--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/runtime.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1686 @@
+/*
+ * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "classfile/systemDictionary.hpp"
+#include "classfile/vmSymbols.hpp"
+#include "code/codeCache.hpp"
+#include "code/compiledIC.hpp"
+#include "code/icBuffer.hpp"
+#include "code/nmethod.hpp"
+#include "code/pcDesc.hpp"
+#include "code/scopeDesc.hpp"
+#include "code/vtableStubs.hpp"
+#include "compiler/compileBroker.hpp"
+#include "compiler/oopMap.hpp"
+#include "gc/g1/g1SATBCardTableModRefBS.hpp"
+#include "gc/g1/heapRegion.hpp"
+#include "gc/shared/barrierSet.hpp"
+#include "gc/shared/collectedHeap.hpp"
+#include "gc/shared/gcLocker.inline.hpp"
+#include "interpreter/bytecode.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/linkResolver.hpp"
+#include "logging/log.hpp"
+#include "logging/logStream.hpp"
+#include "memory/oopFactory.hpp"
+#include "memory/resourceArea.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "oops/oop.inline.hpp"
+#include "oops/typeArrayOop.inline.hpp"
+#include "opto/ad.hpp"
+#include "opto/addnode.hpp"
+#include "opto/callnode.hpp"
+#include "opto/cfgnode.hpp"
+#include "opto/graphKit.hpp"
+#include "opto/machnode.hpp"
+#include "opto/matcher.hpp"
+#include "opto/memnode.hpp"
+#include "opto/mulnode.hpp"
+#include "opto/runtime.hpp"
+#include "opto/subnode.hpp"
+#include "runtime/atomic.hpp"
+#include "runtime/handles.inline.hpp"
+#include "runtime/interfaceSupport.hpp"
+#include "runtime/javaCalls.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/signature.hpp"
+#include "runtime/threadCritical.hpp"
+#include "runtime/vframe.hpp"
+#include "runtime/vframeArray.hpp"
+#include "runtime/vframe_hp.hpp"
+#include "utilities/copy.hpp"
+#include "utilities/preserveException.hpp"
+
+
+// For debugging purposes:
+// To force FullGCALot inside a runtime function, add the following two lines
+//
+// Universe::release_fullgc_alot_dummy();
+// MarkSweep::invoke(0, "Debugging");
+//
+// At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
+
+
+
+
+// Compiled code entry points
+address OptoRuntime::_new_instance_Java = NULL;
+address OptoRuntime::_new_array_Java = NULL;
+address OptoRuntime::_new_array_nozero_Java = NULL;
+address OptoRuntime::_multianewarray2_Java = NULL;
+address OptoRuntime::_multianewarray3_Java = NULL;
+address OptoRuntime::_multianewarray4_Java = NULL;
+address OptoRuntime::_multianewarray5_Java = NULL;
+address OptoRuntime::_multianewarrayN_Java = NULL;
+address OptoRuntime::_g1_wb_pre_Java = NULL;
+address OptoRuntime::_g1_wb_post_Java = NULL;
+address OptoRuntime::_vtable_must_compile_Java = NULL;
+address OptoRuntime::_complete_monitor_locking_Java = NULL;
+address OptoRuntime::_monitor_notify_Java = NULL;
+address OptoRuntime::_monitor_notifyAll_Java = NULL;
+address OptoRuntime::_rethrow_Java = NULL;
+
+address OptoRuntime::_slow_arraycopy_Java = NULL;
+address OptoRuntime::_register_finalizer_Java = NULL;
+
+ExceptionBlob* OptoRuntime::_exception_blob;
+
+// This should be called in an assertion at the start of OptoRuntime routines
+// which are entered from compiled code (all of them)
+#ifdef ASSERT
+static bool check_compiled_frame(JavaThread* thread) {
+ assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
+ RegisterMap map(thread, false);
+ frame caller = thread->last_frame().sender(&map);
+ assert(caller.is_compiled_frame(), "not being called from compiled like code");
+ return true;
+}
+#endif // ASSERT
+
+
+#define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
+ var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
+ if (var == NULL) { return false; }
+
+bool OptoRuntime::generate(ciEnv* env) {
+
+ generate_exception_blob();
+
+ // Note: tls: Means fetching the return oop out of the thread-local storage
+ //
+ // variable/name type-function-gen , runtime method ,fncy_jp, tls,save_args,retpc
+ // -------------------------------------------------------------------------------------------------------------------------------
+ gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true , false, false);
+ gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true , false, false);
+ gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true , false, false);
+ gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true , false, false);
+ gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true , false, false);
+ gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true , false, false);
+ gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true , false, false);
+ gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true , false, false);
+ gen(env, _g1_wb_pre_Java , g1_wb_pre_Type , SharedRuntime::g1_wb_pre , 0 , false, false, false);
+ gen(env, _g1_wb_post_Java , g1_wb_post_Type , SharedRuntime::g1_wb_post , 0 , false, false, false);
+ gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
+ gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false, false);
+ gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false, false);
+ gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , false, true );
+
+ gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false, false);
+ gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false, false);
+
+ return true;
+}
+
+#undef gen
+
+
+// Helper method to do generation of RunTimeStub's
+address OptoRuntime::generate_stub( ciEnv* env,
+ TypeFunc_generator gen, address C_function,
+ const char *name, int is_fancy_jump,
+ bool pass_tls,
+ bool save_argument_registers,
+ bool return_pc) {
+
+ // Matching the default directive, we currently have no method to match.
+ DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
+ ResourceMark rm;
+ Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
+ DirectivesStack::release(directive);
+ return C.stub_entry_point();
+}
+
+const char* OptoRuntime::stub_name(address entry) {
+#ifndef PRODUCT
+ CodeBlob* cb = CodeCache::find_blob(entry);
+ RuntimeStub* rs =(RuntimeStub *)cb;
+ assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
+ return rs->name();
+#else
+ // Fast implementation for product mode (maybe it should be inlined too)
+ return "runtime stub";
+#endif
+}
+
+
+//=============================================================================
+// Opto compiler runtime routines
+//=============================================================================
+
+
+//=============================allocation======================================
+// We failed the fast-path allocation. Now we need to do a scavenge or GC
+// and try allocation again.
+
+void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
+ // After any safepoint, just before going back to compiled code,
+ // we inform the GC that we will be doing initializing writes to
+ // this object in the future without emitting card-marks, so
+ // GC may take any compensating steps.
+ // NOTE: Keep this code consistent with GraphKit::store_barrier.
+
+ oop new_obj = thread->vm_result();
+ if (new_obj == NULL) return;
+
+ assert(Universe::heap()->can_elide_tlab_store_barriers(),
+ "compiler must check this first");
+ // GC may decide to give back a safer copy of new_obj.
+ new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
+ thread->set_vm_result(new_obj);
+}
+
+// object allocation
+JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
+ JRT_BLOCK;
+#ifndef PRODUCT
+ SharedRuntime::_new_instance_ctr++; // new instance requires GC
+#endif
+ assert(check_compiled_frame(thread), "incorrect caller");
+
+ // These checks are cheap to make and support reflective allocation.
+ int lh = klass->layout_helper();
+ if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
+ Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
+ klass->check_valid_for_instantiation(false, THREAD);
+ if (!HAS_PENDING_EXCEPTION) {
+ InstanceKlass::cast(klass)->initialize(THREAD);
+ }
+ }
+
+ if (!HAS_PENDING_EXCEPTION) {
+ // Scavenge and allocate an instance.
+ Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
+ oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
+ thread->set_vm_result(result);
+
+ // Pass oops back through thread local storage. Our apparent type to Java
+ // is that we return an oop, but we can block on exit from this routine and
+ // a GC can trash the oop in C's return register. The generated stub will
+ // fetch the oop from TLS after any possible GC.
+ }
+
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ JRT_BLOCK_END;
+
+ if (GraphKit::use_ReduceInitialCardMarks()) {
+ // inform GC that we won't do card marks for initializing writes.
+ new_store_pre_barrier(thread);
+ }
+JRT_END
+
+
+// array allocation
+JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
+ JRT_BLOCK;
+#ifndef PRODUCT
+ SharedRuntime::_new_array_ctr++; // new array requires GC
+#endif
+ assert(check_compiled_frame(thread), "incorrect caller");
+
+ // Scavenge and allocate an instance.
+ oop result;
+
+ if (array_type->is_typeArray_klass()) {
+ // The oopFactory likes to work with the element type.
+ // (We could bypass the oopFactory, since it doesn't add much value.)
+ BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
+ result = oopFactory::new_typeArray(elem_type, len, THREAD);
+ } else {
+ // Although the oopFactory likes to work with the elem_type,
+ // the compiler prefers the array_type, since it must already have
+ // that latter value in hand for the fast path.
+ Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
+ Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
+ result = oopFactory::new_objArray(elem_type, len, THREAD);
+ }
+
+ // Pass oops back through thread local storage. Our apparent type to Java
+ // is that we return an oop, but we can block on exit from this routine and
+ // a GC can trash the oop in C's return register. The generated stub will
+ // fetch the oop from TLS after any possible GC.
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ thread->set_vm_result(result);
+ JRT_BLOCK_END;
+
+ if (GraphKit::use_ReduceInitialCardMarks()) {
+ // inform GC that we won't do card marks for initializing writes.
+ new_store_pre_barrier(thread);
+ }
+JRT_END
+
+// array allocation without zeroing
+JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
+ JRT_BLOCK;
+#ifndef PRODUCT
+ SharedRuntime::_new_array_ctr++; // new array requires GC
+#endif
+ assert(check_compiled_frame(thread), "incorrect caller");
+
+ // Scavenge and allocate an instance.
+ oop result;
+
+ assert(array_type->is_typeArray_klass(), "should be called only for type array");
+ // The oopFactory likes to work with the element type.
+ BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
+ result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
+
+ // Pass oops back through thread local storage. Our apparent type to Java
+ // is that we return an oop, but we can block on exit from this routine and
+ // a GC can trash the oop in C's return register. The generated stub will
+ // fetch the oop from TLS after any possible GC.
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ thread->set_vm_result(result);
+ JRT_BLOCK_END;
+
+ if (GraphKit::use_ReduceInitialCardMarks()) {
+ // inform GC that we won't do card marks for initializing writes.
+ new_store_pre_barrier(thread);
+ }
+
+ oop result = thread->vm_result();
+ if ((len > 0) && (result != NULL) &&
+ is_deoptimized_caller_frame(thread)) {
+ // Zero array here if the caller is deoptimized.
+ int size = ((typeArrayOop)result)->object_size();
+ BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
+ const size_t hs = arrayOopDesc::header_size(elem_type);
+ // Align to next 8 bytes to avoid trashing arrays's length.
+ const size_t aligned_hs = align_object_offset(hs);
+ HeapWord* obj = (HeapWord*)result;
+ if (aligned_hs > hs) {
+ Copy::zero_to_words(obj+hs, aligned_hs-hs);
+ }
+ // Optimized zeroing.
+ Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
+ }
+
+JRT_END
+
+// Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
+
+// multianewarray for 2 dimensions
+JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
+#ifndef PRODUCT
+ SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
+#endif
+ assert(check_compiled_frame(thread), "incorrect caller");
+ assert(elem_type->is_klass(), "not a class");
+ jint dims[2];
+ dims[0] = len1;
+ dims[1] = len2;
+ Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
+ oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ thread->set_vm_result(obj);
+JRT_END
+
+// multianewarray for 3 dimensions
+JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
+#ifndef PRODUCT
+ SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
+#endif
+ assert(check_compiled_frame(thread), "incorrect caller");
+ assert(elem_type->is_klass(), "not a class");
+ jint dims[3];
+ dims[0] = len1;
+ dims[1] = len2;
+ dims[2] = len3;
+ Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
+ oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ thread->set_vm_result(obj);
+JRT_END
+
+// multianewarray for 4 dimensions
+JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
+#ifndef PRODUCT
+ SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
+#endif
+ assert(check_compiled_frame(thread), "incorrect caller");
+ assert(elem_type->is_klass(), "not a class");
+ jint dims[4];
+ dims[0] = len1;
+ dims[1] = len2;
+ dims[2] = len3;
+ dims[3] = len4;
+ Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
+ oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ thread->set_vm_result(obj);
+JRT_END
+
+// multianewarray for 5 dimensions
+JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
+#ifndef PRODUCT
+ SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
+#endif
+ assert(check_compiled_frame(thread), "incorrect caller");
+ assert(elem_type->is_klass(), "not a class");
+ jint dims[5];
+ dims[0] = len1;
+ dims[1] = len2;
+ dims[2] = len3;
+ dims[3] = len4;
+ dims[4] = len5;
+ Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
+ oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ thread->set_vm_result(obj);
+JRT_END
+
+JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
+ assert(check_compiled_frame(thread), "incorrect caller");
+ assert(elem_type->is_klass(), "not a class");
+ assert(oop(dims)->is_typeArray(), "not an array");
+
+ ResourceMark rm;
+ jint len = dims->length();
+ assert(len > 0, "Dimensions array should contain data");
+ jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
+ jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
+ Copy::conjoint_jints_atomic(j_dims, c_dims, len);
+
+ Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
+ oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
+ deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
+ thread->set_vm_result(obj);
+JRT_END
+
+JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
+
+ // Very few notify/notifyAll operations find any threads on the waitset, so
+ // the dominant fast-path is to simply return.
+ // Relatedly, it's critical that notify/notifyAll be fast in order to
+ // reduce lock hold times.
+ if (!SafepointSynchronize::is_synchronizing()) {
+ if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
+ return;
+ }
+ }
+
+ // This is the case the fast-path above isn't provisioned to handle.
+ // The fast-path is designed to handle frequently arising cases in an efficient manner.
+ // (The fast-path is just a degenerate variant of the slow-path).
+ // Perform the dreaded state transition and pass control into the slow-path.
+ JRT_BLOCK;
+ Handle h_obj(THREAD, obj);
+ ObjectSynchronizer::notify(h_obj, CHECK);
+ JRT_BLOCK_END;
+JRT_END
+
+JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
+
+ if (!SafepointSynchronize::is_synchronizing() ) {
+ if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
+ return;
+ }
+ }
+
+ // This is the case the fast-path above isn't provisioned to handle.
+ // The fast-path is designed to handle frequently arising cases in an efficient manner.
+ // (The fast-path is just a degenerate variant of the slow-path).
+ // Perform the dreaded state transition and pass control into the slow-path.
+ JRT_BLOCK;
+ Handle h_obj(THREAD, obj);
+ ObjectSynchronizer::notifyall(h_obj, CHECK);
+ JRT_BLOCK_END;
+JRT_END
+
+const TypeFunc *OptoRuntime::new_instance_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+
+const TypeFunc *OptoRuntime::athrow_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+
+const TypeFunc *OptoRuntime::new_array_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
+ fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
+ // create input type (domain)
+ const int nargs = ndim + 1;
+ const Type **fields = TypeTuple::fields(nargs);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
+ for( int i = 1; i < nargs; i++ )
+ fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc *OptoRuntime::multianewarray2_Type() {
+ return multianewarray_Type(2);
+}
+
+const TypeFunc *OptoRuntime::multianewarray3_Type() {
+ return multianewarray_Type(3);
+}
+
+const TypeFunc *OptoRuntime::multianewarray4_Type() {
+ return multianewarray_Type(4);
+}
+
+const TypeFunc *OptoRuntime::multianewarray5_Type() {
+ return multianewarray_Type(5);
+}
+
+const TypeFunc *OptoRuntime::multianewarrayN_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
+ fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
+ fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc *OptoRuntime::g1_wb_post_Type() {
+
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Card addr
+ fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc *OptoRuntime::uncommon_trap_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+//-----------------------------------------------------------------------------
+// Monitor Handling
+const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
+ fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
+
+ return TypeFunc::make(domain,range);
+}
+
+
+//-----------------------------------------------------------------------------
+const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(3);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
+ fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
+ fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc *OptoRuntime::monitor_notify_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::flush_windows_Type() {
+ // create input type (domain)
+ const Type** fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
+
+ // create result type
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::l2f_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeLong::LONG;
+ fields[TypeFunc::Parms+1] = Type::HALF;
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = Type::FLOAT;
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::modf_Type() {
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = Type::FLOAT;
+ fields[TypeFunc::Parms+1] = Type::FLOAT;
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = Type::FLOAT;
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc *OptoRuntime::Math_D_D_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ // Symbol* name of class to be loaded
+ fields[TypeFunc::Parms+0] = Type::DOUBLE;
+ fields[TypeFunc::Parms+1] = Type::HALF;
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = Type::DOUBLE;
+ fields[TypeFunc::Parms+1] = Type::HALF;
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::Math_DD_D_Type() {
+ const Type **fields = TypeTuple::fields(4);
+ fields[TypeFunc::Parms+0] = Type::DOUBLE;
+ fields[TypeFunc::Parms+1] = Type::HALF;
+ fields[TypeFunc::Parms+2] = Type::DOUBLE;
+ fields[TypeFunc::Parms+3] = Type::HALF;
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = Type::DOUBLE;
+ fields[TypeFunc::Parms+1] = Type::HALF;
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+//-------------- currentTimeMillis, currentTimeNanos, etc
+
+const TypeFunc* OptoRuntime::void_long_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(0);
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeLong::LONG;
+ fields[TypeFunc::Parms+1] = Type::HALF;
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+// arraycopy stub variations:
+enum ArrayCopyType {
+ ac_fast, // void(ptr, ptr, size_t)
+ ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
+ ac_slow, // void(ptr, int, ptr, int, int)
+ ac_generic // int(ptr, int, ptr, int, int)
+};
+
+static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
+ // create input type (domain)
+ int num_args = (act == ac_fast ? 3 : 5);
+ int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
+ int argcnt = num_args;
+ LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // src
+ if (num_size_args == 0) {
+ fields[argp++] = TypeInt::INT; // src_pos
+ }
+ fields[argp++] = TypePtr::NOTNULL; // dest
+ if (num_size_args == 0) {
+ fields[argp++] = TypeInt::INT; // dest_pos
+ fields[argp++] = TypeInt::INT; // length
+ }
+ while (num_size_args-- > 0) {
+ fields[argp++] = TypeX_X; // size in whatevers (size_t)
+ LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
+ }
+ if (act == ac_checkcast) {
+ fields[argp++] = TypePtr::NOTNULL; // super_klass
+ }
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // create result type if needed
+ int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
+ fields = TypeTuple::fields(1);
+ if (retcnt == 0)
+ fields[TypeFunc::Parms+0] = NULL; // void
+ else
+ fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
+ // This signature is simple: Two base pointers and a size_t.
+ return make_arraycopy_Type(ac_fast);
+}
+
+const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
+ // An extension of fast_arraycopy_Type which adds type checking.
+ return make_arraycopy_Type(ac_checkcast);
+}
+
+const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
+ // This signature is exactly the same as System.arraycopy.
+ // There are no intptr_t (int/long) arguments.
+ return make_arraycopy_Type(ac_slow);
+}
+
+const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
+ // This signature is like System.arraycopy, except that it returns status.
+ return make_arraycopy_Type(ac_generic);
+}
+
+
+const TypeFunc* OptoRuntime::array_fill_Type() {
+ const Type** fields;
+ int argp = TypeFunc::Parms;
+ // create input type (domain): pointer, int, size_t
+ fields = TypeTuple::fields(3 LP64_ONLY( + 1));
+ fields[argp++] = TypePtr::NOTNULL;
+ fields[argp++] = TypeInt::INT;
+ fields[argp++] = TypeX_X; // size in whatevers (size_t)
+ LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
+ const TypeTuple *domain = TypeTuple::make(argp, fields);
+
+ // create result type
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+// for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
+const TypeFunc* OptoRuntime::aescrypt_block_Type() {
+ // create input type (domain)
+ int num_args = 3;
+ if (Matcher::pass_original_key_for_aes()) {
+ num_args = 4;
+ }
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // src
+ fields[argp++] = TypePtr::NOTNULL; // dest
+ fields[argp++] = TypePtr::NOTNULL; // k array
+ if (Matcher::pass_original_key_for_aes()) {
+ fields[argp++] = TypePtr::NOTNULL; // original k array
+ }
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // no result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+/**
+ * int updateBytesCRC32(int crc, byte* b, int len)
+ */
+const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
+ // create input type (domain)
+ int num_args = 3;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypeInt::INT; // crc
+ fields[argp++] = TypePtr::NOTNULL; // src
+ fields[argp++] = TypeInt::INT; // len
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+/**
+ * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
+ */
+const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
+ // create input type (domain)
+ int num_args = 4;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypeInt::INT; // crc
+ fields[argp++] = TypePtr::NOTNULL; // buf
+ fields[argp++] = TypeInt::INT; // len
+ fields[argp++] = TypePtr::NOTNULL; // table
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+/**
+* int updateBytesAdler32(int adler, bytes* b, int off, int len)
+*/
+const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
+ // create input type (domain)
+ int num_args = 3;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypeInt::INT; // crc
+ fields[argp++] = TypePtr::NOTNULL; // src + offset
+ fields[argp++] = TypeInt::INT; // len
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+// for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
+const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
+ // create input type (domain)
+ int num_args = 5;
+ if (Matcher::pass_original_key_for_aes()) {
+ num_args = 6;
+ }
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // src
+ fields[argp++] = TypePtr::NOTNULL; // dest
+ fields[argp++] = TypePtr::NOTNULL; // k array
+ fields[argp++] = TypePtr::NOTNULL; // r array
+ fields[argp++] = TypeInt::INT; // src len
+ if (Matcher::pass_original_key_for_aes()) {
+ fields[argp++] = TypePtr::NOTNULL; // original k array
+ }
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // returning cipher len (int)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInt::INT;
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+//for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
+const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
+ // create input type (domain)
+ int num_args = 7;
+ if (Matcher::pass_original_key_for_aes()) {
+ num_args = 8;
+ }
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // src
+ fields[argp++] = TypePtr::NOTNULL; // dest
+ fields[argp++] = TypePtr::NOTNULL; // k array
+ fields[argp++] = TypePtr::NOTNULL; // counter array
+ fields[argp++] = TypeInt::INT; // src len
+ fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
+ fields[argp++] = TypePtr::NOTNULL; // saved used addr
+ if (Matcher::pass_original_key_for_aes()) {
+ fields[argp++] = TypePtr::NOTNULL; // original k array
+ }
+ assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
+ // returning cipher len (int)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms + 0] = TypeInt::INT;
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+/*
+ * void implCompress(byte[] buf, int ofs)
+ */
+const TypeFunc* OptoRuntime::sha_implCompress_Type() {
+ // create input type (domain)
+ int num_args = 2;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // buf
+ fields[argp++] = TypePtr::NOTNULL; // state
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // no result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+/*
+ * int implCompressMultiBlock(byte[] b, int ofs, int limit)
+ */
+const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
+ // create input type (domain)
+ int num_args = 4;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // buf
+ fields[argp++] = TypePtr::NOTNULL; // state
+ fields[argp++] = TypeInt::INT; // ofs
+ fields[argp++] = TypeInt::INT; // limit
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // returning ofs (int)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::multiplyToLen_Type() {
+ // create input type (domain)
+ int num_args = 6;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // x
+ fields[argp++] = TypeInt::INT; // xlen
+ fields[argp++] = TypePtr::NOTNULL; // y
+ fields[argp++] = TypeInt::INT; // ylen
+ fields[argp++] = TypePtr::NOTNULL; // z
+ fields[argp++] = TypeInt::INT; // zlen
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // no result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL;
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::squareToLen_Type() {
+ // create input type (domain)
+ int num_args = 4;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // x
+ fields[argp++] = TypeInt::INT; // len
+ fields[argp++] = TypePtr::NOTNULL; // z
+ fields[argp++] = TypeInt::INT; // zlen
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // no result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL;
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+// for mulAdd calls, 2 pointers and 3 ints, returning int
+const TypeFunc* OptoRuntime::mulAdd_Type() {
+ // create input type (domain)
+ int num_args = 5;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // out
+ fields[argp++] = TypePtr::NOTNULL; // in
+ fields[argp++] = TypeInt::INT; // offset
+ fields[argp++] = TypeInt::INT; // len
+ fields[argp++] = TypeInt::INT; // k
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // returning carry (int)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInt::INT;
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
+ // create input type (domain)
+ int num_args = 7;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // a
+ fields[argp++] = TypePtr::NOTNULL; // b
+ fields[argp++] = TypePtr::NOTNULL; // n
+ fields[argp++] = TypeInt::INT; // len
+ fields[argp++] = TypeLong::LONG; // inv
+ fields[argp++] = Type::HALF;
+ fields[argp++] = TypePtr::NOTNULL; // result
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
+
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::montgomerySquare_Type() {
+ // create input type (domain)
+ int num_args = 6;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // a
+ fields[argp++] = TypePtr::NOTNULL; // n
+ fields[argp++] = TypeInt::INT; // len
+ fields[argp++] = TypeLong::LONG; // inv
+ fields[argp++] = Type::HALF;
+ fields[argp++] = TypePtr::NOTNULL; // result
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
+
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
+ // create input type (domain)
+ int num_args = 4;
+ int argcnt = num_args;
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // obja
+ fields[argp++] = TypePtr::NOTNULL; // objb
+ fields[argp++] = TypeInt::INT; // length, number of elements
+ fields[argp++] = TypeInt::INT; // log2scale, element size
+ assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
+
+ //return mismatch index (int)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms + 0] = TypeInt::INT;
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
+ return TypeFunc::make(domain, range);
+}
+
+// GHASH block processing
+const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
+ int argcnt = 4;
+
+ const Type** fields = TypeTuple::fields(argcnt);
+ int argp = TypeFunc::Parms;
+ fields[argp++] = TypePtr::NOTNULL; // state
+ fields[argp++] = TypePtr::NOTNULL; // subkeyH
+ fields[argp++] = TypePtr::NOTNULL; // data
+ fields[argp++] = TypeInt::INT; // blocks
+ assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
+ const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
+
+ // result type needed
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+//------------- Interpreter state access for on stack replacement
+const TypeFunc* OptoRuntime::osr_end_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ // create result type
+ fields = TypeTuple::fields(1);
+ // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain, range);
+}
+
+//-------------- methodData update helpers
+
+const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL; // methodData pointer
+ fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM; // receiver oop
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
+
+ // create result type
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = NULL; // void
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
+ return TypeFunc::make(domain,range);
+}
+
+JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
+ if (receiver == NULL) return;
+ Klass* receiver_klass = receiver->klass();
+
+ intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
+ int empty_row = -1; // free row, if any is encountered
+
+ // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
+ for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
+ // if (vc->receiver(row) == receiver_klass)
+ int receiver_off = ReceiverTypeData::receiver_cell_index(row);
+ intptr_t row_recv = *(mdp + receiver_off);
+ if (row_recv == (intptr_t) receiver_klass) {
+ // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
+ int count_off = ReceiverTypeData::receiver_count_cell_index(row);
+ *(mdp + count_off) += DataLayout::counter_increment;
+ return;
+ } else if (row_recv == 0) {
+ // else if (vc->receiver(row) == NULL)
+ empty_row = (int) row;
+ }
+ }
+
+ if (empty_row != -1) {
+ int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
+ // vc->set_receiver(empty_row, receiver_klass);
+ *(mdp + receiver_off) = (intptr_t) receiver_klass;
+ // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
+ int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
+ *(mdp + count_off) = DataLayout::counter_increment;
+ } else {
+ // Receiver did not match any saved receiver and there is no empty row for it.
+ // Increment total counter to indicate polymorphic case.
+ intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
+ *count_p += DataLayout::counter_increment;
+ }
+JRT_END
+
+//-------------------------------------------------------------------------------------
+// register policy
+
+bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
+ assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
+ switch (register_save_policy[reg]) {
+ case 'C': return false; //SOC
+ case 'E': return true ; //SOE
+ case 'N': return false; //NS
+ case 'A': return false; //AS
+ }
+ ShouldNotReachHere();
+ return false;
+}
+
+//-----------------------------------------------------------------------
+// Exceptions
+//
+
+static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
+
+// The method is an entry that is always called by a C++ method not
+// directly from compiled code. Compiled code will call the C++ method following.
+// We can't allow async exception to be installed during exception processing.
+JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
+
+ // Do not confuse exception_oop with pending_exception. The exception_oop
+ // is only used to pass arguments into the method. Not for general
+ // exception handling. DO NOT CHANGE IT to use pending_exception, since
+ // the runtime stubs checks this on exit.
+ assert(thread->exception_oop() != NULL, "exception oop is found");
+ address handler_address = NULL;
+
+ Handle exception(thread, thread->exception_oop());
+ address pc = thread->exception_pc();
+
+ // Clear out the exception oop and pc since looking up an
+ // exception handler can cause class loading, which might throw an
+ // exception and those fields are expected to be clear during
+ // normal bytecode execution.
+ thread->clear_exception_oop_and_pc();
+
+ LogTarget(Info, exceptions) lt;
+ if (lt.is_enabled()) {
+ ResourceMark rm;
+ LogStream ls(lt);
+ trace_exception(&ls, exception(), pc, "");
+ }
+
+ // for AbortVMOnException flag
+ Exceptions::debug_check_abort(exception);
+
+#ifdef ASSERT
+ if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
+ // should throw an exception here
+ ShouldNotReachHere();
+ }
+#endif
+
+ // new exception handling: this method is entered only from adapters
+ // exceptions from compiled java methods are handled in compiled code
+ // using rethrow node
+
+ nm = CodeCache::find_nmethod(pc);
+ assert(nm != NULL, "No NMethod found");
+ if (nm->is_native_method()) {
+ fatal("Native method should not have path to exception handling");
+ } else {
+ // we are switching to old paradigm: search for exception handler in caller_frame
+ // instead in exception handler of caller_frame.sender()
+
+ if (JvmtiExport::can_post_on_exceptions()) {
+ // "Full-speed catching" is not necessary here,
+ // since we're notifying the VM on every catch.
+ // Force deoptimization and the rest of the lookup
+ // will be fine.
+ deoptimize_caller_frame(thread);
+ }
+
+ // Check the stack guard pages. If enabled, look for handler in this frame;
+ // otherwise, forcibly unwind the frame.
+ //
+ // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
+ bool force_unwind = !thread->reguard_stack();
+ bool deopting = false;
+ if (nm->is_deopt_pc(pc)) {
+ deopting = true;
+ RegisterMap map(thread, false);
+ frame deoptee = thread->last_frame().sender(&map);
+ assert(deoptee.is_deoptimized_frame(), "must be deopted");
+ // Adjust the pc back to the original throwing pc
+ pc = deoptee.pc();
+ }
+
+ // If we are forcing an unwind because of stack overflow then deopt is
+ // irrelevant since we are throwing the frame away anyway.
+
+ if (deopting && !force_unwind) {
+ handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
+ } else {
+
+ handler_address =
+ force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
+
+ if (handler_address == NULL) {
+ bool recursive_exception = false;
+ handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
+ assert (handler_address != NULL, "must have compiled handler");
+ // Update the exception cache only when the unwind was not forced
+ // and there didn't happen another exception during the computation of the
+ // compiled exception handler. Checking for exception oop equality is not
+ // sufficient because some exceptions are pre-allocated and reused.
+ if (!force_unwind && !recursive_exception) {
+ nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
+ }
+ } else {
+#ifdef ASSERT
+ bool recursive_exception = false;
+ address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
+ vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
+ p2i(handler_address), p2i(computed_address));
+#endif
+ }
+ }
+
+ thread->set_exception_pc(pc);
+ thread->set_exception_handler_pc(handler_address);
+
+ // Check if the exception PC is a MethodHandle call site.
+ thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
+ }
+
+ // Restore correct return pc. Was saved above.
+ thread->set_exception_oop(exception());
+ return handler_address;
+
+JRT_END
+
+// We are entering here from exception_blob
+// If there is a compiled exception handler in this method, we will continue there;
+// otherwise we will unwind the stack and continue at the caller of top frame method
+// Note we enter without the usual JRT wrapper. We will call a helper routine that
+// will do the normal VM entry. We do it this way so that we can see if the nmethod
+// we looked up the handler for has been deoptimized in the meantime. If it has been
+// we must not use the handler and instead return the deopt blob.
+address OptoRuntime::handle_exception_C(JavaThread* thread) {
+//
+// We are in Java not VM and in debug mode we have a NoHandleMark
+//
+#ifndef PRODUCT
+ SharedRuntime::_find_handler_ctr++; // find exception handler
+#endif
+ debug_only(NoHandleMark __hm;)
+ nmethod* nm = NULL;
+ address handler_address = NULL;
+ {
+ // Enter the VM
+
+ ResetNoHandleMark rnhm;
+ handler_address = handle_exception_C_helper(thread, nm);
+ }
+
+ // Back in java: Use no oops, DON'T safepoint
+
+ // Now check to see if the handler we are returning is in a now
+ // deoptimized frame
+
+ if (nm != NULL) {
+ RegisterMap map(thread, false);
+ frame caller = thread->last_frame().sender(&map);
+#ifdef ASSERT
+ assert(caller.is_compiled_frame(), "must be");
+#endif // ASSERT
+ if (caller.is_deoptimized_frame()) {
+ handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
+ }
+ }
+ return handler_address;
+}
+
+//------------------------------rethrow----------------------------------------
+// We get here after compiled code has executed a 'RethrowNode'. The callee
+// is either throwing or rethrowing an exception. The callee-save registers
+// have been restored, synchronized objects have been unlocked and the callee
+// stack frame has been removed. The return address was passed in.
+// Exception oop is passed as the 1st argument. This routine is then called
+// from the stub. On exit, we know where to jump in the caller's code.
+// After this C code exits, the stub will pop his frame and end in a jump
+// (instead of a return). We enter the caller's default handler.
+//
+// This must be JRT_LEAF:
+// - caller will not change its state as we cannot block on exit,
+// therefore raw_exception_handler_for_return_address is all it takes
+// to handle deoptimized blobs
+//
+// However, there needs to be a safepoint check in the middle! So compiled
+// safepoints are completely watertight.
+//
+// Thus, it cannot be a leaf since it contains the NoGCVerifier.
+//
+// *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
+//
+address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
+#ifndef PRODUCT
+ SharedRuntime::_rethrow_ctr++; // count rethrows
+#endif
+ assert (exception != NULL, "should have thrown a NULLPointerException");
+#ifdef ASSERT
+ if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
+ // should throw an exception here
+ ShouldNotReachHere();
+ }
+#endif
+
+ thread->set_vm_result(exception);
+ // Frame not compiled (handles deoptimization blob)
+ return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
+}
+
+
+const TypeFunc *OptoRuntime::rethrow_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
+
+ return TypeFunc::make(domain, range);
+}
+
+
+void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
+ // Deoptimize the caller before continuing, as the compiled
+ // exception handler table may not be valid.
+ if (!StressCompiledExceptionHandlers && doit) {
+ deoptimize_caller_frame(thread);
+ }
+}
+
+void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
+ // Called from within the owner thread, so no need for safepoint
+ RegisterMap reg_map(thread);
+ frame stub_frame = thread->last_frame();
+ assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
+ frame caller_frame = stub_frame.sender(®_map);
+
+ // Deoptimize the caller frame.
+ Deoptimization::deoptimize_frame(thread, caller_frame.id());
+}
+
+
+bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
+ // Called from within the owner thread, so no need for safepoint
+ RegisterMap reg_map(thread);
+ frame stub_frame = thread->last_frame();
+ assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
+ frame caller_frame = stub_frame.sender(®_map);
+ return caller_frame.is_deoptimized_frame();
+}
+
+
+const TypeFunc *OptoRuntime::register_finalizer_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(1);
+ fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
+ // // The JavaThread* is passed to each routine as the last argument
+ // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
+
+ return TypeFunc::make(domain,range);
+}
+
+
+//-----------------------------------------------------------------------------
+// Dtrace support. entry and exit probes have the same signature
+const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
+ fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
+
+ return TypeFunc::make(domain,range);
+}
+
+const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
+ // create input type (domain)
+ const Type **fields = TypeTuple::fields(2);
+ fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
+ fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
+
+ const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
+
+ // create result type (range)
+ fields = TypeTuple::fields(0);
+
+ const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
+
+ return TypeFunc::make(domain,range);
+}
+
+
+JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
+ assert(oopDesc::is_oop(obj), "must be a valid oop");
+ assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
+ InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
+JRT_END
+
+//-----------------------------------------------------------------------------
+
+NamedCounter * volatile OptoRuntime::_named_counters = NULL;
+
+//
+// dump the collected NamedCounters.
+//
+void OptoRuntime::print_named_counters() {
+ int total_lock_count = 0;
+ int eliminated_lock_count = 0;
+
+ NamedCounter* c = _named_counters;
+ while (c) {
+ if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
+ int count = c->count();
+ if (count > 0) {
+ bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
+ if (Verbose) {
+ tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
+ }
+ total_lock_count += count;
+ if (eliminated) {
+ eliminated_lock_count += count;
+ }
+ }
+ } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
+ BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
+ if (blc->nonzero()) {
+ tty->print_cr("%s", c->name());
+ blc->print_on(tty);
+ }
+#if INCLUDE_RTM_OPT
+ } else if (c->tag() == NamedCounter::RTMLockingCounter) {
+ RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
+ if (rlc->nonzero()) {
+ tty->print_cr("%s", c->name());
+ rlc->print_on(tty);
+ }
+#endif
+ }
+ c = c->next();
+ }
+ if (total_lock_count > 0) {
+ tty->print_cr("dynamic locks: %d", total_lock_count);
+ if (eliminated_lock_count) {
+ tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
+ (int)(eliminated_lock_count * 100.0 / total_lock_count));
+ }
+ }
+}
+
+//
+// Allocate a new NamedCounter. The JVMState is used to generate the
+// name which consists of method@line for the inlining tree.
+//
+
+NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
+ int max_depth = youngest_jvms->depth();
+
+ // Visit scopes from youngest to oldest.
+ bool first = true;
+ stringStream st;
+ for (int depth = max_depth; depth >= 1; depth--) {
+ JVMState* jvms = youngest_jvms->of_depth(depth);
+ ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
+ if (!first) {
+ st.print(" ");
+ } else {
+ first = false;
+ }
+ int bci = jvms->bci();
+ if (bci < 0) bci = 0;
+ st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
+ // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
+ }
+ NamedCounter* c;
+ if (tag == NamedCounter::BiasedLockingCounter) {
+ c = new BiasedLockingNamedCounter(st.as_string());
+ } else if (tag == NamedCounter::RTMLockingCounter) {
+ c = new RTMLockingNamedCounter(st.as_string());
+ } else {
+ c = new NamedCounter(st.as_string(), tag);
+ }
+
+ // atomically add the new counter to the head of the list. We only
+ // add counters so this is safe.
+ NamedCounter* head;
+ do {
+ c->set_next(NULL);
+ head = _named_counters;
+ c->set_next(head);
+ } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
+ return c;
+}
+
+int trace_exception_counter = 0;
+static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
+ trace_exception_counter++;
+ stringStream tempst;
+
+ tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
+ exception_oop->print_value_on(&tempst);
+ tempst.print(" in ");
+ CodeBlob* blob = CodeCache::find_blob(exception_pc);
+ if (blob->is_compiled()) {
+ CompiledMethod* cm = blob->as_compiled_method_or_null();
+ cm->method()->print_value_on(&tempst);
+ } else if (blob->is_runtime_stub()) {
+ tempst.print("<runtime-stub>");
+ } else {
+ tempst.print("<unknown>");
+ }
+ tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
+ tempst.print("]");
+
+ st->print_raw_cr(tempst.as_string());
+}