--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/regmask.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,454 @@
+/*
+ * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "opto/ad.hpp"
+#include "opto/compile.hpp"
+#include "opto/matcher.hpp"
+#include "opto/node.hpp"
+#include "opto/regmask.hpp"
+
+#define RM_SIZE _RM_SIZE /* a constant private to the class RegMask */
+
+//-------------Non-zero bit search methods used by RegMask---------------------
+// Find lowest 1, or return 32 if empty
+int find_lowest_bit( uint32_t mask ) {
+ int n = 0;
+ if( (mask & 0xffff) == 0 ) {
+ mask >>= 16;
+ n += 16;
+ }
+ if( (mask & 0xff) == 0 ) {
+ mask >>= 8;
+ n += 8;
+ }
+ if( (mask & 0xf) == 0 ) {
+ mask >>= 4;
+ n += 4;
+ }
+ if( (mask & 0x3) == 0 ) {
+ mask >>= 2;
+ n += 2;
+ }
+ if( (mask & 0x1) == 0 ) {
+ mask >>= 1;
+ n += 1;
+ }
+ if( mask == 0 ) {
+ n = 32;
+ }
+ return n;
+}
+
+// Find highest 1, or return 32 if empty
+int find_hihghest_bit( uint32_t mask ) {
+ int n = 0;
+ if( mask > 0xffff ) {
+ mask >>= 16;
+ n += 16;
+ }
+ if( mask > 0xff ) {
+ mask >>= 8;
+ n += 8;
+ }
+ if( mask > 0xf ) {
+ mask >>= 4;
+ n += 4;
+ }
+ if( mask > 0x3 ) {
+ mask >>= 2;
+ n += 2;
+ }
+ if( mask > 0x1 ) {
+ mask >>= 1;
+ n += 1;
+ }
+ if( mask == 0 ) {
+ n = 32;
+ }
+ return n;
+}
+
+//------------------------------dump-------------------------------------------
+
+#ifndef PRODUCT
+void OptoReg::dump(int r, outputStream *st) {
+ switch (r) {
+ case Special: st->print("r---"); break;
+ case Bad: st->print("rBAD"); break;
+ default:
+ if (r < _last_Mach_Reg) st->print("%s", Matcher::regName[r]);
+ else st->print("rS%d",r);
+ break;
+ }
+}
+#endif
+
+
+//=============================================================================
+const RegMask RegMask::Empty(
+# define BODY(I) 0,
+ FORALL_BODY
+# undef BODY
+ 0
+);
+
+//=============================================================================
+bool RegMask::is_vector(uint ireg) {
+ return (ireg == Op_VecS || ireg == Op_VecD ||
+ ireg == Op_VecX || ireg == Op_VecY || ireg == Op_VecZ );
+}
+
+int RegMask::num_registers(uint ireg) {
+ switch(ireg) {
+ case Op_VecZ:
+ return 16;
+ case Op_VecY:
+ return 8;
+ case Op_VecX:
+ return 4;
+ case Op_VecD:
+ case Op_RegD:
+ case Op_RegL:
+#ifdef _LP64
+ case Op_RegP:
+#endif
+ return 2;
+ }
+ // Op_VecS and the rest ideal registers.
+ return 1;
+}
+
+//------------------------------find_first_pair--------------------------------
+// Find the lowest-numbered register pair in the mask. Return the
+// HIGHEST register number in the pair, or BAD if no pairs.
+OptoReg::Name RegMask::find_first_pair() const {
+ verify_pairs();
+ for( int i = 0; i < RM_SIZE; i++ ) {
+ if( _A[i] ) { // Found some bits
+ int bit = _A[i] & -_A[i]; // Extract low bit
+ // Convert to bit number, return hi bit in pair
+ return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+1);
+ }
+ }
+ return OptoReg::Bad;
+}
+
+//------------------------------ClearToPairs-----------------------------------
+// Clear out partial bits; leave only bit pairs
+void RegMask::clear_to_pairs() {
+ for( int i = 0; i < RM_SIZE; i++ ) {
+ int bits = _A[i];
+ bits &= ((bits & 0x55555555)<<1); // 1 hi-bit set for each pair
+ bits |= (bits>>1); // Smear 1 hi-bit into a pair
+ _A[i] = bits;
+ }
+ verify_pairs();
+}
+
+//------------------------------SmearToPairs-----------------------------------
+// Smear out partial bits; leave only bit pairs
+void RegMask::smear_to_pairs() {
+ for( int i = 0; i < RM_SIZE; i++ ) {
+ int bits = _A[i];
+ bits |= ((bits & 0x55555555)<<1); // Smear lo bit hi per pair
+ bits |= ((bits & 0xAAAAAAAA)>>1); // Smear hi bit lo per pair
+ _A[i] = bits;
+ }
+ verify_pairs();
+}
+
+//------------------------------is_aligned_pairs-------------------------------
+bool RegMask::is_aligned_pairs() const {
+ // Assert that the register mask contains only bit pairs.
+ for( int i = 0; i < RM_SIZE; i++ ) {
+ int bits = _A[i];
+ while( bits ) { // Check bits for pairing
+ int bit = bits & -bits; // Extract low bit
+ // Low bit is not odd means its mis-aligned.
+ if( (bit & 0x55555555) == 0 ) return false;
+ bits -= bit; // Remove bit from mask
+ // Check for aligned adjacent bit
+ if( (bits & (bit<<1)) == 0 ) return false;
+ bits -= (bit<<1); // Remove other halve of pair
+ }
+ }
+ return true;
+}
+
+//------------------------------is_bound1--------------------------------------
+// Return TRUE if the mask contains a single bit
+int RegMask::is_bound1() const {
+ if( is_AllStack() ) return false;
+ int bit = -1; // Set to hold the one bit allowed
+ for( int i = 0; i < RM_SIZE; i++ ) {
+ if( _A[i] ) { // Found some bits
+ if( bit != -1 ) return false; // Already had bits, so fail
+ bit = _A[i] & -_A[i]; // Extract 1 bit from mask
+ if( bit != _A[i] ) return false; // Found many bits, so fail
+ }
+ }
+ // True for both the empty mask and for a single bit
+ return true;
+}
+
+//------------------------------is_bound2--------------------------------------
+// Return TRUE if the mask contains an adjacent pair of bits and no other bits.
+int RegMask::is_bound_pair() const {
+ if( is_AllStack() ) return false;
+
+ int bit = -1; // Set to hold the one bit allowed
+ for( int i = 0; i < RM_SIZE; i++ ) {
+ if( _A[i] ) { // Found some bits
+ if( bit != -1 ) return false; // Already had bits, so fail
+ bit = _A[i] & -(_A[i]); // Extract 1 bit from mask
+ if( (bit << 1) != 0 ) { // Bit pair stays in same word?
+ if( (bit | (bit<<1)) != _A[i] )
+ return false; // Require adjacent bit pair and no more bits
+ } else { // Else its a split-pair case
+ if( bit != _A[i] ) return false; // Found many bits, so fail
+ i++; // Skip iteration forward
+ if( i >= RM_SIZE || _A[i] != 1 )
+ return false; // Require 1 lo bit in next word
+ }
+ }
+ }
+ // True for both the empty mask and for a bit pair
+ return true;
+}
+
+// only indicies of power 2 are accessed, so index 3 is only filled in for storage.
+static int low_bits[5] = { 0x55555555, 0x11111111, 0x01010101, 0x00000000, 0x00010001 };
+//------------------------------find_first_set---------------------------------
+// Find the lowest-numbered register set in the mask. Return the
+// HIGHEST register number in the set, or BAD if no sets.
+// Works also for size 1.
+OptoReg::Name RegMask::find_first_set(const int size) const {
+ verify_sets(size);
+ for (int i = 0; i < RM_SIZE; i++) {
+ if (_A[i]) { // Found some bits
+ int bit = _A[i] & -_A[i]; // Extract low bit
+ // Convert to bit number, return hi bit in pair
+ return OptoReg::Name((i<<_LogWordBits)+find_lowest_bit(bit)+(size-1));
+ }
+ }
+ return OptoReg::Bad;
+}
+
+//------------------------------clear_to_sets----------------------------------
+// Clear out partial bits; leave only aligned adjacent bit pairs
+void RegMask::clear_to_sets(const int size) {
+ if (size == 1) return;
+ assert(2 <= size && size <= 16, "update low bits table");
+ assert(is_power_of_2(size), "sanity");
+ int low_bits_mask = low_bits[size>>2];
+ for (int i = 0; i < RM_SIZE; i++) {
+ int bits = _A[i];
+ int sets = (bits & low_bits_mask);
+ for (int j = 1; j < size; j++) {
+ sets = (bits & (sets<<1)); // filter bits which produce whole sets
+ }
+ sets |= (sets>>1); // Smear 1 hi-bit into a set
+ if (size > 2) {
+ sets |= (sets>>2); // Smear 2 hi-bits into a set
+ if (size > 4) {
+ sets |= (sets>>4); // Smear 4 hi-bits into a set
+ if (size > 8) {
+ sets |= (sets>>8); // Smear 8 hi-bits into a set
+ }
+ }
+ }
+ _A[i] = sets;
+ }
+ verify_sets(size);
+}
+
+//------------------------------smear_to_sets----------------------------------
+// Smear out partial bits to aligned adjacent bit sets
+void RegMask::smear_to_sets(const int size) {
+ if (size == 1) return;
+ assert(2 <= size && size <= 16, "update low bits table");
+ assert(is_power_of_2(size), "sanity");
+ int low_bits_mask = low_bits[size>>2];
+ for (int i = 0; i < RM_SIZE; i++) {
+ int bits = _A[i];
+ int sets = 0;
+ for (int j = 0; j < size; j++) {
+ sets |= (bits & low_bits_mask); // collect partial bits
+ bits = bits>>1;
+ }
+ sets |= (sets<<1); // Smear 1 lo-bit into a set
+ if (size > 2) {
+ sets |= (sets<<2); // Smear 2 lo-bits into a set
+ if (size > 4) {
+ sets |= (sets<<4); // Smear 4 lo-bits into a set
+ if (size > 8) {
+ sets |= (sets<<8); // Smear 8 lo-bits into a set
+ }
+ }
+ }
+ _A[i] = sets;
+ }
+ verify_sets(size);
+}
+
+//------------------------------is_aligned_set--------------------------------
+bool RegMask::is_aligned_sets(const int size) const {
+ if (size == 1) return true;
+ assert(2 <= size && size <= 16, "update low bits table");
+ assert(is_power_of_2(size), "sanity");
+ int low_bits_mask = low_bits[size>>2];
+ // Assert that the register mask contains only bit sets.
+ for (int i = 0; i < RM_SIZE; i++) {
+ int bits = _A[i];
+ while (bits) { // Check bits for pairing
+ int bit = bits & -bits; // Extract low bit
+ // Low bit is not odd means its mis-aligned.
+ if ((bit & low_bits_mask) == 0) return false;
+ // Do extra work since (bit << size) may overflow.
+ int hi_bit = bit << (size-1); // high bit
+ int set = hi_bit + ((hi_bit-1) & ~(bit-1));
+ // Check for aligned adjacent bits in this set
+ if ((bits & set) != set) return false;
+ bits -= set; // Remove this set
+ }
+ }
+ return true;
+}
+
+//------------------------------is_bound_set-----------------------------------
+// Return TRUE if the mask contains one adjacent set of bits and no other bits.
+// Works also for size 1.
+int RegMask::is_bound_set(const int size) const {
+ if( is_AllStack() ) return false;
+ assert(1 <= size && size <= 16, "update low bits table");
+ int bit = -1; // Set to hold the one bit allowed
+ for (int i = 0; i < RM_SIZE; i++) {
+ if (_A[i] ) { // Found some bits
+ if (bit != -1)
+ return false; // Already had bits, so fail
+ bit = _A[i] & -_A[i]; // Extract low bit from mask
+ int hi_bit = bit << (size-1); // high bit
+ if (hi_bit != 0) { // Bit set stays in same word?
+ int set = hi_bit + ((hi_bit-1) & ~(bit-1));
+ if (set != _A[i])
+ return false; // Require adjacent bit set and no more bits
+ } else { // Else its a split-set case
+ if (((-1) & ~(bit-1)) != _A[i])
+ return false; // Found many bits, so fail
+ i++; // Skip iteration forward and check high part
+ // The lower (32-size) bits should be 0 since it is split case.
+ int clear_bit_size = 32-size;
+ int shift_back_size = 32-clear_bit_size;
+ int set = bit>>clear_bit_size;
+ set = set & -set; // Remove sign extension.
+ set = (((set << size) - 1) >> shift_back_size);
+ if (i >= RM_SIZE || _A[i] != set)
+ return false; // Require expected low bits in next word
+ }
+ }
+ }
+ // True for both the empty mask and for a bit set
+ return true;
+}
+
+//------------------------------is_UP------------------------------------------
+// UP means register only, Register plus stack, or stack only is DOWN
+bool RegMask::is_UP() const {
+ // Quick common case check for DOWN (any stack slot is legal)
+ if( is_AllStack() )
+ return false;
+ // Slower check for any stack bits set (also DOWN)
+ if( overlap(Matcher::STACK_ONLY_mask) )
+ return false;
+ // Not DOWN, so must be UP
+ return true;
+}
+
+//------------------------------Size-------------------------------------------
+// Compute size of register mask in bits
+uint RegMask::Size() const {
+ extern uint8_t bitsInByte[BITS_IN_BYTE_ARRAY_SIZE];
+ uint sum = 0;
+ for( int i = 0; i < RM_SIZE; i++ )
+ sum +=
+ bitsInByte[(_A[i]>>24) & 0xff] +
+ bitsInByte[(_A[i]>>16) & 0xff] +
+ bitsInByte[(_A[i]>> 8) & 0xff] +
+ bitsInByte[ _A[i] & 0xff];
+ return sum;
+}
+
+#ifndef PRODUCT
+//------------------------------print------------------------------------------
+void RegMask::dump(outputStream *st) const {
+ st->print("[");
+ RegMask rm = *this; // Structure copy into local temp
+
+ OptoReg::Name start = rm.find_first_elem(); // Get a register
+ if (OptoReg::is_valid(start)) { // Check for empty mask
+ rm.Remove(start); // Yank from mask
+ OptoReg::dump(start, st); // Print register
+ OptoReg::Name last = start;
+
+ // Now I have printed an initial register.
+ // Print adjacent registers as "rX-rZ" instead of "rX,rY,rZ".
+ // Begin looping over the remaining registers.
+ while (1) { //
+ OptoReg::Name reg = rm.find_first_elem(); // Get a register
+ if (!OptoReg::is_valid(reg))
+ break; // Empty mask, end loop
+ rm.Remove(reg); // Yank from mask
+
+ if (last+1 == reg) { // See if they are adjacent
+ // Adjacent registers just collect into long runs, no printing.
+ last = reg;
+ } else { // Ending some kind of run
+ if (start == last) { // 1-register run; no special printing
+ } else if (start+1 == last) {
+ st->print(","); // 2-register run; print as "rX,rY"
+ OptoReg::dump(last, st);
+ } else { // Multi-register run; print as "rX-rZ"
+ st->print("-");
+ OptoReg::dump(last, st);
+ }
+ st->print(","); // Seperate start of new run
+ start = last = reg; // Start a new register run
+ OptoReg::dump(start, st); // Print register
+ } // End of if ending a register run or not
+ } // End of while regmask not empty
+
+ if (start == last) { // 1-register run; no special printing
+ } else if (start+1 == last) {
+ st->print(","); // 2-register run; print as "rX,rY"
+ OptoReg::dump(last, st);
+ } else { // Multi-register run; print as "rX-rZ"
+ st->print("-");
+ OptoReg::dump(last, st);
+ }
+ if (rm.is_AllStack()) st->print("...");
+ }
+ st->print("]");
+}
+#endif