jdk/src/share/classes/java/lang/invoke/MethodHandles.java
changeset 8822 8145ab9f5f86
parent 8821 2836ee97ee27
child 9645 dabb5e4edc4c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/share/classes/java/lang/invoke/MethodHandles.java	Wed Mar 23 23:02:31 2011 -0700
@@ -0,0 +1,2357 @@
+/*
+ * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.lang.invoke;
+
+import java.lang.reflect.*;
+import sun.invoke.WrapperInstance;
+import sun.invoke.util.ValueConversions;
+import sun.invoke.util.VerifyAccess;
+import sun.invoke.util.Wrapper;
+import java.util.List;
+import java.util.ArrayList;
+import java.util.Arrays;
+import sun.reflect.Reflection;
+import static java.lang.invoke.MethodHandleStatics.*;
+
+/**
+ * This class consists exclusively of static methods that operate on or return
+ * method handles. They fall into several categories:
+ * <ul>
+ * <li>Lookup methods which help create method handles for methods and fields.
+ * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
+ * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
+ * <li>Wrapper methods which can convert between method handles and interface types.
+ * </ul>
+ * <p>
+ * @author John Rose, JSR 292 EG
+ */
+public class MethodHandles {
+
+    private MethodHandles() { }  // do not instantiate
+
+    private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
+    static { MethodHandleImpl.initStatics(); }
+    // See IMPL_LOOKUP below.
+
+    //// Method handle creation from ordinary methods.
+
+    /**
+     * Returns a {@link Lookup lookup object} on the caller,
+     * which has the capability to access any method handle that the caller has access to,
+     * including direct method handles to private fields and methods.
+     * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
+     * Do not store it in place where untrusted code can access it.
+     */
+    public static Lookup lookup() {
+        return new Lookup();
+    }
+
+    /**
+     * Returns a {@link Lookup lookup object} which is trusted minimally.
+     * It can only be used to create method handles to
+     * publicly accessible fields and methods.
+     * <p>
+     * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class}
+     * of this lookup object will be {@link java.lang.Object}.
+     * <p>
+     * The lookup class can be changed to any other class {@code C} using an expression of the form
+     * {@linkplain Lookup#in <code>publicLookup().in(C.class)</code>}.
+     * Since all classes have equal access to public names,
+     * such a change would confer no new access rights.
+     */
+    public static Lookup publicLookup() {
+        return Lookup.PUBLIC_LOOKUP;
+    }
+
+    /**
+     * A <em>lookup object</em> is a factory for creating method handles,
+     * when the creation requires access checking.
+     * Method handles do not perform
+     * access checks when they are called, but rather when they are created.
+     * Therefore, method handle access
+     * restrictions must be enforced when a method handle is created.
+     * The caller class against which those restrictions are enforced
+     * is known as the {@linkplain #lookupClass lookup class}.
+     * <p>
+     * A lookup class which needs to create method handles will call
+     * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself.
+     * When the {@code Lookup} factory object is created, the identity of the lookup class is
+     * determined, and securely stored in the {@code Lookup} object.
+     * The lookup class (or its delegates) may then use factory methods
+     * on the {@code Lookup} object to create method handles for access-checked members.
+     * This includes all methods, constructors, and fields which are allowed to the lookup class,
+     * even private ones.
+     * <p>
+     * The factory methods on a {@code Lookup} object correspond to all major
+     * use cases for methods, constructors, and fields.
+     * Here is a summary of the correspondence between these factory methods and
+     * the behavior the resulting method handles:
+     * <code>
+     * <table border=1 cellpadding=5 summary="lookup method behaviors">
+     * <tr><th>lookup expression</th><th>member</th><th>behavior</th></tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td>
+     *     <td>FT f;</td><td>(T) this.f;</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td>
+     *     <td>static<br>FT f;</td><td>(T) C.f;</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td>
+     *     <td>FT f;</td><td>this.f = x;</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td>
+     *     <td>static<br>FT f;</td><td>C.f = arg;</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td>
+     *     <td>T m(A*);</td><td>(T) this.m(arg*);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td>
+     *     <td>static<br>T m(A*);</td><td>(T) C.m(arg*);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td>
+     *     <td>T m(A*);</td><td>(T) super.m(arg*);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td>
+     *     <td>C(A*);</td><td>(T) new C(arg*);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td>
+     *     <td>(static)?<br>FT f;</td><td>(FT) aField.get(thisOrNull);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td>
+     *     <td>(static)?<br>FT f;</td><td>aField.set(thisOrNull, arg);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
+     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td>
+     *     <td>C(A*);</td><td>(C) aConstructor.newInstance(arg*);</td>
+     * </tr>
+     * <tr>
+     *     <td>{@linkplain java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td>
+     *     <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td>
+     * </tr>
+     * </table>
+     * </code>
+     * Here, the type {@code C} is the class or interface being searched for a member,
+     * documented as a parameter named {@code refc} in the lookup methods.
+     * The method or constructor type {@code MT} is composed from the return type {@code T}
+     * and the sequence of argument types {@code A*}.
+     * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
+     * The formal parameter {@code this} stands for the self-reference of type {@code C};
+     * if it is present, it is always the leading argument to the method handle invocation.
+     * The name {@code arg} stands for all the other method handle arguments.
+     * In the code examples for the Core Reflection API, the name {@code thisOrNull}
+     * stands for a null reference if the accessed method or field is static,
+     * and {@code this} otherwise.
+     * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
+     * for reflective objects corresponding to the given members.
+     * <p>
+     * The equivalence between looked-up method handles and underlying
+     * class members can break down in a few ways:
+     * <ul>
+     * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
+     * the lookup can still succeed, even when there is no equivalent
+     * Java expression or bytecoded constant.
+     * <li>Likewise, if {@code T} or {@code MT}
+     * is not symbolically accessible from the lookup class's loader,
+     * the lookup can still succeed.
+     * For example, lookups for {@code MethodHandle.invokeExact} and
+     * {@code MethodHandle.invokeGeneric} will always succeed, regardless of requested type.
+     * <li>If there is a security manager installed, it can forbid the lookup
+     * on various grounds (<a href="#secmgr">see below</a>).
+     * By contrast, the {@code ldc} instruction is not subject to
+     * security manager checks.
+     * </ul>
+     *
+     * <h3><a name="access"></a>Access checking</h3>
+     * Access checks are applied in the factory methods of {@code Lookup},
+     * when a method handle is created.
+     * This is a key difference from the Core Reflection API, since
+     * {@link java.lang.reflect.Method#invoke Method.invoke}
+     * performs access checking against every caller, on every call.
+     * <p>
+     * All access checks start from a {@code Lookup} object, which
+     * compares its recorded lookup class against all requests to
+     * create method handles.
+     * A single {@code Lookup} object can be used to create any number
+     * of access-checked method handles, all checked against a single
+     * lookup class.
+     * <p>
+     * A {@code Lookup} object can be shared with other trusted code,
+     * such as a metaobject protocol.
+     * A shared {@code Lookup} object delegates the capability
+     * to create method handles on private members of the lookup class.
+     * Even if privileged code uses the {@code Lookup} object,
+     * the access checking is confined to the privileges of the
+     * original lookup class.
+     * <p>
+     * A lookup can fail, because
+     * the containing class is not accessible to the lookup class, or
+     * because the desired class member is missing, or because the
+     * desired class member is not accessible to the lookup class.
+     * In any of these cases, a {@code ReflectiveOperationException} will be
+     * thrown from the attempted lookup.  The exact class will be one of
+     * the following:
+     * <ul>
+     * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
+     * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
+     * <li>IllegalAccessException &mdash; if the member exists but an access check fails
+     * </ul>
+     * <p>
+     * In general, the conditions under which a method handle may be
+     * looked up for a method {@code M} are exactly equivalent to the conditions
+     * under which the lookup class could have compiled and resolved a call to {@code M}.
+     * And the effect of invoking the method handle resulting from the lookup
+     * is exactly equivalent to executing the compiled and resolved call to {@code M}.
+     * The same point is true of fields and constructors.
+     * <p>
+     * In some cases, access between nested classes is obtained by the Java compiler by creating
+     * an wrapper method to access a private method of another class
+     * in the same top-level declaration.
+     * For example, a nested class {@code C.D}
+     * can access private members within other related classes such as
+     * {@code C}, {@code C.D.E}, or {@code C.B},
+     * but the Java compiler may need to generate wrapper methods in
+     * those related classes.  In such cases, a {@code Lookup} object on
+     * {@code C.E} would be unable to those private members.
+     * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
+     * which can transform a lookup on {@code C.E} into one on any of those other
+     * classes, without special elevation of privilege.
+     * <p>
+     * Although bytecode instructions can only refer to classes in
+     * a related class loader, this API can search for methods in any
+     * class, as long as a reference to its {@code Class} object is
+     * available.  Such cross-loader references are also possible with the
+     * Core Reflection API, and are impossible to bytecode instructions
+     * such as {@code invokestatic} or {@code getfield}.
+     * There is a {@linkplain java.lang.SecurityManager security manager API}
+     * to allow applications to check such cross-loader references.
+     * These checks apply to both the {@code MethodHandles.Lookup} API
+     * and the Core Reflection API
+     * (as found on {@link java.lang.Class Class}).
+     * <p>
+     * Access checks only apply to named and reflected methods,
+     * constructors, and fields.
+     * Other method handle creation methods, such as
+     * {@link #convertArguments MethodHandles.convertArguments},
+     * do not require any access checks, and are done
+     * with static methods of {@link MethodHandles},
+     * independently of any {@code Lookup} object.
+     *
+     * <h3>Security manager interactions</h3>
+     * <a name="secmgr"></a>
+     * If a security manager is present, member lookups are subject to
+     * additional checks.
+     * From one to four calls are made to the security manager.
+     * Any of these calls can refuse access by throwing a
+     * {@link java.lang.SecurityException SecurityException}.
+     * Define {@code smgr} as the security manager,
+     * {@code refc} as the containing class in which the member
+     * is being sought, and {@code defc} as the class in which the
+     * member is actually defined.
+     * The calls are made according to the following rules:
+     * <ul>
+     * <li>In all cases, {@link SecurityManager#checkMemberAccess
+     *     smgr.checkMemberAccess(refc, Member.PUBLIC)} is called.
+     * <li>If the class loader of the lookup class is not
+     *     the same as or an ancestor of the class loader of {@code refc},
+     *     then {@link SecurityManager#checkPackageAccess
+     *     smgr.checkPackageAccess(refcPkg)} is called,
+     *     where {@code refcPkg} is the package of {@code refc}.
+     * <li>If the retrieved member is not public,
+     *     {@link SecurityManager#checkMemberAccess
+     *     smgr.checkMemberAccess(defc, Member.DECLARED)} is called.
+     *     (Note that {@code defc} might be the same as {@code refc}.)
+     * <li>If the retrieved member is not public,
+     *     and if {@code defc} and {@code refc} are in different class loaders,
+     *     and if the class loader of the lookup class is not
+     *     the same as or an ancestor of the class loader of {@code defc},
+     *     then {@link SecurityManager#checkPackageAccess
+     *     smgr.checkPackageAccess(defcPkg)} is called,
+     *     where {@code defcPkg} is the package of {@code defc}.
+     * </ul>
+     * In all cases, the requesting class presented to the security
+     * manager will be the lookup class from the current {@code Lookup} object.
+     */
+    public static final
+    class Lookup {
+        /** The class on behalf of whom the lookup is being performed. */
+        private final Class<?> lookupClass;
+
+        /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
+        private final int allowedModes;
+
+        /** A single-bit mask representing {@code public} access,
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value, {@code 0x01}, happens to be the same as the value of the
+         *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
+         */
+        public static final int PUBLIC = Modifier.PUBLIC;
+
+        /** A single-bit mask representing {@code private} access,
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value, {@code 0x02}, happens to be the same as the value of the
+         *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
+         */
+        public static final int PRIVATE = Modifier.PRIVATE;
+
+        /** A single-bit mask representing {@code protected} access,
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value, {@code 0x04}, happens to be the same as the value of the
+         *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
+         */
+        public static final int PROTECTED = Modifier.PROTECTED;
+
+        /** A single-bit mask representing {@code package} access (default access),
+         *  which may contribute to the result of {@link #lookupModes lookupModes}.
+         *  The value is {@code 0x08}, which does not correspond meaningfully to
+         *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
+         */
+        public static final int PACKAGE = Modifier.STATIC;
+
+        private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE);
+        private static final int TRUSTED   = -1;
+
+        private static int fixmods(int mods) {
+            mods &= (ALL_MODES - PACKAGE);
+            return (mods != 0) ? mods : PACKAGE;
+        }
+
+        /** Tells which class is performing the lookup.  It is this class against
+         *  which checks are performed for visibility and access permissions.
+         *  <p>
+         *  The class implies a maximum level of access permission,
+         *  but the permissions may be additionally limited by the bitmask
+         *  {@link #lookupModes lookupModes}, which controls whether non-public members
+         *  can be accessed.
+         */
+        public Class<?> lookupClass() {
+            return lookupClass;
+        }
+
+        // This is just for calling out to MethodHandleImpl.
+        private Class<?> lookupClassOrNull() {
+            return (allowedModes == TRUSTED) ? null : lookupClass;
+        }
+
+        /** Tells which access-protection classes of members this lookup object can produce.
+         *  The result is a bit-mask of the bits
+         *  {@linkplain #PUBLIC PUBLIC (0x01)},
+         *  {@linkplain #PRIVATE PRIVATE (0x02)},
+         *  {@linkplain #PROTECTED PROTECTED (0x04)},
+         *  and {@linkplain #PACKAGE PACKAGE (0x08)}.
+         *  <p>
+         *  A freshly-created lookup object
+         *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class}
+         *  has all possible bits set, since the caller class can access all its own members.
+         *  A lookup object on a new lookup class
+         *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
+         *  may have some mode bits set to zero.
+         *  The purpose of this is to restrict access via the new lookup object,
+         *  so that it can access only names which can be reached by the original
+         *  lookup object, and also by the new lookup class.
+         */
+        public int lookupModes() {
+            return allowedModes & ALL_MODES;
+        }
+
+        /** Embody the current class (the lookupClass) as a lookup class
+         * for method handle creation.
+         * Must be called by from a method in this package,
+         * which in turn is called by a method not in this package.
+         * <p>
+         * Also, don't make it private, lest javac interpose
+         * an access$N method.
+         */
+        Lookup() {
+            this(getCallerClassAtEntryPoint(), ALL_MODES);
+            // make sure we haven't accidentally picked up a privileged class:
+            checkUnprivilegedlookupClass(lookupClass);
+        }
+
+        Lookup(Class<?> lookupClass) {
+            this(lookupClass, ALL_MODES);
+        }
+
+        private Lookup(Class<?> lookupClass, int allowedModes) {
+            this.lookupClass = lookupClass;
+            this.allowedModes = allowedModes;
+        }
+
+        /**
+         * Creates a lookup on the specified new lookup class.
+         * The resulting object will report the specified
+         * class as its own {@link #lookupClass lookupClass}.
+         * <p>
+         * However, the resulting {@code Lookup} object is guaranteed
+         * to have no more access capabilities than the original.
+         * In particular, access capabilities can be lost as follows:<ul>
+         * <li>If the new lookup class differs from the old one,
+         * protected members will not be accessible by virtue of inheritance.
+         * (Protected members may continue to be accessible because of package sharing.)
+         * <li>If the new lookup class is in a different package
+         * than the old one, protected and default (package) members will not be accessible.
+         * <li>If the new lookup class is not within the same package member
+         * as the old one, private members will not be accessible.
+         * <li>If the new lookup class is not accessible to the old lookup class,
+         * then no members, not even public members, will be accessible.
+         * (In all other cases, public members will continue to be accessible.)
+         * </ul>
+         *
+         * @param requestedLookupClass the desired lookup class for the new lookup object
+         * @return a lookup object which reports the desired lookup class
+         * @throws NullPointerException if the argument is null
+         */
+        public Lookup in(Class<?> requestedLookupClass) {
+            requestedLookupClass.getClass();  // null check
+            if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
+                return new Lookup(requestedLookupClass, ALL_MODES);
+            if (requestedLookupClass == this.lookupClass)
+                return this;  // keep same capabilities
+            int newModes = (allowedModes & (ALL_MODES & ~PROTECTED));
+            if ((newModes & PACKAGE) != 0
+                && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
+                newModes &= ~(PACKAGE|PRIVATE);
+            }
+            // Allow nestmate lookups to be created without special privilege:
+            if ((newModes & PRIVATE) != 0
+                && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
+                newModes &= ~PRIVATE;
+            }
+            if (newModes == PUBLIC
+                && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass)) {
+                // The requested class it not accessible from the lookup class.
+                // No permissions.
+                newModes = 0;
+            }
+            checkUnprivilegedlookupClass(requestedLookupClass);
+            return new Lookup(requestedLookupClass, newModes);
+        }
+
+        // Make sure outer class is initialized first.
+        static { IMPL_NAMES.getClass(); }
+
+        /** Version of lookup which is trusted minimally.
+         *  It can only be used to create method handles to
+         *  publicly accessible members.
+         */
+        static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC);
+
+        /** Package-private version of lookup which is trusted. */
+        static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
+
+        private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
+            String name = lookupClass.getName();
+            if (name.startsWith("java.lang.invoke."))
+                throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
+        }
+
+        /**
+         * Displays the name of the class from which lookups are to be made.
+         * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
+         * If there are restrictions on the access permitted to this lookup,
+         * this is indicated by adding a suffix to the class name, consisting
+         * of a slash and a keyword.  The keyword represents the strongest
+         * allowed access, and is chosen as follows:
+         * <ul>
+         * <li>If no access is allowed, the suffix is "/noaccess".
+         * <li>If only public access is allowed, the suffix is "/public".
+         * <li>If only public and package access are allowed, the suffix is "/package".
+         * <li>If only public, package, and private access are allowed, the suffix is "/private".
+         * </ul>
+         * If none of the above cases apply, it is the case that full
+         * access (public, package, private, and protected) is allowed.
+         * In this case, no suffix is added.
+         * This is true only of an object obtained originally from
+         * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
+         * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
+         * always have restricted access, and will display a suffix.
+         * <p>
+         * (It may seem strange that protected access should be
+         * stronger than private access.  Viewed independently from
+         * package access, protected access is the first to be lost,
+         * because it requires a direct subclass relationship between
+         * caller and callee.)
+         * @see #in
+         */
+        @Override
+        public String toString() {
+            String cname = lookupClass.getName();
+            switch (allowedModes) {
+            case 0:  // no privileges
+                return cname + "/noaccess";
+            case PUBLIC:
+                return cname + "/public";
+            case PUBLIC|PACKAGE:
+                return cname + "/package";
+            case ALL_MODES & ~PROTECTED:
+                return cname + "/private";
+            case ALL_MODES:
+                return cname;
+            case TRUSTED:
+                return "/trusted";  // internal only; not exported
+            default:  // Should not happen, but it's a bitfield...
+                cname = cname + "/" + Integer.toHexString(allowedModes);
+                assert(false) : cname;
+                return cname;
+            }
+        }
+
+        // call this from an entry point method in Lookup with extraFrames=0.
+        private static Class<?> getCallerClassAtEntryPoint() {
+            final int CALLER_DEPTH = 4;
+            // 0: Reflection.getCC, 1: getCallerClassAtEntryPoint,
+            // 2: Lookup.<init>, 3: MethodHandles.*, 4: caller
+            // Note:  This should be the only use of getCallerClass in this file.
+            assert(Reflection.getCallerClass(CALLER_DEPTH-1) == MethodHandles.class);
+            return Reflection.getCallerClass(CALLER_DEPTH);
+        }
+
+        /**
+         * Produces a method handle for a static method.
+         * The type of the method handle will be that of the method.
+         * (Since static methods do not take receivers, there is no
+         * additional receiver argument inserted into the method handle type,
+         * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
+         * The method and all its argument types must be accessible to the lookup class.
+         * If the method's class has not yet been initialized, that is done
+         * immediately, before the method handle is returned.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * @param refc the class from which the method is accessed
+         * @param name the name of the method
+         * @param type the type of the method
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails, or if the method is not {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public
+        MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            MemberName method = resolveOrFail(refc, name, type, true);
+            checkMethod(refc, method, true);
+            return MethodHandleImpl.findMethod(method, false, lookupClassOrNull());
+        }
+
+        /**
+         * Produces a method handle for a virtual method.
+         * The type of the method handle will be that of the method,
+         * with the receiver type (usually {@code refc}) prepended.
+         * The method and all its argument types must be accessible to the lookup class.
+         * <p>
+         * When called, the handle will treat the first argument as a receiver
+         * and dispatch on the receiver's type to determine which method
+         * implementation to enter.
+         * (The dispatching action is identical with that performed by an
+         * {@code invokevirtual} or {@code invokeinterface} instruction.)
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * <p>
+         * Because of the general equivalence between {@code invokevirtual}
+         * instructions and method handles produced by {@code findVirtual},
+         * if the class is {@code MethodHandle} and the name string is
+         * {@code invokeExact} or {@code invokeGeneric}, the resulting
+         * method handle is equivalent to one produced by
+         * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
+         * {@link java.lang.invoke.MethodHandles#genericInvoker MethodHandles.genericInvoker}
+         * with the same {@code type} argument.
+         *
+         * @param refc the class or interface from which the method is accessed
+         * @param name the name of the method
+         * @param type the type of the method, with the receiver argument omitted
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails, or if the method is {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            MemberName method = resolveOrFail(refc, name, type, false);
+            checkMethod(refc, method, false);
+            MethodHandle mh = MethodHandleImpl.findMethod(method, true, lookupClassOrNull());
+            return restrictProtectedReceiver(method, mh);
+        }
+
+        /**
+         * Produces a method handle which creates an object and initializes it, using
+         * the constructor of the specified type.
+         * The parameter types of the method handle will be those of the constructor,
+         * while the return type will be a reference to the constructor's class.
+         * The constructor and all its argument types must be accessible to the lookup class.
+         * If the constructor's class has not yet been initialized, that is done
+         * immediately, before the method handle is returned.
+         * <p>
+         * Note:  The requested type must have a return type of {@code void}.
+         * This is consistent with the JVM's treatment of constructor type descriptors.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
+         * @param refc the class or interface from which the method is accessed
+         * @param type the type of the method, with the receiver argument omitted, and a void return type
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the constructor does not exist
+         * @throws IllegalAccessException if access checking fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            String name = "<init>";
+            MemberName ctor = resolveOrFail(refc, name, type, false, false, lookupClassOrNull());
+            assert(ctor.isConstructor());
+            checkAccess(refc, ctor);
+            MethodHandle rawMH = MethodHandleImpl.findMethod(ctor, false, lookupClassOrNull());
+            MethodHandle allocMH = MethodHandleImpl.makeAllocator(rawMH);
+            return fixVarargs(allocMH, rawMH);
+        }
+
+        /** Return a version of MH which matches matchMH w.r.t. isVarargsCollector. */
+        private static MethodHandle fixVarargs(MethodHandle mh, MethodHandle matchMH) {
+            boolean va1 = mh.isVarargsCollector();
+            boolean va2 = matchMH.isVarargsCollector();
+            if (va1 == va2) {
+                return mh;
+            } else if (va2) {
+                MethodType type = mh.type();
+                int arity = type.parameterCount();
+                return mh.asVarargsCollector(type.parameterType(arity-1));
+            } else {
+                throw new InternalError("already varargs, but template is not: "+mh);
+            }
+        }
+
+        /**
+         * Produces an early-bound method handle for a virtual method,
+         * as if called from an {@code invokespecial}
+         * instruction from {@code caller}.
+         * The type of the method handle will be that of the method,
+         * with a suitably restricted receiver type (such as {@code caller}) prepended.
+         * The method and all its argument types must be accessible
+         * to the caller.
+         * <p>
+         * When called, the handle will treat the first argument as a receiver,
+         * but will not dispatch on the receiver's type.
+         * (This direct invocation action is identical with that performed by an
+         * {@code invokespecial} instruction.)
+         * <p>
+         * If the explicitly specified caller class is not identical with the
+         * lookup class, or if this lookup object does not have private access
+         * privileges, the access fails.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the name of the method (which must not be "&lt;init&gt;")
+         * @param type the type of the method, with the receiver argument omitted
+         * @param specialCaller the proposed calling class to perform the {@code invokespecial}
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
+                                        Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
+            checkSpecialCaller(specialCaller);
+            MemberName method = resolveOrFail(refc, name, type, false, false, specialCaller);
+            checkMethod(refc, method, false);
+            MethodHandle mh = MethodHandleImpl.findMethod(method, false, specialCaller);
+            return restrictReceiver(method, mh, specialCaller);
+        }
+
+        /**
+         * Produces a method handle giving read access to a non-static field.
+         * The type of the method handle will have a return type of the field's
+         * value type.
+         * The method handle's single argument will be the instance containing
+         * the field.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can load values from the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return makeAccessor(refc, name, type, false, false);
+        }
+
+        /**
+         * Produces a method handle giving write access to a non-static field.
+         * The type of the method handle will have a void return type.
+         * The method handle will take two arguments, the instance containing
+         * the field, and the value to be stored.
+         * The second argument will be of the field's value type.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can store values into the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return makeAccessor(refc, name, type, false, true);
+        }
+
+        /**
+         * Produces a method handle giving read access to a static field.
+         * The type of the method handle will have a return type of the field's
+         * value type.
+         * The method handle will take no arguments.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can load values from the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return makeAccessor(refc, name, type, true, false);
+        }
+
+        /**
+         * Produces a method handle giving write access to a static field.
+         * The type of the method handle will have a void return type.
+         * The method handle will take a single
+         * argument, of the field's value type, the value to be stored.
+         * Access checking is performed immediately on behalf of the lookup class.
+         * @param refc the class or interface from which the method is accessed
+         * @param name the field's name
+         * @param type the field's type
+         * @return a method handle which can store values into the field
+         * @throws NoSuchFieldException if the field does not exist
+         * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
+            return makeAccessor(refc, name, type, true, true);
+        }
+
+        /**
+         * Produces an early-bound method handle for a non-static method.
+         * The receiver must have a supertype {@code defc} in which a method
+         * of the given name and type is accessible to the lookup class.
+         * The method and all its argument types must be accessible to the lookup class.
+         * The type of the method handle will be that of the method,
+         * without any insertion of an additional receiver parameter.
+         * The given receiver will be bound into the method handle,
+         * so that every call to the method handle will invoke the
+         * requested method on the given receiver.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set
+         * <em>and</em> the trailing array argument is not the only argument.
+         * (If the trailing array argument is the only argument,
+         * the given receiver value will be bound to it.)
+         * <p>
+         * This is equivalent to the following code:
+         * <blockquote><pre>
+MethodHandle mh0 = {@link #findVirtual findVirtual}(defc, name, type);
+MethodHandle mh1 = mh0.{@link MethodHandle#bindTo bindTo}(receiver);
+MethodType mt1 = mh1.type();
+if (mh0.isVarargsCollector() && mt1.parameterCount() > 0) {
+  mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1));
+return mh1;
+         * </pre></blockquote>
+         * where {@code defc} is either {@code receiver.getClass()} or a super
+         * type of that class, in which the requested method is accessible
+         * to the lookup class.
+         * (Note that {@code bindTo} does not preserve variable arity.)
+         * @param receiver the object from which the method is accessed
+         * @param name the name of the method
+         * @param type the type of the method, with the receiver argument omitted
+         * @return the desired method handle
+         * @throws NoSuchMethodException if the method does not exist
+         * @throws IllegalAccessException if access checking fails
+         * @exception SecurityException if a security manager is present and it
+         *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
+            Class<? extends Object> refc = receiver.getClass(); // may get NPE
+            MemberName method = resolveOrFail(refc, name, type, false);
+            checkMethod(refc, method, false);
+            MethodHandle dmh = MethodHandleImpl.findMethod(method, true, lookupClassOrNull());
+            MethodHandle bmh = MethodHandleImpl.bindReceiver(dmh, receiver);
+            if (bmh == null)
+                throw method.makeAccessException("no access", this);
+            if (dmh.type().parameterCount() == 0)
+                return dmh;  // bound the trailing parameter; no varargs possible
+            return fixVarargs(bmh, dmh);
+        }
+
+        /**
+         * Makes a direct method handle to <i>m</i>, if the lookup class has permission.
+         * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
+         * If <i>m</i> is virtual, overriding is respected on every call.
+         * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
+         * The type of the method handle will be that of the method,
+         * with the receiver type prepended (but only if it is non-static).
+         * If the method's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * @param m the reflected method
+         * @return a method handle which can invoke the reflected method
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflect(Method m) throws IllegalAccessException {
+            MemberName method = new MemberName(m);
+            assert(method.isMethod());
+            if (!m.isAccessible())  checkMethod(method.getDeclaringClass(), method, method.isStatic());
+            MethodHandle mh = MethodHandleImpl.findMethod(method, true, lookupClassOrNull());
+            if (!m.isAccessible())  mh = restrictProtectedReceiver(method, mh);
+            return mh;
+        }
+
+        /**
+         * Produces a method handle for a reflected method.
+         * It will bypass checks for overriding methods on the receiver,
+         * as if by a {@code invokespecial} instruction from within the {@code specialCaller}.
+         * The type of the method handle will be that of the method,
+         * with the special caller type prepended (and <em>not</em> the receiver of the method).
+         * If the method's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class,
+         * as if {@code invokespecial} instruction were being linked.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the method's variable arity modifier bit ({@code 0x0080}) is set.
+         * @param m the reflected method
+         * @param specialCaller the class nominally calling the method
+         * @return a method handle which can invoke the reflected method
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if any argument is null
+         */
+        public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
+            checkSpecialCaller(specialCaller);
+            MemberName method = new MemberName(m);
+            assert(method.isMethod());
+            // ignore m.isAccessible:  this is a new kind of access
+            checkMethod(m.getDeclaringClass(), method, false);
+            MethodHandle mh = MethodHandleImpl.findMethod(method, false, lookupClassOrNull());
+            return restrictReceiver(method, mh, specialCaller);
+        }
+
+        /**
+         * Produces a method handle for a reflected constructor.
+         * The type of the method handle will be that of the constructor,
+         * with the return type changed to the declaring class.
+         * The method handle will perform a {@code newInstance} operation,
+         * creating a new instance of the constructor's class on the
+         * arguments passed to the method handle.
+         * <p>
+         * If the constructor's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * <p>
+         * The returned method handle will have
+         * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
+         * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
+         * @param c the reflected constructor
+         * @return a method handle which can invoke the reflected constructor
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException {
+            MemberName ctor = new MemberName(c);
+            assert(ctor.isConstructor());
+            if (!c.isAccessible())  checkAccess(c.getDeclaringClass(), ctor);
+            MethodHandle rawCtor = MethodHandleImpl.findMethod(ctor, false, lookupClassOrNull());
+            MethodHandle allocator = MethodHandleImpl.makeAllocator(rawCtor);
+            return fixVarargs(allocator, rawCtor);
+        }
+
+        /**
+         * Produces a method handle giving read access to a reflected field.
+         * The type of the method handle will have a return type of the field's
+         * value type.
+         * If the field is static, the method handle will take no arguments.
+         * Otherwise, its single argument will be the instance containing
+         * the field.
+         * If the field's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * @param f the reflected field
+         * @return a method handle which can load values from the reflected field
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
+            return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), false);
+        }
+
+        /**
+         * Produces a method handle giving write access to a reflected field.
+         * The type of the method handle will have a void return type.
+         * If the field is static, the method handle will take a single
+         * argument, of the field's value type, the value to be stored.
+         * Otherwise, the two arguments will be the instance containing
+         * the field, and the value to be stored.
+         * If the field's {@code accessible} flag is not set,
+         * access checking is performed immediately on behalf of the lookup class.
+         * @param f the reflected field
+         * @return a method handle which can store values into the reflected field
+         * @throws IllegalAccessException if access checking fails
+         * @throws NullPointerException if the argument is null
+         */
+        public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
+            return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), true);
+        }
+
+        /// Helper methods, all package-private.
+
+        MemberName resolveOrFail(Class<?> refc, String name, Class<?> type, boolean isStatic) throws NoSuchFieldException, IllegalAccessException {
+            checkSymbolicClass(refc);  // do this before attempting to resolve
+            name.getClass(); type.getClass();  // NPE
+            int mods = (isStatic ? Modifier.STATIC : 0);
+            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(),
+                                            NoSuchFieldException.class);
+        }
+
+        MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic) throws NoSuchMethodException, IllegalAccessException {
+            checkSymbolicClass(refc);  // do this before attempting to resolve
+            name.getClass(); type.getClass();  // NPE
+            int mods = (isStatic ? Modifier.STATIC : 0);
+            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(),
+                                            NoSuchMethodException.class);
+        }
+
+        MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic,
+                                 boolean searchSupers, Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
+            checkSymbolicClass(refc);  // do this before attempting to resolve
+            name.getClass(); type.getClass();  // NPE
+            int mods = (isStatic ? Modifier.STATIC : 0);
+            return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), searchSupers, specialCaller,
+                                            NoSuchMethodException.class);
+        }
+
+        void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
+            Class<?> caller = lookupClassOrNull();
+            if (caller != null && !VerifyAccess.isClassAccessible(refc, caller))
+                throw new MemberName(refc).makeAccessException("symbolic reference class is not public", this);
+        }
+
+        void checkMethod(Class<?> refc, MemberName m, boolean wantStatic) throws IllegalAccessException {
+            String message;
+            if (m.isConstructor())
+                message = "expected a method, not a constructor";
+            else if (!m.isMethod())
+                message = "expected a method";
+            else if (wantStatic != m.isStatic())
+                message = wantStatic ? "expected a static method" : "expected a non-static method";
+            else
+                { checkAccess(refc, m); return; }
+            throw m.makeAccessException(message, this);
+        }
+
+        void checkAccess(Class<?> refc, MemberName m) throws IllegalAccessException {
+            int allowedModes = this.allowedModes;
+            if (allowedModes == TRUSTED)  return;
+            int mods = m.getModifiers();
+            if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0)
+                return;  // common case
+            int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
+            if ((requestedModes & allowedModes) != 0
+                && VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
+                                                   mods, lookupClass()))
+                return;
+            if (((requestedModes & ~allowedModes) & PROTECTED) != 0
+                && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
+                // Protected members can also be checked as if they were package-private.
+                return;
+            throw m.makeAccessException(accessFailedMessage(refc, m), this);
+        }
+
+        String accessFailedMessage(Class<?> refc, MemberName m) {
+            Class<?> defc = m.getDeclaringClass();
+            int mods = m.getModifiers();
+            // check the class first:
+            boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
+                               (defc == refc ||
+                                Modifier.isPublic(refc.getModifiers())));
+            if (!classOK && (allowedModes & PACKAGE) != 0) {
+                classOK = (VerifyAccess.isClassAccessible(defc, lookupClass()) &&
+                           (defc == refc ||
+                            VerifyAccess.isClassAccessible(refc, lookupClass())));
+            }
+            if (!classOK)
+                return "class is not public";
+            if (Modifier.isPublic(mods))
+                return "access to public member failed";  // (how?)
+            if (Modifier.isPrivate(mods))
+                return "member is private";
+            if (Modifier.isProtected(mods))
+                return "member is protected";
+            return "member is private to package";
+        }
+
+        private static final boolean ALLOW_NESTMATE_ACCESS = false;
+
+        void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException {
+            if (allowedModes == TRUSTED)  return;
+            if ((allowedModes & PRIVATE) == 0
+                || (specialCaller != lookupClass()
+                    && !(ALLOW_NESTMATE_ACCESS &&
+                         VerifyAccess.isSamePackageMember(specialCaller, lookupClass()))))
+                throw new MemberName(specialCaller).
+                    makeAccessException("no private access for invokespecial", this);
+        }
+
+        MethodHandle restrictProtectedReceiver(MemberName method, MethodHandle mh) throws IllegalAccessException {
+            // The accessing class only has the right to use a protected member
+            // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
+            if (!method.isProtected() || method.isStatic()
+                || allowedModes == TRUSTED
+                || method.getDeclaringClass() == lookupClass()
+                || (ALLOW_NESTMATE_ACCESS &&
+                    VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass())))
+                return mh;
+            else
+                return restrictReceiver(method, mh, lookupClass());
+        }
+        MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException {
+            assert(!method.isStatic());
+            Class<?> defc = method.getDeclaringClass();  // receiver type of mh is too wide
+            if (defc.isInterface() || !defc.isAssignableFrom(caller)) {
+                throw method.makeAccessException("caller class must be a subclass below the method", caller);
+            }
+            MethodType rawType = mh.type();
+            if (rawType.parameterType(0) == caller)  return mh;
+            MethodType narrowType = rawType.changeParameterType(0, caller);
+            MethodHandle narrowMH = MethodHandleImpl.convertArguments(mh, narrowType, rawType, null);
+            return fixVarargs(narrowMH, mh);
+        }
+
+        MethodHandle makeAccessor(Class<?> refc, String name, Class<?> type,
+                                  boolean isStatic, boolean isSetter) throws NoSuchFieldException, IllegalAccessException {
+            MemberName field = resolveOrFail(refc, name, type, isStatic);
+            if (isStatic != field.isStatic())
+                throw field.makeAccessException(isStatic
+                                                ? "expected a static field"
+                                                : "expected a non-static field", this);
+            return makeAccessor(refc, field, false, isSetter);
+        }
+
+        MethodHandle makeAccessor(Class<?> refc, MemberName field,
+                                  boolean trusted, boolean isSetter) throws IllegalAccessException {
+            assert(field.isField());
+            if (trusted)
+                return MethodHandleImpl.accessField(field, isSetter, lookupClassOrNull());
+            checkAccess(refc, field);
+            MethodHandle mh = MethodHandleImpl.accessField(field, isSetter, lookupClassOrNull());
+            return restrictProtectedReceiver(field, mh);
+        }
+    }
+
+    /**
+     * Produces a method handle giving read access to elements of an array.
+     * The type of the method handle will have a return type of the array's
+     * element type.  Its first argument will be the array type,
+     * and the second will be {@code int}.
+     * @param arrayClass an array type
+     * @return a method handle which can load values from the given array type
+     * @throws NullPointerException if the argument is null
+     * @throws  IllegalArgumentException if arrayClass is not an array type
+     */
+    public static
+    MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
+        return MethodHandleImpl.accessArrayElement(arrayClass, false);
+    }
+
+    /**
+     * Produces a method handle giving write access to elements of an array.
+     * The type of the method handle will have a void return type.
+     * Its last argument will be the array's element type.
+     * The first and second arguments will be the array type and int.
+     * @return a method handle which can store values into the array type
+     * @throws NullPointerException if the argument is null
+     * @throws IllegalArgumentException if arrayClass is not an array type
+     */
+    public static
+    MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
+        return MethodHandleImpl.accessArrayElement(arrayClass, true);
+    }
+
+    /// method handle invocation (reflective style)
+
+    /**
+     * Produces a method handle which will invoke any method handle of the
+     * given {@code type} on a standard set of {@code Object} type arguments
+     * and a single trailing {@code Object[]} array.
+     * The resulting invoker will be a method handle with the following
+     * arguments:
+     * <ul>
+     * <li>a single {@code MethodHandle} target
+     * <li>zero or more {@code Object} values (counted by {@code objectArgCount})
+     * <li>an {@code Object[]} array containing more arguments
+     * </ul>
+     * <p>
+     * The invoker will behave like a call to {@link MethodHandle#invokeGeneric invokeGeneric} with
+     * the indicated {@code type}.
+     * That is, if the target is exactly of the given {@code type}, it will behave
+     * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
+     * is used to convert the target to the required {@code type}.
+     * <p>
+     * The type of the returned invoker will not be the given {@code type}, but rather
+     * will have all parameter and return types replaced by {@code Object}, except for
+     * the last parameter type, which will be the array type {@code Object[]}.
+     * <p>
+     * Before invoking its target, the invoker will spread the varargs array, apply
+     * reference casts as necessary, and unbox and widen primitive arguments.
+     * The return value of the invoker will be an {@code Object} reference,
+     * boxing a primitive value if the original type returns a primitive,
+     * and always null if the original type returns void.
+     * <p>
+     * This method is equivalent to the following code (though it may be more efficient):
+     * <p><blockquote><pre>
+MethodHandle invoker = MethodHandles.genericInvoker(type);
+int spreadArgCount = type.parameterCount - objectArgCount;
+invoker = invoker.asSpreader(Object[].class, spreadArgCount);
+return invoker;
+     * </pre></blockquote>
+     * <p>
+     * This method throws no reflective or security exceptions.
+     * @param type the desired target type
+     * @param objectArgCount number of fixed (non-varargs) {@code Object} arguments
+     * @return a method handle suitable for invoking any method handle of the given type
+     */
+    static public
+    MethodHandle spreadInvoker(MethodType type, int objectArgCount) {
+        if (objectArgCount < 0 || objectArgCount > type.parameterCount())
+            throw new IllegalArgumentException("bad argument count "+objectArgCount);
+        return type.invokers().spreadInvoker(objectArgCount);
+    }
+
+    /**
+     * Produces a special <em>invoker method handle</em> which can be used to
+     * invoke any method handle of the given type, as if by {@code invokeExact}.
+     * The resulting invoker will have a type which is
+     * exactly equal to the desired type, except that it will accept
+     * an additional leading argument of type {@code MethodHandle}.
+     * <p>
+     * This method is equivalent to the following code (though it may be more efficient):
+     * <p><blockquote><pre>
+publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)
+     * </pre></blockquote>
+     *
+     * <p style="font-size:smaller;">
+     * <em>Discussion:</em>
+     * Invoker method handles can be useful when working with variable method handles
+     * of unknown types.
+     * For example, to emulate an {@code invokeExact} call to a variable method
+     * handle {@code M}, extract its type {@code T},
+     * look up the invoker method {@code X} for {@code T},
+     * and call the invoker method, as {@code X.invokeGeneric(T, A...)}.
+     * (It would not work to call {@code X.invokeExact}, since the type {@code T}
+     * is unknown.)
+     * If spreading, collecting, or other argument transformations are required,
+     * they can be applied once to the invoker {@code X} and reused on many {@code M}
+     * method handle values, as long as they are compatible with the type of {@code X}.
+     * <p>
+     * <em>(Note:  The invoker method is not available via the Core Reflection API.
+     * An attempt to call {@linkplain java.lang.reflect.Method#invoke Method.invoke}
+     * on the declared {@code invokeExact} or {@code invokeGeneric} method will raise an
+     * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
+     * <p>
+     * This method throws no reflective or security exceptions.
+     * @param type the desired target type
+     * @return a method handle suitable for invoking any method handle of the given type
+     */
+    static public
+    MethodHandle exactInvoker(MethodType type) {
+        return type.invokers().exactInvoker();
+    }
+
+    /**
+     * Produces a special <em>invoker method handle</em> which can be used to
+     * invoke any method handle of the given type, as if by {@code invokeGeneric}.
+     * The resulting invoker will have a type which is
+     * exactly equal to the desired type, except that it will accept
+     * an additional leading argument of type {@code MethodHandle}.
+     * <p>
+     * Before invoking its target, the invoker will apply reference casts as
+     * necessary and unbox and widen primitive arguments, as if by {@link #convertArguments convertArguments}.
+     * The return value of the invoker will be an {@code Object} reference,
+     * boxing a primitive value if the original type returns a primitive,
+     * and always null if the original type returns void.
+     * <p>
+     * This method is equivalent to the following code (though it may be more efficient):
+     * <p><blockquote><pre>
+publicLookup().findVirtual(MethodHandle.class, "invokeGeneric", type)
+     * </pre></blockquote>
+     * <p>
+     * This method throws no reflective or security exceptions.
+     * @param type the desired target type
+     * @return a method handle suitable for invoking any method handle convertible to the given type
+     */
+    static public
+    MethodHandle genericInvoker(MethodType type) {
+        return type.invokers().genericInvoker();
+    }
+
+    /**
+     * Perform value checking, exactly as if for an adapted method handle.
+     * It is assumed that the given value is either null, of type T0,
+     * or (if T0 is primitive) of the wrapper type corresponding to T0.
+     * The following checks and conversions are made:
+     * <ul>
+     * <li>If T0 and T1 are references, then a cast to T1 is applied.
+     *     (The types do not need to be related in any particular way.)
+     * <li>If T0 and T1 are primitives, then a widening or narrowing
+     *     conversion is applied, if one exists.
+     * <li>If T0 is a primitive and T1 a reference, and
+     *     T0 has a wrapper type TW, a boxing conversion to TW is applied,
+     *     possibly followed by a reference conversion.
+     *     T1 must be TW or a supertype.
+     * <li>If T0 is a reference and T1 a primitive, and
+     *     T1 has a wrapper type TW, an unboxing conversion is applied,
+     *     possibly preceded by a reference conversion.
+     *     T0 must be TW or a supertype.
+     * <li>If T1 is void, the return value is discarded
+     * <li>If T0 is void and T1 a reference, a null value is introduced.
+     * <li>If T0 is void and T1 a primitive, a zero value is introduced.
+     * </ul>
+     * If the value is discarded, null will be returned.
+     * @param valueType
+     * @param value
+     * @return the value, converted if necessary
+     * @throws java.lang.ClassCastException if a cast fails
+     */
+    static
+    <T0, T1> T1 checkValue(Class<T0> t0, Class<T1> t1, Object value)
+       throws ClassCastException
+    {
+        if (t0 == t1) {
+            // no conversion needed; just reassert the same type
+            if (t0.isPrimitive())
+                return Wrapper.asPrimitiveType(t1).cast(value);
+            else
+                return Wrapper.OBJECT.convert(value, t1);
+        }
+        boolean prim0 = t0.isPrimitive(), prim1 = t1.isPrimitive();
+        if (!prim0) {
+            // check contract with caller
+            Wrapper.OBJECT.convert(value, t0);
+            if (!prim1) {
+                return Wrapper.OBJECT.convert(value, t1);
+            }
+            // convert reference to primitive by unboxing
+            Wrapper w1 = Wrapper.forPrimitiveType(t1);
+            return w1.convert(value, t1);
+        }
+        // check contract with caller:
+        Wrapper.asWrapperType(t0).cast(value);
+        Wrapper w1 = Wrapper.forPrimitiveType(t1);
+        return w1.convert(value, t1);
+    }
+
+    static
+    Object checkValue(Class<?> T1, Object value)
+       throws ClassCastException
+    {
+        Class<?> T0;
+        if (value == null)
+            T0 = Object.class;
+        else
+            T0 = value.getClass();
+        return checkValue(T0, T1, value);
+    }
+
+    /// method handle modification (creation from other method handles)
+
+    /**
+     * Produces a method handle which adapts the type of the
+     * given method handle to a new type by pairwise argument conversion.
+     * The original type and new type must have the same number of arguments.
+     * The resulting method handle is guaranteed to report a type
+     * which is equal to the desired new type.
+     * <p>
+     * If the original type and new type are equal, returns target.
+     * <p>
+     * The following conversions are applied as needed both to
+     * arguments and return types.  Let T0 and T1 be the differing
+     * new and old parameter types (or old and new return types)
+     * for corresponding values passed by the new and old method types.
+     * Given those types T0, T1, one of the following conversions is applied
+     * if possible:
+     * <ul>
+     * <li>If T0 and T1 are references, then a cast to T1 is applied.
+     *     (The types do not need to be related in any particular way.)
+     * <li>If T0 and T1 are primitives, then a Java method invocation
+     *     conversion (JLS 5.3) is applied, if one exists.
+     * <li>If T0 is a primitive and T1 a reference, a boxing
+     *     conversion is applied if one exists, possibly followed by
+     *     a reference conversion to a superclass.
+     *     T1 must be a wrapper class or a supertype of one.
+     * <li>If T0 is a reference and T1 a primitive, an unboxing
+     *     conversion will be applied at runtime, possibly followed
+     *     by a Java method invocation conversion (JLS 5.3)
+     *     on the primitive value.  (These are the widening conversions.)
+     *     T0 must be a wrapper class or a supertype of one.
+     *     (In the case where T0 is Object, these are the conversions
+     *     allowed by java.lang.reflect.Method.invoke.)
+     * <li>If the return type T1 is void, any returned value is discarded
+     * <li>If the return type T0 is void and T1 a reference, a null value is introduced.
+     * <li>If the return type T0 is void and T1 a primitive, a zero value is introduced.
+     * </ul>
+     * @param target the method handle to invoke after arguments are retyped
+     * @param newType the expected type of the new method handle
+     * @return a method handle which delegates to {@code target} after performing
+     *           any necessary argument conversions, and arranges for any
+     *           necessary return value conversions
+     * @throws NullPointerException if either argument is null
+     * @throws WrongMethodTypeException if the conversion cannot be made
+     * @see MethodHandle#asType
+     * @see MethodHandles#explicitCastArguments
+     */
+    public static
+    MethodHandle convertArguments(MethodHandle target, MethodType newType) {
+        MethodType oldType = target.type();
+        if (oldType.equals(newType))
+            return target;
+        MethodHandle res = null;
+        try {
+            res = MethodHandleImpl.convertArguments(target,
+                                                    newType, oldType, null);
+        } catch (IllegalArgumentException ex) {
+        }
+        if (res == null)
+            throw new WrongMethodTypeException("cannot convert to "+newType+": "+target);
+        return res;
+    }
+
+    /**
+     * Produces a method handle which adapts the type of the
+     * given method handle to a new type by pairwise argument conversion.
+     * The original type and new type must have the same number of arguments.
+     * The resulting method handle is guaranteed to report a type
+     * which is equal to the desired new type.
+     * <p>
+     * If the original type and new type are equal, returns target.
+     * <p>
+     * The same conversions are allowed as for {@link #convertArguments convertArguments},
+     * and some additional conversions are also applied if those conversions fail.
+     * Given types T0, T1, one of the following conversions is applied
+     * in addition, if the conversions specified for {@code convertArguments}
+     * would be insufficient:
+     * <ul>
+     * <li>If T0 and T1 are references, and T1 is an interface type,
+     *     then the value of type T0 is passed as a T1 without a cast.
+     *     (This treatment of interfaces follows the usage of the bytecode verifier.)
+     * <li>If T0 and T1 are primitives and one is boolean,
+     *     the boolean is treated as a one-bit unsigned integer.
+     *     (This treatment follows the usage of the bytecode verifier.)
+     *     A conversion from another primitive type behaves as if
+     *     it first converts to byte, and then masks all but the low bit.
+     * <li>If a primitive value would be converted by {@code convertArguments}
+     *     using Java method invocation conversion (JLS 5.3),
+     *     Java casting conversion (JLS 5.5) may be used also.
+     *     This allows primitives to be narrowed as well as widened.
+     * </ul>
+     * @param target the method handle to invoke after arguments are retyped
+     * @param newType the expected type of the new method handle
+     * @return a method handle which delegates to {@code target} after performing
+     *           any necessary argument conversions, and arranges for any
+     *           necessary return value conversions
+     * @throws NullPointerException if either argument is null
+     * @throws WrongMethodTypeException if the conversion cannot be made
+     * @see MethodHandle#asType
+     * @see MethodHandles#convertArguments
+     */
+    public static
+    MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
+        return convertArguments(target, newType);  // FIXME!
+    }
+
+    /*
+      FIXME: Reconcile javadoc with 10/22/2010 EG notes on conversion:
+
+      Both converters arrange for their method handles to convert arguments
+      and return values.  The conversion rules are the same for arguments
+      and return values, and depend only on source and target types, S and
+      T.  The conversions allowed by castConvertArguments are a strict
+      superset of those performed by convertArguments.
+
+      In all cases, if S and T are references, a simple checkcast is done.
+      If neither S nor T is a primitive, no attempt is made to unbox and
+      box.  A failed conversion throws ClassCastException.
+
+      If T is void, the value is dropped.
+
+      For compatibility with reflection, if S is void and T is a reference,
+      a null value is produced.
+
+      For compatibility with reflection, if S is a reference and T is a
+      primitive, S is first unboxed and then undergoes primitive conversion.
+      In the case of 'convertArguments', only assignment conversion is
+      performed (no narrowing primitive conversion).
+
+      If S is a primitive, S is boxed, and then the above rules are applied.
+      If S and T are both primitives, the boxing will be undetectable; only
+      the primitive conversions will be apparent to the user.  The key point
+      is that if S is a primitive type, the implementation may box it and
+      treat is as Object, without loss of information, or it may use a "fast
+      path" which does not use boxing.
+
+      Notwithstanding the rules above, for compatibility with the verifier,
+      if T is an interface, it is treated as if it were Object.  [KEEP THIS?]
+
+      Also, for compatibility with the verifier, a boolean may be undergo
+      widening or narrowing conversion to any other primitive type.  [KEEP THIS?]
+    */
+
+    /**
+     * Produces a method handle which adapts the calling sequence of the
+     * given method handle to a new type, by reordering the arguments.
+     * The resulting method handle is guaranteed to report a type
+     * which is equal to the desired new type.
+     * <p>
+     * The given array controls the reordering.
+     * Call {@code #I} the number of incoming parameters (the value
+     * {@code newType.parameterCount()}, and call {@code #O} the number
+     * of outgoing parameters (the value {@code target.type().parameterCount()}).
+     * Then the length of the reordering array must be {@code #O},
+     * and each element must be a non-negative number less than {@code #I}.
+     * For every {@code N} less than {@code #O}, the {@code N}-th
+     * outgoing argument will be taken from the {@code I}-th incoming
+     * argument, where {@code I} is {@code reorder[N]}.
+     * <p>
+     * No argument or return value conversions are applied.
+     * The type of each incoming argument, as determined by {@code newType},
+     * must be identical to the type of the corresponding outgoing argument
+     * or arguments in the target method handle.
+     * The return type of {@code newType} must be identical to the return
+     * type of the original target.
+     * <p>
+     * The reordering array need not specify an actual permutation.
+     * An incoming argument will be duplicated if its index appears
+     * more than once in the array, and an incoming argument will be dropped
+     * if its index does not appear in the array.
+     * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
+     * incoming arguments which are not mentioned in the reordering array
+     * are may be any type, as determined only by {@code newType}.
+     * <blockquote><pre>
+MethodType intfn1 = MethodType.methodType(int.class, int.class);
+MethodType intfn2 = MethodType.methodType(int.class, int.class, int.class);
+MethodHandle sub = ... {int x, int y => x-y} ...;
+assert(sub.type().equals(intfn2));
+MethodHandle sub1 = MethodHandles.permuteArguments(sub, intfn2, 0, 1);
+MethodHandle rsub = MethodHandles.permuteArguments(sub, intfn2, 1, 0);
+assert((int)rsub.invokeExact(1, 100) == 99);
+MethodHandle add = ... {int x, int y => x+y} ...;
+assert(add.type().equals(intfn2));
+MethodHandle twice = MethodHandles.permuteArguments(add, intfn1, 0, 0);
+assert(twice.type().equals(intfn1));
+assert((int)twice.invokeExact(21) == 42);
+     * </pre></blockquote>
+     * @param target the method handle to invoke after arguments are reordered
+     * @param newType the expected type of the new method handle
+     * @param reorder a string which controls the reordering
+     * @return a method handle which delegates to {@code target} after it
+     *           drops unused arguments and moves and/or duplicates the other arguments
+     * @throws NullPointerException if any argument is null
+     */
+    public static
+    MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
+        MethodType oldType = target.type();
+        checkReorder(reorder, newType, oldType);
+        return MethodHandleImpl.convertArguments(target,
+                                                 newType, oldType,
+                                                 reorder);
+    }
+
+    private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) {
+        if (reorder.length == oldType.parameterCount()) {
+            int limit = newType.parameterCount();
+            boolean bad = false;
+            for (int i : reorder) {
+                if (i < 0 || i >= limit) {
+                    bad = true; break;
+                }
+            }
+            if (!bad)  return;
+        }
+        throw newIllegalArgumentException("bad reorder array");
+    }
+
+    /**
+     * Equivalent to the following code:
+     * <p><blockquote><pre>
+     * int spreadPos = newType.parameterCount() - 1;
+     * Class&lt;?&gt; spreadType = newType.parameterType(spreadPos);
+     * int spreadCount = target.type().parameterCount() - spreadPos;
+     * MethodHandle adapter = target.asSpreader(spreadType, spreadCount);
+     * adapter = adapter.asType(newType);
+     * return adapter;
+     * </pre></blockquote>
+     * @param target the method handle to invoke after argument spreading
+     * @param newType the expected type of the new method handle
+     * @return a method handle which spreads its final argument,
+     *         before calling the original method handle
+     */
+    /*non-public*/ static
+    MethodHandle spreadArguments(MethodHandle target, MethodType newType) {
+        MethodType oldType = target.type();
+        int inargs  = newType.parameterCount();
+        int outargs = oldType.parameterCount();
+        int spreadPos = inargs - 1;
+        int numSpread = (outargs - spreadPos);
+        MethodHandle res = null;
+        if (spreadPos >= 0 && numSpread >= 0) {
+            res = MethodHandleImpl.spreadArguments(target, newType, spreadPos);
+        }
+        if (res == null) {
+            throw newIllegalArgumentException("cannot spread "+newType+" to " +oldType);
+        }
+        return res;
+    }
+
+    /**
+     * Equivalent to the following code:
+     * <p><blockquote><pre>
+     * int collectPos = target.type().parameterCount() - 1;
+     * Class&lt;?&gt; collectType = target.type().parameterType(collectPos);
+     * if (!collectType.isArray())  collectType = Object[].class;
+     * int collectCount = newType.parameterCount() - collectPos;
+     * MethodHandle adapter = target.asCollector(collectType, collectCount);
+     * adapter = adapter.asType(newType);
+     * return adapter;
+     * </pre></blockquote>
+     * @param target the method handle to invoke after argument collection
+     * @param newType the expected type of the new method handle
+     * @return a method handle which collects some trailing argument
+     *         into an array, before calling the original method handle
+     */
+    /*non-public*/ static
+    MethodHandle collectArguments(MethodHandle target, MethodType newType) {
+        MethodType oldType = target.type();
+        int inargs  = newType.parameterCount();
+        int outargs = oldType.parameterCount();
+        int collectPos = outargs - 1;
+        int numCollect = (inargs - collectPos);
+        if (collectPos < 0 || numCollect < 0)
+            throw newIllegalArgumentException("wrong number of arguments");
+        MethodHandle res = MethodHandleImpl.collectArguments(target, newType, collectPos, null);
+        if (res == null) {
+            throw newIllegalArgumentException("cannot collect from "+newType+" to " +oldType);
+        }
+        return res;
+    }
+
+    /**
+     * Produces a method handle of the requested return type which returns the given
+     * constant value every time it is invoked.
+     * <p>
+     * Before the method handle is returned, the passed-in value is converted to the requested type.
+     * If the requested type is primitive, widening primitive conversions are attempted,
+     * else reference conversions are attempted.
+     * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)},
+     * unless the type is {@code void}, in which case it is {@code identity(type)}.
+     * @param type the return type of the desired method handle
+     * @param value the value to return
+     * @return a method handle of the given return type and no arguments, which always returns the given value
+     * @throws NullPointerException if the {@code type} argument is null
+     * @throws ClassCastException if the value cannot be converted to the required return type
+     * @throws IllegalArgumentException if the given type is {@code void.class}
+     */
+    public static
+    MethodHandle constant(Class<?> type, Object value) {
+        if (type.isPrimitive()) {
+            if (type == void.class)
+                throw newIllegalArgumentException("void type");
+            Wrapper w = Wrapper.forPrimitiveType(type);
+            return identity(type).bindTo(w.convert(value, type));
+        } else {
+            return identity(type).bindTo(type.cast(value));
+        }
+    }
+
+    /**
+     * Produces a method handle which returns its sole argument when invoked.
+     * <p>The identity function for {@code void} takes no arguments and returns no values.
+     * @param type the type of the sole parameter and return value of the desired method handle
+     * @return a unary method handle which accepts and returns the given type
+     * @throws NullPointerException if the argument is null
+     * @throws IllegalArgumentException if the given type is {@code void.class}
+     */
+    public static
+    MethodHandle identity(Class<?> type) {
+        if (type == void.class)
+            throw newIllegalArgumentException("void type");
+        else if (type == Object.class)
+            return ValueConversions.identity();
+        else if (type.isPrimitive())
+            return ValueConversions.identity(Wrapper.forPrimitiveType(type));
+        else
+            return AdapterMethodHandle.makeRetypeRaw(
+                    MethodType.methodType(type, type), ValueConversions.identity());
+    }
+
+    /**
+     * Produces a method handle which calls the original method handle {@code target},
+     * after inserting the given argument(s) at the given position.
+     * The formal parameters to {@code target} which will be supplied by those
+     * arguments are called <em>bound parameters</em>, because the new method
+     * will contain bindings for those parameters take from {@code values}.
+     * The type of the new method handle will drop the types for the bound
+     * parameters from the original target type, since the new method handle
+     * will no longer require those arguments to be supplied by its callers.
+     * <p>
+     * Each given argument object must match the corresponding bound parameter type.
+     * If a bound parameter type is a primitive, the argument object
+     * must be a wrapper, and will be unboxed to produce the primitive value.
+     * <p>
+     * The  <i>pos</i> may range between zero and <i>N</i> (inclusively),
+     * where <i>N</i> is the number of argument types in resulting method handle
+     * (after bound parameter types are dropped).
+     * @param target the method handle to invoke after the argument is inserted
+     * @param pos where to insert the argument (zero for the first)
+     * @param values the series of arguments to insert
+     * @return a method handle which inserts an additional argument,
+     *         before calling the original method handle
+     * @throws NullPointerException if the {@code target} argument or the {@code values} array is null
+     * @see MethodHandle#bindTo
+     */
+    public static
+    MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
+        int insCount = values.length;
+        MethodType oldType = target.type();
+        int outargs = oldType.parameterCount();
+        int inargs  = outargs - insCount;
+        if (inargs < 0)
+            throw newIllegalArgumentException("too many values to insert");
+        if (pos < 0 || pos > inargs)
+            throw newIllegalArgumentException("no argument type to append");
+        MethodHandle result = target;
+        for (int i = 0; i < insCount; i++) {
+            Object value = values[i];
+            Class<?> valueType = oldType.parameterType(pos+i);
+            value = checkValue(valueType, value);
+            if (pos == 0 && !valueType.isPrimitive()) {
+                // At least for now, make bound method handles a special case.
+                MethodHandle bmh = MethodHandleImpl.bindReceiver(result, value);
+                if (bmh != null) {
+                    result = bmh;
+                    continue;
+                }
+                // else fall through to general adapter machinery
+            }
+            result = MethodHandleImpl.bindArgument(result, pos, value);
+        }
+        return result;
+    }
+
+    /**
+     * Produces a method handle which calls the original method handle,
+     * after dropping the given argument(s) at the given position.
+     * The type of the new method handle will insert the given argument
+     * type(s), at that position, into the original handle's type.
+     * <p>
+     * The <i>pos</i> may range between zero and <i>N</i>,
+     * where <i>N</i> is the number of argument types in <i>target</i>,
+     * meaning to drop the first or last argument (respectively),
+     * or an argument somewhere in between.
+     * <p>
+     * <b>Example:</b>
+     * <p><blockquote><pre>
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
+MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
+assertEquals(bigType, d0.type());
+assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
+     * </pre></blockquote>
+     * <p>
+     * This method is also equivalent to the following code:
+     * <p><blockquote><pre>
+     * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}(target, pos, valueTypes.toArray(new Class[0]))
+     * </pre></blockquote>
+     * @param target the method handle to invoke after the arguments are dropped
+     * @param valueTypes the type(s) of the argument(s) to drop
+     * @param pos position of first argument to drop (zero for the leftmost)
+     * @return a method handle which drops arguments of the given types,
+     *         before calling the original method handle
+     * @throws NullPointerException if the {@code target} argument is null,
+     *                              or if the {@code valueTypes} list or any of its elements is null
+     * @throws IllegalArgumentException if any of the {@code valueTypes} is {@code void.class}
+     */
+    public static
+    MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
+        if (valueTypes.size() == 0)  return target;
+        MethodType oldType = target.type();
+        int outargs = oldType.parameterCount();
+        int inargs  = outargs + valueTypes.size();
+        if (pos < 0 || pos >= inargs)
+            throw newIllegalArgumentException("no argument type to remove");
+        ArrayList<Class<?>> ptypes =
+                new ArrayList<Class<?>>(oldType.parameterList());
+        ptypes.addAll(pos, valueTypes);
+        MethodType newType = MethodType.methodType(oldType.returnType(), ptypes);
+        return MethodHandleImpl.dropArguments(target, newType, pos);
+    }
+
+    /**
+     * Produces a method handle which calls the original method handle,
+     * after dropping the given argument(s) at the given position.
+     * The type of the new method handle will insert the given argument
+     * type(s), at that position, into the original handle's type.
+     * <p>
+     * The <i>pos</i> may range between zero and <i>N</i>,
+     * where <i>N</i> is the number of argument types in <i>target</i>,
+     * meaning to drop the first or last argument (respectively),
+     * or an argument somewhere in between.
+     * <p>
+     * <b>Example:</b>
+     * <p><blockquote><pre>
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle d0 = dropArguments(cat, 0, String.class);
+assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
+MethodHandle d1 = dropArguments(cat, 1, String.class);
+assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
+MethodHandle d2 = dropArguments(cat, 2, String.class);
+assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
+MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
+assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
+     * </pre></blockquote>
+     * <p>
+     * This method is also equivalent to the following code:
+     * <p><blockquote><pre>
+     * {@link #dropArguments(MethodHandle,int,List) dropArguments}(target, pos, Arrays.asList(valueTypes))
+     * </pre></blockquote>
+     * @param target the method handle to invoke after the arguments are dropped
+     * @param valueTypes the type(s) of the argument(s) to drop
+     * @param pos position of first argument to drop (zero for the leftmost)
+     * @return a method handle which drops arguments of the given types,
+     *         before calling the original method handle
+     * @throws NullPointerException if the {@code target} argument is null,
+     *                              or if the {@code valueTypes} array or any of its elements is null
+     * @throws IllegalArgumentException if any of the {@code valueTypes} is {@code void.class}
+     */
+    public static
+    MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
+        return dropArguments(target, pos, Arrays.asList(valueTypes));
+    }
+
+    /**
+     * Adapts a target method handle {@code target} by pre-processing
+     * one or more of its arguments, each with its own unary filter function,
+     * and then calling the target with each pre-processed argument
+     * replaced by the result of its corresponding filter function.
+     * <p>
+     * The pre-processing is performed by one or more method handles,
+     * specified in the elements of the {@code filters} array.
+     * Null arguments in the array are ignored, and the corresponding arguments left unchanged.
+     * (If there are no non-null elements in the array, the original target is returned.)
+     * Each filter is applied to the corresponding argument of the adapter.
+     * <p>
+     * If a filter {@code F} applies to the {@code N}th argument of
+     * the method handle, then {@code F} must be a method handle which
+     * takes exactly one argument.  The type of {@code F}'s sole argument
+     * replaces the corresponding argument type of the target
+     * in the resulting adapted method handle.
+     * The return type of {@code F} must be identical to the corresponding
+     * parameter type of the target.
+     * <p>
+     * It is an error if there are elements of {@code filters}
+     * which do not correspond to argument positions in the target.
+     * <b>Example:</b>
+     * <p><blockquote><pre>
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle upcase = lookup().findVirtual(String.class,
+  "toUpperCase", methodType(String.class));
+assertEquals("xy", (String) cat.invokeExact("x", "y"));
+MethodHandle f0 = filterArguments(cat, 0, upcase);
+assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
+MethodHandle f1 = filterArguments(cat, 1, upcase);
+assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
+MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
+assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
+     * </pre></blockquote>
+     *
+     * @param target the method handle to invoke after arguments are filtered
+     * @param pos the position of the first argument to filter
+     * @param filters method handles to call initially on filtered arguments
+     * @return method handle which incorporates the specified argument filtering logic
+     * @throws NullPointerException if the {@code target} argument is null
+     *                              or if the {@code filters} array is null
+     * @throws IllegalArgumentException if a non-null element of {@code filters}
+     *          does not match a corresponding argument type of {@code target} as described above,
+     *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()}
+     */
+    public static
+    MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
+        MethodType targetType = target.type();
+        MethodHandle adapter = target;
+        MethodType adapterType = targetType;
+        int maxPos = targetType.parameterCount();
+        if (pos + filters.length > maxPos)
+            throw newIllegalArgumentException("too many filters");
+        int curPos = pos-1;  // pre-incremented
+        for (MethodHandle filter : filters) {
+            curPos += 1;
+            if (filter == null)  continue;  // ignore null elements of filters
+            MethodType filterType = filter.type();
+            if (filterType.parameterCount() != 1
+                || filterType.returnType() != targetType.parameterType(curPos))
+                throw newIllegalArgumentException("target and filter types do not match");
+            adapterType = adapterType.changeParameterType(curPos, filterType.parameterType(0));
+            adapter = MethodHandleImpl.filterArgument(adapter, curPos, filter);
+        }
+        MethodType midType = adapter.type();
+        if (midType != adapterType)
+            adapter = MethodHandleImpl.convertArguments(adapter, adapterType, midType, null);
+        return adapter;
+    }
+
+    /**
+     * Adapts a target method handle {@code target} by post-processing
+     * its return value with a unary filter function.
+     * <p>
+     * If a filter {@code F} applies to the return value of
+     * the target method handle, then {@code F} must be a method handle which
+     * takes exactly one argument.  The return type of {@code F}
+     * replaces the return type of the target
+     * in the resulting adapted method handle.
+     * The argument type of {@code F} must be identical to the
+     * return type of the target.
+     * <b>Example:</b>
+     * <p><blockquote><pre>
+import static java.lang.invoke.MethodHandles.*;
+import static java.lang.invoke.MethodType.*;
+...
+MethodHandle cat = lookup().findVirtual(String.class,
+  "concat", methodType(String.class, String.class));
+MethodHandle length = lookup().findVirtual(String.class,
+  "length", methodType(int.class));
+System.out.println((String) cat.invokeExact("x", "y")); // xy
+MethodHandle f0 = filterReturnValue(cat, length);
+System.out.println((int) f0.invokeExact("x", "y")); // 2
+     * </pre></blockquote>
+     * @param target the method handle to invoke before filtering the return value
+     * @param filter method handle to call on the return value
+     * @return method handle which incorporates the specified return value filtering logic
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if {@code filter}
+     *          does not match the return type of {@code target} as described above
+     */
+    public static
+    MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
+        MethodType targetType = target.type();
+        MethodType filterType = filter.type();
+        if (filterType.parameterCount() != 1
+            || filterType.parameterType(0) != targetType.returnType())
+            throw newIllegalArgumentException("target and filter types do not match");
+        // result = fold( lambda(retval, arg...) { filter(retval) },
+        //                lambda(        arg...) { target(arg...) } )
+        // FIXME: Too many nodes here.
+        MethodHandle returner = dropArguments(filter, 1, targetType.parameterList());
+        return foldArguments(returner, target);
+    }
+
+    /**
+     * Adapts a target method handle {@code target} by pre-processing
+     * some of its arguments, and then calling the target with
+     * the result of the pre-processing, plus all original arguments.
+     * <p>
+     * The pre-processing is performed by a second method handle, the {@code combiner}.
+     * The first {@code N} arguments passed to the adapter,
+     * are copied to the combiner, which then produces a result.
+     * (Here, {@code N} is defined as the parameter count of the adapter.)
+     * After this, control passes to the {@code target}, with both the result
+     * of the combiner, and all the original incoming arguments.
+     * <p>
+     * The first argument type of the target must be identical with the
+     * return type of the combiner.
+     * The resulting adapter is the same type as the target, except that the
+     * initial argument type of the target is dropped.
+     * <p>
+     * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
+     * that either the {@code combiner} or {@code target} does not wish to receive.
+     * If some of the incoming arguments are destined only for the combiner,
+     * consider using {@link MethodHandle#asCollector asCollector} instead, since those
+     * arguments will not need to be live on the stack on entry to the
+     * target.)
+     * <p>
+     * The first argument of the target must be identical with the
+     * return value of the combiner.
+     * <p> Here is pseudocode for the resulting adapter:
+     * <blockquote><pre>
+     * // there are N arguments in the A sequence
+     * T target(V, A[N]..., B...);
+     * V combiner(A...);
+     * T adapter(A... a, B... b) {
+     *   V v = combiner(a...);
+     *   return target(v, a..., b...);
+     * }
+     * </pre></blockquote>
+     * @param target the method handle to invoke after arguments are combined
+     * @param combiner method handle to call initially on the incoming arguments
+     * @return method handle which incorporates the specified argument folding logic
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if the first argument type of
+     *          {@code target} is not the same as {@code combiner}'s return type,
+     *          or if the following argument types of {@code target}
+     *          are not identical with the argument types of {@code combiner}
+     */
+    public static
+    MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
+        MethodType targetType = target.type();
+        MethodType combinerType = combiner.type();
+        int foldArgs = combinerType.parameterCount();
+        boolean ok = (targetType.parameterCount() >= 1 + foldArgs);
+        if (ok && !combinerType.parameterList().equals(targetType.parameterList().subList(1, foldArgs+1)))
+            ok = false;
+        if (ok && !combinerType.returnType().equals(targetType.parameterType(0)))
+            ok = false;
+        if (!ok)
+            throw misMatchedTypes("target and combiner types", targetType, combinerType);
+        MethodType newType = targetType.dropParameterTypes(0, 1);
+        return MethodHandleImpl.foldArguments(target, newType, combiner);
+    }
+
+    /**
+     * Makes a method handle which adapts a target method handle,
+     * by guarding it with a test, a boolean-valued method handle.
+     * If the guard fails, a fallback handle is called instead.
+     * All three method handles must have the same corresponding
+     * argument and return types, except that the return type
+     * of the test must be boolean, and the test is allowed
+     * to have fewer arguments than the other two method handles.
+     * <p> Here is pseudocode for the resulting adapter:
+     * <blockquote><pre>
+     * boolean test(A...);
+     * T target(A...,B...);
+     * T fallback(A...,B...);
+     * T adapter(A... a,B... b) {
+     *   if (test(a...))
+     *     return target(a..., b...);
+     *   else
+     *     return fallback(a..., b...);
+     * }
+     * </pre></blockquote>
+     * Note that the test arguments ({@code a...} in the pseudocode) cannot
+     * be modified by execution of the test, and so are passed unchanged
+     * from the caller to the target or fallback as appropriate.
+     * @param test method handle used for test, must return boolean
+     * @param target method handle to call if test passes
+     * @param fallback method handle to call if test fails
+     * @return method handle which incorporates the specified if/then/else logic
+     * @throws NullPointerException if any argument is null
+     * @throws IllegalArgumentException if {@code test} does not return boolean,
+     *          or if all three method types do not match (with the return
+     *          type of {@code test} changed to match that of {@code target}).
+     */
+    public static
+    MethodHandle guardWithTest(MethodHandle test,
+                               MethodHandle target,
+                               MethodHandle fallback) {
+        MethodType gtype = test.type();
+        MethodType ttype = target.type();
+        MethodType ftype = fallback.type();
+        if (!ttype.equals(ftype))
+            throw misMatchedTypes("target and fallback types", ttype, ftype);
+        if (gtype.returnType() != boolean.class)
+            throw newIllegalArgumentException("guard type is not a predicate "+gtype);
+        List<Class<?>> targs = ttype.parameterList();
+        List<Class<?>> gargs = gtype.parameterList();
+        if (!targs.equals(gargs)) {
+            int gpc = gargs.size(), tpc = targs.size();
+            if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs))
+                throw misMatchedTypes("target and test types", ttype, gtype);
+            test = dropArguments(test, gpc, targs.subList(gpc, tpc));
+            gtype = test.type();
+        }
+        return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
+    }
+
+    static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) {
+        return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
+    }
+
+    /**
+     * Makes a method handle which adapts a target method handle,
+     * by running it inside an exception handler.
+     * If the target returns normally, the adapter returns that value.
+     * If an exception matching the specified type is thrown, the fallback
+     * handle is called instead on the exception, plus the original arguments.
+     * <p>
+     * The target and handler must have the same corresponding
+     * argument and return types, except that handler may omit trailing arguments
+     * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
+     * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
+     * <p> Here is pseudocode for the resulting adapter:
+     * <blockquote><pre>
+     * T target(A..., B...);
+     * T handler(ExType, A...);
+     * T adapter(A... a, B... b) {
+     *   try {
+     *     return target(a..., b...);
+     *   } catch (ExType ex) {
+     *     return handler(ex, a...);
+     *   }
+     * }
+     * </pre></blockquote>
+     * Note that the saved arguments ({@code a...} in the pseudocode) cannot
+     * be modified by execution of the target, and so are passed unchanged
+     * from the caller to the handler, if the handler is invoked.
+     * <p>
+     * The target and handler must return the same type, even if the handler
+     * always throws.  (This might happen, for instance, because the handler
+     * is simulating a {@code finally} clause).
+     * To create such a throwing handler, compose the handler creation logic
+     * with {@link #throwException throwException},
+     * in order to create a method handle of the correct return type.
+     * @param target method handle to call
+     * @param exType the type of exception which the handler will catch
+     * @param handler method handle to call if a matching exception is thrown
+     * @return method handle which incorporates the specified try/catch logic
+     * @throws NullPointerException if any argument is null
+     * @throws IllegalArgumentException if {@code handler} does not accept
+     *          the given exception type, or if the method handle types do
+     *          not match in their return types and their
+     *          corresponding parameters
+     */
+    public static
+    MethodHandle catchException(MethodHandle target,
+                                Class<? extends Throwable> exType,
+                                MethodHandle handler) {
+        MethodType ttype = target.type();
+        MethodType htype = handler.type();
+        if (htype.parameterCount() < 1 ||
+            !htype.parameterType(0).isAssignableFrom(exType))
+            throw newIllegalArgumentException("handler does not accept exception type "+exType);
+        if (htype.returnType() != ttype.returnType())
+            throw misMatchedTypes("target and handler return types", ttype, htype);
+        List<Class<?>> targs = ttype.parameterList();
+        List<Class<?>> hargs = htype.parameterList();
+        hargs = hargs.subList(1, hargs.size());  // omit leading parameter from handler
+        if (!targs.equals(hargs)) {
+            int hpc = hargs.size(), tpc = targs.size();
+            if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs))
+                throw misMatchedTypes("target and handler types", ttype, htype);
+            handler = dropArguments(handler, hpc, hargs.subList(hpc, tpc));
+            htype = handler.type();
+        }
+        return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
+    }
+
+    /**
+     * Produces a method handle which will throw exceptions of the given {@code exType}.
+     * The method handle will accept a single argument of {@code exType},
+     * and immediately throw it as an exception.
+     * The method type will nominally specify a return of {@code returnType}.
+     * The return type may be anything convenient:  It doesn't matter to the
+     * method handle's behavior, since it will never return normally.
+     * @return method handle which can throw the given exceptions
+     * @throws NullPointerException if either argument is null
+     */
+    public static
+    MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
+        return MethodHandleImpl.throwException(MethodType.methodType(returnType, exType));
+    }
+
+    /**
+     * Produces an instance of the given single-method interface which redirects
+     * its calls to the given method handle.
+     * <p>
+     * A single-method interface is an interface which declares a unique method.
+     * When determining the unique method of a single-method interface,
+     * the public {@code Object} methods ({@code toString}, {@code equals}, {@code hashCode})
+     * are disregarded.  For example, {@link java.util.Comparator} is a single-method interface,
+     * even though it re-declares the {@code Object.equals} method.
+     * <p>
+     * The type must be public.  No additional access checks are performed.
+     * <p>
+     * The resulting instance of the required type will respond to
+     * invocation of the type's single abstract method by calling
+     * the given {@code target} on the incoming arguments,
+     * and returning or throwing whatever the {@code target}
+     * returns or throws.  The invocation will be as if by
+     * {@code target.invokeGeneric}.
+     * The target's type will be checked before the
+     * instance is created, as if by a call to {@code asType},
+     * which may result in a {@code WrongMethodTypeException}.
+     * <p>
+     * The wrapper instance will implement the requested interface
+     * and its super-types, but no other single-method interfaces.
+     * This means that the instance will not unexpectedly
+     * pass an {@code instanceof} test for any unrequested type.
+     * <p style="font-size:smaller;">
+     * <em>Implementation Note:</em>
+     * Therefore, each instance must implement a unique single-method interface.
+     * Implementations may not bundle together
+     * multiple single-method interfaces onto single implementation classes
+     * in the style of {@link java.awt.AWTEventMulticaster}.
+     * <p>
+     * The method handle may throw an <em>undeclared exception</em>,
+     * which means any checked exception (or other checked throwable)
+     * not declared by the requested type's single abstract method.
+     * If this happens, the throwable will be wrapped in an instance of
+     * {@link java.lang.reflect.UndeclaredThrowableException UndeclaredThrowableException}
+     * and thrown in that wrapped form.
+     * <p>
+     * Like {@link java.lang.Integer#valueOf Integer.valueOf},
+     * {@code asInstance} is a factory method whose results are defined
+     * by their behavior.
+     * It is not guaranteed to return a new instance for every call.
+     * <p>
+     * Because of the possibility of {@linkplain java.lang.reflect.Method#isBridge bridge methods}
+     * and other corner cases, the interface may also have several abstract methods
+     * with the same name but having distinct descriptors (types of returns and parameters).
+     * In this case, all the methods are bound in common to the one given {@code target}.
+     * The type check and effective {@code asType} conversion is applied to each
+     * method type descriptor, and all abstract methods are bound to the {@code target} in common.
+     * Beyond this type check, no further checks are made to determine that the
+     * abstract methods are related in any way.
+     * <p>
+     * Future versions of this API may accept additional types,
+     * such as abstract classes with single abstract methods.
+     * Future versions of this API may also equip wrapper instances
+     * with one or more additional public "marker" interfaces.
+     *
+     * @param target the method handle to invoke from the wrapper
+     * @param smType the desired type of the wrapper, a single-method interface
+     * @return a correctly-typed wrapper for the given {@code target}
+     * @throws NullPointerException if either argument is null
+     * @throws IllegalArgumentException if the {@code smType} is not a
+     *         valid argument to this method
+     * @throws WrongMethodTypeException if the {@code target} cannot
+     *         be converted to the type required by the requested interface
+     */
+    // Other notes to implementors:
+    // <p>
+    // No stable mapping is promised between the single-method interface and
+    // the implementation class C.  Over time, several implementation
+    // classes might be used for the same type.
+    // <p>
+    // If the implementation is able
+    // to prove that a wrapper of the required type
+    // has already been created for a given
+    // method handle, or for another method handle with the
+    // same behavior, the implementation may return that wrapper in place of
+    // a new wrapper.
+    // <p>
+    // This method is designed to apply to common use cases
+    // where a single method handle must interoperate with
+    // an interface that implements a function-like
+    // API.  Additional variations, such as single-abstract-method classes with
+    // private constructors, or interfaces with multiple but related
+    // entry points, must be covered by hand-written or automatically
+    // generated adapter classes.
+    //
+    public static
+    <T> T asInstance(final MethodHandle target, final Class<T> smType) {
+        // POC implementation only; violates the above contract several ways
+        final Method sm = getSingleMethod(smType);
+        if (sm == null)
+            throw new IllegalArgumentException("not a single-method interface: "+smType.getName());
+        MethodType smMT = MethodType.methodType(sm.getReturnType(), sm.getParameterTypes());
+        MethodHandle checkTarget = target.asType(smMT);  // make throw WMT
+        checkTarget = checkTarget.asType(checkTarget.type().changeReturnType(Object.class));
+        final MethodHandle vaTarget = checkTarget.asSpreader(Object[].class, smMT.parameterCount());
+        return smType.cast(Proxy.newProxyInstance(
+                smType.getClassLoader(),
+                new Class[]{ smType, WrapperInstance.class },
+                new InvocationHandler() {
+                    private Object getArg(String name) {
+                        if ((Object)name == "getWrapperInstanceTarget")  return target;
+                        if ((Object)name == "getWrapperInstanceType")    return smType;
+                        throw new AssertionError();
+                    }
+                    public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
+                        if (method.getDeclaringClass() == WrapperInstance.class)
+                            return getArg(method.getName());
+                        if (method.equals(sm))
+                            return vaTarget.invokeExact(args);
+                        if (isObjectMethod(method))
+                            return callObjectMethod(this, method, args);
+                        throw new InternalError();
+                    }
+                }));
+    }
+
+    /**
+     * Determines if the given object was produced by a call to {@link #asInstance asInstance}.
+     * @param x any reference
+     * @return true if the reference is not null and points to an object produced by {@code asInstance}
+     */
+    public static
+    boolean isWrapperInstance(Object x) {
+        return x instanceof WrapperInstance;
+    }
+
+    private static WrapperInstance asWrapperInstance(Object x) {
+        try {
+            if (x != null)
+                return (WrapperInstance) x;
+        } catch (ClassCastException ex) {
+        }
+        throw new IllegalArgumentException("not a wrapper instance");
+    }
+
+    /**
+     * Produces or recovers a target method handle which is behaviorally
+     * equivalent to the unique method of this wrapper instance.
+     * The object {@code x} must have been produced by a call to {@link #asInstance asInstance}.
+     * This requirement may be tested via {@link #isWrapperInstance isWrapperInstance}.
+     * @param x any reference
+     * @return a method handle implementing the unique method
+     * @throws IllegalArgumentException if the reference x is not to a wrapper instance
+     */
+    public static
+    MethodHandle wrapperInstanceTarget(Object x) {
+        return asWrapperInstance(x).getWrapperInstanceTarget();
+    }
+
+    /**
+     * Recovers the unique single-method interface type for which this wrapper instance was created.
+     * The object {@code x} must have been produced by a call to {@link #asInstance asInstance}.
+     * This requirement may be tested via {@link #isWrapperInstance isWrapperInstance}.
+     * @param x any reference
+     * @return the single-method interface type for which the wrapper was created
+     * @throws IllegalArgumentException if the reference x is not to a wrapper instance
+     */
+    public static
+    Class<?> wrapperInstanceType(Object x) {
+        return asWrapperInstance(x).getWrapperInstanceType();
+    }
+
+    private static
+    boolean isObjectMethod(Method m) {
+        switch (m.getName()) {
+        case "toString":
+            return (m.getReturnType() == String.class
+                    && m.getParameterTypes().length == 0);
+        case "hashCode":
+            return (m.getReturnType() == int.class
+                    && m.getParameterTypes().length == 0);
+        case "equals":
+            return (m.getReturnType() == boolean.class
+                    && m.getParameterTypes().length == 1
+                    && m.getParameterTypes()[0] == Object.class);
+        }
+        return false;
+    }
+
+    private static
+    Object callObjectMethod(Object self, Method m, Object[] args) {
+        assert(isObjectMethod(m)) : m;
+        switch (m.getName()) {
+        case "toString":
+            return self.getClass().getName() + "@" + Integer.toHexString(self.hashCode());
+        case "hashCode":
+            return System.identityHashCode(self);
+        case "equals":
+            return (self == args[0]);
+        }
+        return null;
+    }
+
+    private static
+    Method getSingleMethod(Class<?> smType) {
+        Method sm = null;
+        for (Method m : smType.getMethods()) {
+            int mod = m.getModifiers();
+            if (Modifier.isAbstract(mod)) {
+                if (sm != null && !isObjectMethod(sm))
+                    return null;  // too many abstract methods
+                sm = m;
+            }
+        }
+        if (!smType.isInterface() && getSingleConstructor(smType) == null)
+            return null;  // wrong kind of constructor
+        return sm;
+    }
+
+    private static
+    Constructor getSingleConstructor(Class<?> smType) {
+        for (Constructor c : smType.getDeclaredConstructors()) {
+            if (c.getParameterTypes().length == 0) {
+                int mod = c.getModifiers();
+                if (Modifier.isPublic(mod) || Modifier.isProtected(mod))
+                    return c;
+            }
+        }
+        return null;
+    }
+
+    /*non-public*/
+    static MethodHandle asVarargsCollector(MethodHandle target, Class<?> arrayType) {
+        return MethodHandleImpl.asVarargsCollector(target, arrayType);
+    }
+}