src/hotspot/share/opto/coalesce.cpp
changeset 47216 71c04702a3d5
parent 46378 4ccca1fdf627
child 51521 76a51e26d0ac
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/opto/coalesce.cpp	Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,812 @@
+/*
+ * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "memory/allocation.inline.hpp"
+#include "opto/block.hpp"
+#include "opto/cfgnode.hpp"
+#include "opto/chaitin.hpp"
+#include "opto/coalesce.hpp"
+#include "opto/connode.hpp"
+#include "opto/indexSet.hpp"
+#include "opto/machnode.hpp"
+#include "opto/matcher.hpp"
+#include "opto/regmask.hpp"
+
+#ifndef PRODUCT
+void PhaseCoalesce::dump(Node *n) const {
+  // Being a const function means I cannot use 'Find'
+  uint r = _phc._lrg_map.find(n);
+  tty->print("L%d/N%d ",r,n->_idx);
+}
+
+void PhaseCoalesce::dump() const {
+  // I know I have a block layout now, so I can print blocks in a loop
+  for( uint i=0; i<_phc._cfg.number_of_blocks(); i++ ) {
+    uint j;
+    Block* b = _phc._cfg.get_block(i);
+    // Print a nice block header
+    tty->print("B%d: ",b->_pre_order);
+    for( j=1; j<b->num_preds(); j++ )
+      tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
+    tty->print("-> ");
+    for( j=0; j<b->_num_succs; j++ )
+      tty->print("B%d ",b->_succs[j]->_pre_order);
+    tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
+    uint cnt = b->number_of_nodes();
+    for( j=0; j<cnt; j++ ) {
+      Node *n = b->get_node(j);
+      dump( n );
+      tty->print("\t%s\t",n->Name());
+
+      // Dump the inputs
+      uint k;                   // Exit value of loop
+      for( k=0; k<n->req(); k++ ) // For all required inputs
+        if( n->in(k) ) dump( n->in(k) );
+        else tty->print("_ ");
+      int any_prec = 0;
+      for( ; k<n->len(); k++ )          // For all precedence inputs
+        if( n->in(k) ) {
+          if( !any_prec++ ) tty->print(" |");
+          dump( n->in(k) );
+        }
+
+      // Dump node-specific info
+      n->dump_spec(tty);
+      tty->print("\n");
+
+    }
+    tty->print("\n");
+  }
+}
+#endif
+
+// Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
+void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
+  uint lr1 = _phc._lrg_map.find(n1);
+  uint lr2 = _phc._lrg_map.find(n2);
+  if( lr1 != lr2 &&             // Different live ranges already AND
+      !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
+    LRG *lrg1 = &_phc.lrgs(lr1);
+    LRG *lrg2 = &_phc.lrgs(lr2);
+    // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
+
+    // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
+    // and in general that's a bad thing.  However, int->oop conversions only
+    // happen at GC points, so the lifetime of the misclassified raw-pointer
+    // is from the CheckCastPP (that converts it to an oop) backwards up
+    // through a merge point and into the slow-path call, and around the
+    // diamond up to the heap-top check and back down into the slow-path call.
+    // The misclassified raw pointer is NOT live across the slow-path call,
+    // and so does not appear in any GC info, so the fact that it is
+    // misclassified is OK.
+
+    if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
+        // Compatible final mask
+        lrg1->mask().overlap( lrg2->mask() ) ) {
+      // Merge larger into smaller.
+      if( lr1 > lr2 ) {
+        uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
+        Node   *n =   n1;   n1 =   n2;   n2 =    n;
+        LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
+      }
+      // Union lr2 into lr1
+      _phc.Union( n1, n2 );
+      if (lrg1->_maxfreq < lrg2->_maxfreq)
+        lrg1->_maxfreq = lrg2->_maxfreq;
+      // Merge in the IFG
+      _phc._ifg->Union( lr1, lr2 );
+      // Combine register restrictions
+      lrg1->AND(lrg2->mask());
+    }
+  }
+}
+
+// Copy coalescing
+void PhaseCoalesce::coalesce_driver() {
+  verify();
+  // Coalesce from high frequency to low
+  for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
+    coalesce(_phc._blks[i]);
+  }
+}
+
+// I am inserting copies to come out of SSA form.  In the general case, I am
+// doing a parallel renaming.  I'm in the Named world now, so I can't do a
+// general parallel renaming.  All the copies now use  "names" (live-ranges)
+// to carry values instead of the explicit use-def chains.  Suppose I need to
+// insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
+// If I insert them in the wrong order then L128 will get clobbered before it
+// can get used by the second copy.  This cannot happen in the SSA model;
+// direct use-def chains get me the right value.  It DOES happen in the named
+// model so I have to handle the reordering of copies.
+//
+// In general, I need to topo-sort the placed copies to avoid conflicts.
+// Its possible to have a closed cycle of copies (e.g., recirculating the same
+// values around a loop).  In this case I need a temp to break the cycle.
+void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
+
+  // Scan backwards for the locations of the last use of the dst_name.
+  // I am about to clobber the dst_name, so the copy must be inserted
+  // after the last use.  Last use is really first-use on a backwards scan.
+  uint i = b->end_idx()-1;
+  while(1) {
+    Node *n = b->get_node(i);
+    // Check for end of virtual copies; this is also the end of the
+    // parallel renaming effort.
+    if (n->_idx < _unique) {
+      break;
+    }
+    uint idx = n->is_Copy();
+    assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
+    if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
+      break;
+    }
+    i--;
+  }
+  uint last_use_idx = i;
+
+  // Also search for any kill of src_name that exits the block.
+  // Since the copy uses src_name, I have to come before any kill.
+  uint kill_src_idx = b->end_idx();
+  // There can be only 1 kill that exits any block and that is
+  // the last kill.  Thus it is the first kill on a backwards scan.
+  i = b->end_idx()-1;
+  while (1) {
+    Node *n = b->get_node(i);
+    // Check for end of virtual copies; this is also the end of the
+    // parallel renaming effort.
+    if (n->_idx < _unique) {
+      break;
+    }
+    assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
+    if (_phc._lrg_map.find(n) == src_name) {
+      kill_src_idx = i;
+      break;
+    }
+    i--;
+  }
+  // Need a temp?  Last use of dst comes after the kill of src?
+  if (last_use_idx >= kill_src_idx) {
+    // Need to break a cycle with a temp
+    uint idx = copy->is_Copy();
+    Node *tmp = copy->clone();
+    uint max_lrg_id = _phc._lrg_map.max_lrg_id();
+    _phc.new_lrg(tmp, max_lrg_id);
+    _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
+
+    // Insert new temp between copy and source
+    tmp ->set_req(idx,copy->in(idx));
+    copy->set_req(idx,tmp);
+    // Save source in temp early, before source is killed
+    b->insert_node(tmp, kill_src_idx);
+    _phc._cfg.map_node_to_block(tmp, b);
+    last_use_idx++;
+  }
+
+  // Insert just after last use
+  b->insert_node(copy, last_use_idx + 1);
+}
+
+void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
+  // We do LRGs compressing and fix a liveout data only here since the other
+  // place in Split() is guarded by the assert which we never hit.
+  _phc._lrg_map.compress_uf_map_for_nodes();
+  // Fix block's liveout data for compressed live ranges.
+  for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
+    uint compressed_lrg = _phc._lrg_map.find(lrg);
+    if (lrg != compressed_lrg) {
+      for (uint bidx = 0; bidx < _phc._cfg.number_of_blocks(); bidx++) {
+        IndexSet *liveout = _phc._live->live(_phc._cfg.get_block(bidx));
+        if (liveout->member(lrg)) {
+          liveout->remove(lrg);
+          liveout->insert(compressed_lrg);
+        }
+      }
+    }
+  }
+
+  // All new nodes added are actual copies to replace virtual copies.
+  // Nodes with index less than '_unique' are original, non-virtual Nodes.
+  _unique = C->unique();
+
+  for (uint i = 0; i < _phc._cfg.number_of_blocks(); i++) {
+    C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
+    if (C->failing()) return;
+    Block *b = _phc._cfg.get_block(i);
+    uint cnt = b->num_preds();  // Number of inputs to the Phi
+
+    for( uint l = 1; l<b->number_of_nodes(); l++ ) {
+      Node *n = b->get_node(l);
+
+      // Do not use removed-copies, use copied value instead
+      uint ncnt = n->req();
+      for( uint k = 1; k<ncnt; k++ ) {
+        Node *copy = n->in(k);
+        uint cidx = copy->is_Copy();
+        if( cidx ) {
+          Node *def = copy->in(cidx);
+          if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
+            n->set_req(k, def);
+          }
+        }
+      }
+
+      // Remove any explicit copies that get coalesced.
+      uint cidx = n->is_Copy();
+      if( cidx ) {
+        Node *def = n->in(cidx);
+        if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
+          n->replace_by(def);
+          n->set_req(cidx,NULL);
+          b->remove_node(l);
+          l--;
+          continue;
+        }
+      }
+
+      if (n->is_Phi()) {
+        // Get the chosen name for the Phi
+        uint phi_name = _phc._lrg_map.find(n);
+        // Ignore the pre-allocated specials
+        if (!phi_name) {
+          continue;
+        }
+        // Check for mismatch inputs to Phi
+        for (uint j = 1; j < cnt; j++) {
+          Node *m = n->in(j);
+          uint src_name = _phc._lrg_map.find(m);
+          if (src_name != phi_name) {
+            Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
+            Node *copy;
+            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
+            // Rematerialize constants instead of copying them.
+            // We do this only for immediate constants, we avoid constant table loads
+            // because that will unsafely extend the live range of the constant table base.
+            if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
+                m->as_Mach()->rematerialize()) {
+              copy = m->clone();
+              // Insert the copy in the predecessor basic block
+              pred->add_inst(copy);
+              // Copy any flags as well
+              _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
+            } else {
+              uint ireg = m->ideal_reg();
+              if (ireg == 0 || ireg == Op_RegFlags) {
+                assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
+                       m->_idx, m->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::PhiInput));
+                C->record_method_not_compilable("attempted to spill a non-spillable item");
+                return;
+              }
+              const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
+              copy = new MachSpillCopyNode(MachSpillCopyNode::PhiInput, m, *rm, *rm);
+              // Find a good place to insert.  Kinda tricky, use a subroutine
+              insert_copy_with_overlap(pred,copy,phi_name,src_name);
+            }
+            // Insert the copy in the use-def chain
+            n->set_req(j, copy);
+            _phc._cfg.map_node_to_block(copy, pred);
+            // Extend ("register allocate") the names array for the copy.
+            _phc._lrg_map.extend(copy->_idx, phi_name);
+          } // End of if Phi names do not match
+        } // End of for all inputs to Phi
+      } else { // End of if Phi
+
+        // Now check for 2-address instructions
+        uint idx;
+        if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
+          // Get the chosen name for the Node
+          uint name = _phc._lrg_map.find(n);
+          assert (name, "no 2-address specials");
+          // Check for name mis-match on the 2-address input
+          Node *m = n->in(idx);
+          if (_phc._lrg_map.find(m) != name) {
+            Node *copy;
+            assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
+            // At this point it is unsafe to extend live ranges (6550579).
+            // Rematerialize only constants as we do for Phi above.
+            if (m->is_Mach() && m->as_Mach()->is_Con() && !m->as_Mach()->is_MachConstant() &&
+                m->as_Mach()->rematerialize()) {
+              copy = m->clone();
+              // Insert the copy in the basic block, just before us
+              b->insert_node(copy, l++);
+              l += _phc.clone_projs(b, l, m, copy, _phc._lrg_map);
+            } else {
+              uint ireg = m->ideal_reg();
+              if (ireg == 0 || ireg == Op_RegFlags) {
+                assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
+                       m->_idx, m->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::TwoAddress));
+                C->record_method_not_compilable("attempted to spill a non-spillable item");
+                return;
+              }
+              const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
+              copy = new MachSpillCopyNode(MachSpillCopyNode::TwoAddress, m, *rm, *rm);
+              // Insert the copy in the basic block, just before us
+              b->insert_node(copy, l++);
+            }
+            // Insert the copy in the use-def chain
+            n->set_req(idx, copy);
+            // Extend ("register allocate") the names array for the copy.
+            _phc._lrg_map.extend(copy->_idx, name);
+            _phc._cfg.map_node_to_block(copy, b);
+          }
+
+        } // End of is two-adr
+
+        // Insert a copy at a debug use for a lrg which has high frequency
+        if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || _phc._cfg.is_uncommon(b)) {
+          // Walk the debug inputs to the node and check for lrg freq
+          JVMState* jvms = n->jvms();
+          uint debug_start = jvms ? jvms->debug_start() : 999999;
+          uint debug_end   = jvms ? jvms->debug_end()   : 999999;
+          for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
+            // Do not split monitors; they are only needed for debug table
+            // entries and need no code.
+            if (jvms->is_monitor_use(inpidx)) {
+              continue;
+            }
+            Node *inp = n->in(inpidx);
+            uint nidx = _phc._lrg_map.live_range_id(inp);
+            LRG &lrg = lrgs(nidx);
+
+            // If this lrg has a high frequency use/def
+            if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
+              // If the live range is also live out of this block (like it
+              // would be for a fast/slow idiom), the normal spill mechanism
+              // does an excellent job.  If it is not live out of this block
+              // (like it would be for debug info to uncommon trap) splitting
+              // the live range now allows a better allocation in the high
+              // frequency blocks.
+              //   Build_IFG_virtual has converted the live sets to
+              // live-IN info, not live-OUT info.
+              uint k;
+              for( k=0; k < b->_num_succs; k++ )
+                if( _phc._live->live(b->_succs[k])->member( nidx ) )
+                  break;      // Live in to some successor block?
+              if( k < b->_num_succs )
+                continue;     // Live out; do not pre-split
+              // Split the lrg at this use
+              uint ireg = inp->ideal_reg();
+              if (ireg == 0 || ireg == Op_RegFlags) {
+                assert(false, "attempted to spill a non-spillable item: %d: %s, ireg = %u, spill_type: %s",
+                       inp->_idx, inp->Name(), ireg, MachSpillCopyNode::spill_type(MachSpillCopyNode::DebugUse));
+                C->record_method_not_compilable("attempted to spill a non-spillable item");
+                return;
+              }
+              const RegMask *rm = C->matcher()->idealreg2spillmask[ireg];
+              Node* copy = new MachSpillCopyNode(MachSpillCopyNode::DebugUse, inp, *rm, *rm);
+              // Insert the copy in the use-def chain
+              n->set_req(inpidx, copy );
+              // Insert the copy in the basic block, just before us
+              b->insert_node(copy,  l++);
+              // Extend ("register allocate") the names array for the copy.
+              uint max_lrg_id = _phc._lrg_map.max_lrg_id();
+              _phc.new_lrg(copy, max_lrg_id);
+              _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
+              _phc._cfg.map_node_to_block(copy, b);
+              //tty->print_cr("Split a debug use in Aggressive Coalesce");
+            }  // End of if high frequency use/def
+          }  // End of for all debug inputs
+        }  // End of if low frequency safepoint
+
+      } // End of if Phi
+
+    } // End of for all instructions
+  } // End of for all blocks
+}
+
+
+// Aggressive (but pessimistic) copy coalescing of a single block
+
+// The following coalesce pass represents a single round of aggressive
+// pessimistic coalesce.  "Aggressive" means no attempt to preserve
+// colorability when coalescing.  This occasionally means more spills, but
+// it also means fewer rounds of coalescing for better code - and that means
+// faster compiles.
+
+// "Pessimistic" means we do not hit the fixed point in one pass (and we are
+// reaching for the least fixed point to boot).  This is typically solved
+// with a few more rounds of coalescing, but the compiler must run fast.  We
+// could optimistically coalescing everything touching PhiNodes together
+// into one big live range, then check for self-interference.  Everywhere
+// the live range interferes with self it would have to be split.  Finding
+// the right split points can be done with some heuristics (based on
+// expected frequency of edges in the live range).  In short, it's a real
+// research problem and the timeline is too short to allow such research.
+// Further thoughts: (1) build the LR in a pass, (2) find self-interference
+// in another pass, (3) per each self-conflict, split, (4) split by finding
+// the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
+// according to the GCM algorithm (or just exec freq on CFG edges).
+
+void PhaseAggressiveCoalesce::coalesce( Block *b ) {
+  // Copies are still "virtual" - meaning we have not made them explicitly
+  // copies.  Instead, Phi functions of successor blocks have mis-matched
+  // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
+  // up the live-ranges.  Check for Phis in successor blocks.
+  uint i;
+  for( i=0; i<b->_num_succs; i++ ) {
+    Block *bs = b->_succs[i];
+    // Find index of 'b' in 'bs' predecessors
+    uint j=1;
+    while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
+      j++;
+    }
+
+    // Visit all the Phis in successor block
+    for( uint k = 1; k<bs->number_of_nodes(); k++ ) {
+      Node *n = bs->get_node(k);
+      if( !n->is_Phi() ) break;
+      combine_these_two( n, n->in(j) );
+    }
+  } // End of for all successor blocks
+
+
+  // Check _this_ block for 2-address instructions and copies.
+  uint cnt = b->end_idx();
+  for( i = 1; i<cnt; i++ ) {
+    Node *n = b->get_node(i);
+    uint idx;
+    // 2-address instructions have a virtual Copy matching their input
+    // to their output
+    if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
+      MachNode *mach = n->as_Mach();
+      combine_these_two(mach, mach->in(idx));
+    }
+  } // End of for all instructions in block
+}
+
+PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
+  _ulr.initialize(_phc._lrg_map.max_lrg_id());
+}
+
+void PhaseConservativeCoalesce::verify() {
+#ifdef ASSERT
+  _phc.set_was_low();
+#endif
+}
+
+void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
+  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
+  // union-find tree
+  _phc.Union( lr1_node, lr2_node );
+
+  // Single-def live range ONLY if both live ranges are single-def.
+  // If both are single def, then src_def powers one live range
+  // and def_copy powers the other.  After merging, src_def powers
+  // the combined live range.
+  lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
+                        lrgs(lr2).is_multidef() )
+    ? NodeSentinel : src_def;
+  lrgs(lr2)._def = NULL;    // No def for lrg 2
+  lrgs(lr2).Clear();        // Force empty mask for LRG 2
+  //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
+  lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
+  lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
+
+  if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
+    lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
+
+  // Copy original value instead.  Intermediate copies go dead, and
+  // the dst_copy becomes useless.
+  int didx = dst_copy->is_Copy();
+  dst_copy->set_req( didx, src_def );
+  // Add copy to free list
+  // _phc.free_spillcopy(b->_nodes[bindex]);
+  assert( b->get_node(bindex) == dst_copy, "" );
+  dst_copy->replace_by( dst_copy->in(didx) );
+  dst_copy->set_req( didx, NULL);
+  b->remove_node(bindex);
+  if( bindex < b->_ihrp_index ) b->_ihrp_index--;
+  if( bindex < b->_fhrp_index ) b->_fhrp_index--;
+
+  // Stretched lr1; add it to liveness of intermediate blocks
+  Block *b2 = _phc._cfg.get_block_for_node(src_copy);
+  while( b != b2 ) {
+    b = _phc._cfg.get_block_for_node(b->pred(1));
+    _phc._live->live(b)->insert(lr1);
+  }
+}
+
+// Factored code from copy_copy that computes extra interferences from
+// lengthening a live range by double-coalescing.
+uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
+
+  assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
+  assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
+  Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
+  Block *b2 = b;
+  uint bindex2 = bindex;
+  while( 1 ) {
+    // Find previous instruction
+    bindex2--;                  // Chain backwards 1 instruction
+    while( bindex2 == 0 ) {     // At block start, find prior block
+      assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
+      b2 = _phc._cfg.get_block_for_node(b2->pred(1));
+      bindex2 = b2->end_idx()-1;
+    }
+    // Get prior instruction
+    assert(bindex2 < b2->number_of_nodes(), "index out of bounds");
+    Node *x = b2->get_node(bindex2);
+    if( x == prev_copy ) {      // Previous copy in copy chain?
+      if( prev_copy == src_copy)// Found end of chain and all interferences
+        break;                  // So break out of loop
+      // Else work back one in copy chain
+      prev_copy = prev_copy->in(prev_copy->is_Copy());
+    } else {                    // Else collect interferences
+      uint lidx = _phc._lrg_map.find(x);
+      // Found another def of live-range being stretched?
+      if(lidx == lr1) {
+        return max_juint;
+      }
+      if(lidx == lr2) {
+        return max_juint;
+      }
+
+      // If we attempt to coalesce across a bound def
+      if( lrgs(lidx).is_bound() ) {
+        // Do not let the coalesced LRG expect to get the bound color
+        rm.SUBTRACT( lrgs(lidx).mask() );
+        // Recompute rm_size
+        rm_size = rm.Size();
+        //if( rm._flags ) rm_size += 1000000;
+        if( reg_degree >= rm_size ) return max_juint;
+      }
+      if( rm.overlap(lrgs(lidx).mask()) ) {
+        // Insert lidx into union LRG; returns TRUE if actually inserted
+        if( _ulr.insert(lidx) ) {
+          // Infinite-stack neighbors do not alter colorability, as they
+          // can always color to some other color.
+          if( !lrgs(lidx).mask().is_AllStack() ) {
+            // If this coalesce will make any new neighbor uncolorable,
+            // do not coalesce.
+            if( lrgs(lidx).just_lo_degree() )
+              return max_juint;
+            // Bump our degree
+            if( ++reg_degree >= rm_size )
+              return max_juint;
+          } // End of if not infinite-stack neighbor
+        } // End of if actually inserted
+      } // End of if live range overlaps
+    } // End of else collect interferences for 1 node
+  } // End of while forever, scan back for interferences
+  return reg_degree;
+}
+
+void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
+  // Some original neighbors of lr1 might have gone away
+  // because the constrained register mask prevented them.
+  // Remove lr1 from such neighbors.
+  IndexSetIterator one(n_lr1);
+  uint neighbor;
+  LRG &lrg1 = lrgs(lr1);
+  while ((neighbor = one.next()) != 0)
+    if( !_ulr.member(neighbor) )
+      if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
+        lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
+
+
+  // lr2 is now called (coalesced into) lr1.
+  // Remove lr2 from the IFG.
+  IndexSetIterator two(n_lr2);
+  LRG &lrg2 = lrgs(lr2);
+  while ((neighbor = two.next()) != 0)
+    if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
+      lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
+
+  // Some neighbors of intermediate copies now interfere with the
+  // combined live range.
+  IndexSetIterator three(&_ulr);
+  while ((neighbor = three.next()) != 0)
+    if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
+      lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
+}
+
+static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
+  // Tag copy bias here
+  if( !ifg->lrgs(lr1)._copy_bias )
+    ifg->lrgs(lr1)._copy_bias = lr2;
+  if( !ifg->lrgs(lr2)._copy_bias )
+    ifg->lrgs(lr2)._copy_bias = lr1;
+}
+
+// See if I can coalesce a series of multiple copies together.  I need the
+// final dest copy and the original src copy.  They can be the same Node.
+// Compute the compatible register masks.
+bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
+
+  if (!dst_copy->is_SpillCopy()) {
+    return false;
+  }
+  if (!src_copy->is_SpillCopy()) {
+    return false;
+  }
+  Node *src_def = src_copy->in(src_copy->is_Copy());
+  uint lr1 = _phc._lrg_map.find(dst_copy);
+  uint lr2 = _phc._lrg_map.find(src_def);
+
+  // Same live ranges already?
+  if (lr1 == lr2) {
+    return false;
+  }
+
+  // Interfere?
+  if (_phc._ifg->test_edge_sq(lr1, lr2)) {
+    return false;
+  }
+
+  // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
+  if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
+    return false;
+  }
+
+  // Coalescing between an aligned live range and a mis-aligned live range?
+  // No, no!  Alignment changes how we count degree.
+  if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
+    return false;
+  }
+
+  // Sort; use smaller live-range number
+  Node *lr1_node = dst_copy;
+  Node *lr2_node = src_def;
+  if (lr1 > lr2) {
+    uint tmp = lr1; lr1 = lr2; lr2 = tmp;
+    lr1_node = src_def;  lr2_node = dst_copy;
+  }
+
+  // Check for compatibility of the 2 live ranges by
+  // intersecting their allowed register sets.
+  RegMask rm = lrgs(lr1).mask();
+  rm.AND(lrgs(lr2).mask());
+  // Number of bits free
+  uint rm_size = rm.Size();
+
+  if (UseFPUForSpilling && rm.is_AllStack() ) {
+    // Don't coalesce when frequency difference is large
+    Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
+    Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
+    if (src_def_b->_freq > 10*dst_b->_freq )
+      return false;
+  }
+
+  // If we can use any stack slot, then effective size is infinite
+  if( rm.is_AllStack() ) rm_size += 1000000;
+  // Incompatible masks, no way to coalesce
+  if( rm_size == 0 ) return false;
+
+  // Another early bail-out test is when we are double-coalescing and the
+  // 2 copies are separated by some control flow.
+  if( dst_copy != src_copy ) {
+    Block *src_b = _phc._cfg.get_block_for_node(src_copy);
+    Block *b2 = b;
+    while( b2 != src_b ) {
+      if( b2->num_preds() > 2 ){// Found merge-point
+        _phc._lost_opp_cflow_coalesce++;
+        // extra record_bias commented out because Chris believes it is not
+        // productive.  Since we can record only 1 bias, we want to choose one
+        // that stands a chance of working and this one probably does not.
+        //record_bias( _phc._lrgs, lr1, lr2 );
+        return false;           // To hard to find all interferences
+      }
+      b2 = _phc._cfg.get_block_for_node(b2->pred(1));
+    }
+  }
+
+  // Union the two interference sets together into '_ulr'
+  uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
+
+  if( reg_degree >= rm_size ) {
+    record_bias( _phc._ifg, lr1, lr2 );
+    return false;
+  }
+
+  // Now I need to compute all the interferences between dst_copy and
+  // src_copy.  I'm not willing visit the entire interference graph, so
+  // I limit my search to things in dst_copy's block or in a straight
+  // line of previous blocks.  I give up at merge points or when I get
+  // more interferences than my degree.  I can stop when I find src_copy.
+  if( dst_copy != src_copy ) {
+    reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
+    if( reg_degree == max_juint ) {
+      record_bias( _phc._ifg, lr1, lr2 );
+      return false;
+    }
+  } // End of if dst_copy & src_copy are different
+
+
+  // ---- THE COMBINED LRG IS COLORABLE ----
+
+  // YEAH - Now coalesce this copy away
+  assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
+
+  IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
+  IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
+
+  // Update the interference graph
+  update_ifg(lr1, lr2, n_lr1, n_lr2);
+
+  _ulr.remove(lr1);
+
+  // Uncomment the following code to trace Coalescing in great detail.
+  //
+  //if (false) {
+  //  tty->cr();
+  //  tty->print_cr("#######################################");
+  //  tty->print_cr("union %d and %d", lr1, lr2);
+  //  n_lr1->dump();
+  //  n_lr2->dump();
+  //  tty->print_cr("resulting set is");
+  //  _ulr.dump();
+  //}
+
+  // Replace n_lr1 with the new combined live range.  _ulr will use
+  // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
+  // send its internal memory to the free list.
+  _ulr.swap(n_lr1);
+  _ulr.clear();
+  n_lr2->clear();
+
+  lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
+  lrgs(lr2).set_degree( 0 );
+
+  // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
+  // union-find tree
+  union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
+  // Combine register restrictions
+  lrgs(lr1).set_mask(rm);
+  lrgs(lr1).compute_set_mask_size();
+  lrgs(lr1)._cost += lrgs(lr2)._cost;
+  lrgs(lr1)._area += lrgs(lr2)._area;
+
+  // While its uncommon to successfully coalesce live ranges that started out
+  // being not-lo-degree, it can happen.  In any case the combined coalesced
+  // live range better Simplify nicely.
+  lrgs(lr1)._was_lo = 1;
+
+  // kinda expensive to do all the time
+  //tty->print_cr("warning: slow verify happening");
+  //_phc._ifg->verify( &_phc );
+  return true;
+}
+
+// Conservative (but pessimistic) copy coalescing of a single block
+void PhaseConservativeCoalesce::coalesce( Block *b ) {
+  // Bail out on infrequent blocks
+  if (_phc._cfg.is_uncommon(b)) {
+    return;
+  }
+  // Check this block for copies.
+  for( uint i = 1; i<b->end_idx(); i++ ) {
+    // Check for actual copies on inputs.  Coalesce a copy into its
+    // input if use and copy's input are compatible.
+    Node *copy1 = b->get_node(i);
+    uint idx1 = copy1->is_Copy();
+    if( !idx1 ) continue;       // Not a copy
+
+    if( copy_copy(copy1,copy1,b,i) ) {
+      i--;                      // Retry, same location in block
+      PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
+      continue;
+    }
+  }
+}