUN.getRefN();
+        CHECK_0;
+        if (ref == null) {
+          bytes& n = cur_class->ref(0)->value.b;
+          // parse n = (<pkg>/)*<outer>?($<id>)*
+          int pkglen = lastIndexOf(SLASH_MIN,  SLASH_MAX,  n, n.len)+1;
+          bytes prefix = n.slice(pkglen, n.len);
+          for (;;) {
+            // Work backwards, finding all '$', '#', etc.
+            int dollar = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, prefix, prefix.len);
+            if (dollar < 0)  break;
+            prefix = prefix.slice(0, dollar);
+          }
+          const char* suffix = ".java";
+          int len = prefix.len + strlen(suffix);
+          bytes name; name.set(T_NEW(byte, len + 1), len);
+          name.strcat(prefix).strcat(suffix);
+          ref = cp.ensureUtf8(name);
+        }
+        putref(ref);
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_EnclosingMethod):
+        aname = cp.sym[cpool::s_EnclosingMethod];
+        putref(class_EnclosingMethod_RC.getRefN());
+        putref(class_EnclosingMethod_RDN.getRefN());
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_FIELD, FIELD_ATTR_ConstantValue):
+        aname = cp.sym[cpool::s_ConstantValue];
+        putref(field_ConstantValue_KQ.getRefUsing(cp.getKQIndex()));
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Code):
+        aname = cp.sym[cpool::s_Code];
+        write_code();
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Exceptions):
+        aname = cp.sym[cpool::s_Exceptions];
+        putu2(count = method_Exceptions_N.getInt());
+        for (j = 0; j < count; j++) {
+          putref(method_Exceptions_RC.getRefN());
+        }
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_StackMapTable):
+        aname = cp.sym[cpool::s_StackMapTable];
+        // (keep this code aligned with its brother in unpacker::read_attrs)
+        putu2(count = code_StackMapTable_N.getInt());
+        for (j = 0; j < count; j++) {
+          int tag = code_StackMapTable_frame_T.getByte();
+          putu1(tag);
+          if (tag <= 127) {
+            // (64-127)  [(2)]
+            if (tag >= 64)  put_stackmap_type();
+          } else if (tag <= 251) {
+            // (247)     [(1)(2)]
+            // (248-251) [(1)]
+            if (tag >= 247)  putu2(code_StackMapTable_offset.getInt());
+            if (tag == 247)  put_stackmap_type();
+          } else if (tag <= 254) {
+            // (252)     [(1)(2)]
+            // (253)     [(1)(2)(2)]
+            // (254)     [(1)(2)(2)(2)]
+            putu2(code_StackMapTable_offset.getInt());
+            for (int j2 = (tag - 251); j2 > 0; j2--) {
+              put_stackmap_type();
+            }
+          } else {
+            // (255)     [(1)NH[(2)]NH[(2)]]
+            putu2(code_StackMapTable_offset.getInt());
+            putu2(j2 = code_StackMapTable_local_N.getInt());
+            while (j2-- > 0)  put_stackmap_type();
+            putu2(j2 = code_StackMapTable_stack_N.getInt());
+            while (j2-- > 0)  put_stackmap_type();
+          }
+        }
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LineNumberTable):
+        aname = cp.sym[cpool::s_LineNumberTable];
+        putu2(count = code_LineNumberTable_N.getInt());
+        for (j = 0; j < count; j++) {
+          putu2(to_bci(code_LineNumberTable_bci_P.getInt()));
+          putu2(code_LineNumberTable_line.getInt());
+        }
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTable):
+        aname = cp.sym[cpool::s_LocalVariableTable];
+        putu2(count = code_LocalVariableTable_N.getInt());
+        for (j = 0; j < count; j++) {
+          int bii = code_LocalVariableTable_bci_P.getInt();
+          int bci = to_bci(bii);
+          putu2(bci);
+          bii    += code_LocalVariableTable_span_O.getInt();
+          putu2(to_bci(bii) - bci);
+          putref(code_LocalVariableTable_name_RU.getRefN());
+          putref(code_LocalVariableTable_type_RS.getRefN());
+          putu2(code_LocalVariableTable_slot.getInt());
+        }
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTypeTable):
+        aname = cp.sym[cpool::s_LocalVariableTypeTable];
+        putu2(count = code_LocalVariableTypeTable_N.getInt());
+        for (j = 0; j < count; j++) {
+          int bii = code_LocalVariableTypeTable_bci_P.getInt();
+          int bci = to_bci(bii);
+          putu2(bci);
+          bii    += code_LocalVariableTypeTable_span_O.getInt();
+          putu2(to_bci(bii) - bci);
+          putref(code_LocalVariableTypeTable_name_RU.getRefN());
+          putref(code_LocalVariableTypeTable_type_RS.getRefN());
+          putu2(code_LocalVariableTypeTable_slot.getInt());
+        }
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Signature):
+        aname = cp.sym[cpool::s_Signature];
+        putref(class_Signature_RS.getRefN());
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Signature):
+        aname = cp.sym[cpool::s_Signature];
+        putref(field_Signature_RS.getRefN());
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Signature):
+        aname = cp.sym[cpool::s_Signature];
+        putref(method_Signature_RS.getRefN());
+        break;
+
+      case ADH_BYTE(ATTR_CONTEXT_CLASS,  X_ATTR_Deprecated):
+      case ADH_BYTE(ATTR_CONTEXT_FIELD,  X_ATTR_Deprecated):
+      case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Deprecated):
+        aname = cp.sym[cpool::s_Deprecated];
+        // no data
+        break;
+      }
+    }
+
+    if (aname == null) {
+      // Unparse a compressor-defined attribute.
+      layout_definition* lo = ad.getLayout(idx);
+      if (lo == null) {
+        abort("bad layout index");
+        break;
+      }
+      assert(lo->idx == idx);
+      aname = lo->nameEntry;
+      if (aname == null) {
+        bytes nameb; nameb.set(lo->name);
+        aname = cp.ensureUtf8(nameb);
+        // Cache the name entry for next time.
+        lo->nameEntry = aname;
+      }
+      // Execute all the layout elements.
+      band** bands = lo->bands();
+      if (lo->hasCallables()) {
+        band& cble = *bands[0];
+        assert(cble.le_kind == EK_CBLE);
+        bands = cble.le_body;
+      }
+      putlayout(bands);
+    }
+
+    if (aname == null)
+      abort("bad attribute index");
+    CHECK_0;
+
+    byte* wp1 = wp;
+    wp = wp_at(abase);
+
+    // DTRT if this attr is on the strip-list.
+    // (Note that we emptied the data out of the band first.)
+    if (ad.strip_names.contains(aname)) {
+      continue;
+    }
+
+    // patch the name and length
+    putref(aname);
+    putu4(wp1 - (wp+4));  // put the attr size
+    wp = wp1;
+    na++;  // count the attrs actually written
+  }
+
+  if (na != na0)
+    // Refresh changed count.
+    putu2_at(wp_at(naOffset), na);
+  return na;
+}
+
+void unpacker::write_members(int num, int attrc) {
+  CHECK;
+  attr_definitions& ad = attr_defs[attrc];
+  band& member_flags_hi = ad.xxx_flags_hi();
+  band& member_flags_lo = ad.xxx_flags_lo();
+  band& member_descr = (&member_flags_hi)[e_field_descr-e_field_flags_hi];
+  assert(endsWith(member_descr.name, "_descr"));
+  assert(endsWith(member_flags_lo.name, "_flags_lo"));
+  assert(endsWith(member_flags_lo.name, "_flags_lo"));
+  bool haveLongFlags = ad.haveLongFlags();
+
+  putu2(num);
+  julong indexMask = attr_defs[attrc].flagIndexMask();
+  for (int i = 0; i < num; i++) {
+    julong mflags = member_flags_hi.getLong(member_flags_lo, haveLongFlags);
+    entry* mdescr = member_descr.getRef();
+    cur_descr = mdescr;
+    putu2(cur_descr_flags = (ushort)(mflags & ~indexMask));
+    CHECK;
+    putref(mdescr->descrName());
+    putref(mdescr->descrType());
+    write_attrs(attrc, (mflags & indexMask));
+    CHECK;
+  }
+  cur_descr = null;
+}
+
+extern "C"
+int raw_address_cmp(const void* p1p, const void* p2p) {
+  void* p1 = *(void**) p1p;
+  void* p2 = *(void**) p2p;
+  return (p1 > p2)? 1: (p1 < p2)? -1: 0;
+}
+
+void unpacker::write_classfile_tail() {
+  cur_classfile_tail.empty();
+  set_output(&cur_classfile_tail);
+
+  int i, num;
+
+  attr_definitions& ad = attr_defs[ATTR_CONTEXT_CLASS];
+
+  bool haveLongFlags = ad.haveLongFlags();
+  julong kflags = class_flags_hi.getLong(class_flags_lo, haveLongFlags);
+  julong indexMask = ad.flagIndexMask();
+
+  cur_class = class_this.getRef();
+  cur_super = class_super.getRef();
+
+  CHECK;
+
+  if (cur_super == cur_class)  cur_super = null;
+  // special representation for java/lang/Object
+
+  putu2((ushort)(kflags & ~indexMask));
+  putref(cur_class);
+  putref(cur_super);
+
+  putu2(num = class_interface_count.getInt());
+  for (i = 0; i < num; i++) {
+    putref(class_interface.getRef());
+  }
+
+  write_members(class_field_count.getInt(),  ATTR_CONTEXT_FIELD);
+  write_members(class_method_count.getInt(), ATTR_CONTEXT_METHOD);
+  CHECK;
+
+  cur_class_has_local_ics = false;  // may be set true by write_attrs
+
+
+  int naOffset = wpoffset();
+  int na = write_attrs(ATTR_CONTEXT_CLASS, (kflags & indexMask));
+
+
+  // at the very last, choose which inner classes (if any) pertain to k:
+#ifdef ASSERT
+  for (i = 0; i < ic_count; i++) {
+    assert(!ics[i].requested);
+  }
+#endif
+  // First, consult the global table and the local constant pool,
+  // and decide on the globally implied inner classes.
+  // (Note that we read the cpool's outputIndex fields, but we
+  // do not yet write them, since the local IC attribute might
+  // reverse a global decision to declare an IC.)
+  assert(requested_ics.length() == 0);  // must start out empty
+  // Always include all members of the current class.
+  for (inner_class* child = cp.getFirstChildIC(cur_class);
+       child != null;
+       child = cp.getNextChildIC(child)) {
+    child->requested = true;
+    requested_ics.add(child);
+  }
+  // And, for each inner class mentioned in the constant pool,
+  // include it and all its outers.
+  int    noes =           cp.outputEntries.length();
+  entry** oes = (entry**) cp.outputEntries.base();
+  for (i = 0; i < noes; i++) {
+    entry& e = *oes[i];
+    if (e.tag != CONSTANT_Class)  continue;  // wrong sort
+    for (inner_class* ic = cp.getIC(&e);
+         ic != null;
+         ic = cp.getIC(ic->outer)) {
+      if (ic->requested)  break;  // already processed
+      ic->requested = true;
+      requested_ics.add(ic);
+    }
+  }
+  int local_ics = requested_ics.length();
+  // Second, consult a local attribute (if any) and adjust the global set.
+  inner_class* extra_ics = null;
+  int      num_extra_ics = 0;
+  if (cur_class_has_local_ics) {
+    // adjust the set of ICs by symmetric set difference w/ the locals
+    num_extra_ics = class_InnerClasses_N.getInt();
+    if (num_extra_ics == 0) {
+      // Explicit zero count has an irregular meaning:  It deletes the attr.
+      local_ics = 0;  // (short-circuit all tests of requested bits)
+    } else {
+      extra_ics = T_NEW(inner_class, num_extra_ics);
+      // Note:  extra_ics will be freed up by next call to get_next_file().
+    }
+  }
+  for (i = 0; i < num_extra_ics; i++) {
+    inner_class& extra_ic = extra_ics[i];
+    extra_ic.inner = class_InnerClasses_RC.getRef();
+    CHECK;
+    // Find the corresponding equivalent global IC:
+    inner_class* global_ic = cp.getIC(extra_ic.inner);
+    int flags = class_InnerClasses_F.getInt();
+    if (flags == 0) {
+      // The extra IC is simply a copy of a global IC.
+      if (global_ic == null) {
+        abort("bad reference to inner class");
+        break;
+      }
+      extra_ic = (*global_ic);  // fill in rest of fields
+    } else {
+      flags &= ~ACC_IC_LONG_FORM;  // clear high bit if set to get clean zero
+      extra_ic.flags = flags;
+      extra_ic.outer = class_InnerClasses_outer_RCN.getRefN();
+      extra_ic.name  = class_InnerClasses_name_RUN.getRefN();
+      // Detect if this is an exact copy of the global tuple.
+      if (global_ic != null) {
+        if (global_ic->flags != extra_ic.flags ||
+            global_ic->outer != extra_ic.outer ||
+            global_ic->name  != extra_ic.name) {
+          global_ic = null;  // not really the same, so break the link
+        }
+      }
+    }
+    if (global_ic != null && global_ic->requested) {
+      // This local repetition reverses the globally implied request.
+      global_ic->requested = false;
+      extra_ic.requested = false;
+      local_ics -= 1;
+    } else {
+      // The global either does not exist, or is not yet requested.
+      extra_ic.requested = true;
+      local_ics += 1;
+    }
+  }
+  // Finally, if there are any that survived, put them into an attribute.
+  // (Note that a zero-count attribute is always deleted.)
+  // The putref calls below will tell the constant pool to add any
+  // necessary local CP references to support the InnerClasses attribute.
+  // This step must be the last round of additions to the local CP.
+  if (local_ics > 0) {
+    // append the new attribute:
+    putref(cp.sym[cpool::s_InnerClasses]);
+    putu4(2 + 2*4*local_ics);
+    putu2(local_ics);
+    PTRLIST_QSORT(requested_ics, raw_address_cmp);
+    int num_global_ics = requested_ics.length();
+    for (i = -num_global_ics; i < num_extra_ics; i++) {
+      inner_class* ic;
+      if (i < 0)
+        ic = (inner_class*) requested_ics.get(num_global_ics+i);
+      else
+        ic = &extra_ics[i];
+      if (ic->requested) {
+        putref(ic->inner);
+        putref(ic->outer);
+        putref(ic->name);
+        putu2(ic->flags);
+        NOT_PRODUCT(local_ics--);
+      }
+    }
+    assert(local_ics == 0);           // must balance
+    putu2_at(wp_at(naOffset), ++na);  // increment class attr count
+  }
+
+  // Tidy up global 'requested' bits:
+  for (i = requested_ics.length(); --i >= 0; ) {
+    inner_class* ic = (inner_class*) requested_ics.get(i);
+    ic->requested = false;
+  }
+  requested_ics.empty();
+
+  CHECK;
+  close_output();
+
+  // rewrite CP references in the tail
+  cp.computeOutputIndexes();
+  int nextref = 0;
+  for (i = 0; i < (int)class_fixup_type.size(); i++) {
+    int    type = class_fixup_type.getByte(i);
+    byte*  fixp = wp_at(class_fixup_offset.get(i));
+    entry* e    = (entry*)class_fixup_ref.get(nextref++);
+    int    idx  = e->getOutputIndex();
+    switch (type) {
+    case 1:  putu1_at(fixp, idx);  break;
+    case 2:  putu2_at(fixp, idx);  break;
+    default: assert(false);  // should not reach here
+    }
+  }
+  CHECK;
+}
+
+void unpacker::write_classfile_head() {
+  cur_classfile_head.empty();
+  set_output(&cur_classfile_head);
+
+  putu4(JAVA_MAGIC);
+  putu2(cur_class_minver);
+  putu2(cur_class_majver);
+  putu2(cp.outputIndexLimit);
+
+  int checkIndex = 1;
+  int    noes =           cp.outputEntries.length();
+  entry** oes = (entry**) cp.outputEntries.base();
+  for (int i = 0; i < noes; i++) {
+    entry& e = *oes[i];
+    assert(e.getOutputIndex() == checkIndex++);
+    byte tag = e.tag;
+    assert(tag != CONSTANT_Signature);
+    putu1(tag);
+    switch (tag) {
+    case CONSTANT_Utf8:
+      putu2(e.value.b.len);
+      put_bytes(e.value.b);
+      break;
+    case CONSTANT_Integer:
+    case CONSTANT_Float:
+      putu4(e.value.i);
+      break;
+    case CONSTANT_Long:
+    case CONSTANT_Double:
+      putu8(e.value.l);
+      assert(checkIndex++);
+      break;
+    case CONSTANT_Class:
+    case CONSTANT_String:
+      // just write the ref
+      putu2(e.refs[0]->getOutputIndex());
+      break;
+    case CONSTANT_Fieldref:
+    case CONSTANT_Methodref:
+    case CONSTANT_InterfaceMethodref:
+    case CONSTANT_NameandType:
+      putu2(e.refs[0]->getOutputIndex());
+      putu2(e.refs[1]->getOutputIndex());
+      break;
+    default:
+      abort(ERROR_INTERNAL);
+    }
+  }
+
+#ifndef PRODUCT
+  total_cp_size[0] += cp.outputIndexLimit;
+  total_cp_size[1] += cur_classfile_head.size();
+#endif
+  close_output();
+}
+
+unpacker::file* unpacker::get_next_file() {
+  CHECK_0;
+  free_temps();
+  if (files_remaining == 0) {
+    // Leave a clue that we're exhausted.
+    cur_file.name = null;
+    cur_file.size = null;
+    if (archive_size != 0) {
+      julong predicted_size = unsized_bytes_read + archive_size;
+      if (predicted_size != bytes_read)
+        abort("archive header had incorrect size");
+    }
+    return null;
+  }
+  files_remaining -= 1;
+  assert(files_written < file_count || classes_written < class_count);
+  cur_file.name = "";
+  cur_file.size = 0;
+  cur_file.modtime = default_file_modtime;
+  cur_file.options = default_file_options;
+  cur_file.data[0].set(null, 0);
+  cur_file.data[1].set(null, 0);
+  if (files_written < file_count) {
+    entry* e = file_name.getRef();
+    CHECK_0;
+    cur_file.name = e->utf8String();
+    bool haveLongSize = ((archive_options & AO_HAVE_FILE_SIZE_HI) != 0);
+    cur_file.size = file_size_hi.getLong(file_size_lo, haveLongSize);
+    if ((archive_options & AO_HAVE_FILE_MODTIME) != 0)
+      cur_file.modtime += file_modtime.getInt();  //relative to archive modtime
+    if ((archive_options & AO_HAVE_FILE_OPTIONS) != 0)
+      cur_file.options |= file_options.getInt() & ~suppress_file_options;
+  } else if (classes_written < class_count) {
+    // there is a class for a missing file record
+    cur_file.options |= FO_IS_CLASS_STUB;
+  }
+  if ((cur_file.options & FO_IS_CLASS_STUB) != 0) {
+    assert(classes_written < class_count);
+    classes_written += 1;
+    if (cur_file.size != 0) {
+      abort("class file size transmitted");
+      return null;
+    }
+    reset_cur_classfile();
+
+    // write the meat of the classfile:
+    write_classfile_tail();
+    cur_file.data[1] = cur_classfile_tail.b;
+    CHECK_0;
+
+    // write the CP of the classfile, second:
+    write_classfile_head();
+    cur_file.data[0] = cur_classfile_head.b;
+    CHECK_0;
+
+    cur_file.size += cur_file.data[0].len;
+    cur_file.size += cur_file.data[1].len;
+    if (cur_file.name[0] == '\0') {
+      bytes& prefix = cur_class->ref(0)->value.b;
+      const char* suffix = ".class";
+      int len = prefix.len + strlen(suffix);
+      bytes name; name.set(T_NEW(byte, len + 1), len);
+      cur_file.name = name.strcat(prefix).strcat(suffix).strval();
+    }
+  } else {
+    // If there is buffered file data, produce a pointer to it.
+    if (cur_file.size != (size_t) cur_file.size) {
+      // Silly size specified.
+      abort("resource file too large");
+      return null;
+    }
+    size_t rpleft = input_remaining();
+    if (rpleft > 0) {
+      if (rpleft > cur_file.size)
+        rpleft = (size_t) cur_file.size;
+      cur_file.data[0].set(rp, rpleft);
+      rp += rpleft;
+    }
+    if (rpleft < cur_file.size) {
+      // Caller must read the rest.
+      size_t fleft = cur_file.size - rpleft;
+      bytes_read += fleft;  // Credit it to the overall archive size.
+    }
+  }
+  CHECK_0;
+  bytes_written += cur_file.size;
+  files_written += 1;
+  return &cur_file;
+}
+
+// Write a file to jarout.
+void unpacker::write_file_to_jar(unpacker::file* f) {
+  size_t htsize = f->data[0].len + f->data[1].len;
+  julong fsize = f->size;
+#ifndef PRODUCT
+  if (nowrite NOT_PRODUCT(|| skipfiles-- > 0)) {
+    printcr(2,"would write %d bytes to %s", (int) fsize, f->name);
+    return;
+  }
+#endif
+  if (htsize == fsize) {
+    jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
+                        f->data[0], f->data[1]);
+  } else {
+    assert(input_remaining() == 0);
+    bytes part1, part2;
+    part1.len = f->data[0].len;
+    part1.set(T_NEW(byte, part1.len), part1.len);
+    part1.copyFrom(f->data[0]);
+    assert(f->data[1].len == 0);
+    part2.set(null, 0);
+    size_t fleft = (size_t) fsize - part1.len;
+    assert(bytes_read > fleft);  // part2 already credited by get_next_file
+    bytes_read -= fleft;
+    if (fleft > 0) {
+      // Must read some more.
+      if (live_input) {
+        // Stop using the input buffer.  Make a new one:
+        if (free_input)  input.free();
+        input.init(fleft > (1<<12) ? fleft : (1<<12));
+        free_input = true;
+        live_input = false;
+      } else {
+        // Make it large enough.
+        assert(free_input);  // must be reallocable
+        input.ensureSize(fleft);
+      }
+      rplimit = rp = input.base();
+      input.setLimit(rp + fleft);
+      if (!ensure_input(fleft))
+        abort("EOF reading resource file");
+      part2.ptr = input_scan();
+      part2.len = input_remaining();
+      rplimit = rp = input.base();
+    }
+    jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
+                        part1, part2);
+  }
+  if (verbose >= 3) {
+    fprintf(errstrm, "Wrote %lld bytes to: %s\n", fsize, f->name);
+  }
+}
+
+// Redirect the stdio to the specified file in the unpack.log.file option
+void unpacker::redirect_stdio() {
+  if (log_file == null) {
+    log_file = LOGFILE_STDOUT;
+  }
+  if (log_file == errstrm_name)
+    // Nothing more to be done.
+    return;
+  errstrm_name = log_file;
+  if (strcmp(log_file, LOGFILE_STDERR) == 0) {
+    errstrm = stderr;
+    return;
+  } else if (strcmp(log_file, LOGFILE_STDOUT) == 0) {
+    errstrm = stdout;
+    return;
+  } else if (log_file[0] != '\0' && (errstrm = fopen(log_file,"a+")) != NULL) {
+    return;
+  } else {
+    char log_file_name[PATH_MAX+100];
+    char tmpdir[PATH_MAX];
+#ifdef WIN32
+    int n = GetTempPath(PATH_MAX,tmpdir); //API returns with trailing '\'
+    if (n < 1 || n > PATH_MAX) {
+      sprintf(tmpdir,"C:\\");
+    }
+    sprintf(log_file_name, "%sunpack.log", tmpdir);
+#else
+    sprintf(tmpdir,"/tmp");
+    sprintf(log_file_name, "/tmp/unpack.log");
+#endif
+    if ((errstrm = fopen(log_file_name, "a+")) != NULL) {
+      log_file = errstrm_name = saveStr(log_file_name);
+      return ;
+    }
+
+    char *tname = tempnam(tmpdir,"#upkg");
+    sprintf(log_file_name, "%s", tname);
+    if ((errstrm = fopen(log_file_name, "a+")) != NULL) {
+      log_file = errstrm_name = saveStr(log_file_name);
+      return ;
+    }
+#ifndef WIN32
+    sprintf(log_file_name, "/dev/null");
+    // On windows most likely it will fail.
+    if ( (errstrm = fopen(log_file_name, "a+")) != NULL) {
+      log_file = errstrm_name = saveStr(log_file_name);
+      return ;
+    }
+#endif
+    // Last resort
+    // (Do not use stdout, since it might be jarout->jarfp.)
+    errstrm = stderr;
+    log_file = errstrm_name = LOGFILE_STDERR;
+  }
+}
+
+#ifndef PRODUCT
+int unpacker::printcr_if_verbose(int level, const char* fmt ...) {
+  if (verbose < level+10)  return 0;
+  va_list vl;
+  va_start(vl, fmt);
+  char fmtbuf[300];
+  strcpy(fmtbuf+100, fmt);
+  strcat(fmtbuf+100, "\n");
+  char* fmt2 = fmtbuf+100;
+  while (level-- > 0)  *--fmt2 = ' ';
+  vfprintf(errstrm, fmt2, vl);
+  return 1;  // for ?: usage
+}
+#endif
+
+void unpacker::abort(const char* message) {
+  if (message == null)  message = "error unpacking archive";
+#ifdef UNPACK_JNI
+  if (message[0] == '@') {  // secret convention for sprintf
+     bytes saved;
+     saved.saveFrom(message+1);
+     mallocs.add(message = saved.strval());
+   }
+  abort_message = message;
+  return;
+#else
+  if (message[0] == '@')  ++message;
+  fprintf(errstrm, "%s\n", message);
+#ifndef PRODUCT
+  fflush(errstrm);
+  ::abort();
+#else
+  exit(-1);
+#endif
+#endif // JNI
+}