--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/c1/c1_RangeCheckElimination.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,1522 @@
+/*
+ * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "c1/c1_ValueStack.hpp"
+#include "c1/c1_RangeCheckElimination.hpp"
+#include "c1/c1_IR.hpp"
+#include "c1/c1_Canonicalizer.hpp"
+#include "c1/c1_ValueMap.hpp"
+#include "ci/ciMethodData.hpp"
+#include "runtime/deoptimization.hpp"
+
+// Macros for the Trace and the Assertion flag
+#ifdef ASSERT
+#define TRACE_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination) { code; }
+#define ASSERT_RANGE_CHECK_ELIMINATION(code) if (AssertRangeCheckElimination) { code; }
+#define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination || AssertRangeCheckElimination) { code; }
+#else
+#define TRACE_RANGE_CHECK_ELIMINATION(code)
+#define ASSERT_RANGE_CHECK_ELIMINATION(code)
+#define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code)
+#endif
+
+// Entry point for the optimization
+void RangeCheckElimination::eliminate(IR *ir) {
+ bool do_elimination = ir->compilation()->has_access_indexed();
+ ASSERT_RANGE_CHECK_ELIMINATION(do_elimination = true);
+ if (do_elimination) {
+ RangeCheckEliminator rce(ir);
+ }
+}
+
+// Constructor
+RangeCheckEliminator::RangeCheckEliminator(IR *ir) :
+ _bounds(Instruction::number_of_instructions(), Instruction::number_of_instructions(), NULL),
+ _access_indexed_info(Instruction::number_of_instructions(), Instruction::number_of_instructions(), NULL)
+{
+ _visitor.set_range_check_eliminator(this);
+ _ir = ir;
+ _number_of_instructions = Instruction::number_of_instructions();
+ _optimistic = ir->compilation()->is_optimistic();
+
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->cr();
+ tty->print_cr("Range check elimination");
+ ir->method()->print_name(tty);
+ tty->cr();
+ );
+
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->print_cr("optimistic=%d", (int)_optimistic);
+ );
+
+#ifdef ASSERT
+ // Verifies several conditions that must be true on the IR-input. Only used for debugging purposes.
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->print_cr("Verification of IR . . .");
+ );
+ Verification verification(ir);
+#endif
+
+ // Set process block flags
+ // Optimization so a blocks is only processed if it contains an access indexed instruction or if
+ // one of its children in the dominator tree contains an access indexed instruction.
+ set_process_block_flags(ir->start());
+
+ // Pass over instructions in the dominator tree
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->print_cr("Starting pass over dominator tree . . .")
+ );
+ calc_bounds(ir->start(), NULL);
+
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->print_cr("Finished!")
+ );
+}
+
+// Instruction specific work for some instructions
+// Constant
+void RangeCheckEliminator::Visitor::do_Constant(Constant *c) {
+ IntConstant *ic = c->type()->as_IntConstant();
+ if (ic != NULL) {
+ int value = ic->value();
+ _bound = new Bound(value, NULL, value, NULL);
+ }
+}
+
+// LogicOp
+void RangeCheckEliminator::Visitor::do_LogicOp(LogicOp *lo) {
+ if (lo->type()->as_IntType() && lo->op() == Bytecodes::_iand && (lo->x()->as_Constant() || lo->y()->as_Constant())) {
+ int constant = 0;
+ Constant *c = lo->x()->as_Constant();
+ if (c != NULL) {
+ constant = c->type()->as_IntConstant()->value();
+ } else {
+ constant = lo->y()->as_Constant()->type()->as_IntConstant()->value();
+ }
+ if (constant >= 0) {
+ _bound = new Bound(0, NULL, constant, NULL);
+ }
+ }
+}
+
+// Phi
+void RangeCheckEliminator::Visitor::do_Phi(Phi *phi) {
+ if (!phi->type()->as_IntType() && !phi->type()->as_ObjectType()) return;
+
+ BlockBegin *block = phi->block();
+ int op_count = phi->operand_count();
+ bool has_upper = true;
+ bool has_lower = true;
+ assert(phi, "Phi must not be null");
+ Bound *bound = NULL;
+
+ // TODO: support more difficult phis
+ for (int i=0; i<op_count; i++) {
+ Value v = phi->operand_at(i);
+
+ if (v == phi) continue;
+
+ // Check if instruction is connected with phi itself
+ Op2 *op2 = v->as_Op2();
+ if (op2 != NULL) {
+ Value x = op2->x();
+ Value y = op2->y();
+ if ((x == phi || y == phi)) {
+ Value other = x;
+ if (other == phi) {
+ other = y;
+ }
+ ArithmeticOp *ao = v->as_ArithmeticOp();
+ if (ao != NULL && ao->op() == Bytecodes::_iadd) {
+ assert(ao->op() == Bytecodes::_iadd, "Has to be add!");
+ if (ao->type()->as_IntType()) {
+ Constant *c = other->as_Constant();
+ if (c != NULL) {
+ assert(c->type()->as_IntConstant(), "Constant has to be of type integer");
+ int value = c->type()->as_IntConstant()->value();
+ if (value == 1) {
+ has_upper = false;
+ } else if (value > 1) {
+ // Overflow not guaranteed
+ has_upper = false;
+ has_lower = false;
+ } else if (value < 0) {
+ has_lower = false;
+ }
+ continue;
+ }
+ }
+ }
+ }
+ }
+
+ // No connection -> new bound
+ Bound *v_bound = _rce->get_bound(v);
+ Bound *cur_bound;
+ int cur_constant = 0;
+ Value cur_value = v;
+
+ if (v->type()->as_IntConstant()) {
+ cur_constant = v->type()->as_IntConstant()->value();
+ cur_value = NULL;
+ }
+ if (!v_bound->has_upper() || !v_bound->has_lower()) {
+ cur_bound = new Bound(cur_constant, cur_value, cur_constant, cur_value);
+ } else {
+ cur_bound = v_bound;
+ }
+ if (cur_bound) {
+ if (!bound) {
+ bound = cur_bound->copy();
+ } else {
+ bound->or_op(cur_bound);
+ }
+ } else {
+ // No bound!
+ bound = NULL;
+ break;
+ }
+ }
+
+ if (bound) {
+ if (!has_upper) {
+ bound->remove_upper();
+ }
+ if (!has_lower) {
+ bound->remove_lower();
+ }
+ _bound = bound;
+ } else {
+ _bound = new Bound();
+ }
+}
+
+
+// ArithmeticOp
+void RangeCheckEliminator::Visitor::do_ArithmeticOp(ArithmeticOp *ao) {
+ Value x = ao->x();
+ Value y = ao->y();
+
+ if (ao->op() == Bytecodes::_irem) {
+ Bound* x_bound = _rce->get_bound(x);
+ Bound* y_bound = _rce->get_bound(y);
+ if (x_bound->lower() >= 0 && x_bound->lower_instr() == NULL && y->as_ArrayLength() != NULL) {
+ _bound = new Bound(0, NULL, -1, y);
+ } else {
+ _bound = new Bound();
+ }
+ } else if (!x->as_Constant() || !y->as_Constant()) {
+ assert(!x->as_Constant() || !y->as_Constant(), "One of the operands must be non-constant!");
+ if (((x->as_Constant() || y->as_Constant()) && (ao->op() == Bytecodes::_iadd)) || (y->as_Constant() && ao->op() == Bytecodes::_isub)) {
+ assert(ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub, "Operand must be iadd or isub");
+
+ if (y->as_Constant()) {
+ Value tmp = x;
+ x = y;
+ y = tmp;
+ }
+ assert(x->as_Constant()->type()->as_IntConstant(), "Constant must be int constant!");
+
+ // Constant now in x
+ int const_value = x->as_Constant()->type()->as_IntConstant()->value();
+ if (ao->op() == Bytecodes::_iadd || const_value != min_jint) {
+ if (ao->op() == Bytecodes::_isub) {
+ const_value = -const_value;
+ }
+
+ Bound * bound = _rce->get_bound(y);
+ if (bound->has_upper() && bound->has_lower()) {
+ int new_lower = bound->lower() + const_value;
+ jlong new_lowerl = ((jlong)bound->lower()) + const_value;
+ int new_upper = bound->upper() + const_value;
+ jlong new_upperl = ((jlong)bound->upper()) + const_value;
+
+ if (((jlong)new_lower) == new_lowerl && ((jlong)new_upper == new_upperl)) {
+ Bound *newBound = new Bound(new_lower, bound->lower_instr(), new_upper, bound->upper_instr());
+ _bound = newBound;
+ } else {
+ // overflow
+ _bound = new Bound();
+ }
+ } else {
+ _bound = new Bound();
+ }
+ } else {
+ _bound = new Bound();
+ }
+ } else {
+ Bound *bound = _rce->get_bound(x);
+ if (ao->op() == Bytecodes::_isub) {
+ if (bound->lower_instr() == y) {
+ _bound = new Bound(Instruction::geq, NULL, bound->lower());
+ } else {
+ _bound = new Bound();
+ }
+ } else {
+ _bound = new Bound();
+ }
+ }
+ }
+}
+
+// IfOp
+void RangeCheckEliminator::Visitor::do_IfOp(IfOp *ifOp)
+{
+ if (ifOp->tval()->type()->as_IntConstant() && ifOp->fval()->type()->as_IntConstant()) {
+ int min = ifOp->tval()->type()->as_IntConstant()->value();
+ int max = ifOp->fval()->type()->as_IntConstant()->value();
+ if (min > max) {
+ // min ^= max ^= min ^= max;
+ int tmp = min;
+ min = max;
+ max = tmp;
+ }
+ _bound = new Bound(min, NULL, max, NULL);
+ }
+}
+
+// Get bound. Returns the current bound on Value v. Normally this is the topmost element on the bound stack.
+RangeCheckEliminator::Bound *RangeCheckEliminator::get_bound(Value v) {
+ // Wrong type or NULL -> No bound
+ if (!v || (!v->type()->as_IntType() && !v->type()->as_ObjectType())) return NULL;
+
+ if (!_bounds.at(v->id())) {
+ // First (default) bound is calculated
+ // Create BoundStack
+ _bounds.at_put(v->id(), new BoundStack());
+ _visitor.clear_bound();
+ Value visit_value = v;
+ visit_value->visit(&_visitor);
+ Bound *bound = _visitor.bound();
+ if (bound) {
+ _bounds.at(v->id())->push(bound);
+ }
+ if (_bounds.at(v->id())->length() == 0) {
+ assert(!(v->as_Constant() && v->type()->as_IntConstant()), "constants not handled here");
+ _bounds.at(v->id())->push(new Bound());
+ }
+ } else if (_bounds.at(v->id())->length() == 0) {
+ // To avoid endless loops, bound is currently in calculation -> nothing known about it
+ return new Bound();
+ }
+
+ // Return bound
+ return _bounds.at(v->id())->top();
+}
+
+// Update bound
+void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Instruction::Condition cond, Value value, int constant) {
+ if (cond == Instruction::gtr) {
+ cond = Instruction::geq;
+ constant++;
+ } else if (cond == Instruction::lss) {
+ cond = Instruction::leq;
+ constant--;
+ }
+ Bound *bound = new Bound(cond, value, constant);
+ update_bound(pushed, v, bound);
+}
+
+// Checks for loop invariance. Returns true if the instruction is outside of the loop which is identified by loop_header.
+bool RangeCheckEliminator::loop_invariant(BlockBegin *loop_header, Instruction *instruction) {
+ assert(loop_header, "Loop header must not be null!");
+ if (!instruction) return true;
+ return instruction->dominator_depth() < loop_header->dominator_depth();
+}
+
+// Update bound. Pushes a new bound onto the stack. Tries to do a conjunction with the current bound.
+void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Bound *bound) {
+ if (v->as_Constant()) {
+ // No bound update for constants
+ return;
+ }
+ if (!_bounds.at(v->id())) {
+ get_bound(v);
+ assert(_bounds.at(v->id()), "Now Stack must exist");
+ }
+ Bound *top = NULL;
+ if (_bounds.at(v->id())->length() > 0) {
+ top = _bounds.at(v->id())->top();
+ }
+ if (top) {
+ bound->and_op(top);
+ }
+ _bounds.at(v->id())->push(bound);
+ pushed.append(v->id());
+}
+
+// Add instruction + idx for in block motion
+void RangeCheckEliminator::add_access_indexed_info(InstructionList &indices, int idx, Value instruction, AccessIndexed *ai) {
+ int id = instruction->id();
+ AccessIndexedInfo *aii = _access_indexed_info.at(id);
+ if (aii == NULL) {
+ aii = new AccessIndexedInfo();
+ _access_indexed_info.at_put(id, aii);
+ indices.append(instruction);
+ aii->_min = idx;
+ aii->_max = idx;
+ aii->_list = new AccessIndexedList();
+ } else if (idx >= aii->_min && idx <= aii->_max) {
+ remove_range_check(ai);
+ return;
+ }
+ aii->_min = MIN2(aii->_min, idx);
+ aii->_max = MAX2(aii->_max, idx);
+ aii->_list->append(ai);
+}
+
+// In block motion. Tries to reorder checks in order to reduce some of them.
+// Example:
+// a[i] = 0;
+// a[i+2] = 0;
+// a[i+1] = 0;
+// In this example the check for a[i+1] would be considered as unnecessary during the first iteration.
+// After this i is only checked once for i >= 0 and i+2 < a.length before the first array access. If this
+// check fails, deoptimization is called.
+void RangeCheckEliminator::in_block_motion(BlockBegin *block, AccessIndexedList &accessIndexed, InstructionList &arrays) {
+ InstructionList indices;
+
+ // Now iterate over all arrays
+ for (int i=0; i<arrays.length(); i++) {
+ int max_constant = -1;
+ AccessIndexedList list_constant;
+ Value array = arrays.at(i);
+
+ // For all AccessIndexed-instructions in this block concerning the current array.
+ for(int j=0; j<accessIndexed.length(); j++) {
+ AccessIndexed *ai = accessIndexed.at(j);
+ if (ai->array() != array || !ai->check_flag(Instruction::NeedsRangeCheckFlag)) continue;
+
+ Value index = ai->index();
+ Constant *c = index->as_Constant();
+ if (c != NULL) {
+ int constant_value = c->type()->as_IntConstant()->value();
+ if (constant_value >= 0) {
+ if (constant_value <= max_constant) {
+ // No range check needed for this
+ remove_range_check(ai);
+ } else {
+ max_constant = constant_value;
+ list_constant.append(ai);
+ }
+ }
+ } else {
+ int last_integer = 0;
+ Instruction *last_instruction = index;
+ int base = 0;
+ ArithmeticOp *ao = index->as_ArithmeticOp();
+
+ while (ao != NULL && (ao->x()->as_Constant() || ao->y()->as_Constant()) && (ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub)) {
+ c = ao->y()->as_Constant();
+ Instruction *other = ao->x();
+ if (!c && ao->op() == Bytecodes::_iadd) {
+ c = ao->x()->as_Constant();
+ other = ao->y();
+ }
+
+ if (c) {
+ int value = c->type()->as_IntConstant()->value();
+ if (value != min_jint) {
+ if (ao->op() == Bytecodes::_isub) {
+ value = -value;
+ }
+ base += value;
+ last_integer = base;
+ last_instruction = other;
+ }
+ index = other;
+ } else {
+ break;
+ }
+ ao = index->as_ArithmeticOp();
+ }
+ add_access_indexed_info(indices, last_integer, last_instruction, ai);
+ }
+ }
+
+ // Iterate over all different indices
+ if (_optimistic) {
+ for (int i = 0; i < indices.length(); i++) {
+ Instruction *index_instruction = indices.at(i);
+ AccessIndexedInfo *info = _access_indexed_info.at(index_instruction->id());
+ assert(info != NULL, "Info must not be null");
+
+ // if idx < 0, max > 0, max + idx may fall between 0 and
+ // length-1 and if min < 0, min + idx may overflow and be >=
+ // 0. The predicate wouldn't trigger but some accesses could
+ // be with a negative index. This test guarantees that for the
+ // min and max value that are kept the predicate can't let
+ // some incorrect accesses happen.
+ bool range_cond = (info->_max < 0 || info->_max + min_jint <= info->_min);
+
+ // Generate code only if more than 2 range checks can be eliminated because of that.
+ // 2 because at least 2 comparisons are done
+ if (info->_list->length() > 2 && range_cond) {
+ AccessIndexed *first = info->_list->at(0);
+ Instruction *insert_position = first->prev();
+ assert(insert_position->next() == first, "prev was calculated");
+ ValueStack *state = first->state_before();
+
+ // Load min Constant
+ Constant *min_constant = NULL;
+ if (info->_min != 0) {
+ min_constant = new Constant(new IntConstant(info->_min));
+ NOT_PRODUCT(min_constant->set_printable_bci(first->printable_bci()));
+ insert_position = insert_position->insert_after(min_constant);
+ }
+
+ // Load max Constant
+ Constant *max_constant = NULL;
+ if (info->_max != 0) {
+ max_constant = new Constant(new IntConstant(info->_max));
+ NOT_PRODUCT(max_constant->set_printable_bci(first->printable_bci()));
+ insert_position = insert_position->insert_after(max_constant);
+ }
+
+ // Load array length
+ Value length_instr = first->length();
+ if (!length_instr) {
+ ArrayLength *length = new ArrayLength(array, first->state_before()->copy());
+ length->set_exception_state(length->state_before());
+ length->set_flag(Instruction::DeoptimizeOnException, true);
+ insert_position = insert_position->insert_after_same_bci(length);
+ length_instr = length;
+ }
+
+ // Calculate lower bound
+ Instruction *lower_compare = index_instruction;
+ if (min_constant) {
+ ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, min_constant, lower_compare, false, NULL);
+ insert_position = insert_position->insert_after_same_bci(ao);
+ lower_compare = ao;
+ }
+
+ // Calculate upper bound
+ Instruction *upper_compare = index_instruction;
+ if (max_constant) {
+ ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, max_constant, upper_compare, false, NULL);
+ insert_position = insert_position->insert_after_same_bci(ao);
+ upper_compare = ao;
+ }
+
+ // Trick with unsigned compare is done
+ int bci = NOT_PRODUCT(first->printable_bci()) PRODUCT_ONLY(-1);
+ insert_position = predicate(upper_compare, Instruction::aeq, length_instr, state, insert_position, bci);
+ insert_position = predicate_cmp_with_const(lower_compare, Instruction::leq, -1, state, insert_position);
+ for (int j = 0; j<info->_list->length(); j++) {
+ AccessIndexed *ai = info->_list->at(j);
+ remove_range_check(ai);
+ }
+ }
+ }
+
+ if (list_constant.length() > 1) {
+ AccessIndexed *first = list_constant.at(0);
+ Instruction *insert_position = first->prev();
+ ValueStack *state = first->state_before();
+ // Load max Constant
+ Constant *constant = new Constant(new IntConstant(max_constant));
+ NOT_PRODUCT(constant->set_printable_bci(first->printable_bci()));
+ insert_position = insert_position->insert_after(constant);
+ Instruction *compare_instr = constant;
+ Value length_instr = first->length();
+ if (!length_instr) {
+ ArrayLength *length = new ArrayLength(array, state->copy());
+ length->set_exception_state(length->state_before());
+ length->set_flag(Instruction::DeoptimizeOnException, true);
+ insert_position = insert_position->insert_after_same_bci(length);
+ length_instr = length;
+ }
+ // Compare for greater or equal to array length
+ insert_position = predicate(compare_instr, Instruction::geq, length_instr, state, insert_position);
+ for (int j = 0; j<list_constant.length(); j++) {
+ AccessIndexed *ai = list_constant.at(j);
+ remove_range_check(ai);
+ }
+ }
+ }
+
+ // Clear data structures for next array
+ for (int i = 0; i < indices.length(); i++) {
+ Instruction *index_instruction = indices.at(i);
+ _access_indexed_info.at_put(index_instruction->id(), NULL);
+ }
+ indices.clear();
+ }
+}
+
+bool RangeCheckEliminator::set_process_block_flags(BlockBegin *block) {
+ Instruction *cur = block;
+ bool process = false;
+
+ while (cur) {
+ process |= (cur->as_AccessIndexed() != NULL);
+ cur = cur->next();
+ }
+
+ BlockList *dominates = block->dominates();
+ for (int i=0; i<dominates->length(); i++) {
+ BlockBegin *next = dominates->at(i);
+ process |= set_process_block_flags(next);
+ }
+
+ if (!process) {
+ block->set(BlockBegin::donot_eliminate_range_checks);
+ }
+ return process;
+}
+
+bool RangeCheckEliminator::is_ok_for_deoptimization(Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper) {
+ bool upper_check = true;
+ assert(lower_instr || lower >= 0, "If no lower_instr present, lower must be greater 0");
+ assert(!lower_instr || lower_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
+ assert(!upper_instr || upper_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
+ assert(array_instr, "Array instruction must exist");
+ assert(array_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
+ assert(!length_instr || length_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
+
+ if (upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr) {
+ // static check
+ if (upper >= 0) return false; // would always trigger a deopt:
+ // array_length + x >= array_length, x >= 0 is always true
+ upper_check = false;
+ }
+ if (lower_instr && lower_instr->as_ArrayLength() && lower_instr->as_ArrayLength()->array() == array_instr) {
+ if (lower > 0) return false;
+ }
+ // No upper check required -> skip
+ if (upper_check && upper_instr && upper_instr->type()->as_ObjectType() && upper_instr == array_instr) {
+ // upper_instr is object means that the upper bound is the length
+ // of the upper_instr.
+ return false;
+ }
+ return true;
+}
+
+Instruction* RangeCheckEliminator::insert_after(Instruction* insert_position, Instruction* instr, int bci) {
+ if (bci != -1) {
+ NOT_PRODUCT(instr->set_printable_bci(bci));
+ return insert_position->insert_after(instr);
+ } else {
+ return insert_position->insert_after_same_bci(instr);
+ }
+}
+
+Instruction* RangeCheckEliminator::predicate(Instruction* left, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
+ RangeCheckPredicate *deoptimize = new RangeCheckPredicate(left, cond, true, right, state->copy());
+ return insert_after(insert_position, deoptimize, bci);
+}
+
+Instruction* RangeCheckEliminator::predicate_cmp_with_const(Instruction* instr, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
+ Constant *const_instr = new Constant(new IntConstant(constant));
+ insert_position = insert_after(insert_position, const_instr, bci);
+ return predicate(instr, cond, const_instr, state, insert_position);
+}
+
+Instruction* RangeCheckEliminator::predicate_add(Instruction* left, int left_const, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
+ Constant *constant = new Constant(new IntConstant(left_const));
+ insert_position = insert_after(insert_position, constant, bci);
+ ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, left, false, NULL);
+ insert_position = insert_position->insert_after_same_bci(ao);
+ return predicate(ao, cond, right, state, insert_position);
+}
+
+Instruction* RangeCheckEliminator::predicate_add_cmp_with_const(Instruction* left, int left_const, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
+ Constant *const_instr = new Constant(new IntConstant(constant));
+ insert_position = insert_after(insert_position, const_instr, bci);
+ return predicate_add(left, left_const, cond, const_instr, state, insert_position);
+}
+
+// Insert deoptimization
+void RangeCheckEliminator::insert_deoptimization(ValueStack *state, Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper, AccessIndexed *ai) {
+ assert(is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, lower, upper_instr, upper), "should have been tested before");
+ bool upper_check = !(upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr);
+
+ int bci = NOT_PRODUCT(ai->printable_bci()) PRODUCT_ONLY(-1);
+ if (lower_instr) {
+ assert(!lower_instr->type()->as_ObjectType(), "Must not be object type");
+ if (lower == 0) {
+ // Compare for less than 0
+ insert_position = predicate_cmp_with_const(lower_instr, Instruction::lss, 0, state, insert_position, bci);
+ } else if (lower > 0) {
+ // Compare for smaller 0
+ insert_position = predicate_add_cmp_with_const(lower_instr, lower, Instruction::lss, 0, state, insert_position, bci);
+ } else {
+ assert(lower < 0, "");
+ // Add 1
+ lower++;
+ lower = -lower;
+ // Compare for smaller or equal 0
+ insert_position = predicate_cmp_with_const(lower_instr, Instruction::leq, lower, state, insert_position, bci);
+ }
+ }
+
+ // No upper check required -> skip
+ if (!upper_check) return;
+
+ // We need to know length of array
+ if (!length_instr) {
+ // Load length if necessary
+ ArrayLength *length = new ArrayLength(array_instr, state->copy());
+ NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
+ length->set_exception_state(length->state_before());
+ length->set_flag(Instruction::DeoptimizeOnException, true);
+ insert_position = insert_position->insert_after(length);
+ length_instr = length;
+ }
+
+ if (!upper_instr) {
+ // Compare for geq array.length
+ insert_position = predicate_cmp_with_const(length_instr, Instruction::leq, upper, state, insert_position, bci);
+ } else {
+ if (upper_instr->type()->as_ObjectType()) {
+ assert(state, "must not be null");
+ assert(upper_instr != array_instr, "should be");
+ ArrayLength *length = new ArrayLength(upper_instr, state->copy());
+ NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
+ length->set_flag(Instruction::DeoptimizeOnException, true);
+ length->set_exception_state(length->state_before());
+ insert_position = insert_position->insert_after(length);
+ upper_instr = length;
+ }
+ assert(upper_instr->type()->as_IntType(), "Must not be object type!");
+
+ if (upper == 0) {
+ // Compare for geq array.length
+ insert_position = predicate(upper_instr, Instruction::geq, length_instr, state, insert_position, bci);
+ } else if (upper < 0) {
+ // Compare for geq array.length
+ insert_position = predicate_add(upper_instr, upper, Instruction::geq, length_instr, state, insert_position, bci);
+ } else {
+ assert(upper > 0, "");
+ upper = -upper;
+ // Compare for geq array.length
+ insert_position = predicate_add(length_instr, upper, Instruction::leq, upper_instr, state, insert_position, bci);
+ }
+ }
+}
+
+// Add if condition
+void RangeCheckEliminator::add_if_condition(IntegerStack &pushed, Value x, Value y, Instruction::Condition condition) {
+ if (y->as_Constant()) return;
+
+ int const_value = 0;
+ Value instr_value = x;
+ Constant *c = x->as_Constant();
+ ArithmeticOp *ao = x->as_ArithmeticOp();
+
+ if (c != NULL) {
+ const_value = c->type()->as_IntConstant()->value();
+ instr_value = NULL;
+ } else if (ao != NULL && (!ao->x()->as_Constant() || !ao->y()->as_Constant()) && ((ao->op() == Bytecodes::_isub && ao->y()->as_Constant()) || ao->op() == Bytecodes::_iadd)) {
+ assert(!ao->x()->as_Constant() || !ao->y()->as_Constant(), "At least one operator must be non-constant!");
+ assert(ao->op() == Bytecodes::_isub || ao->op() == Bytecodes::_iadd, "Operation has to be add or sub!");
+ c = ao->x()->as_Constant();
+ if (c != NULL) {
+ const_value = c->type()->as_IntConstant()->value();
+ instr_value = ao->y();
+ } else {
+ c = ao->y()->as_Constant();
+ if (c != NULL) {
+ const_value = c->type()->as_IntConstant()->value();
+ instr_value = ao->x();
+ }
+ }
+ if (ao->op() == Bytecodes::_isub) {
+ assert(ao->y()->as_Constant(), "1 - x not supported, only x - 1 is valid!");
+ if (const_value > min_jint) {
+ const_value = -const_value;
+ } else {
+ const_value = 0;
+ instr_value = x;
+ }
+ }
+ }
+
+ update_bound(pushed, y, condition, instr_value, const_value);
+}
+
+// Process If
+void RangeCheckEliminator::process_if(IntegerStack &pushed, BlockBegin *block, If *cond) {
+ // Only if we are direct true / false successor and NOT both ! (even this may occur)
+ if ((cond->tsux() == block || cond->fsux() == block) && cond->tsux() != cond->fsux()) {
+ Instruction::Condition condition = cond->cond();
+ if (cond->fsux() == block) {
+ condition = Instruction::negate(condition);
+ }
+ Value x = cond->x();
+ Value y = cond->y();
+ if (x->type()->as_IntType() && y->type()->as_IntType()) {
+ add_if_condition(pushed, y, x, condition);
+ add_if_condition(pushed, x, y, Instruction::mirror(condition));
+ }
+ }
+}
+
+// Process access indexed
+void RangeCheckEliminator::process_access_indexed(BlockBegin *loop_header, BlockBegin *block, AccessIndexed *ai) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2)
+ );
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->print_cr("Access indexed: index=%d length=%d", ai->index()->id(), (ai->length() != NULL ? ai->length()->id() :-1 ))
+ );
+
+ if (ai->check_flag(Instruction::NeedsRangeCheckFlag)) {
+ Bound *index_bound = get_bound(ai->index());
+ if (!index_bound->has_lower() || !index_bound->has_upper()) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Index instruction %d has no lower and/or no upper bound!", ai->index()->id())
+ );
+ return;
+ }
+
+ Bound *array_bound;
+ if (ai->length()) {
+ array_bound = get_bound(ai->length());
+ } else {
+ array_bound = get_bound(ai->array());
+ }
+
+ if (in_array_bound(index_bound, ai->array()) ||
+ (index_bound && array_bound && index_bound->is_smaller(array_bound) && !index_bound->lower_instr() && index_bound->lower() >= 0)) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Bounds check for instruction %d in block B%d can be fully eliminated!", ai->id(), ai->block()->block_id())
+ );
+
+ remove_range_check(ai);
+ } else if (_optimistic && loop_header) {
+ assert(ai->array(), "Array must not be null!");
+ assert(ai->index(), "Index must not be null!");
+
+ // Array instruction
+ Instruction *array_instr = ai->array();
+ if (!loop_invariant(loop_header, array_instr)) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Array %d is not loop invariant to header B%d", ai->array()->id(), loop_header->block_id())
+ );
+ return;
+ }
+
+ // Lower instruction
+ Value index_instr = ai->index();
+ Value lower_instr = index_bound->lower_instr();
+ if (!loop_invariant(loop_header, lower_instr)) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Lower instruction %d not loop invariant!", lower_instr->id())
+ );
+ return;
+ }
+ if (!lower_instr && index_bound->lower() < 0) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Lower bound smaller than 0 (%d)!", index_bound->lower())
+ );
+ return;
+ }
+
+ // Upper instruction
+ Value upper_instr = index_bound->upper_instr();
+ if (!loop_invariant(loop_header, upper_instr)) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Upper instruction %d not loop invariant!", upper_instr->id())
+ );
+ return;
+ }
+
+ // Length instruction
+ Value length_instr = ai->length();
+ if (!loop_invariant(loop_header, length_instr)) {
+ // Generate length instruction yourself!
+ length_instr = NULL;
+ }
+
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("LOOP INVARIANT access indexed %d found in block B%d!", ai->id(), ai->block()->block_id())
+ );
+
+ BlockBegin *pred_block = loop_header->dominator();
+ assert(pred_block != NULL, "Every loop header has a dominator!");
+ BlockEnd *pred_block_end = pred_block->end();
+ Instruction *insert_position = pred_block_end->prev();
+ ValueStack *state = pred_block_end->state_before();
+ if (pred_block_end->as_Goto() && state == NULL) state = pred_block_end->state();
+ assert(state, "State must not be null");
+
+ // Add deoptimization to dominator of loop header
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Inserting deopt at bci %d in block B%d!", state->bci(), insert_position->block()->block_id())
+ );
+
+ if (!is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper())) {
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Could not eliminate because of static analysis!")
+ );
+ return;
+ }
+
+ insert_deoptimization(state, insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper(), ai);
+
+ // Finally remove the range check!
+ remove_range_check(ai);
+ }
+ }
+}
+
+void RangeCheckEliminator::remove_range_check(AccessIndexed *ai) {
+ ai->set_flag(Instruction::NeedsRangeCheckFlag, false);
+ // no range check, no need for the length instruction anymore
+ ai->clear_length();
+
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(ai->dominator_depth()*2);
+ tty->print_cr("Range check for instruction %d eliminated!", ai->id());
+ );
+
+ ASSERT_RANGE_CHECK_ELIMINATION(
+ Value array_length = ai->length();
+ if (!array_length) {
+ array_length = ai->array();
+ assert(array_length->type()->as_ObjectType(), "Has to be object type!");
+ }
+ int cur_constant = -1;
+ Value cur_value = array_length;
+ if (cur_value->type()->as_IntConstant()) {
+ cur_constant += cur_value->type()->as_IntConstant()->value();
+ cur_value = NULL;
+ }
+ Bound *new_index_bound = new Bound(0, NULL, cur_constant, cur_value);
+ add_assertions(new_index_bound, ai->index(), ai);
+ );
+}
+
+// Calculate bounds for instruction in this block and children blocks in the dominator tree
+void RangeCheckEliminator::calc_bounds(BlockBegin *block, BlockBegin *loop_header) {
+ // Ensures a valid loop_header
+ assert(!loop_header || loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Loop header has to be real !");
+
+ // Tracing output
+ TRACE_RANGE_CHECK_ELIMINATION(
+ tty->fill_to(block->dominator_depth()*2);
+ tty->print_cr("Block B%d", block->block_id());
+ );
+
+ // Pushed stack for conditions
+ IntegerStack pushed;
+ // Process If
+ BlockBegin *parent = block->dominator();
+ if (parent != NULL) {
+ If *cond = parent->end()->as_If();
+ if (cond != NULL) {
+ process_if(pushed, block, cond);
+ }
+ }
+
+ // Interate over current block
+ InstructionList arrays;
+ AccessIndexedList accessIndexed;
+ Instruction *cur = block;
+
+ while (cur) {
+ // Ensure cur wasn't inserted during the elimination
+ if (cur->id() < this->_bounds.length()) {
+ // Process only if it is an access indexed instruction
+ AccessIndexed *ai = cur->as_AccessIndexed();
+ if (ai != NULL) {
+ process_access_indexed(loop_header, block, ai);
+ accessIndexed.append(ai);
+ if (!arrays.contains(ai->array())) {
+ arrays.append(ai->array());
+ }
+ Bound *b = get_bound(ai->index());
+ if (!b->lower_instr()) {
+ // Lower bound is constant
+ update_bound(pushed, ai->index(), Instruction::geq, NULL, 0);
+ }
+ if (!b->has_upper()) {
+ if (ai->length() && ai->length()->type()->as_IntConstant()) {
+ int value = ai->length()->type()->as_IntConstant()->value();
+ update_bound(pushed, ai->index(), Instruction::lss, NULL, value);
+ } else {
+ // Has no upper bound
+ Instruction *instr = ai->length();
+ if (instr != NULL) instr = ai->array();
+ update_bound(pushed, ai->index(), Instruction::lss, instr, 0);
+ }
+ }
+ }
+ }
+ cur = cur->next();
+ }
+
+ // Output current condition stack
+ TRACE_RANGE_CHECK_ELIMINATION(dump_condition_stack(block));
+
+ // Do in block motion of range checks
+ in_block_motion(block, accessIndexed, arrays);
+
+ // Call all dominated blocks
+ for (int i=0; i<block->dominates()->length(); i++) {
+ BlockBegin *next = block->dominates()->at(i);
+ if (!next->is_set(BlockBegin::donot_eliminate_range_checks)) {
+ // if current block is a loop header and:
+ // - next block belongs to the same loop
+ // or
+ // - next block belongs to an inner loop
+ // then current block is the loop header for next block
+ if (block->is_set(BlockBegin::linear_scan_loop_header_flag) && (block->loop_index() == next->loop_index() || next->loop_depth() > block->loop_depth())) {
+ calc_bounds(next, block);
+ } else {
+ calc_bounds(next, loop_header);
+ }
+ }
+ }
+
+ // Reset stack
+ for (int i=0; i<pushed.length(); i++) {
+ _bounds.at(pushed.at(i))->pop();
+ }
+}
+
+#ifndef PRODUCT
+// Dump condition stack
+void RangeCheckEliminator::dump_condition_stack(BlockBegin *block) {
+ for (int i=0; i<_ir->linear_scan_order()->length(); i++) {
+ BlockBegin *cur_block = _ir->linear_scan_order()->at(i);
+ Instruction *instr = cur_block;
+ for_each_phi_fun(cur_block, phi,
+ BoundStack *bound_stack = _bounds.at(phi->id());
+ if (bound_stack && bound_stack->length() > 0) {
+ Bound *bound = bound_stack->top();
+ if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != phi || bound->upper_instr() != phi || bound->lower() != 0 || bound->upper() != 0)) {
+ TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
+ tty->print("i%d", phi->id());
+ tty->print(": ");
+ bound->print();
+ tty->cr();
+ );
+ }
+ });
+
+ while (!instr->as_BlockEnd()) {
+ if (instr->id() < _bounds.length()) {
+ BoundStack *bound_stack = _bounds.at(instr->id());
+ if (bound_stack && bound_stack->length() > 0) {
+ Bound *bound = bound_stack->top();
+ if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != instr || bound->upper_instr() != instr || bound->lower() != 0 || bound->upper() != 0)) {
+ TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
+ tty->print("i%d", instr->id());
+ tty->print(": ");
+ bound->print();
+ tty->cr();
+ );
+ }
+ }
+ }
+ instr = instr->next();
+ }
+ }
+}
+#endif
+
+// Verification or the IR
+RangeCheckEliminator::Verification::Verification(IR *ir) : _used(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), false) {
+ this->_ir = ir;
+ ir->iterate_linear_scan_order(this);
+}
+
+// Verify this block
+void RangeCheckEliminator::Verification::block_do(BlockBegin *block) {
+ If *cond = block->end()->as_If();
+ // Watch out: tsux and fsux can be the same!
+ if (block->number_of_sux() > 1) {
+ for (int i=0; i<block->number_of_sux(); i++) {
+ BlockBegin *sux = block->sux_at(i);
+ BlockBegin *pred = NULL;
+ for (int j=0; j<sux->number_of_preds(); j++) {
+ BlockBegin *cur = sux->pred_at(j);
+ assert(cur != NULL, "Predecessor must not be null");
+ if (!pred) {
+ pred = cur;
+ }
+ assert(cur == pred, "Block must not have more than one predecessor if its predecessor has more than one successor");
+ }
+ assert(sux->number_of_preds() >= 1, "Block must have at least one predecessor");
+ assert(sux->pred_at(0) == block, "Wrong successor");
+ }
+ }
+
+ BlockBegin *dominator = block->dominator();
+ if (dominator) {
+ assert(block != _ir->start(), "Start block must not have a dominator!");
+ assert(can_reach(dominator, block), "Dominator can't reach his block !");
+ assert(can_reach(_ir->start(), dominator), "Dominator is unreachable !");
+ assert(!can_reach(_ir->start(), block, dominator), "Wrong dominator ! Block can be reached anyway !");
+ BlockList *all_blocks = _ir->linear_scan_order();
+ for (int i=0; i<all_blocks->length(); i++) {
+ BlockBegin *cur = all_blocks->at(i);
+ if (cur != dominator && cur != block) {
+ assert(can_reach(dominator, block, cur), "There has to be another dominator!");
+ }
+ }
+ } else {
+ assert(block == _ir->start(), "Only start block must not have a dominator");
+ }
+
+ if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
+ int loop_index = block->loop_index();
+ BlockList *all_blocks = _ir->linear_scan_order();
+ assert(block->number_of_preds() >= 1, "Block must have at least one predecessor");
+ assert(!block->is_set(BlockBegin::exception_entry_flag), "Loop header must not be exception handler!");
+ // Sometimes, the backbranch comes from an exception handler. In
+ // this case, loop indexes/loop depths may not appear correct.
+ bool loop_through_xhandler = false;
+ for (int i = 0; i < block->number_of_exception_handlers(); i++) {
+ BlockBegin *xhandler = block->exception_handler_at(i);
+ for (int j = 0; j < block->number_of_preds(); j++) {
+ if (dominates(xhandler, block->pred_at(j)) || xhandler == block->pred_at(j)) {
+ loop_through_xhandler = true;
+ }
+ }
+ }
+
+ for (int i=0; i<block->number_of_sux(); i++) {
+ BlockBegin *sux = block->sux_at(i);
+ assert(sux->loop_depth() != block->loop_depth() || sux->loop_index() == block->loop_index() || loop_through_xhandler, "Loop index has to be same");
+ assert(sux->loop_depth() == block->loop_depth() || sux->loop_index() != block->loop_index(), "Loop index has to be different");
+ }
+
+ for (int i=0; i<all_blocks->length(); i++) {
+ BlockBegin *cur = all_blocks->at(i);
+ if (cur->loop_index() == loop_index && cur != block) {
+ assert(dominates(block->dominator(), cur), "Dominator of loop header must dominate all loop blocks");
+ }
+ }
+ }
+
+ Instruction *cur = block;
+ while (cur) {
+ assert(cur->block() == block, "Block begin has to be set correctly!");
+ cur = cur->next();
+ }
+}
+
+// Loop header must dominate all loop blocks
+bool RangeCheckEliminator::Verification::dominates(BlockBegin *dominator, BlockBegin *block) {
+ BlockBegin *cur = block->dominator();
+ while (cur && cur != dominator) {
+ cur = cur->dominator();
+ }
+ return cur == dominator;
+}
+
+// Try to reach Block end beginning in Block start and not using Block dont_use
+bool RangeCheckEliminator::Verification::can_reach(BlockBegin *start, BlockBegin *end, BlockBegin *dont_use /* = NULL */) {
+ if (start == end) return start != dont_use;
+ // Simple BSF from start to end
+ // BlockBeginList _current;
+ for (int i=0; i < _used.length(); i++) {
+ _used.at_put(i, false);
+ }
+ _current.trunc_to(0);
+ _successors.trunc_to(0);
+ if (start != dont_use) {
+ _current.push(start);
+ _used.at_put(start->block_id(), true);
+ }
+
+ // BlockBeginList _successors;
+ while (_current.length() > 0) {
+ BlockBegin *cur = _current.pop();
+ // Add exception handlers to list
+ for (int i=0; i<cur->number_of_exception_handlers(); i++) {
+ BlockBegin *xhandler = cur->exception_handler_at(i);
+ _successors.push(xhandler);
+ // Add exception handlers of _successors to list
+ for (int j=0; j<xhandler->number_of_exception_handlers(); j++) {
+ BlockBegin *sux_xhandler = xhandler->exception_handler_at(j);
+ _successors.push(sux_xhandler);
+ }
+ }
+ // Add normal _successors to list
+ for (int i=0; i<cur->number_of_sux(); i++) {
+ BlockBegin *sux = cur->sux_at(i);
+ _successors.push(sux);
+ // Add exception handlers of _successors to list
+ for (int j=0; j<sux->number_of_exception_handlers(); j++) {
+ BlockBegin *xhandler = sux->exception_handler_at(j);
+ _successors.push(xhandler);
+ }
+ }
+ for (int i=0; i<_successors.length(); i++) {
+ BlockBegin *sux = _successors.at(i);
+ assert(sux != NULL, "Successor must not be NULL!");
+ if (sux == end) {
+ return true;
+ }
+ if (sux != dont_use && !_used.at(sux->block_id())) {
+ _used.at_put(sux->block_id(), true);
+ _current.push(sux);
+ }
+ }
+ _successors.trunc_to(0);
+ }
+
+ return false;
+}
+
+// Bound
+RangeCheckEliminator::Bound::~Bound() {
+}
+
+// Bound constructor
+RangeCheckEliminator::Bound::Bound() {
+ init();
+ this->_lower = min_jint;
+ this->_upper = max_jint;
+ this->_lower_instr = NULL;
+ this->_upper_instr = NULL;
+}
+
+// Bound constructor
+RangeCheckEliminator::Bound::Bound(int lower, Value lower_instr, int upper, Value upper_instr) {
+ init();
+ assert(!lower_instr || !lower_instr->as_Constant() || !lower_instr->type()->as_IntConstant(), "Must not be constant!");
+ assert(!upper_instr || !upper_instr->as_Constant() || !upper_instr->type()->as_IntConstant(), "Must not be constant!");
+ this->_lower = lower;
+ this->_upper = upper;
+ this->_lower_instr = lower_instr;
+ this->_upper_instr = upper_instr;
+}
+
+// Bound constructor
+RangeCheckEliminator::Bound::Bound(Instruction::Condition cond, Value v, int constant) {
+ assert(!v || (v->type() && (v->type()->as_IntType() || v->type()->as_ObjectType())), "Type must be array or integer!");
+ assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
+
+ init();
+ if (cond == Instruction::eql) {
+ _lower = constant;
+ _lower_instr = v;
+ _upper = constant;
+ _upper_instr = v;
+ } else if (cond == Instruction::neq) {
+ _lower = min_jint;
+ _upper = max_jint;
+ _lower_instr = NULL;
+ _upper_instr = NULL;
+ if (v == NULL) {
+ if (constant == min_jint) {
+ _lower++;
+ }
+ if (constant == max_jint) {
+ _upper--;
+ }
+ }
+ } else if (cond == Instruction::geq) {
+ _lower = constant;
+ _lower_instr = v;
+ _upper = max_jint;
+ _upper_instr = NULL;
+ } else if (cond == Instruction::leq) {
+ _lower = min_jint;
+ _lower_instr = NULL;
+ _upper = constant;
+ _upper_instr = v;
+ } else {
+ ShouldNotReachHere();
+ }
+}
+
+// Set lower
+void RangeCheckEliminator::Bound::set_lower(int value, Value v) {
+ assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
+ this->_lower = value;
+ this->_lower_instr = v;
+}
+
+// Set upper
+void RangeCheckEliminator::Bound::set_upper(int value, Value v) {
+ assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
+ this->_upper = value;
+ this->_upper_instr = v;
+}
+
+// Add constant -> no overflow may occur
+void RangeCheckEliminator::Bound::add_constant(int value) {
+ this->_lower += value;
+ this->_upper += value;
+}
+
+// Init
+void RangeCheckEliminator::Bound::init() {
+}
+
+// or
+void RangeCheckEliminator::Bound::or_op(Bound *b) {
+ // Watch out, bound is not guaranteed not to overflow!
+ // Update lower bound
+ if (_lower_instr != b->_lower_instr || (_lower_instr && _lower != b->_lower)) {
+ _lower_instr = NULL;
+ _lower = min_jint;
+ } else {
+ _lower = MIN2(_lower, b->_lower);
+ }
+ // Update upper bound
+ if (_upper_instr != b->_upper_instr || (_upper_instr && _upper != b->_upper)) {
+ _upper_instr = NULL;
+ _upper = max_jint;
+ } else {
+ _upper = MAX2(_upper, b->_upper);
+ }
+}
+
+// and
+void RangeCheckEliminator::Bound::and_op(Bound *b) {
+ // Update lower bound
+ if (_lower_instr == b->_lower_instr) {
+ _lower = MAX2(_lower, b->_lower);
+ }
+ if (b->has_lower()) {
+ bool set = true;
+ if (_lower_instr != NULL && b->_lower_instr != NULL) {
+ set = (_lower_instr->dominator_depth() > b->_lower_instr->dominator_depth());
+ }
+ if (set) {
+ _lower = b->_lower;
+ _lower_instr = b->_lower_instr;
+ }
+ }
+ // Update upper bound
+ if (_upper_instr == b->_upper_instr) {
+ _upper = MIN2(_upper, b->_upper);
+ }
+ if (b->has_upper()) {
+ bool set = true;
+ if (_upper_instr != NULL && b->_upper_instr != NULL) {
+ set = (_upper_instr->dominator_depth() > b->_upper_instr->dominator_depth());
+ }
+ if (set) {
+ _upper = b->_upper;
+ _upper_instr = b->_upper_instr;
+ }
+ }
+}
+
+// has_upper
+bool RangeCheckEliminator::Bound::has_upper() {
+ return _upper_instr != NULL || _upper < max_jint;
+}
+
+// is_smaller
+bool RangeCheckEliminator::Bound::is_smaller(Bound *b) {
+ if (b->_lower_instr != _upper_instr) {
+ return false;
+ }
+ return _upper < b->_lower;
+}
+
+// has_lower
+bool RangeCheckEliminator::Bound::has_lower() {
+ return _lower_instr != NULL || _lower > min_jint;
+}
+
+// in_array_bound
+bool RangeCheckEliminator::in_array_bound(Bound *bound, Value array){
+ if (!bound) return false;
+ assert(array != NULL, "Must not be null!");
+ assert(bound != NULL, "Must not be null!");
+ if (bound->lower() >=0 && bound->lower_instr() == NULL && bound->upper() < 0 && bound->upper_instr() != NULL) {
+ ArrayLength *len = bound->upper_instr()->as_ArrayLength();
+ if (bound->upper_instr() == array || (len != NULL && len->array() == array)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+// remove_lower
+void RangeCheckEliminator::Bound::remove_lower() {
+ _lower = min_jint;
+ _lower_instr = NULL;
+}
+
+// remove_upper
+void RangeCheckEliminator::Bound::remove_upper() {
+ _upper = max_jint;
+ _upper_instr = NULL;
+}
+
+// upper
+int RangeCheckEliminator::Bound::upper() {
+ return _upper;
+}
+
+// lower
+int RangeCheckEliminator::Bound::lower() {
+ return _lower;
+}
+
+// upper_instr
+Value RangeCheckEliminator::Bound::upper_instr() {
+ return _upper_instr;
+}
+
+// lower_instr
+Value RangeCheckEliminator::Bound::lower_instr() {
+ return _lower_instr;
+}
+
+// print
+void RangeCheckEliminator::Bound::print() {
+ tty->print("%s", "");
+ if (this->_lower_instr || this->_lower != min_jint) {
+ if (this->_lower_instr) {
+ tty->print("i%d", this->_lower_instr->id());
+ if (this->_lower > 0) {
+ tty->print("+%d", _lower);
+ }
+ if (this->_lower < 0) {
+ tty->print("%d", _lower);
+ }
+ } else {
+ tty->print("%d", _lower);
+ }
+ tty->print(" <= ");
+ }
+ tty->print("x");
+ if (this->_upper_instr || this->_upper != max_jint) {
+ tty->print(" <= ");
+ if (this->_upper_instr) {
+ tty->print("i%d", this->_upper_instr->id());
+ if (this->_upper > 0) {
+ tty->print("+%d", _upper);
+ }
+ if (this->_upper < 0) {
+ tty->print("%d", _upper);
+ }
+ } else {
+ tty->print("%d", _upper);
+ }
+ }
+}
+
+// Copy
+RangeCheckEliminator::Bound *RangeCheckEliminator::Bound::copy() {
+ Bound *b = new Bound();
+ b->_lower = _lower;
+ b->_lower_instr = _lower_instr;
+ b->_upper = _upper;
+ b->_upper_instr = _upper_instr;
+ return b;
+}
+
+#ifdef ASSERT
+// Add assertion
+void RangeCheckEliminator::Bound::add_assertion(Instruction *instruction, Instruction *position, int i, Value instr, Instruction::Condition cond) {
+ Instruction *result = position;
+ Instruction *compare_with = NULL;
+ ValueStack *state = position->state_before();
+ if (position->as_BlockEnd() && !position->as_Goto()) {
+ state = position->as_BlockEnd()->state_before();
+ }
+ Instruction *instruction_before = position->prev();
+ if (position->as_Return() && Compilation::current()->method()->is_synchronized() && instruction_before->as_MonitorExit()) {
+ instruction_before = instruction_before->prev();
+ }
+ result = instruction_before;
+ // Load constant only if needed
+ Constant *constant = NULL;
+ if (i != 0 || !instr) {
+ constant = new Constant(new IntConstant(i));
+ NOT_PRODUCT(constant->set_printable_bci(position->printable_bci()));
+ result = result->insert_after(constant);
+ compare_with = constant;
+ }
+
+ if (instr) {
+ assert(instr->type()->as_ObjectType() || instr->type()->as_IntType(), "Type must be array or integer!");
+ compare_with = instr;
+ // Load array length if necessary
+ Instruction *op = instr;
+ if (instr->type()->as_ObjectType()) {
+ assert(state, "must not be null");
+ ArrayLength *length = new ArrayLength(instr, state->copy());
+ NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
+ length->set_exception_state(length->state_before());
+ result = result->insert_after(length);
+ op = length;
+ compare_with = length;
+ }
+ // Add operation only if necessary
+ if (constant) {
+ ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, op, false, NULL);
+ NOT_PRODUCT(ao->set_printable_bci(position->printable_bci()));
+ result = result->insert_after(ao);
+ compare_with = ao;
+ // TODO: Check that add operation does not overflow!
+ }
+ }
+ assert(compare_with != NULL, "You have to compare with something!");
+ assert(instruction != NULL, "Instruction must not be null!");
+
+ if (instruction->type()->as_ObjectType()) {
+ // Load array length if necessary
+ Instruction *op = instruction;
+ assert(state, "must not be null");
+ ArrayLength *length = new ArrayLength(instruction, state->copy());
+ length->set_exception_state(length->state_before());
+ NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
+ result = result->insert_after(length);
+ instruction = length;
+ }
+
+ Assert *assert = new Assert(instruction, cond, false, compare_with);
+ NOT_PRODUCT(assert->set_printable_bci(position->printable_bci()));
+ result->insert_after(assert);
+}
+
+// Add assertions
+void RangeCheckEliminator::add_assertions(Bound *bound, Instruction *instruction, Instruction *position) {
+ // Add lower bound assertion
+ if (bound->has_lower()) {
+ bound->add_assertion(instruction, position, bound->lower(), bound->lower_instr(), Instruction::geq);
+ }
+ // Add upper bound assertion
+ if (bound->has_upper()) {
+ bound->add_assertion(instruction, position, bound->upper(), bound->upper_instr(), Instruction::leq);
+ }
+}
+#endif
+