--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/share/c1/c1_LinearScan.hpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,967 @@
+/*
+ * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#ifndef SHARE_VM_C1_C1_LINEARSCAN_HPP
+#define SHARE_VM_C1_C1_LINEARSCAN_HPP
+
+#include "c1/c1_FpuStackSim.hpp"
+#include "c1/c1_FrameMap.hpp"
+#include "c1/c1_IR.hpp"
+#include "c1/c1_Instruction.hpp"
+#include "c1/c1_LIR.hpp"
+#include "c1/c1_LIRGenerator.hpp"
+#include "utilities/align.hpp"
+#include "utilities/macros.hpp"
+
+class DebugInfoCache;
+class FpuStackAllocator;
+class IRScopeDebugInfo;
+class Interval;
+class IntervalWalker;
+class LIRGenerator;
+class LinearScan;
+class MoveResolver;
+class Range;
+
+typedef GrowableArray<Interval*> IntervalArray;
+typedef GrowableArray<Interval*> IntervalList;
+typedef GrowableArray<IntervalList*> IntervalsList;
+typedef GrowableArray<ScopeValue*> ScopeValueArray;
+typedef GrowableArray<LIR_OpList*> LIR_OpListStack;
+
+enum IntervalUseKind {
+ // priority of use kinds must be ascending
+ noUse = 0,
+ loopEndMarker = 1,
+ shouldHaveRegister = 2,
+ mustHaveRegister = 3,
+
+ firstValidKind = 1,
+ lastValidKind = 3
+};
+
+enum IntervalKind {
+ fixedKind = 0, // interval pre-colored by LIR_Generator
+ anyKind = 1, // no register/memory allocated by LIR_Generator
+ nofKinds,
+ firstKind = fixedKind
+};
+
+
+// during linear scan an interval is in one of four states in
+enum IntervalState {
+ unhandledState = 0, // unhandled state (not processed yet)
+ activeState = 1, // life and is in a physical register
+ inactiveState = 2, // in a life time hole and is in a physical register
+ handledState = 3, // spilled or not life again
+ invalidState = -1
+};
+
+
+enum IntervalSpillState {
+ noDefinitionFound, // starting state of calculation: no definition found yet
+ oneDefinitionFound, // one definition has already been found.
+ // Note: two consecutive definitions are treated as one (e.g. consecutive move and add because of two-operand LIR form)
+ // the position of this definition is stored in _definition_pos
+ oneMoveInserted, // one spill move has already been inserted.
+ storeAtDefinition, // the interval should be stored immediately after its definition because otherwise
+ // there would be multiple redundant stores
+ startInMemory, // the interval starts in memory (e.g. method parameter), so a store is never necessary
+ noOptimization // the interval has more then one definition (e.g. resulting from phi moves), so stores to memory are not optimized
+};
+
+
+#define for_each_interval_kind(kind) \
+ for (IntervalKind kind = firstKind; kind < nofKinds; kind = (IntervalKind)(kind + 1))
+
+#define for_each_visitor_mode(mode) \
+ for (LIR_OpVisitState::OprMode mode = LIR_OpVisitState::firstMode; mode < LIR_OpVisitState::numModes; mode = (LIR_OpVisitState::OprMode)(mode + 1))
+
+
+class LinearScan : public CompilationResourceObj {
+ // declare classes used by LinearScan as friends because they
+ // need a wide variety of functions declared here
+ //
+ // Only the small interface to the rest of the compiler is public
+ friend class Interval;
+ friend class IntervalWalker;
+ friend class LinearScanWalker;
+ friend class FpuStackAllocator;
+ friend class MoveResolver;
+ friend class LinearScanStatistic;
+ friend class LinearScanTimers;
+ friend class RegisterVerifier;
+
+ public:
+ enum {
+ any_reg = -1,
+ nof_cpu_regs = pd_nof_cpu_regs_linearscan,
+ nof_fpu_regs = pd_nof_fpu_regs_linearscan,
+ nof_xmm_regs = pd_nof_xmm_regs_linearscan,
+ nof_regs = nof_cpu_regs + nof_fpu_regs + nof_xmm_regs
+ };
+
+ private:
+ Compilation* _compilation;
+ IR* _ir;
+ LIRGenerator* _gen;
+ FrameMap* _frame_map;
+
+ BlockList _cached_blocks; // cached list with all blocks in linear-scan order (only correct if original list keeps unchanged)
+ int _num_virtual_regs; // number of virtual registers (without new registers introduced because of splitting intervals)
+ bool _has_fpu_registers; // true if this method uses any floating point registers (and so fpu stack allocation is necessary)
+ int _num_calls; // total number of calls in this method
+ int _max_spills; // number of stack slots used for intervals allocated to memory
+ int _unused_spill_slot; // unused spill slot for a single-word value because of alignment of a double-word value
+
+ IntervalList _intervals; // mapping from register number to interval
+ IntervalList* _new_intervals_from_allocation; // list with all intervals created during allocation when an existing interval is split
+ IntervalArray* _sorted_intervals; // intervals sorted by Interval::from()
+ bool _needs_full_resort; // set to true if an Interval::from() is changed and _sorted_intervals must be resorted
+
+ LIR_OpArray _lir_ops; // mapping from LIR_Op id to LIR_Op node
+ BlockBeginArray _block_of_op; // mapping from LIR_Op id to the BlockBegin containing this instruction
+ ResourceBitMap _has_info; // bit set for each LIR_Op id that has a CodeEmitInfo
+ ResourceBitMap _has_call; // bit set for each LIR_Op id that destroys all caller save registers
+ BitMap2D _interval_in_loop; // bit set for each virtual register that is contained in each loop
+
+ // cached debug info to prevent multiple creation of same object
+ // TODO: cached scope values for registers could be static
+ ScopeValueArray _scope_value_cache;
+
+ static ConstantOopWriteValue* _oop_null_scope_value;
+ static ConstantIntValue* _int_m1_scope_value;
+ static ConstantIntValue* _int_0_scope_value;
+ static ConstantIntValue* _int_1_scope_value;
+ static ConstantIntValue* _int_2_scope_value;
+
+ // accessors
+ IR* ir() const { return _ir; }
+ Compilation* compilation() const { return _compilation; }
+ LIRGenerator* gen() const { return _gen; }
+ FrameMap* frame_map() const { return _frame_map; }
+
+ // unified bailout support
+ void bailout(const char* msg) const { compilation()->bailout(msg); }
+ bool bailed_out() const { return compilation()->bailed_out(); }
+
+ // access to block list (sorted in linear scan order)
+ int block_count() const { assert(_cached_blocks.length() == ir()->linear_scan_order()->length(), "invalid cached block list"); return _cached_blocks.length(); }
+ BlockBegin* block_at(int idx) const { assert(_cached_blocks.at(idx) == ir()->linear_scan_order()->at(idx), "invalid cached block list"); return _cached_blocks.at(idx); }
+
+ int num_virtual_regs() const { return _num_virtual_regs; }
+ // size of live_in and live_out sets of BasicBlocks (BitMap needs rounded size for iteration)
+ int live_set_size() const { return align_up(_num_virtual_regs, BitsPerWord); }
+ bool has_fpu_registers() const { return _has_fpu_registers; }
+ int num_loops() const { return ir()->num_loops(); }
+ bool is_interval_in_loop(int interval, int loop) const { return _interval_in_loop.at(interval, loop); }
+
+ // handling of fpu stack allocation (platform dependent, needed for debug information generation)
+#ifdef X86
+ FpuStackAllocator* _fpu_stack_allocator;
+ bool use_fpu_stack_allocation() const { return UseSSE < 2 && has_fpu_registers(); }
+#else
+ bool use_fpu_stack_allocation() const { return false; }
+#endif
+
+
+ // access to interval list
+ int interval_count() const { return _intervals.length(); }
+ Interval* interval_at(int reg_num) const { return _intervals.at(reg_num); }
+
+ IntervalList* new_intervals_from_allocation() const { return _new_intervals_from_allocation; }
+
+ // access to LIR_Ops and Blocks indexed by op_id
+ int max_lir_op_id() const { assert(_lir_ops.length() > 0, "no operations"); return (_lir_ops.length() - 1) << 1; }
+ LIR_Op* lir_op_with_id(int op_id) const { assert(op_id >= 0 && op_id <= max_lir_op_id() && op_id % 2 == 0, "op_id out of range or not even"); return _lir_ops.at(op_id >> 1); }
+ BlockBegin* block_of_op_with_id(int op_id) const { assert(_block_of_op.length() > 0 && op_id >= 0 && op_id <= max_lir_op_id() + 1, "op_id out of range"); return _block_of_op.at(op_id >> 1); }
+
+ bool is_block_begin(int op_id) { return op_id == 0 || block_of_op_with_id(op_id) != block_of_op_with_id(op_id - 1); }
+ bool covers_block_begin(int op_id_1, int op_id_2) { return block_of_op_with_id(op_id_1) != block_of_op_with_id(op_id_2); }
+
+ bool has_call(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_call.at(op_id >> 1); }
+ bool has_info(int op_id) { assert(op_id % 2 == 0, "must be even"); return _has_info.at(op_id >> 1); }
+
+
+ // functions for converting LIR-Operands to register numbers
+ static bool is_valid_reg_num(int reg_num) { return reg_num >= 0; }
+ static int reg_num(LIR_Opr opr);
+ static int reg_numHi(LIR_Opr opr);
+
+ // functions for classification of intervals
+ static bool is_precolored_interval(const Interval* i);
+ static bool is_virtual_interval(const Interval* i);
+
+ static bool is_precolored_cpu_interval(const Interval* i);
+ static bool is_virtual_cpu_interval(const Interval* i);
+ static bool is_precolored_fpu_interval(const Interval* i);
+ static bool is_virtual_fpu_interval(const Interval* i);
+
+ static bool is_in_fpu_register(const Interval* i);
+ static bool is_oop_interval(const Interval* i);
+
+
+ // General helper functions
+ int allocate_spill_slot(bool double_word);
+ void assign_spill_slot(Interval* it);
+ void propagate_spill_slots();
+
+ Interval* create_interval(int reg_num);
+ void append_interval(Interval* it);
+ void copy_register_flags(Interval* from, Interval* to);
+
+ // platform dependent functions
+ static bool is_processed_reg_num(int reg_num);
+ static int num_physical_regs(BasicType type);
+ static bool requires_adjacent_regs(BasicType type);
+ static bool is_caller_save(int assigned_reg);
+
+ // spill move optimization: eliminate moves from register to stack if
+ // stack slot is known to be correct
+ void change_spill_definition_pos(Interval* interval, int def_pos);
+ void change_spill_state(Interval* interval, int spill_pos);
+ static bool must_store_at_definition(const Interval* i);
+ void eliminate_spill_moves();
+
+ // Phase 1: number all instructions in all blocks
+ void number_instructions();
+
+ // Phase 2: compute local live sets separately for each block
+ // (sets live_gen and live_kill for each block)
+ //
+ // helper methods used by compute_local_live_sets()
+ void set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill);
+
+ void compute_local_live_sets();
+
+ // Phase 3: perform a backward dataflow analysis to compute global live sets
+ // (sets live_in and live_out for each block)
+ void compute_global_live_sets();
+
+
+ // Phase 4: build intervals
+ // (fills the list _intervals)
+ //
+ // helper methods used by build_intervals()
+ void add_use (Value value, int from, int to, IntervalUseKind use_kind);
+
+ void add_def (LIR_Opr opr, int def_pos, IntervalUseKind use_kind);
+ void add_use (LIR_Opr opr, int from, int to, IntervalUseKind use_kind);
+ void add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind);
+
+ void add_def (int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type);
+ void add_use (int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type);
+ void add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type);
+
+ // Add platform dependent kills for particular LIR ops. Can be used
+ // to add platform dependent behaviour for some operations.
+ void pd_add_temps(LIR_Op* op);
+
+ IntervalUseKind use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr);
+ IntervalUseKind use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr);
+ void handle_method_arguments(LIR_Op* op);
+ void handle_doubleword_moves(LIR_Op* op);
+ void add_register_hints(LIR_Op* op);
+
+ void build_intervals();
+
+
+ // Phase 5: actual register allocation
+ // (Uses LinearScanWalker)
+ //
+ // helper functions for building a sorted list of intervals
+ NOT_PRODUCT(bool is_sorted(IntervalArray* intervals);)
+ static int interval_cmp(Interval** a, Interval** b);
+ void add_to_list(Interval** first, Interval** prev, Interval* interval);
+ void create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i));
+
+ void sort_intervals_before_allocation();
+ void sort_intervals_after_allocation();
+ void allocate_registers();
+
+
+ // Phase 6: resolve data flow
+ // (insert moves at edges between blocks if intervals have been split)
+ //
+ // helper functions for resolve_data_flow()
+ Interval* split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode);
+ Interval* interval_at_block_begin(BlockBegin* block, int reg_num);
+ Interval* interval_at_block_end(BlockBegin* block, int reg_num);
+ Interval* interval_at_op_id(int reg_num, int op_id);
+ void resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
+ void resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver);
+ void resolve_data_flow();
+
+ void resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver);
+ void resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver);
+ void resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver);
+ void resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver);
+ void resolve_exception_handlers();
+
+ // Phase 7: assign register numbers back to LIR
+ // (includes computation of debug information and oop maps)
+ //
+ // helper functions for assign_reg_num()
+ VMReg vm_reg_for_interval(Interval* interval);
+ VMReg vm_reg_for_operand(LIR_Opr opr);
+
+ static LIR_Opr operand_for_interval(Interval* interval);
+ static LIR_Opr calc_operand_for_interval(const Interval* interval);
+ LIR_Opr canonical_spill_opr(Interval* interval);
+
+ LIR_Opr color_lir_opr(LIR_Opr opr, int id, LIR_OpVisitState::OprMode);
+
+ // methods used for oop map computation
+ IntervalWalker* init_compute_oop_maps();
+ OopMap* compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site);
+ void compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op);
+
+ // methods used for debug information computation
+ void init_compute_debug_info();
+
+ MonitorValue* location_for_monitor_index(int monitor_index);
+ LocationValue* location_for_name(int name, Location::Type loc_type);
+ void set_oop(OopMap* map, VMReg name) {
+ if (map->legal_vm_reg_name(name)) {
+ map->set_oop(name);
+ } else {
+ bailout("illegal oopMap register name");
+ }
+ }
+
+ int append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
+ int append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values);
+ int append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values);
+
+ IRScopeDebugInfo* compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state);
+ void compute_debug_info(CodeEmitInfo* info, int op_id);
+
+ void assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw);
+ void assign_reg_num();
+
+
+ // Phase 8: fpu stack allocation
+ // (Used only on x86 when fpu operands are present)
+ void allocate_fpu_stack();
+
+
+ // helper functions for printing state
+#ifndef PRODUCT
+ static void print_bitmap(BitMap& bitmap);
+ void print_intervals(const char* label);
+ void print_lir(int level, const char* label, bool hir_valid = true);
+#endif
+
+#ifdef ASSERT
+ // verification functions for allocation
+ // (check that all intervals have a correct register and that no registers are overwritten)
+ void verify();
+ void verify_intervals();
+ void verify_no_oops_in_fixed_intervals();
+ void verify_constants();
+ void verify_registers();
+#endif
+
+ public:
+ // creation
+ LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map);
+
+ // main entry function: perform linear scan register allocation
+ void do_linear_scan();
+
+ // accessors used by Compilation
+ int max_spills() const { return _max_spills; }
+ int num_calls() const { assert(_num_calls >= 0, "not set"); return _num_calls; }
+
+ // entry functions for printing
+#ifndef PRODUCT
+ static void print_statistics();
+ static void print_timers(double total);
+#endif
+};
+
+
+// Helper class for ordering moves that are inserted at the same position in the LIR
+// When moves between registers are inserted, it is important that the moves are
+// ordered such that no register is overwritten. So moves from register to stack
+// are processed prior to moves from stack to register. When moves have circular
+// dependencies, a temporary stack slot is used to break the circle.
+// The same logic is used in the LinearScanWalker and in LinearScan during resolve_data_flow
+// and therefore factored out in a separate class
+class MoveResolver: public StackObj {
+ private:
+ LinearScan* _allocator;
+
+ LIR_List* _insert_list;
+ int _insert_idx;
+ LIR_InsertionBuffer _insertion_buffer; // buffer where moves are inserted
+
+ IntervalList _mapping_from;
+ LIR_OprList _mapping_from_opr;
+ IntervalList _mapping_to;
+ bool _multiple_reads_allowed;
+ int _register_blocked[LinearScan::nof_regs];
+
+ int register_blocked(int reg) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); return _register_blocked[reg]; }
+ void set_register_blocked(int reg, int direction) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds"); assert(direction == 1 || direction == -1, "out of bounds"); _register_blocked[reg] += direction; }
+
+ void block_registers(Interval* it);
+ void unblock_registers(Interval* it);
+ bool save_to_process_move(Interval* from, Interval* to);
+
+ void create_insertion_buffer(LIR_List* list);
+ void append_insertion_buffer();
+ void insert_move(Interval* from_interval, Interval* to_interval);
+ void insert_move(LIR_Opr from_opr, Interval* to_interval);
+
+ DEBUG_ONLY(void verify_before_resolve();)
+ void resolve_mappings();
+ public:
+ MoveResolver(LinearScan* allocator);
+
+ DEBUG_ONLY(void check_empty();)
+ void set_multiple_reads_allowed() { _multiple_reads_allowed = true; }
+ void set_insert_position(LIR_List* insert_list, int insert_idx);
+ void move_insert_position(LIR_List* insert_list, int insert_idx);
+ void add_mapping(Interval* from, Interval* to);
+ void add_mapping(LIR_Opr from, Interval* to);
+ void resolve_and_append_moves();
+
+ LinearScan* allocator() { return _allocator; }
+ bool has_mappings() { return _mapping_from.length() > 0; }
+};
+
+
+class Range : public CompilationResourceObj {
+ friend class Interval;
+
+ private:
+ static Range* _end; // sentinel (from == to == max_jint)
+
+ int _from; // from (inclusive)
+ int _to; // to (exclusive)
+ Range* _next; // linear list of Ranges
+
+ // used only by class Interval, so hide them
+ bool intersects(Range* r) const { return intersects_at(r) != -1; }
+ int intersects_at(Range* r) const;
+
+ public:
+ Range(int from, int to, Range* next);
+
+ static void initialize(Arena* arena);
+ static Range* end() { return _end; }
+
+ int from() const { return _from; }
+ int to() const { return _to; }
+ Range* next() const { return _next; }
+ void set_from(int from) { _from = from; }
+ void set_to(int to) { _to = to; }
+ void set_next(Range* next) { _next = next; }
+
+ // for testing
+ void print(outputStream* out = tty) const PRODUCT_RETURN;
+};
+
+
+// Interval is an ordered list of disjoint ranges.
+
+// For pre-colored double word LIR_Oprs, one interval is created for
+// the low word register and one is created for the hi word register.
+// On Intel for FPU double registers only one interval is created. At
+// all times assigned_reg contains the reg. number of the physical
+// register.
+
+// For LIR_Opr in virtual registers a single interval can represent
+// single and double word values. When a physical register is
+// assigned to the interval, assigned_reg contains the
+// phys. reg. number and for double word values assigned_regHi the
+// phys. reg. number of the hi word if there is any. For spilled
+// intervals assigned_reg contains the stack index. assigned_regHi is
+// always -1.
+
+class Interval : public CompilationResourceObj {
+ private:
+ static Interval* _end; // sentinel (interval with only range Range::end())
+
+ int _reg_num;
+ BasicType _type; // valid only for virtual registers
+ Range* _first; // sorted list of Ranges
+ intStack _use_pos_and_kinds; // sorted list of use-positions and their according use-kinds
+
+ Range* _current; // interval iteration: the current Range
+ Interval* _next; // interval iteration: sorted list of Intervals (ends with sentinel)
+ IntervalState _state; // interval iteration: to which set belongs this interval
+
+
+ int _assigned_reg;
+ int _assigned_regHi;
+
+ int _cached_to; // cached value: to of last range (-1: not cached)
+ LIR_Opr _cached_opr;
+ VMReg _cached_vm_reg;
+
+ Interval* _split_parent; // the original interval where this interval is derived from
+ IntervalList _split_children; // list of all intervals that are split off from this interval (only available for split parents)
+ Interval* _current_split_child; // the current split child that has been active or inactive last (always stored in split parents)
+
+ int _canonical_spill_slot; // the stack slot where all split parts of this interval are spilled to (always stored in split parents)
+ bool _insert_move_when_activated; // true if move is inserted between _current_split_child and this interval when interval gets active the first time
+ IntervalSpillState _spill_state; // for spill move optimization
+ int _spill_definition_pos; // position where the interval is defined (if defined only once)
+ Interval* _register_hint; // this interval should be in the same register as the hint interval
+
+ int calc_to();
+ Interval* new_split_child();
+ public:
+ Interval(int reg_num);
+
+ static void initialize(Arena* arena);
+ static Interval* end() { return _end; }
+
+ // accessors
+ int reg_num() const { return _reg_num; }
+ void set_reg_num(int r) { assert(_reg_num == -1, "cannot change reg_num"); _reg_num = r; }
+ BasicType type() const { assert(_reg_num == -1 || _reg_num >= LIR_OprDesc::vreg_base, "cannot access type for fixed interval"); return _type; }
+ void set_type(BasicType type) { assert(_reg_num < LIR_OprDesc::vreg_base || _type == T_ILLEGAL || _type == type, "overwriting existing type"); _type = type; }
+
+ Range* first() const { return _first; }
+ int from() const { return _first->from(); }
+ int to() { if (_cached_to == -1) _cached_to = calc_to(); assert(_cached_to == calc_to(), "invalid cached value"); return _cached_to; }
+ int num_use_positions() const { return _use_pos_and_kinds.length() / 2; }
+
+ Interval* next() const { return _next; }
+ Interval** next_addr() { return &_next; }
+ void set_next(Interval* next) { _next = next; }
+
+ int assigned_reg() const { return _assigned_reg; }
+ int assigned_regHi() const { return _assigned_regHi; }
+ void assign_reg(int reg) { _assigned_reg = reg; _assigned_regHi = LinearScan::any_reg; }
+ void assign_reg(int reg,int regHi) { _assigned_reg = reg; _assigned_regHi = regHi; }
+
+ Interval* register_hint(bool search_split_child = true) const; // calculation needed
+ void set_register_hint(Interval* i) { _register_hint = i; }
+
+ int state() const { return _state; }
+ void set_state(IntervalState s) { _state = s; }
+
+ // access to split parent and split children
+ bool is_split_parent() const { return _split_parent == this; }
+ bool is_split_child() const { return _split_parent != this; }
+ Interval* split_parent() const { assert(_split_parent->is_split_parent(), "must be"); return _split_parent; }
+ Interval* split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode);
+ Interval* split_child_before_op_id(int op_id);
+ bool split_child_covers(int op_id, LIR_OpVisitState::OprMode mode);
+ DEBUG_ONLY(void check_split_children();)
+
+ // information stored in split parent, but available for all children
+ int canonical_spill_slot() const { return split_parent()->_canonical_spill_slot; }
+ void set_canonical_spill_slot(int slot) { assert(split_parent()->_canonical_spill_slot == -1, "overwriting existing value"); split_parent()->_canonical_spill_slot = slot; }
+ Interval* current_split_child() const { return split_parent()->_current_split_child; }
+ void make_current_split_child() { split_parent()->_current_split_child = this; }
+
+ bool insert_move_when_activated() const { return _insert_move_when_activated; }
+ void set_insert_move_when_activated(bool b) { _insert_move_when_activated = b; }
+
+ // for spill optimization
+ IntervalSpillState spill_state() const { return split_parent()->_spill_state; }
+ int spill_definition_pos() const { return split_parent()->_spill_definition_pos; }
+ void set_spill_state(IntervalSpillState state) { assert(state >= spill_state(), "state cannot decrease"); split_parent()->_spill_state = state; }
+ void set_spill_definition_pos(int pos) { assert(spill_definition_pos() == -1, "cannot set the position twice"); split_parent()->_spill_definition_pos = pos; }
+ // returns true if this interval has a shadow copy on the stack that is always correct
+ bool always_in_memory() const { return split_parent()->_spill_state == storeAtDefinition || split_parent()->_spill_state == startInMemory; }
+
+ // caching of values that take time to compute and are used multiple times
+ LIR_Opr cached_opr() const { return _cached_opr; }
+ VMReg cached_vm_reg() const { return _cached_vm_reg; }
+ void set_cached_opr(LIR_Opr opr) { _cached_opr = opr; }
+ void set_cached_vm_reg(VMReg reg) { _cached_vm_reg = reg; }
+
+ // access to use positions
+ int first_usage(IntervalUseKind min_use_kind) const; // id of the first operation requiring this interval in a register
+ int next_usage(IntervalUseKind min_use_kind, int from) const; // id of next usage seen from the given position
+ int next_usage_exact(IntervalUseKind exact_use_kind, int from) const;
+ int previous_usage(IntervalUseKind min_use_kind, int from) const;
+
+ // manipulating intervals
+ void add_use_pos(int pos, IntervalUseKind use_kind);
+ void add_range(int from, int to);
+ Interval* split(int split_pos);
+ Interval* split_from_start(int split_pos);
+ void remove_first_use_pos() { _use_pos_and_kinds.trunc_to(_use_pos_and_kinds.length() - 2); }
+
+ // test intersection
+ bool covers(int op_id, LIR_OpVisitState::OprMode mode) const;
+ bool has_hole_between(int from, int to);
+ bool intersects(Interval* i) const { return _first->intersects(i->_first); }
+ int intersects_at(Interval* i) const { return _first->intersects_at(i->_first); }
+
+ // range iteration
+ void rewind_range() { _current = _first; }
+ void next_range() { assert(this != _end, "not allowed on sentinel"); _current = _current->next(); }
+ int current_from() const { return _current->from(); }
+ int current_to() const { return _current->to(); }
+ bool current_at_end() const { return _current == Range::end(); }
+ bool current_intersects(Interval* it) { return _current->intersects(it->_current); };
+ int current_intersects_at(Interval* it) { return _current->intersects_at(it->_current); };
+
+ // printing
+ void print(outputStream* out = tty) const PRODUCT_RETURN;
+};
+
+
+class IntervalWalker : public CompilationResourceObj {
+ protected:
+ Compilation* _compilation;
+ LinearScan* _allocator;
+
+ Interval* _unhandled_first[nofKinds]; // sorted list of intervals, not life before the current position
+ Interval* _active_first [nofKinds]; // sorted list of intervals, life at the current position
+ Interval* _inactive_first [nofKinds]; // sorted list of intervals, intervals in a life time hole at the current position
+
+ Interval* _current; // the current interval coming from unhandled list
+ int _current_position; // the current position (intercept point through the intervals)
+ IntervalKind _current_kind; // and whether it is fixed_kind or any_kind.
+
+
+ Compilation* compilation() const { return _compilation; }
+ LinearScan* allocator() const { return _allocator; }
+
+ // unified bailout support
+ void bailout(const char* msg) const { compilation()->bailout(msg); }
+ bool bailed_out() const { return compilation()->bailed_out(); }
+
+ void check_bounds(IntervalKind kind) { assert(kind >= fixedKind && kind <= anyKind, "invalid interval_kind"); }
+
+ Interval** unhandled_first_addr(IntervalKind kind) { check_bounds(kind); return &_unhandled_first[kind]; }
+ Interval** active_first_addr(IntervalKind kind) { check_bounds(kind); return &_active_first[kind]; }
+ Interval** inactive_first_addr(IntervalKind kind) { check_bounds(kind); return &_inactive_first[kind]; }
+
+ void append_unsorted(Interval** first, Interval* interval);
+ void append_sorted(Interval** first, Interval* interval);
+ void append_to_unhandled(Interval** list, Interval* interval);
+
+ bool remove_from_list(Interval** list, Interval* i);
+ void remove_from_list(Interval* i);
+
+ void next_interval();
+ Interval* current() const { return _current; }
+ IntervalKind current_kind() const { return _current_kind; }
+
+ void walk_to(IntervalState state, int from);
+
+ // activate_current() is called when an unhandled interval becomes active (in current(), current_kind()).
+ // Return false if current() should not be moved the the active interval list.
+ // It is safe to append current to any interval list but the unhandled list.
+ virtual bool activate_current() { return true; }
+
+ // interval_moved() is called whenever an interval moves from one interval list to another.
+ // In the implementation of this method it is prohibited to move the interval to any list.
+ virtual void interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to);
+
+ public:
+ IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
+
+ Interval* unhandled_first(IntervalKind kind) { check_bounds(kind); return _unhandled_first[kind]; }
+ Interval* active_first(IntervalKind kind) { check_bounds(kind); return _active_first[kind]; }
+ Interval* inactive_first(IntervalKind kind) { check_bounds(kind); return _inactive_first[kind]; }
+
+ // active contains the intervals that are live after the lir_op
+ void walk_to(int lir_op_id);
+ // active contains the intervals that are live before the lir_op
+ void walk_before(int lir_op_id) { walk_to(lir_op_id-1); }
+ // walk through all intervals
+ void walk() { walk_to(max_jint); }
+
+ int current_position() { return _current_position; }
+};
+
+
+// The actual linear scan register allocator
+class LinearScanWalker : public IntervalWalker {
+ enum {
+ any_reg = LinearScan::any_reg
+ };
+
+ private:
+ int _first_reg; // the reg. number of the first phys. register
+ int _last_reg; // the reg. nmber of the last phys. register
+ int _num_phys_regs; // required by current interval
+ bool _adjacent_regs; // have lo/hi words of phys. regs be adjacent
+
+ int _use_pos[LinearScan::nof_regs];
+ int _block_pos[LinearScan::nof_regs];
+ IntervalList* _spill_intervals[LinearScan::nof_regs];
+
+ MoveResolver _move_resolver; // for ordering spill moves
+
+ // accessors mapped to same functions in class LinearScan
+ int block_count() const { return allocator()->block_count(); }
+ BlockBegin* block_at(int idx) const { return allocator()->block_at(idx); }
+ BlockBegin* block_of_op_with_id(int op_id) const { return allocator()->block_of_op_with_id(op_id); }
+
+ void init_use_lists(bool only_process_use_pos);
+ void exclude_from_use(int reg);
+ void exclude_from_use(Interval* i);
+ void set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos);
+ void set_use_pos(Interval* i, int use_pos, bool only_process_use_pos);
+ void set_block_pos(int reg, Interval* i, int block_pos);
+ void set_block_pos(Interval* i, int block_pos);
+
+ void free_exclude_active_fixed();
+ void free_exclude_active_any();
+ void free_collect_inactive_fixed(Interval* cur);
+ void free_collect_inactive_any(Interval* cur);
+ void free_collect_unhandled(IntervalKind kind, Interval* cur);
+ void spill_exclude_active_fixed();
+ void spill_block_unhandled_fixed(Interval* cur);
+ void spill_block_inactive_fixed(Interval* cur);
+ void spill_collect_active_any();
+ void spill_collect_inactive_any(Interval* cur);
+
+ void insert_move(int op_id, Interval* src_it, Interval* dst_it);
+ int find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos);
+ int find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization);
+ void split_before_usage(Interval* it, int min_split_pos, int max_split_pos);
+ void split_for_spilling(Interval* it);
+ void split_stack_interval(Interval* it);
+ void split_when_partial_register_available(Interval* it, int register_available_until);
+ void split_and_spill_interval(Interval* it);
+
+ int find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
+ int find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
+ bool alloc_free_reg(Interval* cur);
+
+ int find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split);
+ int find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split);
+ void split_and_spill_intersecting_intervals(int reg, int regHi);
+ void alloc_locked_reg(Interval* cur);
+
+ bool no_allocation_possible(Interval* cur);
+ void update_phys_reg_range(bool requires_cpu_register);
+ void init_vars_for_alloc(Interval* cur);
+ bool pd_init_regs_for_alloc(Interval* cur);
+
+ void combine_spilled_intervals(Interval* cur);
+ bool is_move(LIR_Op* op, Interval* from, Interval* to);
+
+ bool activate_current();
+
+ public:
+ LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first);
+
+ // must be called when all intervals are allocated
+ void finish_allocation() { _move_resolver.resolve_and_append_moves(); }
+};
+
+
+
+/*
+When a block has more than one predecessor, and all predecessors end with
+the same sequence of move-instructions, than this moves can be placed once
+at the beginning of the block instead of multiple times in the predecessors.
+
+Similarly, when a block has more than one successor, then equal sequences of
+moves at the beginning of the successors can be placed once at the end of
+the block. But because the moves must be inserted before all branch
+instructions, this works only when there is exactly one conditional branch
+at the end of the block (because the moves must be inserted before all
+branches, but after all compares).
+
+This optimization affects all kind of moves (reg->reg, reg->stack and
+stack->reg). Because this optimization works best when a block contains only
+few moves, it has a huge impact on the number of blocks that are totally
+empty.
+*/
+class EdgeMoveOptimizer : public StackObj {
+ private:
+ // the class maintains a list with all lir-instruction-list of the
+ // successors (predecessors) and the current index into the lir-lists
+ LIR_OpListStack _edge_instructions;
+ intStack _edge_instructions_idx;
+
+ void init_instructions();
+ void append_instructions(LIR_OpList* instructions, int instructions_idx);
+ LIR_Op* instruction_at(int edge);
+ void remove_cur_instruction(int edge, bool decrement_index);
+
+ bool operations_different(LIR_Op* op1, LIR_Op* op2);
+
+ void optimize_moves_at_block_end(BlockBegin* cur);
+ void optimize_moves_at_block_begin(BlockBegin* cur);
+
+ EdgeMoveOptimizer();
+
+ public:
+ static void optimize(BlockList* code);
+};
+
+
+
+class ControlFlowOptimizer : public StackObj {
+ private:
+ BlockList _original_preds;
+
+ enum {
+ ShortLoopSize = 5
+ };
+ void reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx);
+ void reorder_short_loops(BlockList* code);
+
+ bool can_delete_block(BlockBegin* cur);
+ void substitute_branch_target(BlockBegin* cur, BlockBegin* target_from, BlockBegin* target_to);
+ void delete_empty_blocks(BlockList* code);
+
+ void delete_unnecessary_jumps(BlockList* code);
+ void delete_jumps_to_return(BlockList* code);
+
+ DEBUG_ONLY(void verify(BlockList* code);)
+
+ ControlFlowOptimizer();
+ public:
+ static void optimize(BlockList* code);
+};
+
+
+#ifndef PRODUCT
+
+// Helper class for collecting statistics of LinearScan
+class LinearScanStatistic : public StackObj {
+ public:
+ enum Counter {
+ // general counters
+ counter_method,
+ counter_fpu_method,
+ counter_loop_method,
+ counter_exception_method,
+ counter_loop,
+ counter_block,
+ counter_loop_block,
+ counter_exception_block,
+ counter_interval,
+ counter_fixed_interval,
+ counter_range,
+ counter_fixed_range,
+ counter_use_pos,
+ counter_fixed_use_pos,
+ counter_spill_slots,
+ blank_line_1,
+
+ // counter for classes of lir instructions
+ counter_instruction,
+ counter_label,
+ counter_entry,
+ counter_return,
+ counter_call,
+ counter_move,
+ counter_cmp,
+ counter_cond_branch,
+ counter_uncond_branch,
+ counter_stub_branch,
+ counter_alu,
+ counter_alloc,
+ counter_sync,
+ counter_throw,
+ counter_unwind,
+ counter_typecheck,
+ counter_fpu_stack,
+ counter_misc_inst,
+ counter_other_inst,
+ blank_line_2,
+
+ // counter for different types of moves
+ counter_move_total,
+ counter_move_reg_reg,
+ counter_move_reg_stack,
+ counter_move_stack_reg,
+ counter_move_stack_stack,
+ counter_move_reg_mem,
+ counter_move_mem_reg,
+ counter_move_const_any,
+
+ number_of_counters,
+ invalid_counter = -1
+ };
+
+ private:
+ int _counters_sum[number_of_counters];
+ int _counters_max[number_of_counters];
+
+ void inc_counter(Counter idx, int value = 1) { _counters_sum[idx] += value; }
+
+ const char* counter_name(int counter_idx);
+ Counter base_counter(int counter_idx);
+
+ void sum_up(LinearScanStatistic &method_statistic);
+ void collect(LinearScan* allocator);
+
+ public:
+ LinearScanStatistic();
+ void print(const char* title);
+ static void compute(LinearScan* allocator, LinearScanStatistic &global_statistic);
+};
+
+
+// Helper class for collecting compilation time of LinearScan
+class LinearScanTimers : public StackObj {
+ public:
+ enum Timer {
+ timer_do_nothing,
+ timer_number_instructions,
+ timer_compute_local_live_sets,
+ timer_compute_global_live_sets,
+ timer_build_intervals,
+ timer_sort_intervals_before,
+ timer_allocate_registers,
+ timer_resolve_data_flow,
+ timer_sort_intervals_after,
+ timer_eliminate_spill_moves,
+ timer_assign_reg_num,
+ timer_allocate_fpu_stack,
+ timer_optimize_lir,
+
+ number_of_timers
+ };
+
+ private:
+ elapsedTimer _timers[number_of_timers];
+ const char* timer_name(int idx);
+
+ public:
+ LinearScanTimers();
+
+ void begin_method(); // called for each method when register allocation starts
+ void end_method(LinearScan* allocator); // called for each method when register allocation completed
+ void print(double total_time); // called before termination of VM to print global summary
+
+ elapsedTimer* timer(int idx) { return &(_timers[idx]); }
+};
+
+
+#endif // ifndef PRODUCT
+
+// Pick up platform-dependent implementation details
+#include CPU_HEADER(c1_LinearScan)
+
+#endif // SHARE_VM_C1_C1_LINEARSCAN_HPP