src/java.base/share/classes/java/util/WeakHashMap.java
changeset 47216 71c04702a3d5
parent 44743 f0bbd698c486
child 49433 b6671a111395
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/java.base/share/classes/java/util/WeakHashMap.java	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1340 @@
+/*
+ * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.util;
+
+import java.lang.ref.WeakReference;
+import java.lang.ref.ReferenceQueue;
+import java.util.concurrent.ThreadLocalRandom;
+import java.util.function.BiConsumer;
+import java.util.function.BiFunction;
+import java.util.function.Consumer;
+
+
+/**
+ * Hash table based implementation of the {@code Map} interface, with
+ * <em>weak keys</em>.
+ * An entry in a {@code WeakHashMap} will automatically be removed when
+ * its key is no longer in ordinary use.  More precisely, the presence of a
+ * mapping for a given key will not prevent the key from being discarded by the
+ * garbage collector, that is, made finalizable, finalized, and then reclaimed.
+ * When a key has been discarded its entry is effectively removed from the map,
+ * so this class behaves somewhat differently from other {@code Map}
+ * implementations.
+ *
+ * <p> Both null values and the null key are supported. This class has
+ * performance characteristics similar to those of the {@code HashMap}
+ * class, and has the same efficiency parameters of <em>initial capacity</em>
+ * and <em>load factor</em>.
+ *
+ * <p> Like most collection classes, this class is not synchronized.
+ * A synchronized {@code WeakHashMap} may be constructed using the
+ * {@link Collections#synchronizedMap Collections.synchronizedMap}
+ * method.
+ *
+ * <p> This class is intended primarily for use with key objects whose
+ * {@code equals} methods test for object identity using the
+ * {@code ==} operator.  Once such a key is discarded it can never be
+ * recreated, so it is impossible to do a lookup of that key in a
+ * {@code WeakHashMap} at some later time and be surprised that its entry
+ * has been removed.  This class will work perfectly well with key objects
+ * whose {@code equals} methods are not based upon object identity, such
+ * as {@code String} instances.  With such recreatable key objects,
+ * however, the automatic removal of {@code WeakHashMap} entries whose
+ * keys have been discarded may prove to be confusing.
+ *
+ * <p> The behavior of the {@code WeakHashMap} class depends in part upon
+ * the actions of the garbage collector, so several familiar (though not
+ * required) {@code Map} invariants do not hold for this class.  Because
+ * the garbage collector may discard keys at any time, a
+ * {@code WeakHashMap} may behave as though an unknown thread is silently
+ * removing entries.  In particular, even if you synchronize on a
+ * {@code WeakHashMap} instance and invoke none of its mutator methods, it
+ * is possible for the {@code size} method to return smaller values over
+ * time, for the {@code isEmpty} method to return {@code false} and
+ * then {@code true}, for the {@code containsKey} method to return
+ * {@code true} and later {@code false} for a given key, for the
+ * {@code get} method to return a value for a given key but later return
+ * {@code null}, for the {@code put} method to return
+ * {@code null} and the {@code remove} method to return
+ * {@code false} for a key that previously appeared to be in the map, and
+ * for successive examinations of the key set, the value collection, and
+ * the entry set to yield successively smaller numbers of elements.
+ *
+ * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
+ * the referent of a weak reference.  Therefore a key will automatically be
+ * removed only after the weak references to it, both inside and outside of the
+ * map, have been cleared by the garbage collector.
+ *
+ * <p> <strong>Implementation note:</strong> The value objects in a
+ * {@code WeakHashMap} are held by ordinary strong references.  Thus care
+ * should be taken to ensure that value objects do not strongly refer to their
+ * own keys, either directly or indirectly, since that will prevent the keys
+ * from being discarded.  Note that a value object may refer indirectly to its
+ * key via the {@code WeakHashMap} itself; that is, a value object may
+ * strongly refer to some other key object whose associated value object, in
+ * turn, strongly refers to the key of the first value object.  If the values
+ * in the map do not rely on the map holding strong references to them, one way
+ * to deal with this is to wrap values themselves within
+ * {@code WeakReferences} before
+ * inserting, as in: {@code m.put(key, new WeakReference(value))},
+ * and then unwrapping upon each {@code get}.
+ *
+ * <p>The iterators returned by the {@code iterator} method of the collections
+ * returned by all of this class's "collection view methods" are
+ * <i>fail-fast</i>: if the map is structurally modified at any time after the
+ * iterator is created, in any way except through the iterator's own
+ * {@code remove} method, the iterator will throw a {@link
+ * ConcurrentModificationException}.  Thus, in the face of concurrent
+ * modification, the iterator fails quickly and cleanly, rather than risking
+ * arbitrary, non-deterministic behavior at an undetermined time in the future.
+ *
+ * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
+ * as it is, generally speaking, impossible to make any hard guarantees in the
+ * presence of unsynchronized concurrent modification.  Fail-fast iterators
+ * throw {@code ConcurrentModificationException} on a best-effort basis.
+ * Therefore, it would be wrong to write a program that depended on this
+ * exception for its correctness:  <i>the fail-fast behavior of iterators
+ * should be used only to detect bugs.</i>
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
+ * Java Collections Framework</a>.
+ *
+ * @param <K> the type of keys maintained by this map
+ * @param <V> the type of mapped values
+ *
+ * @author      Doug Lea
+ * @author      Josh Bloch
+ * @author      Mark Reinhold
+ * @since       1.2
+ * @see         java.util.HashMap
+ * @see         java.lang.ref.WeakReference
+ */
+public class WeakHashMap<K,V>
+    extends AbstractMap<K,V>
+    implements Map<K,V> {
+
+    /**
+     * The default initial capacity -- MUST be a power of two.
+     */
+    private static final int DEFAULT_INITIAL_CAPACITY = 16;
+
+    /**
+     * The maximum capacity, used if a higher value is implicitly specified
+     * by either of the constructors with arguments.
+     * MUST be a power of two <= 1<<30.
+     */
+    private static final int MAXIMUM_CAPACITY = 1 << 30;
+
+    /**
+     * The load factor used when none specified in constructor.
+     */
+    private static final float DEFAULT_LOAD_FACTOR = 0.75f;
+
+    /**
+     * The table, resized as necessary. Length MUST Always be a power of two.
+     */
+    Entry<K,V>[] table;
+
+    /**
+     * The number of key-value mappings contained in this weak hash map.
+     */
+    private int size;
+
+    /**
+     * The next size value at which to resize (capacity * load factor).
+     */
+    private int threshold;
+
+    /**
+     * The load factor for the hash table.
+     */
+    private final float loadFactor;
+
+    /**
+     * Reference queue for cleared WeakEntries
+     */
+    private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
+
+    /**
+     * The number of times this WeakHashMap has been structurally modified.
+     * Structural modifications are those that change the number of
+     * mappings in the map or otherwise modify its internal structure
+     * (e.g., rehash).  This field is used to make iterators on
+     * Collection-views of the map fail-fast.
+     *
+     * @see ConcurrentModificationException
+     */
+    int modCount;
+
+    @SuppressWarnings("unchecked")
+    private Entry<K,V>[] newTable(int n) {
+        return (Entry<K,V>[]) new Entry<?,?>[n];
+    }
+
+    /**
+     * Constructs a new, empty {@code WeakHashMap} with the given initial
+     * capacity and the given load factor.
+     *
+     * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
+     * @param  loadFactor      The load factor of the {@code WeakHashMap}
+     * @throws IllegalArgumentException if the initial capacity is negative,
+     *         or if the load factor is nonpositive.
+     */
+    public WeakHashMap(int initialCapacity, float loadFactor) {
+        if (initialCapacity < 0)
+            throw new IllegalArgumentException("Illegal Initial Capacity: "+
+                                               initialCapacity);
+        if (initialCapacity > MAXIMUM_CAPACITY)
+            initialCapacity = MAXIMUM_CAPACITY;
+
+        if (loadFactor <= 0 || Float.isNaN(loadFactor))
+            throw new IllegalArgumentException("Illegal Load factor: "+
+                                               loadFactor);
+        int capacity = 1;
+        while (capacity < initialCapacity)
+            capacity <<= 1;
+        table = newTable(capacity);
+        this.loadFactor = loadFactor;
+        threshold = (int)(capacity * loadFactor);
+    }
+
+    /**
+     * Constructs a new, empty {@code WeakHashMap} with the given initial
+     * capacity and the default load factor (0.75).
+     *
+     * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
+     * @throws IllegalArgumentException if the initial capacity is negative
+     */
+    public WeakHashMap(int initialCapacity) {
+        this(initialCapacity, DEFAULT_LOAD_FACTOR);
+    }
+
+    /**
+     * Constructs a new, empty {@code WeakHashMap} with the default initial
+     * capacity (16) and load factor (0.75).
+     */
+    public WeakHashMap() {
+        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
+    }
+
+    /**
+     * Constructs a new {@code WeakHashMap} with the same mappings as the
+     * specified map.  The {@code WeakHashMap} is created with the default
+     * load factor (0.75) and an initial capacity sufficient to hold the
+     * mappings in the specified map.
+     *
+     * @param   m the map whose mappings are to be placed in this map
+     * @throws  NullPointerException if the specified map is null
+     * @since   1.3
+     */
+    public WeakHashMap(Map<? extends K, ? extends V> m) {
+        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
+                DEFAULT_INITIAL_CAPACITY),
+             DEFAULT_LOAD_FACTOR);
+        putAll(m);
+    }
+
+    // internal utilities
+
+    /**
+     * Value representing null keys inside tables.
+     */
+    private static final Object NULL_KEY = new Object();
+
+    /**
+     * Use NULL_KEY for key if it is null.
+     */
+    private static Object maskNull(Object key) {
+        return (key == null) ? NULL_KEY : key;
+    }
+
+    /**
+     * Returns internal representation of null key back to caller as null.
+     */
+    static Object unmaskNull(Object key) {
+        return (key == NULL_KEY) ? null : key;
+    }
+
+    /**
+     * Checks for equality of non-null reference x and possibly-null y.  By
+     * default uses Object.equals.
+     */
+    private static boolean eq(Object x, Object y) {
+        return x == y || x.equals(y);
+    }
+
+    /**
+     * Retrieve object hash code and applies a supplemental hash function to the
+     * result hash, which defends against poor quality hash functions.  This is
+     * critical because HashMap uses power-of-two length hash tables, that
+     * otherwise encounter collisions for hashCodes that do not differ
+     * in lower bits.
+     */
+    final int hash(Object k) {
+        int h = k.hashCode();
+
+        // This function ensures that hashCodes that differ only by
+        // constant multiples at each bit position have a bounded
+        // number of collisions (approximately 8 at default load factor).
+        h ^= (h >>> 20) ^ (h >>> 12);
+        return h ^ (h >>> 7) ^ (h >>> 4);
+    }
+
+    /**
+     * Returns index for hash code h.
+     */
+    private static int indexFor(int h, int length) {
+        return h & (length-1);
+    }
+
+    /**
+     * Expunges stale entries from the table.
+     */
+    private void expungeStaleEntries() {
+        for (Object x; (x = queue.poll()) != null; ) {
+            synchronized (queue) {
+                @SuppressWarnings("unchecked")
+                    Entry<K,V> e = (Entry<K,V>) x;
+                int i = indexFor(e.hash, table.length);
+
+                Entry<K,V> prev = table[i];
+                Entry<K,V> p = prev;
+                while (p != null) {
+                    Entry<K,V> next = p.next;
+                    if (p == e) {
+                        if (prev == e)
+                            table[i] = next;
+                        else
+                            prev.next = next;
+                        // Must not null out e.next;
+                        // stale entries may be in use by a HashIterator
+                        e.value = null; // Help GC
+                        size--;
+                        break;
+                    }
+                    prev = p;
+                    p = next;
+                }
+            }
+        }
+    }
+
+    /**
+     * Returns the table after first expunging stale entries.
+     */
+    private Entry<K,V>[] getTable() {
+        expungeStaleEntries();
+        return table;
+    }
+
+    /**
+     * Returns the number of key-value mappings in this map.
+     * This result is a snapshot, and may not reflect unprocessed
+     * entries that will be removed before next attempted access
+     * because they are no longer referenced.
+     */
+    public int size() {
+        if (size == 0)
+            return 0;
+        expungeStaleEntries();
+        return size;
+    }
+
+    /**
+     * Returns {@code true} if this map contains no key-value mappings.
+     * This result is a snapshot, and may not reflect unprocessed
+     * entries that will be removed before next attempted access
+     * because they are no longer referenced.
+     */
+    public boolean isEmpty() {
+        return size() == 0;
+    }
+
+    /**
+     * Returns the value to which the specified key is mapped,
+     * or {@code null} if this map contains no mapping for the key.
+     *
+     * <p>More formally, if this map contains a mapping from a key
+     * {@code k} to a value {@code v} such that
+     * {@code Objects.equals(key, k)},
+     * then this method returns {@code v}; otherwise
+     * it returns {@code null}.  (There can be at most one such mapping.)
+     *
+     * <p>A return value of {@code null} does not <i>necessarily</i>
+     * indicate that the map contains no mapping for the key; it's also
+     * possible that the map explicitly maps the key to {@code null}.
+     * The {@link #containsKey containsKey} operation may be used to
+     * distinguish these two cases.
+     *
+     * @see #put(Object, Object)
+     */
+    public V get(Object key) {
+        Object k = maskNull(key);
+        int h = hash(k);
+        Entry<K,V>[] tab = getTable();
+        int index = indexFor(h, tab.length);
+        Entry<K,V> e = tab[index];
+        while (e != null) {
+            if (e.hash == h && eq(k, e.get()))
+                return e.value;
+            e = e.next;
+        }
+        return null;
+    }
+
+    /**
+     * Returns {@code true} if this map contains a mapping for the
+     * specified key.
+     *
+     * @param  key   The key whose presence in this map is to be tested
+     * @return {@code true} if there is a mapping for {@code key};
+     *         {@code false} otherwise
+     */
+    public boolean containsKey(Object key) {
+        return getEntry(key) != null;
+    }
+
+    /**
+     * Returns the entry associated with the specified key in this map.
+     * Returns null if the map contains no mapping for this key.
+     */
+    Entry<K,V> getEntry(Object key) {
+        Object k = maskNull(key);
+        int h = hash(k);
+        Entry<K,V>[] tab = getTable();
+        int index = indexFor(h, tab.length);
+        Entry<K,V> e = tab[index];
+        while (e != null && !(e.hash == h && eq(k, e.get())))
+            e = e.next;
+        return e;
+    }
+
+    /**
+     * Associates the specified value with the specified key in this map.
+     * If the map previously contained a mapping for this key, the old
+     * value is replaced.
+     *
+     * @param key key with which the specified value is to be associated.
+     * @param value value to be associated with the specified key.
+     * @return the previous value associated with {@code key}, or
+     *         {@code null} if there was no mapping for {@code key}.
+     *         (A {@code null} return can also indicate that the map
+     *         previously associated {@code null} with {@code key}.)
+     */
+    public V put(K key, V value) {
+        Object k = maskNull(key);
+        int h = hash(k);
+        Entry<K,V>[] tab = getTable();
+        int i = indexFor(h, tab.length);
+
+        for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
+            if (h == e.hash && eq(k, e.get())) {
+                V oldValue = e.value;
+                if (value != oldValue)
+                    e.value = value;
+                return oldValue;
+            }
+        }
+
+        modCount++;
+        Entry<K,V> e = tab[i];
+        tab[i] = new Entry<>(k, value, queue, h, e);
+        if (++size >= threshold)
+            resize(tab.length * 2);
+        return null;
+    }
+
+    /**
+     * Rehashes the contents of this map into a new array with a
+     * larger capacity.  This method is called automatically when the
+     * number of keys in this map reaches its threshold.
+     *
+     * If current capacity is MAXIMUM_CAPACITY, this method does not
+     * resize the map, but sets threshold to Integer.MAX_VALUE.
+     * This has the effect of preventing future calls.
+     *
+     * @param newCapacity the new capacity, MUST be a power of two;
+     *        must be greater than current capacity unless current
+     *        capacity is MAXIMUM_CAPACITY (in which case value
+     *        is irrelevant).
+     */
+    void resize(int newCapacity) {
+        Entry<K,V>[] oldTable = getTable();
+        int oldCapacity = oldTable.length;
+        if (oldCapacity == MAXIMUM_CAPACITY) {
+            threshold = Integer.MAX_VALUE;
+            return;
+        }
+
+        Entry<K,V>[] newTable = newTable(newCapacity);
+        transfer(oldTable, newTable);
+        table = newTable;
+
+        /*
+         * If ignoring null elements and processing ref queue caused massive
+         * shrinkage, then restore old table.  This should be rare, but avoids
+         * unbounded expansion of garbage-filled tables.
+         */
+        if (size >= threshold / 2) {
+            threshold = (int)(newCapacity * loadFactor);
+        } else {
+            expungeStaleEntries();
+            transfer(newTable, oldTable);
+            table = oldTable;
+        }
+    }
+
+    /** Transfers all entries from src to dest tables */
+    private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
+        for (int j = 0; j < src.length; ++j) {
+            Entry<K,V> e = src[j];
+            src[j] = null;
+            while (e != null) {
+                Entry<K,V> next = e.next;
+                Object key = e.get();
+                if (key == null) {
+                    e.next = null;  // Help GC
+                    e.value = null; //  "   "
+                    size--;
+                } else {
+                    int i = indexFor(e.hash, dest.length);
+                    e.next = dest[i];
+                    dest[i] = e;
+                }
+                e = next;
+            }
+        }
+    }
+
+    /**
+     * Copies all of the mappings from the specified map to this map.
+     * These mappings will replace any mappings that this map had for any
+     * of the keys currently in the specified map.
+     *
+     * @param m mappings to be stored in this map.
+     * @throws  NullPointerException if the specified map is null.
+     */
+    public void putAll(Map<? extends K, ? extends V> m) {
+        int numKeysToBeAdded = m.size();
+        if (numKeysToBeAdded == 0)
+            return;
+
+        /*
+         * Expand the map if the map if the number of mappings to be added
+         * is greater than or equal to threshold.  This is conservative; the
+         * obvious condition is (m.size() + size) >= threshold, but this
+         * condition could result in a map with twice the appropriate capacity,
+         * if the keys to be added overlap with the keys already in this map.
+         * By using the conservative calculation, we subject ourself
+         * to at most one extra resize.
+         */
+        if (numKeysToBeAdded > threshold) {
+            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
+            if (targetCapacity > MAXIMUM_CAPACITY)
+                targetCapacity = MAXIMUM_CAPACITY;
+            int newCapacity = table.length;
+            while (newCapacity < targetCapacity)
+                newCapacity <<= 1;
+            if (newCapacity > table.length)
+                resize(newCapacity);
+        }
+
+        for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
+            put(e.getKey(), e.getValue());
+    }
+
+    /**
+     * Removes the mapping for a key from this weak hash map if it is present.
+     * More formally, if this map contains a mapping from key {@code k} to
+     * value {@code v} such that <code>(key==null ?  k==null :
+     * key.equals(k))</code>, that mapping is removed.  (The map can contain
+     * at most one such mapping.)
+     *
+     * <p>Returns the value to which this map previously associated the key,
+     * or {@code null} if the map contained no mapping for the key.  A
+     * return value of {@code null} does not <i>necessarily</i> indicate
+     * that the map contained no mapping for the key; it's also possible
+     * that the map explicitly mapped the key to {@code null}.
+     *
+     * <p>The map will not contain a mapping for the specified key once the
+     * call returns.
+     *
+     * @param key key whose mapping is to be removed from the map
+     * @return the previous value associated with {@code key}, or
+     *         {@code null} if there was no mapping for {@code key}
+     */
+    public V remove(Object key) {
+        Object k = maskNull(key);
+        int h = hash(k);
+        Entry<K,V>[] tab = getTable();
+        int i = indexFor(h, tab.length);
+        Entry<K,V> prev = tab[i];
+        Entry<K,V> e = prev;
+
+        while (e != null) {
+            Entry<K,V> next = e.next;
+            if (h == e.hash && eq(k, e.get())) {
+                modCount++;
+                size--;
+                if (prev == e)
+                    tab[i] = next;
+                else
+                    prev.next = next;
+                return e.value;
+            }
+            prev = e;
+            e = next;
+        }
+
+        return null;
+    }
+
+    /** Special version of remove needed by Entry set */
+    boolean removeMapping(Object o) {
+        if (!(o instanceof Map.Entry))
+            return false;
+        Entry<K,V>[] tab = getTable();
+        Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
+        Object k = maskNull(entry.getKey());
+        int h = hash(k);
+        int i = indexFor(h, tab.length);
+        Entry<K,V> prev = tab[i];
+        Entry<K,V> e = prev;
+
+        while (e != null) {
+            Entry<K,V> next = e.next;
+            if (h == e.hash && e.equals(entry)) {
+                modCount++;
+                size--;
+                if (prev == e)
+                    tab[i] = next;
+                else
+                    prev.next = next;
+                return true;
+            }
+            prev = e;
+            e = next;
+        }
+
+        return false;
+    }
+
+    /**
+     * Removes all of the mappings from this map.
+     * The map will be empty after this call returns.
+     */
+    public void clear() {
+        // clear out ref queue. We don't need to expunge entries
+        // since table is getting cleared.
+        while (queue.poll() != null)
+            ;
+
+        modCount++;
+        Arrays.fill(table, null);
+        size = 0;
+
+        // Allocation of array may have caused GC, which may have caused
+        // additional entries to go stale.  Removing these entries from the
+        // reference queue will make them eligible for reclamation.
+        while (queue.poll() != null)
+            ;
+    }
+
+    /**
+     * Returns {@code true} if this map maps one or more keys to the
+     * specified value.
+     *
+     * @param value value whose presence in this map is to be tested
+     * @return {@code true} if this map maps one or more keys to the
+     *         specified value
+     */
+    public boolean containsValue(Object value) {
+        if (value==null)
+            return containsNullValue();
+
+        Entry<K,V>[] tab = getTable();
+        for (int i = tab.length; i-- > 0;)
+            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
+                if (value.equals(e.value))
+                    return true;
+        return false;
+    }
+
+    /**
+     * Special-case code for containsValue with null argument
+     */
+    private boolean containsNullValue() {
+        Entry<K,V>[] tab = getTable();
+        for (int i = tab.length; i-- > 0;)
+            for (Entry<K,V> e = tab[i]; e != null; e = e.next)
+                if (e.value==null)
+                    return true;
+        return false;
+    }
+
+    /**
+     * The entries in this hash table extend WeakReference, using its main ref
+     * field as the key.
+     */
+    private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
+        V value;
+        final int hash;
+        Entry<K,V> next;
+
+        /**
+         * Creates new entry.
+         */
+        Entry(Object key, V value,
+              ReferenceQueue<Object> queue,
+              int hash, Entry<K,V> next) {
+            super(key, queue);
+            this.value = value;
+            this.hash  = hash;
+            this.next  = next;
+        }
+
+        @SuppressWarnings("unchecked")
+        public K getKey() {
+            return (K) WeakHashMap.unmaskNull(get());
+        }
+
+        public V getValue() {
+            return value;
+        }
+
+        public V setValue(V newValue) {
+            V oldValue = value;
+            value = newValue;
+            return oldValue;
+        }
+
+        public boolean equals(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
+            K k1 = getKey();
+            Object k2 = e.getKey();
+            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
+                V v1 = getValue();
+                Object v2 = e.getValue();
+                if (v1 == v2 || (v1 != null && v1.equals(v2)))
+                    return true;
+            }
+            return false;
+        }
+
+        public int hashCode() {
+            K k = getKey();
+            V v = getValue();
+            return Objects.hashCode(k) ^ Objects.hashCode(v);
+        }
+
+        public String toString() {
+            return getKey() + "=" + getValue();
+        }
+    }
+
+    private abstract class HashIterator<T> implements Iterator<T> {
+        private int index;
+        private Entry<K,V> entry;
+        private Entry<K,V> lastReturned;
+        private int expectedModCount = modCount;
+
+        /**
+         * Strong reference needed to avoid disappearance of key
+         * between hasNext and next
+         */
+        private Object nextKey;
+
+        /**
+         * Strong reference needed to avoid disappearance of key
+         * between nextEntry() and any use of the entry
+         */
+        private Object currentKey;
+
+        HashIterator() {
+            index = isEmpty() ? 0 : table.length;
+        }
+
+        public boolean hasNext() {
+            Entry<K,V>[] t = table;
+
+            while (nextKey == null) {
+                Entry<K,V> e = entry;
+                int i = index;
+                while (e == null && i > 0)
+                    e = t[--i];
+                entry = e;
+                index = i;
+                if (e == null) {
+                    currentKey = null;
+                    return false;
+                }
+                nextKey = e.get(); // hold on to key in strong ref
+                if (nextKey == null)
+                    entry = entry.next;
+            }
+            return true;
+        }
+
+        /** The common parts of next() across different types of iterators */
+        protected Entry<K,V> nextEntry() {
+            if (modCount != expectedModCount)
+                throw new ConcurrentModificationException();
+            if (nextKey == null && !hasNext())
+                throw new NoSuchElementException();
+
+            lastReturned = entry;
+            entry = entry.next;
+            currentKey = nextKey;
+            nextKey = null;
+            return lastReturned;
+        }
+
+        public void remove() {
+            if (lastReturned == null)
+                throw new IllegalStateException();
+            if (modCount != expectedModCount)
+                throw new ConcurrentModificationException();
+
+            WeakHashMap.this.remove(currentKey);
+            expectedModCount = modCount;
+            lastReturned = null;
+            currentKey = null;
+        }
+
+    }
+
+    private class ValueIterator extends HashIterator<V> {
+        public V next() {
+            return nextEntry().value;
+        }
+    }
+
+    private class KeyIterator extends HashIterator<K> {
+        public K next() {
+            return nextEntry().getKey();
+        }
+    }
+
+    private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
+        public Map.Entry<K,V> next() {
+            return nextEntry();
+        }
+    }
+
+    // Views
+
+    private transient Set<Map.Entry<K,V>> entrySet;
+
+    /**
+     * Returns a {@link Set} view of the keys contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  If the map is modified
+     * while an iteration over the set is in progress (except through
+     * the iterator's own {@code remove} operation), the results of
+     * the iteration are undefined.  The set supports element removal,
+     * which removes the corresponding mapping from the map, via the
+     * {@code Iterator.remove}, {@code Set.remove},
+     * {@code removeAll}, {@code retainAll}, and {@code clear}
+     * operations.  It does not support the {@code add} or {@code addAll}
+     * operations.
+     */
+    public Set<K> keySet() {
+        Set<K> ks = keySet;
+        if (ks == null) {
+            ks = new KeySet();
+            keySet = ks;
+        }
+        return ks;
+    }
+
+    private class KeySet extends AbstractSet<K> {
+        public Iterator<K> iterator() {
+            return new KeyIterator();
+        }
+
+        public int size() {
+            return WeakHashMap.this.size();
+        }
+
+        public boolean contains(Object o) {
+            return containsKey(o);
+        }
+
+        public boolean remove(Object o) {
+            if (containsKey(o)) {
+                WeakHashMap.this.remove(o);
+                return true;
+            }
+            else
+                return false;
+        }
+
+        public void clear() {
+            WeakHashMap.this.clear();
+        }
+
+        public Spliterator<K> spliterator() {
+            return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
+        }
+    }
+
+    /**
+     * Returns a {@link Collection} view of the values contained in this map.
+     * The collection is backed by the map, so changes to the map are
+     * reflected in the collection, and vice-versa.  If the map is
+     * modified while an iteration over the collection is in progress
+     * (except through the iterator's own {@code remove} operation),
+     * the results of the iteration are undefined.  The collection
+     * supports element removal, which removes the corresponding
+     * mapping from the map, via the {@code Iterator.remove},
+     * {@code Collection.remove}, {@code removeAll},
+     * {@code retainAll} and {@code clear} operations.  It does not
+     * support the {@code add} or {@code addAll} operations.
+     */
+    public Collection<V> values() {
+        Collection<V> vs = values;
+        if (vs == null) {
+            vs = new Values();
+            values = vs;
+        }
+        return vs;
+    }
+
+    private class Values extends AbstractCollection<V> {
+        public Iterator<V> iterator() {
+            return new ValueIterator();
+        }
+
+        public int size() {
+            return WeakHashMap.this.size();
+        }
+
+        public boolean contains(Object o) {
+            return containsValue(o);
+        }
+
+        public void clear() {
+            WeakHashMap.this.clear();
+        }
+
+        public Spliterator<V> spliterator() {
+            return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
+        }
+    }
+
+    /**
+     * Returns a {@link Set} view of the mappings contained in this map.
+     * The set is backed by the map, so changes to the map are
+     * reflected in the set, and vice-versa.  If the map is modified
+     * while an iteration over the set is in progress (except through
+     * the iterator's own {@code remove} operation, or through the
+     * {@code setValue} operation on a map entry returned by the
+     * iterator) the results of the iteration are undefined.  The set
+     * supports element removal, which removes the corresponding
+     * mapping from the map, via the {@code Iterator.remove},
+     * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
+     * {@code clear} operations.  It does not support the
+     * {@code add} or {@code addAll} operations.
+     */
+    public Set<Map.Entry<K,V>> entrySet() {
+        Set<Map.Entry<K,V>> es = entrySet;
+        return es != null ? es : (entrySet = new EntrySet());
+    }
+
+    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
+        public Iterator<Map.Entry<K,V>> iterator() {
+            return new EntryIterator();
+        }
+
+        public boolean contains(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            Map.Entry<?,?> e = (Map.Entry<?,?>)o;
+            Entry<K,V> candidate = getEntry(e.getKey());
+            return candidate != null && candidate.equals(e);
+        }
+
+        public boolean remove(Object o) {
+            return removeMapping(o);
+        }
+
+        public int size() {
+            return WeakHashMap.this.size();
+        }
+
+        public void clear() {
+            WeakHashMap.this.clear();
+        }
+
+        private List<Map.Entry<K,V>> deepCopy() {
+            List<Map.Entry<K,V>> list = new ArrayList<>(size());
+            for (Map.Entry<K,V> e : this)
+                list.add(new AbstractMap.SimpleEntry<>(e));
+            return list;
+        }
+
+        public Object[] toArray() {
+            return deepCopy().toArray();
+        }
+
+        public <T> T[] toArray(T[] a) {
+            return deepCopy().toArray(a);
+        }
+
+        public Spliterator<Map.Entry<K,V>> spliterator() {
+            return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
+        }
+    }
+
+    @SuppressWarnings("unchecked")
+    @Override
+    public void forEach(BiConsumer<? super K, ? super V> action) {
+        Objects.requireNonNull(action);
+        int expectedModCount = modCount;
+
+        Entry<K, V>[] tab = getTable();
+        for (Entry<K, V> entry : tab) {
+            while (entry != null) {
+                Object key = entry.get();
+                if (key != null) {
+                    action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
+                }
+                entry = entry.next;
+
+                if (expectedModCount != modCount) {
+                    throw new ConcurrentModificationException();
+                }
+            }
+        }
+    }
+
+    @SuppressWarnings("unchecked")
+    @Override
+    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
+        Objects.requireNonNull(function);
+        int expectedModCount = modCount;
+
+        Entry<K, V>[] tab = getTable();;
+        for (Entry<K, V> entry : tab) {
+            while (entry != null) {
+                Object key = entry.get();
+                if (key != null) {
+                    entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
+                }
+                entry = entry.next;
+
+                if (expectedModCount != modCount) {
+                    throw new ConcurrentModificationException();
+                }
+            }
+        }
+    }
+
+    /**
+     * Similar form as other hash Spliterators, but skips dead
+     * elements.
+     */
+    static class WeakHashMapSpliterator<K,V> {
+        final WeakHashMap<K,V> map;
+        WeakHashMap.Entry<K,V> current; // current node
+        int index;             // current index, modified on advance/split
+        int fence;             // -1 until first use; then one past last index
+        int est;               // size estimate
+        int expectedModCount;  // for comodification checks
+
+        WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
+                               int fence, int est,
+                               int expectedModCount) {
+            this.map = m;
+            this.index = origin;
+            this.fence = fence;
+            this.est = est;
+            this.expectedModCount = expectedModCount;
+        }
+
+        final int getFence() { // initialize fence and size on first use
+            int hi;
+            if ((hi = fence) < 0) {
+                WeakHashMap<K,V> m = map;
+                est = m.size();
+                expectedModCount = m.modCount;
+                hi = fence = m.table.length;
+            }
+            return hi;
+        }
+
+        public final long estimateSize() {
+            getFence(); // force init
+            return (long) est;
+        }
+    }
+
+    static final class KeySpliterator<K,V>
+        extends WeakHashMapSpliterator<K,V>
+        implements Spliterator<K> {
+        KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
+                       int expectedModCount) {
+            super(m, origin, fence, est, expectedModCount);
+        }
+
+        public KeySpliterator<K,V> trySplit() {
+            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
+            return (lo >= mid) ? null :
+                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
+                                     expectedModCount);
+        }
+
+        public void forEachRemaining(Consumer<? super K> action) {
+            int i, hi, mc;
+            if (action == null)
+                throw new NullPointerException();
+            WeakHashMap<K,V> m = map;
+            WeakHashMap.Entry<K,V>[] tab = m.table;
+            if ((hi = fence) < 0) {
+                mc = expectedModCount = m.modCount;
+                hi = fence = tab.length;
+            }
+            else
+                mc = expectedModCount;
+            if (tab.length >= hi && (i = index) >= 0 &&
+                (i < (index = hi) || current != null)) {
+                WeakHashMap.Entry<K,V> p = current;
+                current = null; // exhaust
+                do {
+                    if (p == null)
+                        p = tab[i++];
+                    else {
+                        Object x = p.get();
+                        p = p.next;
+                        if (x != null) {
+                            @SuppressWarnings("unchecked") K k =
+                                (K) WeakHashMap.unmaskNull(x);
+                            action.accept(k);
+                        }
+                    }
+                } while (p != null || i < hi);
+            }
+            if (m.modCount != mc)
+                throw new ConcurrentModificationException();
+        }
+
+        public boolean tryAdvance(Consumer<? super K> action) {
+            int hi;
+            if (action == null)
+                throw new NullPointerException();
+            WeakHashMap.Entry<K,V>[] tab = map.table;
+            if (tab.length >= (hi = getFence()) && index >= 0) {
+                while (current != null || index < hi) {
+                    if (current == null)
+                        current = tab[index++];
+                    else {
+                        Object x = current.get();
+                        current = current.next;
+                        if (x != null) {
+                            @SuppressWarnings("unchecked") K k =
+                                (K) WeakHashMap.unmaskNull(x);
+                            action.accept(k);
+                            if (map.modCount != expectedModCount)
+                                throw new ConcurrentModificationException();
+                            return true;
+                        }
+                    }
+                }
+            }
+            return false;
+        }
+
+        public int characteristics() {
+            return Spliterator.DISTINCT;
+        }
+    }
+
+    static final class ValueSpliterator<K,V>
+        extends WeakHashMapSpliterator<K,V>
+        implements Spliterator<V> {
+        ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
+                         int expectedModCount) {
+            super(m, origin, fence, est, expectedModCount);
+        }
+
+        public ValueSpliterator<K,V> trySplit() {
+            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
+            return (lo >= mid) ? null :
+                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
+                                       expectedModCount);
+        }
+
+        public void forEachRemaining(Consumer<? super V> action) {
+            int i, hi, mc;
+            if (action == null)
+                throw new NullPointerException();
+            WeakHashMap<K,V> m = map;
+            WeakHashMap.Entry<K,V>[] tab = m.table;
+            if ((hi = fence) < 0) {
+                mc = expectedModCount = m.modCount;
+                hi = fence = tab.length;
+            }
+            else
+                mc = expectedModCount;
+            if (tab.length >= hi && (i = index) >= 0 &&
+                (i < (index = hi) || current != null)) {
+                WeakHashMap.Entry<K,V> p = current;
+                current = null; // exhaust
+                do {
+                    if (p == null)
+                        p = tab[i++];
+                    else {
+                        Object x = p.get();
+                        V v = p.value;
+                        p = p.next;
+                        if (x != null)
+                            action.accept(v);
+                    }
+                } while (p != null || i < hi);
+            }
+            if (m.modCount != mc)
+                throw new ConcurrentModificationException();
+        }
+
+        public boolean tryAdvance(Consumer<? super V> action) {
+            int hi;
+            if (action == null)
+                throw new NullPointerException();
+            WeakHashMap.Entry<K,V>[] tab = map.table;
+            if (tab.length >= (hi = getFence()) && index >= 0) {
+                while (current != null || index < hi) {
+                    if (current == null)
+                        current = tab[index++];
+                    else {
+                        Object x = current.get();
+                        V v = current.value;
+                        current = current.next;
+                        if (x != null) {
+                            action.accept(v);
+                            if (map.modCount != expectedModCount)
+                                throw new ConcurrentModificationException();
+                            return true;
+                        }
+                    }
+                }
+            }
+            return false;
+        }
+
+        public int characteristics() {
+            return 0;
+        }
+    }
+
+    static final class EntrySpliterator<K,V>
+        extends WeakHashMapSpliterator<K,V>
+        implements Spliterator<Map.Entry<K,V>> {
+        EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
+                       int expectedModCount) {
+            super(m, origin, fence, est, expectedModCount);
+        }
+
+        public EntrySpliterator<K,V> trySplit() {
+            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
+            return (lo >= mid) ? null :
+                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
+                                       expectedModCount);
+        }
+
+
+        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
+            int i, hi, mc;
+            if (action == null)
+                throw new NullPointerException();
+            WeakHashMap<K,V> m = map;
+            WeakHashMap.Entry<K,V>[] tab = m.table;
+            if ((hi = fence) < 0) {
+                mc = expectedModCount = m.modCount;
+                hi = fence = tab.length;
+            }
+            else
+                mc = expectedModCount;
+            if (tab.length >= hi && (i = index) >= 0 &&
+                (i < (index = hi) || current != null)) {
+                WeakHashMap.Entry<K,V> p = current;
+                current = null; // exhaust
+                do {
+                    if (p == null)
+                        p = tab[i++];
+                    else {
+                        Object x = p.get();
+                        V v = p.value;
+                        p = p.next;
+                        if (x != null) {
+                            @SuppressWarnings("unchecked") K k =
+                                (K) WeakHashMap.unmaskNull(x);
+                            action.accept
+                                (new AbstractMap.SimpleImmutableEntry<>(k, v));
+                        }
+                    }
+                } while (p != null || i < hi);
+            }
+            if (m.modCount != mc)
+                throw new ConcurrentModificationException();
+        }
+
+        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
+            int hi;
+            if (action == null)
+                throw new NullPointerException();
+            WeakHashMap.Entry<K,V>[] tab = map.table;
+            if (tab.length >= (hi = getFence()) && index >= 0) {
+                while (current != null || index < hi) {
+                    if (current == null)
+                        current = tab[index++];
+                    else {
+                        Object x = current.get();
+                        V v = current.value;
+                        current = current.next;
+                        if (x != null) {
+                            @SuppressWarnings("unchecked") K k =
+                                (K) WeakHashMap.unmaskNull(x);
+                            action.accept
+                                (new AbstractMap.SimpleImmutableEntry<>(k, v));
+                            if (map.modCount != expectedModCount)
+                                throw new ConcurrentModificationException();
+                            return true;
+                        }
+                    }
+                }
+            }
+            return false;
+        }
+
+        public int characteristics() {
+            return Spliterator.DISTINCT;
+        }
+    }
+
+}