--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/hotspot/cpu/s390/templateTable_s390.cpp Tue Sep 12 19:03:39 2017 +0200
@@ -0,0 +1,4249 @@
+/*
+ * Copyright (c) 2016, 2017, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2016, 2017 SAP SE. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ *
+ */
+
+#include "precompiled.hpp"
+#include "asm/macroAssembler.inline.hpp"
+#include "interpreter/interpreter.hpp"
+#include "interpreter/interpreterRuntime.hpp"
+#include "interpreter/interp_masm.hpp"
+#include "interpreter/templateTable.hpp"
+#include "memory/universe.inline.hpp"
+#include "oops/objArrayKlass.hpp"
+#include "oops/oop.inline.hpp"
+#include "prims/methodHandles.hpp"
+#include "runtime/sharedRuntime.hpp"
+#include "runtime/stubRoutines.hpp"
+#include "runtime/synchronizer.hpp"
+
+#ifdef PRODUCT
+#define __ _masm->
+#define BLOCK_COMMENT(str)
+#define BIND(label) __ bind(label);
+#else
+#define __ (PRODUCT_ONLY(false&&)Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm):_masm)->
+#define BLOCK_COMMENT(str) __ block_comment(str)
+#define BIND(label) __ bind(label); BLOCK_COMMENT(#label ":")
+#endif
+
+// The assumed minimum size of a BranchTableBlock.
+// The actual size of each block heavily depends on the CPU capabilities and,
+// of course, on the logic implemented in each block.
+#ifdef ASSERT
+ #define BTB_MINSIZE 256
+#else
+ #define BTB_MINSIZE 64
+#endif
+
+#ifdef ASSERT
+// Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
+#define BTB_BEGIN(lbl, alignment, name) \
+ __ align_address(alignment); \
+ __ bind(lbl); \
+ { unsigned int b_off = __ offset(); \
+ uintptr_t b_addr = (uintptr_t)__ pc(); \
+ __ z_larl(Z_R0, (int64_t)0); /* Check current address alignment. */ \
+ __ z_slgr(Z_R0, br_tab); /* Current Address must be equal */ \
+ __ z_slgr(Z_R0, flags); /* to calculated branch target. */ \
+ __ z_brc(Assembler::bcondLogZero, 3); /* skip trap if ok. */ \
+ __ z_illtrap(0x55); \
+ guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
+
+// Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
+#define BTB_END(lbl, alignment, name) \
+ uintptr_t e_addr = (uintptr_t)__ pc(); \
+ unsigned int e_off = __ offset(); \
+ unsigned int len = e_off-b_off; \
+ if (len > alignment) { \
+ tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s", \
+ len, alignment, e_addr-len, name); \
+ guarantee(len <= alignment, "block too large"); \
+ } \
+ guarantee(len == e_addr-b_addr, "block len mismatch"); \
+ }
+#else
+// Macro to open a BranchTableBlock (a piece of code that is branched to by a calculated branch).
+#define BTB_BEGIN(lbl, alignment, name) \
+ __ align_address(alignment); \
+ __ bind(lbl); \
+ { unsigned int b_off = __ offset(); \
+ uintptr_t b_addr = (uintptr_t)__ pc(); \
+ guarantee(b_addr%alignment == 0, "bad alignment at begin of block" name);
+
+// Macro to close a BranchTableBlock (a piece of code that is branched to by a calculated branch).
+#define BTB_END(lbl, alignment, name) \
+ uintptr_t e_addr = (uintptr_t)__ pc(); \
+ unsigned int e_off = __ offset(); \
+ unsigned int len = e_off-b_off; \
+ if (len > alignment) { \
+ tty->print_cr("%4d of %4d @ " INTPTR_FORMAT ": Block len for %s", \
+ len, alignment, e_addr-len, name); \
+ guarantee(len <= alignment, "block too large"); \
+ } \
+ guarantee(len == e_addr-b_addr, "block len mismatch"); \
+ }
+#endif // ASSERT
+
+// Platform-dependent initialization.
+
+void TemplateTable::pd_initialize() {
+ // No specific initialization.
+}
+
+// Address computation: local variables
+
+static inline Address iaddress(int n) {
+ return Address(Z_locals, Interpreter::local_offset_in_bytes(n));
+}
+
+static inline Address laddress(int n) {
+ return iaddress(n + 1);
+}
+
+static inline Address faddress(int n) {
+ return iaddress(n);
+}
+
+static inline Address daddress(int n) {
+ return laddress(n);
+}
+
+static inline Address aaddress(int n) {
+ return iaddress(n);
+}
+
+// Pass NULL, if no shift instruction should be emitted.
+static inline Address iaddress(InterpreterMacroAssembler *masm, Register r) {
+ if (masm) {
+ masm->z_sllg(r, r, LogBytesPerWord); // index2bytes
+ }
+ return Address(Z_locals, r, Interpreter::local_offset_in_bytes(0));
+}
+
+// Pass NULL, if no shift instruction should be emitted.
+static inline Address laddress(InterpreterMacroAssembler *masm, Register r) {
+ if (masm) {
+ masm->z_sllg(r, r, LogBytesPerWord); // index2bytes
+ }
+ return Address(Z_locals, r, Interpreter::local_offset_in_bytes(1) );
+}
+
+static inline Address faddress(InterpreterMacroAssembler *masm, Register r) {
+ return iaddress(masm, r);
+}
+
+static inline Address daddress(InterpreterMacroAssembler *masm, Register r) {
+ return laddress(masm, r);
+}
+
+static inline Address aaddress(InterpreterMacroAssembler *masm, Register r) {
+ return iaddress(masm, r);
+}
+
+// At top of Java expression stack which may be different than esp(). It
+// isn't for category 1 objects.
+static inline Address at_tos(int slot = 0) {
+ return Address(Z_esp, Interpreter::expr_offset_in_bytes(slot));
+}
+
+// Condition conversion
+static Assembler::branch_condition j_not(TemplateTable::Condition cc) {
+ switch (cc) {
+ case TemplateTable::equal :
+ return Assembler::bcondNotEqual;
+ case TemplateTable::not_equal :
+ return Assembler::bcondEqual;
+ case TemplateTable::less :
+ return Assembler::bcondNotLow;
+ case TemplateTable::less_equal :
+ return Assembler::bcondHigh;
+ case TemplateTable::greater :
+ return Assembler::bcondNotHigh;
+ case TemplateTable::greater_equal:
+ return Assembler::bcondLow;
+ }
+ ShouldNotReachHere();
+ return Assembler::bcondZero;
+}
+
+// Do an oop store like *(base + offset) = val
+// offset can be a register or a constant.
+static void do_oop_store(InterpreterMacroAssembler* _masm,
+ Register base,
+ RegisterOrConstant offset,
+ Register val,
+ bool val_is_null, // == false does not guarantee that val really is not equal NULL.
+ Register tmp1, // If tmp3 is volatile, either tmp1 or tmp2 must be
+ Register tmp2, // non-volatile to hold a copy of pre_val across runtime calls.
+ Register tmp3, // Ideally, this tmp register is non-volatile, as it is used to
+ // hold pre_val (must survive runtime calls).
+ BarrierSet::Name barrier,
+ bool precise) {
+ BLOCK_COMMENT("do_oop_store {");
+ assert(val != noreg, "val must always be valid, even if it is zero");
+ assert_different_registers(tmp1, tmp2, tmp3, val, base, offset.register_or_noreg());
+ __ verify_oop(val);
+ switch (barrier) {
+#if INCLUDE_ALL_GCS
+ case BarrierSet::G1SATBCTLogging:
+ {
+#ifdef ASSERT
+ if (val_is_null) { // Check if the flag setting reflects reality.
+ Label OK;
+ __ z_ltgr(val, val);
+ __ z_bre(OK);
+ __ z_illtrap(0x11);
+ __ bind(OK);
+ }
+#endif
+ Register pre_val = tmp3;
+ // Load and record the previous value.
+ __ g1_write_barrier_pre(base, offset, pre_val, val,
+ tmp1, tmp2,
+ false); // Needs to hold pre_val in non_volatile register?
+
+ if (val_is_null) {
+ __ store_heap_oop_null(val, offset, base);
+ } else {
+ Label Done;
+ // val_is_null == false does not guarantee that val really is not equal NULL.
+ // Checking for this case dynamically has some cost, but also some benefit (in GC).
+ // It's hard to say if cost or benefit is greater.
+ { Label OK;
+ __ z_ltgr(val, val);
+ __ z_brne(OK);
+ __ store_heap_oop_null(val, offset, base);
+ __ z_bru(Done);
+ __ bind(OK);
+ }
+ // G1 barrier needs uncompressed oop for region cross check.
+ // Store_heap_oop compresses the oop in the argument register.
+ Register val_work = val;
+ if (UseCompressedOops) {
+ val_work = tmp3;
+ __ z_lgr(val_work, val);
+ }
+ __ store_heap_oop_not_null(val_work, offset, base);
+
+ // We need precise card marks for oop array stores.
+ // Otherwise, cardmarking the object which contains the oop is sufficient.
+ if (precise && !(offset.is_constant() && offset.as_constant() == 0)) {
+ __ add2reg_with_index(base,
+ offset.constant_or_zero(),
+ offset.register_or_noreg(),
+ base);
+ }
+ __ g1_write_barrier_post(base /* store_adr */, val, tmp1, tmp2, tmp3);
+ __ bind(Done);
+ }
+ }
+ break;
+#endif // INCLUDE_ALL_GCS
+ case BarrierSet::CardTableForRS:
+ case BarrierSet::CardTableExtension:
+ {
+ if (val_is_null) {
+ __ store_heap_oop_null(val, offset, base);
+ } else {
+ __ store_heap_oop(val, offset, base);
+ // Flatten object address if needed.
+ if (precise && ((offset.register_or_noreg() != noreg) || (offset.constant_or_zero() != 0))) {
+ __ load_address(base, Address(base, offset.register_or_noreg(), offset.constant_or_zero()));
+ }
+ __ card_write_barrier_post(base, tmp1);
+ }
+ }
+ break;
+ case BarrierSet::ModRef:
+ // fall through
+ default:
+ ShouldNotReachHere();
+
+ }
+ BLOCK_COMMENT("} do_oop_store");
+}
+
+Address TemplateTable::at_bcp(int offset) {
+ assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
+ return Address(Z_bcp, offset);
+}
+
+void TemplateTable::patch_bytecode(Bytecodes::Code bc,
+ Register bc_reg,
+ Register temp_reg,
+ bool load_bc_into_bc_reg, // = true
+ int byte_no) {
+ if (!RewriteBytecodes) { return; }
+
+ NearLabel L_patch_done;
+ BLOCK_COMMENT("patch_bytecode {");
+
+ switch (bc) {
+ case Bytecodes::_fast_aputfield:
+ case Bytecodes::_fast_bputfield:
+ case Bytecodes::_fast_zputfield:
+ case Bytecodes::_fast_cputfield:
+ case Bytecodes::_fast_dputfield:
+ case Bytecodes::_fast_fputfield:
+ case Bytecodes::_fast_iputfield:
+ case Bytecodes::_fast_lputfield:
+ case Bytecodes::_fast_sputfield:
+ {
+ // We skip bytecode quickening for putfield instructions when
+ // the put_code written to the constant pool cache is zero.
+ // This is required so that every execution of this instruction
+ // calls out to InterpreterRuntime::resolve_get_put to do
+ // additional, required work.
+ assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
+ assert(load_bc_into_bc_reg, "we use bc_reg as temp");
+ __ get_cache_and_index_and_bytecode_at_bcp(Z_R1_scratch, bc_reg,
+ temp_reg, byte_no, 1);
+ __ load_const_optimized(bc_reg, bc);
+ __ compareU32_and_branch(temp_reg, (intptr_t)0,
+ Assembler::bcondZero, L_patch_done);
+ }
+ break;
+ default:
+ assert(byte_no == -1, "sanity");
+ // The pair bytecodes have already done the load.
+ if (load_bc_into_bc_reg) {
+ __ load_const_optimized(bc_reg, bc);
+ }
+ break;
+ }
+
+ if (JvmtiExport::can_post_breakpoint()) {
+
+ Label L_fast_patch;
+
+ // If a breakpoint is present we can't rewrite the stream directly.
+ __ z_cli(at_bcp(0), Bytecodes::_breakpoint);
+ __ z_brne(L_fast_patch);
+ __ get_method(temp_reg);
+ // Let breakpoint table handling rewrite to quicker bytecode.
+ __ call_VM_static(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at),
+ temp_reg, Z_R13, bc_reg);
+ __ z_bru(L_patch_done);
+
+ __ bind(L_fast_patch);
+ }
+
+#ifdef ASSERT
+ NearLabel L_okay;
+
+ // We load into 64 bits, since this works on any CPU.
+ __ z_llgc(temp_reg, at_bcp(0));
+ __ compareU32_and_branch(temp_reg, Bytecodes::java_code(bc),
+ Assembler::bcondEqual, L_okay );
+ __ compareU32_and_branch(temp_reg, bc_reg, Assembler::bcondEqual, L_okay);
+ __ stop_static("patching the wrong bytecode");
+ __ bind(L_okay);
+#endif
+
+ // Patch bytecode.
+ __ z_stc(bc_reg, at_bcp(0));
+
+ __ bind(L_patch_done);
+ BLOCK_COMMENT("} patch_bytecode");
+}
+
+// Individual instructions
+
+void TemplateTable::nop() {
+ transition(vtos, vtos);
+}
+
+void TemplateTable::shouldnotreachhere() {
+ transition(vtos, vtos);
+ __ stop("shouldnotreachhere bytecode");
+}
+
+void TemplateTable::aconst_null() {
+ transition(vtos, atos);
+ __ clear_reg(Z_tos, true, false);
+}
+
+void TemplateTable::iconst(int value) {
+ transition(vtos, itos);
+ // Zero extension of the iconst makes zero extension at runtime obsolete.
+ __ load_const_optimized(Z_tos, ((unsigned long)(unsigned int)value));
+}
+
+void TemplateTable::lconst(int value) {
+ transition(vtos, ltos);
+ __ load_const_optimized(Z_tos, value);
+}
+
+// No pc-relative load/store for floats.
+void TemplateTable::fconst(int value) {
+ transition(vtos, ftos);
+ static float one = 1.0f, two = 2.0f;
+
+ switch (value) {
+ case 0:
+ __ z_lzer(Z_ftos);
+ return;
+ case 1:
+ __ load_absolute_address(Z_R1_scratch, (address) &one);
+ __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
+ return;
+ case 2:
+ __ load_absolute_address(Z_R1_scratch, (address) &two);
+ __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch), false);
+ return;
+ default:
+ ShouldNotReachHere();
+ return;
+ }
+}
+
+void TemplateTable::dconst(int value) {
+ transition(vtos, dtos);
+ static double one = 1.0;
+
+ switch (value) {
+ case 0:
+ __ z_lzdr(Z_ftos);
+ return;
+ case 1:
+ __ load_absolute_address(Z_R1_scratch, (address) &one);
+ __ mem2freg_opt(Z_ftos, Address(Z_R1_scratch));
+ return;
+ default:
+ ShouldNotReachHere();
+ return;
+ }
+}
+
+void TemplateTable::bipush() {
+ transition(vtos, itos);
+ __ z_lb(Z_tos, at_bcp(1));
+}
+
+void TemplateTable::sipush() {
+ transition(vtos, itos);
+ __ get_2_byte_integer_at_bcp(Z_tos, 1, InterpreterMacroAssembler::Signed);
+}
+
+
+void TemplateTable::ldc(bool wide) {
+ transition(vtos, vtos);
+ Label call_ldc, notFloat, notClass, Done;
+ const Register RcpIndex = Z_tmp_1;
+ const Register Rtags = Z_ARG2;
+
+ if (wide) {
+ __ get_2_byte_integer_at_bcp(RcpIndex, 1, InterpreterMacroAssembler::Unsigned);
+ } else {
+ __ z_llgc(RcpIndex, at_bcp(1));
+ }
+
+ __ get_cpool_and_tags(Z_tmp_2, Rtags);
+
+ const int base_offset = ConstantPool::header_size() * wordSize;
+ const int tags_offset = Array<u1>::base_offset_in_bytes();
+ const Register Raddr_type = Rtags;
+
+ // Get address of type.
+ __ add2reg_with_index(Raddr_type, tags_offset, RcpIndex, Rtags);
+
+ __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClass);
+ __ z_bre(call_ldc); // Unresolved class - get the resolved class.
+
+ __ z_cli(0, Raddr_type, JVM_CONSTANT_UnresolvedClassInError);
+ __ z_bre(call_ldc); // Unresolved class in error state - call into runtime
+ // to throw the error from the first resolution attempt.
+
+ __ z_cli(0, Raddr_type, JVM_CONSTANT_Class);
+ __ z_brne(notClass); // Resolved class - need to call vm to get java
+ // mirror of the class.
+
+ // We deal with a class. Call vm to do the appropriate.
+ __ bind(call_ldc);
+ __ load_const_optimized(Z_ARG2, wide);
+ call_VM(Z_RET, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), Z_ARG2);
+ __ push_ptr(Z_RET);
+ __ z_bru(Done);
+
+ // Not a class.
+ __ bind(notClass);
+ Register RcpOffset = RcpIndex;
+ __ z_sllg(RcpOffset, RcpIndex, LogBytesPerWord); // Convert index to offset.
+ __ z_cli(0, Raddr_type, JVM_CONSTANT_Float);
+ __ z_brne(notFloat);
+
+ // ftos
+ __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, RcpOffset, base_offset), false);
+ __ push_f();
+ __ z_bru(Done);
+
+ __ bind(notFloat);
+#ifdef ASSERT
+ {
+ Label L;
+
+ __ z_cli(0, Raddr_type, JVM_CONSTANT_Integer);
+ __ z_bre(L);
+ // String and Object are rewritten to fast_aldc.
+ __ stop("unexpected tag type in ldc");
+
+ __ bind(L);
+ }
+#endif
+
+ // itos
+ __ mem2reg_opt(Z_tos, Address(Z_tmp_2, RcpOffset, base_offset), false);
+ __ push_i(Z_tos);
+
+ __ bind(Done);
+}
+
+// Fast path for caching oop constants.
+// %%% We should use this to handle Class and String constants also.
+// %%% It will simplify the ldc/primitive path considerably.
+void TemplateTable::fast_aldc(bool wide) {
+ transition(vtos, atos);
+
+ const Register index = Z_tmp_2;
+ int index_size = wide ? sizeof(u2) : sizeof(u1);
+ Label L_resolved;
+
+ // We are resolved if the resolved reference cache entry contains a
+ // non-null object (CallSite, etc.).
+ __ get_cache_index_at_bcp(index, 1, index_size); // Load index.
+ __ load_resolved_reference_at_index(Z_tos, index);
+ __ z_ltgr(Z_tos, Z_tos);
+ __ z_brne(L_resolved);
+
+ // First time invocation - must resolve first.
+ address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
+ __ load_const_optimized(Z_ARG1, (int)bytecode());
+ __ call_VM(Z_tos, entry, Z_ARG1);
+
+ __ bind(L_resolved);
+ __ verify_oop(Z_tos);
+}
+
+void TemplateTable::ldc2_w() {
+ transition(vtos, vtos);
+ Label Long, Done;
+
+ // Z_tmp_1 = index of cp entry
+ __ get_2_byte_integer_at_bcp(Z_tmp_1, 1, InterpreterMacroAssembler::Unsigned);
+
+ __ get_cpool_and_tags(Z_tmp_2, Z_tos);
+
+ const int base_offset = ConstantPool::header_size() * wordSize;
+ const int tags_offset = Array<u1>::base_offset_in_bytes();
+
+ // Get address of type.
+ __ add2reg_with_index(Z_tos, tags_offset, Z_tos, Z_tmp_1);
+
+ // Index needed in both branches, so calculate here.
+ __ z_sllg(Z_tmp_1, Z_tmp_1, LogBytesPerWord); // index2bytes
+
+ // Check type.
+ __ z_cli(0, Z_tos, JVM_CONSTANT_Double);
+ __ z_brne(Long);
+
+ // dtos
+ __ mem2freg_opt(Z_ftos, Address(Z_tmp_2, Z_tmp_1, base_offset));
+ __ push_d();
+ __ z_bru(Done);
+
+ __ bind(Long);
+ // ltos
+ __ mem2reg_opt(Z_tos, Address(Z_tmp_2, Z_tmp_1, base_offset));
+ __ push_l();
+
+ __ bind(Done);
+}
+
+void TemplateTable::locals_index(Register reg, int offset) {
+ __ z_llgc(reg, at_bcp(offset));
+ __ z_lcgr(reg);
+}
+
+void TemplateTable::iload() {
+ iload_internal();
+}
+
+void TemplateTable::nofast_iload() {
+ iload_internal(may_not_rewrite);
+}
+
+void TemplateTable::iload_internal(RewriteControl rc) {
+ transition(vtos, itos);
+
+ if (RewriteFrequentPairs && rc == may_rewrite) {
+ NearLabel rewrite, done;
+ const Register bc = Z_ARG4;
+
+ assert(Z_R1_scratch != bc, "register damaged");
+
+ // Get next byte.
+ __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_iload)));
+
+ // If _iload, wait to rewrite to iload2. We only want to rewrite the
+ // last two iloads in a pair. Comparing against fast_iload means that
+ // the next bytecode is neither an iload or a caload, and therefore
+ // an iload pair.
+ __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_iload,
+ Assembler::bcondEqual, done);
+
+ __ load_const_optimized(bc, Bytecodes::_fast_iload2);
+ __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_iload,
+ Assembler::bcondEqual, rewrite);
+
+ // If _caload, rewrite to fast_icaload.
+ __ load_const_optimized(bc, Bytecodes::_fast_icaload);
+ __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_caload,
+ Assembler::bcondEqual, rewrite);
+
+ // Rewrite so iload doesn't check again.
+ __ load_const_optimized(bc, Bytecodes::_fast_iload);
+
+ // rewrite
+ // bc: fast bytecode
+ __ bind(rewrite);
+ patch_bytecode(Bytecodes::_iload, bc, Z_R1_scratch, false);
+
+ __ bind(done);
+
+ }
+
+ // Get the local value into tos.
+ locals_index(Z_R1_scratch);
+ __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
+}
+
+void TemplateTable::fast_iload2() {
+ transition(vtos, itos);
+
+ locals_index(Z_R1_scratch);
+ __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
+ __ push_i(Z_tos);
+ locals_index(Z_R1_scratch, 3);
+ __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
+}
+
+void TemplateTable::fast_iload() {
+ transition(vtos, itos);
+
+ locals_index(Z_R1_scratch);
+ __ mem2reg_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
+}
+
+void TemplateTable::lload() {
+ transition(vtos, ltos);
+
+ locals_index(Z_R1_scratch);
+ __ mem2reg_opt(Z_tos, laddress(_masm, Z_R1_scratch));
+}
+
+void TemplateTable::fload() {
+ transition(vtos, ftos);
+
+ locals_index(Z_R1_scratch);
+ __ mem2freg_opt(Z_ftos, faddress(_masm, Z_R1_scratch), false);
+}
+
+void TemplateTable::dload() {
+ transition(vtos, dtos);
+
+ locals_index(Z_R1_scratch);
+ __ mem2freg_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
+}
+
+void TemplateTable::aload() {
+ transition(vtos, atos);
+
+ locals_index(Z_R1_scratch);
+ __ mem2reg_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
+}
+
+void TemplateTable::locals_index_wide(Register reg) {
+ __ get_2_byte_integer_at_bcp(reg, 2, InterpreterMacroAssembler::Unsigned);
+ __ z_lcgr(reg);
+}
+
+void TemplateTable::wide_iload() {
+ transition(vtos, itos);
+
+ locals_index_wide(Z_tmp_1);
+ __ mem2reg_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
+}
+
+void TemplateTable::wide_lload() {
+ transition(vtos, ltos);
+
+ locals_index_wide(Z_tmp_1);
+ __ mem2reg_opt(Z_tos, laddress(_masm, Z_tmp_1));
+}
+
+void TemplateTable::wide_fload() {
+ transition(vtos, ftos);
+
+ locals_index_wide(Z_tmp_1);
+ __ mem2freg_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
+}
+
+void TemplateTable::wide_dload() {
+ transition(vtos, dtos);
+
+ locals_index_wide(Z_tmp_1);
+ __ mem2freg_opt(Z_ftos, daddress(_masm, Z_tmp_1));
+}
+
+void TemplateTable::wide_aload() {
+ transition(vtos, atos);
+
+ locals_index_wide(Z_tmp_1);
+ __ mem2reg_opt(Z_tos, aaddress(_masm, Z_tmp_1));
+}
+
+void TemplateTable::index_check(Register array, Register index, unsigned int shift) {
+ assert_different_registers(Z_R1_scratch, array, index);
+
+ // Check array.
+ __ null_check(array, Z_R0_scratch, arrayOopDesc::length_offset_in_bytes());
+
+ // Sign extend index for use by indexed load.
+ __ z_lgfr(index, index);
+
+ // Check index.
+ Label index_ok;
+ __ z_cl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
+ __ z_brl(index_ok);
+ __ lgr_if_needed(Z_ARG3, index); // See generate_ArrayIndexOutOfBounds_handler().
+ // Give back the array to create more detailed exceptions.
+ __ lgr_if_needed(Z_ARG2, array); // See generate_ArrayIndexOutOfBounds_handler().
+ __ load_absolute_address(Z_R1_scratch,
+ Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
+ __ z_bcr(Assembler::bcondAlways, Z_R1_scratch);
+ __ bind(index_ok);
+
+ if (shift > 0)
+ __ z_sllg(index, index, shift);
+}
+
+void TemplateTable::iaload() {
+ transition(itos, itos);
+
+ __ pop_ptr(Z_tmp_1); // array
+ // Index is in Z_tos.
+ Register index = Z_tos;
+ index_check(Z_tmp_1, index, LogBytesPerInt); // Kills Z_ARG3.
+ // Load the value.
+ __ mem2reg_opt(Z_tos,
+ Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
+ false);
+}
+
+void TemplateTable::laload() {
+ transition(itos, ltos);
+
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : index
+ // Z_tmp_2 : array
+ Register index = Z_tos;
+ index_check(Z_tmp_2, index, LogBytesPerLong);
+ __ mem2reg_opt(Z_tos,
+ Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_LONG)));
+}
+
+void TemplateTable::faload() {
+ transition(itos, ftos);
+
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : index
+ // Z_tmp_2 : array
+ Register index = Z_tos;
+ index_check(Z_tmp_2, index, LogBytesPerInt);
+ __ mem2freg_opt(Z_ftos,
+ Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
+ false);
+}
+
+void TemplateTable::daload() {
+ transition(itos, dtos);
+
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : index
+ // Z_tmp_2 : array
+ Register index = Z_tos;
+ index_check(Z_tmp_2, index, LogBytesPerLong);
+ __ mem2freg_opt(Z_ftos,
+ Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
+}
+
+void TemplateTable::aaload() {
+ transition(itos, atos);
+
+ unsigned const int shift = LogBytesPerHeapOop;
+ __ pop_ptr(Z_tmp_1); // array
+ // Index is in Z_tos.
+ Register index = Z_tos;
+ index_check(Z_tmp_1, index, shift);
+ // Now load array element.
+ __ load_heap_oop(Z_tos,
+ Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
+ __ verify_oop(Z_tos);
+}
+
+void TemplateTable::baload() {
+ transition(itos, itos);
+
+ __ pop_ptr(Z_tmp_1);
+ // Z_tos : index
+ // Z_tmp_1 : array
+ Register index = Z_tos;
+ index_check(Z_tmp_1, index, 0);
+ __ z_lb(Z_tos,
+ Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
+}
+
+void TemplateTable::caload() {
+ transition(itos, itos);
+
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : index
+ // Z_tmp_2 : array
+ Register index = Z_tos;
+ index_check(Z_tmp_2, index, LogBytesPerShort);
+ // Load into 64 bits, works on all CPUs.
+ __ z_llgh(Z_tos,
+ Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
+}
+
+// Iload followed by caload frequent pair.
+void TemplateTable::fast_icaload() {
+ transition(vtos, itos);
+
+ // Load index out of locals.
+ locals_index(Z_R1_scratch);
+ __ mem2reg_opt(Z_ARG3, iaddress(_masm, Z_R1_scratch), false);
+ // Z_ARG3 : index
+ // Z_tmp_2 : array
+ __ pop_ptr(Z_tmp_2);
+ index_check(Z_tmp_2, Z_ARG3, LogBytesPerShort);
+ // Load into 64 bits, works on all CPUs.
+ __ z_llgh(Z_tos,
+ Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
+}
+
+void TemplateTable::saload() {
+ transition(itos, itos);
+
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : index
+ // Z_tmp_2 : array
+ Register index = Z_tos;
+ index_check(Z_tmp_2, index, LogBytesPerShort);
+ __ z_lh(Z_tos,
+ Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
+}
+
+void TemplateTable::iload(int n) {
+ transition(vtos, itos);
+ __ z_ly(Z_tos, iaddress(n));
+}
+
+void TemplateTable::lload(int n) {
+ transition(vtos, ltos);
+ __ z_lg(Z_tos, laddress(n));
+}
+
+void TemplateTable::fload(int n) {
+ transition(vtos, ftos);
+ __ mem2freg_opt(Z_ftos, faddress(n), false);
+}
+
+void TemplateTable::dload(int n) {
+ transition(vtos, dtos);
+ __ mem2freg_opt(Z_ftos, daddress(n));
+}
+
+void TemplateTable::aload(int n) {
+ transition(vtos, atos);
+ __ mem2reg_opt(Z_tos, aaddress(n));
+}
+
+void TemplateTable::aload_0() {
+ aload_0_internal();
+}
+
+void TemplateTable::nofast_aload_0() {
+ aload_0_internal(may_not_rewrite);
+}
+
+void TemplateTable::aload_0_internal(RewriteControl rc) {
+ transition(vtos, atos);
+
+ // According to bytecode histograms, the pairs:
+ //
+ // _aload_0, _fast_igetfield
+ // _aload_0, _fast_agetfield
+ // _aload_0, _fast_fgetfield
+ //
+ // occur frequently. If RewriteFrequentPairs is set, the (slow)
+ // _aload_0 bytecode checks if the next bytecode is either
+ // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
+ // rewrites the current bytecode into a pair bytecode; otherwise it
+ // rewrites the current bytecode into _fast_aload_0 that doesn't do
+ // the pair check anymore.
+ //
+ // Note: If the next bytecode is _getfield, the rewrite must be
+ // delayed, otherwise we may miss an opportunity for a pair.
+ //
+ // Also rewrite frequent pairs
+ // aload_0, aload_1
+ // aload_0, iload_1
+ // These bytecodes with a small amount of code are most profitable
+ // to rewrite.
+ if (!(RewriteFrequentPairs && (rc == may_rewrite))) {
+ aload(0);
+ return;
+ }
+
+ NearLabel rewrite, done;
+ const Register bc = Z_ARG4;
+
+ assert(Z_R1_scratch != bc, "register damaged");
+ // Get next byte.
+ __ z_llgc(Z_R1_scratch, at_bcp(Bytecodes::length_for (Bytecodes::_aload_0)));
+
+ // Do actual aload_0.
+ aload(0);
+
+ // If _getfield then wait with rewrite.
+ __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_getfield,
+ Assembler::bcondEqual, done);
+
+ // If _igetfield then rewrite to _fast_iaccess_0.
+ assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0)
+ == Bytecodes::_aload_0, "fix bytecode definition");
+
+ __ load_const_optimized(bc, Bytecodes::_fast_iaccess_0);
+ __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_igetfield,
+ Assembler::bcondEqual, rewrite);
+
+ // If _agetfield then rewrite to _fast_aaccess_0.
+ assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0)
+ == Bytecodes::_aload_0, "fix bytecode definition");
+
+ __ load_const_optimized(bc, Bytecodes::_fast_aaccess_0);
+ __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_agetfield,
+ Assembler::bcondEqual, rewrite);
+
+ // If _fgetfield then rewrite to _fast_faccess_0.
+ assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0)
+ == Bytecodes::_aload_0, "fix bytecode definition");
+
+ __ load_const_optimized(bc, Bytecodes::_fast_faccess_0);
+ __ compareU32_and_branch(Z_R1_scratch, Bytecodes::_fast_fgetfield,
+ Assembler::bcondEqual, rewrite);
+
+ // Else rewrite to _fast_aload0.
+ assert(Bytecodes::java_code(Bytecodes::_fast_aload_0)
+ == Bytecodes::_aload_0, "fix bytecode definition");
+ __ load_const_optimized(bc, Bytecodes::_fast_aload_0);
+
+ // rewrite
+ // bc: fast bytecode
+ __ bind(rewrite);
+
+ patch_bytecode(Bytecodes::_aload_0, bc, Z_R1_scratch, false);
+ // Reload local 0 because of VM call inside patch_bytecode().
+ // this may trigger GC and thus change the oop.
+ aload(0);
+
+ __ bind(done);
+}
+
+void TemplateTable::istore() {
+ transition(itos, vtos);
+ locals_index(Z_R1_scratch);
+ __ reg2mem_opt(Z_tos, iaddress(_masm, Z_R1_scratch), false);
+}
+
+void TemplateTable::lstore() {
+ transition(ltos, vtos);
+ locals_index(Z_R1_scratch);
+ __ reg2mem_opt(Z_tos, laddress(_masm, Z_R1_scratch));
+}
+
+void TemplateTable::fstore() {
+ transition(ftos, vtos);
+ locals_index(Z_R1_scratch);
+ __ freg2mem_opt(Z_ftos, faddress(_masm, Z_R1_scratch));
+}
+
+void TemplateTable::dstore() {
+ transition(dtos, vtos);
+ locals_index(Z_R1_scratch);
+ __ freg2mem_opt(Z_ftos, daddress(_masm, Z_R1_scratch));
+}
+
+void TemplateTable::astore() {
+ transition(vtos, vtos);
+ __ pop_ptr(Z_tos);
+ locals_index(Z_R1_scratch);
+ __ reg2mem_opt(Z_tos, aaddress(_masm, Z_R1_scratch));
+}
+
+void TemplateTable::wide_istore() {
+ transition(vtos, vtos);
+ __ pop_i(Z_tos);
+ locals_index_wide(Z_tmp_1);
+ __ reg2mem_opt(Z_tos, iaddress(_masm, Z_tmp_1), false);
+}
+
+void TemplateTable::wide_lstore() {
+ transition(vtos, vtos);
+ __ pop_l(Z_tos);
+ locals_index_wide(Z_tmp_1);
+ __ reg2mem_opt(Z_tos, laddress(_masm, Z_tmp_1));
+}
+
+void TemplateTable::wide_fstore() {
+ transition(vtos, vtos);
+ __ pop_f(Z_ftos);
+ locals_index_wide(Z_tmp_1);
+ __ freg2mem_opt(Z_ftos, faddress(_masm, Z_tmp_1), false);
+}
+
+void TemplateTable::wide_dstore() {
+ transition(vtos, vtos);
+ __ pop_d(Z_ftos);
+ locals_index_wide(Z_tmp_1);
+ __ freg2mem_opt(Z_ftos, daddress(_masm, Z_tmp_1));
+}
+
+void TemplateTable::wide_astore() {
+ transition(vtos, vtos);
+ __ pop_ptr(Z_tos);
+ locals_index_wide(Z_tmp_1);
+ __ reg2mem_opt(Z_tos, aaddress(_masm, Z_tmp_1));
+}
+
+void TemplateTable::iastore() {
+ transition(itos, vtos);
+
+ Register index = Z_ARG3; // Index_check expects index in Z_ARG3.
+ // Value is in Z_tos ...
+ __ pop_i(index); // index
+ __ pop_ptr(Z_tmp_1); // array
+ index_check(Z_tmp_1, index, LogBytesPerInt);
+ // ... and then move the value.
+ __ reg2mem_opt(Z_tos,
+ Address(Z_tmp_1, index, arrayOopDesc::base_offset_in_bytes(T_INT)),
+ false);
+}
+
+void TemplateTable::lastore() {
+ transition(ltos, vtos);
+
+ __ pop_i(Z_ARG3);
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : value
+ // Z_ARG3 : index
+ // Z_tmp_2 : array
+ index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
+ __ reg2mem_opt(Z_tos,
+ Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_LONG)));
+}
+
+void TemplateTable::fastore() {
+ transition(ftos, vtos);
+
+ __ pop_i(Z_ARG3);
+ __ pop_ptr(Z_tmp_2);
+ // Z_ftos : value
+ // Z_ARG3 : index
+ // Z_tmp_2 : array
+ index_check(Z_tmp_2, Z_ARG3, LogBytesPerInt); // Prefer index in Z_ARG3.
+ __ freg2mem_opt(Z_ftos,
+ Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
+ false);
+}
+
+void TemplateTable::dastore() {
+ transition(dtos, vtos);
+
+ __ pop_i(Z_ARG3);
+ __ pop_ptr(Z_tmp_2);
+ // Z_ftos : value
+ // Z_ARG3 : index
+ // Z_tmp_2 : array
+ index_check(Z_tmp_2, Z_ARG3, LogBytesPerLong); // Prefer index in Z_ARG3.
+ __ freg2mem_opt(Z_ftos,
+ Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
+}
+
+void TemplateTable::aastore() {
+ NearLabel is_null, ok_is_subtype, done;
+ transition(vtos, vtos);
+
+ // stack: ..., array, index, value
+
+ Register Rvalue = Z_tos;
+ Register Rarray = Z_ARG2;
+ Register Rindex = Z_ARG3; // Convention for index_check().
+
+ __ load_ptr(0, Rvalue);
+ __ z_l(Rindex, Address(Z_esp, Interpreter::expr_offset_in_bytes(1)));
+ __ load_ptr(2, Rarray);
+
+ unsigned const int shift = LogBytesPerHeapOop;
+ index_check(Rarray, Rindex, shift); // side effect: Rindex = Rindex << shift
+ Register Rstore_addr = Rindex;
+ // Address where the store goes to, i.e. &(Rarry[index])
+ __ load_address(Rstore_addr, Address(Rarray, Rindex, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
+
+ // do array store check - check for NULL value first.
+ __ compareU64_and_branch(Rvalue, (intptr_t)0, Assembler::bcondEqual, is_null);
+
+ Register Rsub_klass = Z_ARG4;
+ Register Rsuper_klass = Z_ARG5;
+ __ load_klass(Rsub_klass, Rvalue);
+ // Load superklass.
+ __ load_klass(Rsuper_klass, Rarray);
+ __ z_lg(Rsuper_klass, Address(Rsuper_klass, ObjArrayKlass::element_klass_offset()));
+
+ // Generate a fast subtype check. Branch to ok_is_subtype if no failure.
+ // Throw if failure.
+ Register tmp1 = Z_tmp_1;
+ Register tmp2 = Z_tmp_2;
+ __ gen_subtype_check(Rsub_klass, Rsuper_klass, tmp1, tmp2, ok_is_subtype);
+
+ // Fall through on failure.
+ // Object is in Rvalue == Z_tos.
+ assert(Rvalue == Z_tos, "that's the expected location");
+ __ load_absolute_address(tmp1, Interpreter::_throw_ArrayStoreException_entry);
+ __ z_br(tmp1);
+
+ // Come here on success.
+ __ bind(ok_is_subtype);
+
+ // Now store using the appropriate barrier.
+ Register tmp3 = Rsub_klass;
+ do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, false/*val==null*/,
+ tmp3, tmp2, tmp1, _bs->kind(), true);
+ __ z_bru(done);
+
+ // Have a NULL in Rvalue.
+ __ bind(is_null);
+ __ profile_null_seen(tmp1);
+
+ // Store a NULL.
+ do_oop_store(_masm, Rstore_addr, (intptr_t)0/*offset*/, Rvalue, true/*val==null*/,
+ tmp3, tmp2, tmp1, _bs->kind(), true);
+
+ // Pop stack arguments.
+ __ bind(done);
+ __ add2reg(Z_esp, 3 * Interpreter::stackElementSize);
+}
+
+
+void TemplateTable::bastore() {
+ transition(itos, vtos);
+
+ __ pop_i(Z_ARG3);
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : value
+ // Z_ARG3 : index
+ // Z_tmp_2 : array
+ // No index shift necessary - pass 0.
+ index_check(Z_tmp_2, Z_ARG3, 0); // Prefer index in Z_ARG3.
+ __ z_stc(Z_tos,
+ Address(Z_tmp_2, Z_ARG3, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
+}
+
+void TemplateTable::castore() {
+ transition(itos, vtos);
+
+ __ pop_i(Z_ARG3);
+ __ pop_ptr(Z_tmp_2);
+ // Z_tos : value
+ // Z_ARG3 : index
+ // Z_tmp_2 : array
+ Register index = Z_ARG3; // prefer index in Z_ARG3
+ index_check(Z_tmp_2, index, LogBytesPerShort);
+ __ z_sth(Z_tos,
+ Address(Z_tmp_2, index, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
+}
+
+void TemplateTable::sastore() {
+ castore();
+}
+
+void TemplateTable::istore(int n) {
+ transition(itos, vtos);
+ __ reg2mem_opt(Z_tos, iaddress(n), false);
+}
+
+void TemplateTable::lstore(int n) {
+ transition(ltos, vtos);
+ __ reg2mem_opt(Z_tos, laddress(n));
+}
+
+void TemplateTable::fstore(int n) {
+ transition(ftos, vtos);
+ __ freg2mem_opt(Z_ftos, faddress(n), false);
+}
+
+void TemplateTable::dstore(int n) {
+ transition(dtos, vtos);
+ __ freg2mem_opt(Z_ftos, daddress(n));
+}
+
+void TemplateTable::astore(int n) {
+ transition(vtos, vtos);
+ __ pop_ptr(Z_tos);
+ __ reg2mem_opt(Z_tos, aaddress(n));
+}
+
+void TemplateTable::pop() {
+ transition(vtos, vtos);
+ __ add2reg(Z_esp, Interpreter::stackElementSize);
+}
+
+void TemplateTable::pop2() {
+ transition(vtos, vtos);
+ __ add2reg(Z_esp, 2 * Interpreter::stackElementSize);
+}
+
+void TemplateTable::dup() {
+ transition(vtos, vtos);
+ __ load_ptr(0, Z_tos);
+ __ push_ptr(Z_tos);
+ // stack: ..., a, a
+}
+
+void TemplateTable::dup_x1() {
+ transition(vtos, vtos);
+
+ // stack: ..., a, b
+ __ load_ptr(0, Z_tos); // load b
+ __ load_ptr(1, Z_R0_scratch); // load a
+ __ store_ptr(1, Z_tos); // store b
+ __ store_ptr(0, Z_R0_scratch); // store a
+ __ push_ptr(Z_tos); // push b
+ // stack: ..., b, a, b
+}
+
+void TemplateTable::dup_x2() {
+ transition(vtos, vtos);
+
+ // stack: ..., a, b, c
+ __ load_ptr(0, Z_R0_scratch); // load c
+ __ load_ptr(2, Z_R1_scratch); // load a
+ __ store_ptr(2, Z_R0_scratch); // store c in a
+ __ push_ptr(Z_R0_scratch); // push c
+ // stack: ..., c, b, c, c
+ __ load_ptr(2, Z_R0_scratch); // load b
+ __ store_ptr(2, Z_R1_scratch); // store a in b
+ // stack: ..., c, a, c, c
+ __ store_ptr(1, Z_R0_scratch); // store b in c
+ // stack: ..., c, a, b, c
+}
+
+void TemplateTable::dup2() {
+ transition(vtos, vtos);
+
+ // stack: ..., a, b
+ __ load_ptr(1, Z_R0_scratch); // load a
+ __ push_ptr(Z_R0_scratch); // push a
+ __ load_ptr(1, Z_R0_scratch); // load b
+ __ push_ptr(Z_R0_scratch); // push b
+ // stack: ..., a, b, a, b
+}
+
+void TemplateTable::dup2_x1() {
+ transition(vtos, vtos);
+
+ // stack: ..., a, b, c
+ __ load_ptr(0, Z_R0_scratch); // load c
+ __ load_ptr(1, Z_R1_scratch); // load b
+ __ push_ptr(Z_R1_scratch); // push b
+ __ push_ptr(Z_R0_scratch); // push c
+ // stack: ..., a, b, c, b, c
+ __ store_ptr(3, Z_R0_scratch); // store c in b
+ // stack: ..., a, c, c, b, c
+ __ load_ptr( 4, Z_R0_scratch); // load a
+ __ store_ptr(2, Z_R0_scratch); // store a in 2nd c
+ // stack: ..., a, c, a, b, c
+ __ store_ptr(4, Z_R1_scratch); // store b in a
+ // stack: ..., b, c, a, b, c
+}
+
+void TemplateTable::dup2_x2() {
+ transition(vtos, vtos);
+
+ // stack: ..., a, b, c, d
+ __ load_ptr(0, Z_R0_scratch); // load d
+ __ load_ptr(1, Z_R1_scratch); // load c
+ __ push_ptr(Z_R1_scratch); // push c
+ __ push_ptr(Z_R0_scratch); // push d
+ // stack: ..., a, b, c, d, c, d
+ __ load_ptr(4, Z_R1_scratch); // load b
+ __ store_ptr(2, Z_R1_scratch); // store b in d
+ __ store_ptr(4, Z_R0_scratch); // store d in b
+ // stack: ..., a, d, c, b, c, d
+ __ load_ptr(5, Z_R0_scratch); // load a
+ __ load_ptr(3, Z_R1_scratch); // load c
+ __ store_ptr(3, Z_R0_scratch); // store a in c
+ __ store_ptr(5, Z_R1_scratch); // store c in a
+ // stack: ..., c, d, a, b, c, d
+}
+
+void TemplateTable::swap() {
+ transition(vtos, vtos);
+
+ // stack: ..., a, b
+ __ load_ptr(1, Z_R0_scratch); // load a
+ __ load_ptr(0, Z_R1_scratch); // load b
+ __ store_ptr(0, Z_R0_scratch); // store a in b
+ __ store_ptr(1, Z_R1_scratch); // store b in a
+ // stack: ..., b, a
+}
+
+void TemplateTable::iop2(Operation op) {
+ transition(itos, itos);
+ switch (op) {
+ case add : __ z_ay(Z_tos, __ stackTop()); __ pop_i(); break;
+ case sub : __ z_sy(Z_tos, __ stackTop()); __ pop_i(); __ z_lcr(Z_tos, Z_tos); break;
+ case mul : __ z_msy(Z_tos, __ stackTop()); __ pop_i(); break;
+ case _and : __ z_ny(Z_tos, __ stackTop()); __ pop_i(); break;
+ case _or : __ z_oy(Z_tos, __ stackTop()); __ pop_i(); break;
+ case _xor : __ z_xy(Z_tos, __ stackTop()); __ pop_i(); break;
+ case shl : __ z_lr(Z_tmp_1, Z_tos);
+ __ z_nill(Z_tmp_1, 31); // Lowest 5 bits are shiftamount.
+ __ pop_i(Z_tos); __ z_sll(Z_tos, 0, Z_tmp_1); break;
+ case shr : __ z_lr(Z_tmp_1, Z_tos);
+ __ z_nill(Z_tmp_1, 31); // Lowest 5 bits are shiftamount.
+ __ pop_i(Z_tos); __ z_sra(Z_tos, 0, Z_tmp_1); break;
+ case ushr : __ z_lr(Z_tmp_1, Z_tos);
+ __ z_nill(Z_tmp_1, 31); // Lowest 5 bits are shiftamount.
+ __ pop_i(Z_tos); __ z_srl(Z_tos, 0, Z_tmp_1); break;
+ default : ShouldNotReachHere(); break;
+ }
+ return;
+}
+
+void TemplateTable::lop2(Operation op) {
+ transition(ltos, ltos);
+
+ switch (op) {
+ case add : __ z_ag(Z_tos, __ stackTop()); __ pop_l(); break;
+ case sub : __ z_sg(Z_tos, __ stackTop()); __ pop_l(); __ z_lcgr(Z_tos, Z_tos); break;
+ case mul : __ z_msg(Z_tos, __ stackTop()); __ pop_l(); break;
+ case _and : __ z_ng(Z_tos, __ stackTop()); __ pop_l(); break;
+ case _or : __ z_og(Z_tos, __ stackTop()); __ pop_l(); break;
+ case _xor : __ z_xg(Z_tos, __ stackTop()); __ pop_l(); break;
+ default : ShouldNotReachHere(); break;
+ }
+ return;
+}
+
+// Common part of idiv/irem.
+static void idiv_helper(InterpreterMacroAssembler * _masm, address exception) {
+ NearLabel not_null;
+
+ // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
+ assert(Z_tmp_1->successor() == Z_tmp_2, " need even/odd register pair for idiv/irem");
+
+ // Get dividend.
+ __ pop_i(Z_tmp_2);
+
+ // If divisor == 0 throw exception.
+ __ compare32_and_branch(Z_tos, (intptr_t) 0,
+ Assembler::bcondNotEqual, not_null );
+ __ load_absolute_address(Z_R1_scratch, exception);
+ __ z_br(Z_R1_scratch);
+
+ __ bind(not_null);
+
+ __ z_lgfr(Z_tmp_2, Z_tmp_2); // Sign extend dividend.
+ __ z_dsgfr(Z_tmp_1, Z_tos); // Do it.
+}
+
+void TemplateTable::idiv() {
+ transition(itos, itos);
+
+ idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
+ __ z_llgfr(Z_tos, Z_tmp_2); // Result is in Z_tmp_2.
+}
+
+void TemplateTable::irem() {
+ transition(itos, itos);
+
+ idiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry);
+ __ z_llgfr(Z_tos, Z_tmp_1); // Result is in Z_tmp_1.
+}
+
+void TemplateTable::lmul() {
+ transition(ltos, ltos);
+
+ // Multiply with memory operand.
+ __ z_msg(Z_tos, __ stackTop());
+ __ pop_l(); // Pop operand.
+}
+
+// Common part of ldiv/lrem.
+//
+// Input:
+// Z_tos := the divisor (dividend still on stack)
+//
+// Updated registers:
+// Z_tmp_1 := pop_l() % Z_tos ; if is_ldiv == false
+// Z_tmp_2 := pop_l() / Z_tos ; if is_ldiv == true
+//
+static void ldiv_helper(InterpreterMacroAssembler * _masm, address exception, bool is_ldiv) {
+ NearLabel not_null, done;
+
+ // Use register pair Z_tmp_1, Z_tmp_2 for DIVIDE SINGLE.
+ assert(Z_tmp_1->successor() == Z_tmp_2,
+ " need even/odd register pair for idiv/irem");
+
+ // Get dividend.
+ __ pop_l(Z_tmp_2);
+
+ // If divisor == 0 throw exception.
+ __ compare64_and_branch(Z_tos, (intptr_t)0, Assembler::bcondNotEqual, not_null);
+ __ load_absolute_address(Z_R1_scratch, exception);
+ __ z_br(Z_R1_scratch);
+
+ __ bind(not_null);
+ // Special case for dividend == 0x8000 and divisor == -1.
+ if (is_ldiv) {
+ // result := Z_tmp_2 := - dividend
+ __ z_lcgr(Z_tmp_2, Z_tmp_2);
+ } else {
+ // result remainder := Z_tmp_1 := 0
+ __ clear_reg(Z_tmp_1, true, false); // Don't set CC.
+ }
+
+ // if divisor == -1 goto done
+ __ compare64_and_branch(Z_tos, -1, Assembler::bcondEqual, done);
+ if (is_ldiv)
+ // Restore sign, because divisor != -1.
+ __ z_lcgr(Z_tmp_2, Z_tmp_2);
+ __ z_dsgr(Z_tmp_1, Z_tos); // Do it.
+ __ bind(done);
+}
+
+void TemplateTable::ldiv() {
+ transition(ltos, ltos);
+
+ ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, true /*is_ldiv*/);
+ __ z_lgr(Z_tos, Z_tmp_2); // Result is in Z_tmp_2.
+}
+
+void TemplateTable::lrem() {
+ transition(ltos, ltos);
+
+ ldiv_helper(_masm, Interpreter::_throw_ArithmeticException_entry, false /*is_ldiv*/);
+ __ z_lgr(Z_tos, Z_tmp_1); // Result is in Z_tmp_1.
+}
+
+void TemplateTable::lshl() {
+ transition(itos, ltos);
+
+ // Z_tos: shift amount
+ __ pop_l(Z_tmp_1); // Get shift value.
+ __ z_sllg(Z_tos, Z_tmp_1, 0, Z_tos);
+}
+
+void TemplateTable::lshr() {
+ transition(itos, ltos);
+
+ // Z_tos: shift amount
+ __ pop_l(Z_tmp_1); // Get shift value.
+ __ z_srag(Z_tos, Z_tmp_1, 0, Z_tos);
+}
+
+void TemplateTable::lushr() {
+ transition(itos, ltos);
+
+ // Z_tos: shift amount
+ __ pop_l(Z_tmp_1); // Get shift value.
+ __ z_srlg(Z_tos, Z_tmp_1, 0, Z_tos);
+}
+
+void TemplateTable::fop2(Operation op) {
+ transition(ftos, ftos);
+
+ switch (op) {
+ case add:
+ // Add memory operand.
+ __ z_aeb(Z_ftos, __ stackTop()); __ pop_f(); return;
+ case sub:
+ // Sub memory operand.
+ __ z_ler(Z_F1, Z_ftos); // first operand
+ __ pop_f(Z_ftos); // second operand from stack
+ __ z_sebr(Z_ftos, Z_F1);
+ return;
+ case mul:
+ // Multiply with memory operand.
+ __ z_meeb(Z_ftos, __ stackTop()); __ pop_f(); return;
+ case div:
+ __ z_ler(Z_F1, Z_ftos); // first operand
+ __ pop_f(Z_ftos); // second operand from stack
+ __ z_debr(Z_ftos, Z_F1);
+ return;
+ case rem:
+ // Do runtime call.
+ __ z_ler(Z_FARG2, Z_ftos); // divisor
+ __ pop_f(Z_FARG1); // dividend
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
+ // Result should be in the right place (Z_ftos == Z_FRET).
+ return;
+ default:
+ ShouldNotReachHere();
+ return;
+ }
+}
+
+void TemplateTable::dop2(Operation op) {
+ transition(dtos, dtos);
+
+ switch (op) {
+ case add:
+ // Add memory operand.
+ __ z_adb(Z_ftos, __ stackTop()); __ pop_d(); return;
+ case sub:
+ // Sub memory operand.
+ __ z_ldr(Z_F1, Z_ftos); // first operand
+ __ pop_d(Z_ftos); // second operand from stack
+ __ z_sdbr(Z_ftos, Z_F1);
+ return;
+ case mul:
+ // Multiply with memory operand.
+ __ z_mdb(Z_ftos, __ stackTop()); __ pop_d(); return;
+ case div:
+ __ z_ldr(Z_F1, Z_ftos); // first operand
+ __ pop_d(Z_ftos); // second operand from stack
+ __ z_ddbr(Z_ftos, Z_F1);
+ return;
+ case rem:
+ // Do runtime call.
+ __ z_ldr(Z_FARG2, Z_ftos); // divisor
+ __ pop_d(Z_FARG1); // dividend
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
+ // Result should be in the right place (Z_ftos == Z_FRET).
+ return;
+ default:
+ ShouldNotReachHere();
+ return;
+ }
+}
+
+void TemplateTable::ineg() {
+ transition(itos, itos);
+ __ z_lcr(Z_tos);
+}
+
+void TemplateTable::lneg() {
+ transition(ltos, ltos);
+ __ z_lcgr(Z_tos);
+}
+
+void TemplateTable::fneg() {
+ transition(ftos, ftos);
+ __ z_lcebr(Z_ftos, Z_ftos);
+}
+
+void TemplateTable::dneg() {
+ transition(dtos, dtos);
+ __ z_lcdbr(Z_ftos, Z_ftos);
+}
+
+void TemplateTable::iinc() {
+ transition(vtos, vtos);
+
+ Address local;
+ __ z_lb(Z_R0_scratch, at_bcp(2)); // Get constant.
+ locals_index(Z_R1_scratch);
+ local = iaddress(_masm, Z_R1_scratch);
+ __ z_a(Z_R0_scratch, local);
+ __ reg2mem_opt(Z_R0_scratch, local, false);
+}
+
+void TemplateTable::wide_iinc() {
+ transition(vtos, vtos);
+
+ // Z_tmp_1 := increment
+ __ get_2_byte_integer_at_bcp(Z_tmp_1, 4, InterpreterMacroAssembler::Signed);
+ // Z_R1_scratch := index of local to increment
+ locals_index_wide(Z_tmp_2);
+ // Load, increment, and store.
+ __ access_local_int(Z_tmp_2, Z_tos);
+ __ z_agr(Z_tos, Z_tmp_1);
+ // Shifted index is still in Z_tmp_2.
+ __ reg2mem_opt(Z_tos, Address(Z_locals, Z_tmp_2), false);
+}
+
+
+void TemplateTable::convert() {
+ // Checking
+#ifdef ASSERT
+ TosState tos_in = ilgl;
+ TosState tos_out = ilgl;
+
+ switch (bytecode()) {
+ case Bytecodes::_i2l:
+ case Bytecodes::_i2f:
+ case Bytecodes::_i2d:
+ case Bytecodes::_i2b:
+ case Bytecodes::_i2c:
+ case Bytecodes::_i2s:
+ tos_in = itos;
+ break;
+ case Bytecodes::_l2i:
+ case Bytecodes::_l2f:
+ case Bytecodes::_l2d:
+ tos_in = ltos;
+ break;
+ case Bytecodes::_f2i:
+ case Bytecodes::_f2l:
+ case Bytecodes::_f2d:
+ tos_in = ftos;
+ break;
+ case Bytecodes::_d2i:
+ case Bytecodes::_d2l:
+ case Bytecodes::_d2f:
+ tos_in = dtos;
+ break;
+ default :
+ ShouldNotReachHere();
+ }
+ switch (bytecode()) {
+ case Bytecodes::_l2i:
+ case Bytecodes::_f2i:
+ case Bytecodes::_d2i:
+ case Bytecodes::_i2b:
+ case Bytecodes::_i2c:
+ case Bytecodes::_i2s:
+ tos_out = itos;
+ break;
+ case Bytecodes::_i2l:
+ case Bytecodes::_f2l:
+ case Bytecodes::_d2l:
+ tos_out = ltos;
+ break;
+ case Bytecodes::_i2f:
+ case Bytecodes::_l2f:
+ case Bytecodes::_d2f:
+ tos_out = ftos;
+ break;
+ case Bytecodes::_i2d:
+ case Bytecodes::_l2d:
+ case Bytecodes::_f2d:
+ tos_out = dtos;
+ break;
+ default :
+ ShouldNotReachHere();
+ }
+
+ transition(tos_in, tos_out);
+#endif // ASSERT
+
+ // Conversion
+ Label done;
+ switch (bytecode()) {
+ case Bytecodes::_i2l:
+ __ z_lgfr(Z_tos, Z_tos);
+ return;
+ case Bytecodes::_i2f:
+ __ z_cefbr(Z_ftos, Z_tos);
+ return;
+ case Bytecodes::_i2d:
+ __ z_cdfbr(Z_ftos, Z_tos);
+ return;
+ case Bytecodes::_i2b:
+ // Sign extend least significant byte.
+ __ move_reg_if_needed(Z_tos, T_BYTE, Z_tos, T_INT);
+ return;
+ case Bytecodes::_i2c:
+ // Zero extend 2 least significant bytes.
+ __ move_reg_if_needed(Z_tos, T_CHAR, Z_tos, T_INT);
+ return;
+ case Bytecodes::_i2s:
+ // Sign extend 2 least significant bytes.
+ __ move_reg_if_needed(Z_tos, T_SHORT, Z_tos, T_INT);
+ return;
+ case Bytecodes::_l2i:
+ // Sign-extend not needed here, upper 4 bytes of int value in register are ignored.
+ return;
+ case Bytecodes::_l2f:
+ __ z_cegbr(Z_ftos, Z_tos);
+ return;
+ case Bytecodes::_l2d:
+ __ z_cdgbr(Z_ftos, Z_tos);
+ return;
+ case Bytecodes::_f2i:
+ case Bytecodes::_f2l:
+ __ clear_reg(Z_tos, true, false); // Don't set CC.
+ __ z_cebr(Z_ftos, Z_ftos);
+ __ z_brno(done); // NaN -> 0
+ if (bytecode() == Bytecodes::_f2i)
+ __ z_cfebr(Z_tos, Z_ftos, Assembler::to_zero);
+ else // bytecode() == Bytecodes::_f2l
+ __ z_cgebr(Z_tos, Z_ftos, Assembler::to_zero);
+ break;
+ case Bytecodes::_f2d:
+ __ move_freg_if_needed(Z_ftos, T_DOUBLE, Z_ftos, T_FLOAT);
+ return;
+ case Bytecodes::_d2i:
+ case Bytecodes::_d2l:
+ __ clear_reg(Z_tos, true, false); // Ddon't set CC.
+ __ z_cdbr(Z_ftos, Z_ftos);
+ __ z_brno(done); // NaN -> 0
+ if (bytecode() == Bytecodes::_d2i)
+ __ z_cfdbr(Z_tos, Z_ftos, Assembler::to_zero);
+ else // Bytecodes::_d2l
+ __ z_cgdbr(Z_tos, Z_ftos, Assembler::to_zero);
+ break;
+ case Bytecodes::_d2f:
+ __ move_freg_if_needed(Z_ftos, T_FLOAT, Z_ftos, T_DOUBLE);
+ return;
+ default:
+ ShouldNotReachHere();
+ }
+ __ bind(done);
+}
+
+void TemplateTable::lcmp() {
+ transition(ltos, itos);
+
+ Label done;
+ Register val1 = Z_R0_scratch;
+ Register val2 = Z_R1_scratch;
+
+ if (VM_Version::has_LoadStoreConditional()) {
+ __ pop_l(val1); // pop value 1.
+ __ z_lghi(val2, -1); // lt value
+ __ z_cgr(val1, Z_tos); // Compare with Z_tos (value 2). Protect CC under all circumstances.
+ __ z_lghi(val1, 1); // gt value
+ __ z_lghi(Z_tos, 0); // eq value
+
+ __ z_locgr(Z_tos, val1, Assembler::bcondHigh);
+ __ z_locgr(Z_tos, val2, Assembler::bcondLow);
+ } else {
+ __ pop_l(val1); // Pop value 1.
+ __ z_cgr(val1, Z_tos); // Compare with Z_tos (value 2). Protect CC under all circumstances.
+
+ __ z_lghi(Z_tos, 0); // eq value
+ __ z_bre(done);
+
+ __ z_lghi(Z_tos, 1); // gt value
+ __ z_brh(done);
+
+ __ z_lghi(Z_tos, -1); // lt value
+ }
+
+ __ bind(done);
+}
+
+
+void TemplateTable::float_cmp(bool is_float, int unordered_result) {
+ Label done;
+
+ if (is_float) {
+ __ pop_f(Z_FARG2);
+ __ z_cebr(Z_FARG2, Z_ftos);
+ } else {
+ __ pop_d(Z_FARG2);
+ __ z_cdbr(Z_FARG2, Z_ftos);
+ }
+
+ if (VM_Version::has_LoadStoreConditional()) {
+ Register one = Z_R0_scratch;
+ Register minus_one = Z_R1_scratch;
+ __ z_lghi(minus_one, -1);
+ __ z_lghi(one, 1);
+ __ z_lghi(Z_tos, 0);
+ __ z_locgr(Z_tos, one, unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh);
+ __ z_locgr(Z_tos, minus_one, unordered_result == 1 ? Assembler::bcondLow : Assembler::bcondLowOrNotOrdered);
+ } else {
+ // Z_FARG2 == Z_ftos
+ __ clear_reg(Z_tos, false, false);
+ __ z_bre(done);
+
+ // F_ARG2 > Z_Ftos, or unordered
+ __ z_lhi(Z_tos, 1);
+ __ z_brc(unordered_result == 1 ? Assembler::bcondHighOrNotOrdered : Assembler::bcondHigh, done);
+
+ // F_ARG2 < Z_FTOS, or unordered
+ __ z_lhi(Z_tos, -1);
+
+ __ bind(done);
+ }
+}
+
+void TemplateTable::branch(bool is_jsr, bool is_wide) {
+ const Register bumped_count = Z_tmp_1;
+ const Register method = Z_tmp_2;
+ const Register m_counters = Z_R1_scratch;
+ const Register mdo = Z_tos;
+
+ BLOCK_COMMENT("TemplateTable::branch {");
+ __ get_method(method);
+ __ profile_taken_branch(mdo, bumped_count);
+
+ const ByteSize ctr_offset = InvocationCounter::counter_offset();
+ const ByteSize be_offset = MethodCounters::backedge_counter_offset() + ctr_offset;
+ const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + ctr_offset;
+
+ // Get (wide) offset to disp.
+ const Register disp = Z_ARG5;
+ if (is_wide) {
+ __ get_4_byte_integer_at_bcp(disp, 1);
+ } else {
+ __ get_2_byte_integer_at_bcp(disp, 1, InterpreterMacroAssembler::Signed);
+ }
+
+ // Handle all the JSR stuff here, then exit.
+ // It's much shorter and cleaner than intermingling with the
+ // non-JSR normal-branch stuff occurring below.
+ if (is_jsr) {
+ // Compute return address as bci in Z_tos.
+ __ z_lgr(Z_R1_scratch, Z_bcp);
+ __ z_sg(Z_R1_scratch, Address(method, Method::const_offset()));
+ __ add2reg(Z_tos, (is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset()), Z_R1_scratch);
+
+ // Bump bcp to target of JSR.
+ __ z_agr(Z_bcp, disp);
+ // Push return address for "ret" on stack.
+ __ push_ptr(Z_tos);
+ // And away we go!
+ __ dispatch_next(vtos);
+ return;
+ }
+
+ // Normal (non-jsr) branch handling.
+
+ // Bump bytecode pointer by displacement (take the branch).
+ __ z_agr(Z_bcp, disp);
+
+ assert(UseLoopCounter || !UseOnStackReplacement,
+ "on-stack-replacement requires loop counters");
+
+ NearLabel backedge_counter_overflow;
+ NearLabel profile_method;
+ NearLabel dispatch;
+ int increment = InvocationCounter::count_increment;
+
+ if (UseLoopCounter) {
+ // Increment backedge counter for backward branches.
+ // disp: target offset
+ // Z_bcp: target bcp
+ // Z_locals: locals pointer
+ //
+ // Count only if backward branch.
+ __ compare32_and_branch(disp, (intptr_t)0, Assembler::bcondHigh, dispatch);
+
+ if (TieredCompilation) {
+ Label noCounters;
+
+ if (ProfileInterpreter) {
+ NearLabel no_mdo;
+
+ // Are we profiling?
+ __ load_and_test_long(mdo, Address(method, Method::method_data_offset()));
+ __ branch_optimized(Assembler::bcondZero, no_mdo);
+
+ // Increment the MDO backedge counter.
+ const Address mdo_backedge_counter(mdo, MethodData::backedge_counter_offset() + InvocationCounter::counter_offset());
+
+ const Address mask(mdo, MethodData::backedge_mask_offset());
+ __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
+ Z_ARG2, false, Assembler::bcondZero,
+ UseOnStackReplacement ? &backedge_counter_overflow : NULL);
+ __ z_bru(dispatch);
+ __ bind(no_mdo);
+ }
+
+ // Increment backedge counter in MethodCounters*.
+ __ get_method_counters(method, m_counters, noCounters);
+ const Address mask(m_counters, MethodCounters::backedge_mask_offset());
+ __ increment_mask_and_jump(Address(m_counters, be_offset),
+ increment, mask,
+ Z_ARG2, false, Assembler::bcondZero,
+ UseOnStackReplacement ? &backedge_counter_overflow : NULL);
+ __ bind(noCounters);
+ } else {
+ Register counter = Z_tos;
+ Label noCounters;
+ // Get address of MethodCounters object.
+ __ get_method_counters(method, m_counters, noCounters);
+ // Increment backedge counter.
+ __ increment_backedge_counter(m_counters, counter);
+
+ if (ProfileInterpreter) {
+ // Test to see if we should create a method data obj.
+ __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_profile_limit_offset()));
+ __ z_brl(dispatch);
+
+ // If no method data exists, go to profile method.
+ __ test_method_data_pointer(Z_ARG4/*result unused*/, profile_method);
+
+ if (UseOnStackReplacement) {
+ // Check for overflow against 'bumped_count' which is the MDO taken count.
+ __ z_cl(bumped_count, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
+ __ z_brl(dispatch);
+
+ // When ProfileInterpreter is on, the backedge_count comes
+ // from the methodDataOop, which value does not get reset on
+ // the call to frequency_counter_overflow(). To avoid
+ // excessive calls to the overflow routine while the method is
+ // being compiled, add a second test to make sure the overflow
+ // function is called only once every overflow_frequency.
+ const int overflow_frequency = 1024;
+ __ and_imm(bumped_count, overflow_frequency - 1);
+ __ z_brz(backedge_counter_overflow);
+
+ }
+ } else {
+ if (UseOnStackReplacement) {
+ // Check for overflow against 'counter', which is the sum of the
+ // counters.
+ __ z_cl(counter, Address(m_counters, MethodCounters::interpreter_backward_branch_limit_offset()));
+ __ z_brh(backedge_counter_overflow);
+ }
+ }
+ __ bind(noCounters);
+ }
+
+ __ bind(dispatch);
+ }
+
+ // Pre-load the next target bytecode into rbx.
+ __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0));
+
+ // Continue with the bytecode @ target.
+ // Z_tos: Return bci for jsr's, unused otherwise.
+ // Z_bytecode: target bytecode
+ // Z_bcp: target bcp
+ __ dispatch_only(vtos);
+
+ // Out-of-line code runtime calls.
+ if (UseLoopCounter) {
+ if (ProfileInterpreter) {
+ // Out-of-line code to allocate method data oop.
+ __ bind(profile_method);
+
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
+ __ z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t) 0)); // Restore target bytecode.
+ __ set_method_data_pointer_for_bcp();
+ __ z_bru(dispatch);
+ }
+
+ if (UseOnStackReplacement) {
+
+ // invocation counter overflow
+ __ bind(backedge_counter_overflow);
+
+ __ z_lcgr(Z_ARG2, disp); // Z_ARG2 := -disp
+ __ z_agr(Z_ARG2, Z_bcp); // Z_ARG2 := branch target bcp - disp == branch bcp
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow),
+ Z_ARG2);
+
+ // Z_RET: osr nmethod (osr ok) or NULL (osr not possible).
+ __ compare64_and_branch(Z_RET, (intptr_t) 0, Assembler::bcondEqual, dispatch);
+
+ // Nmethod may have been invalidated (VM may block upon call_VM return).
+ __ z_cliy(nmethod::state_offset(), Z_RET, nmethod::in_use);
+ __ z_brne(dispatch);
+
+ // Migrate the interpreter frame off of the stack.
+
+ __ z_lgr(Z_tmp_1, Z_RET); // Save the nmethod.
+
+ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
+
+ // Z_RET is OSR buffer, move it to expected parameter location.
+ __ lgr_if_needed(Z_ARG1, Z_RET);
+
+ // Pop the interpreter frame ...
+ __ pop_interpreter_frame(Z_R14, Z_ARG2/*tmp1*/, Z_ARG3/*tmp2*/);
+
+ // ... and begin the OSR nmethod.
+ __ z_lg(Z_R1_scratch, Address(Z_tmp_1, nmethod::osr_entry_point_offset()));
+ __ z_br(Z_R1_scratch);
+ }
+ }
+ BLOCK_COMMENT("} TemplateTable::branch");
+}
+
+void TemplateTable::if_0cmp(Condition cc) {
+ transition(itos, vtos);
+
+ // Assume branch is more often taken than not (loops use backward branches).
+ NearLabel not_taken;
+ __ compare32_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
+ branch(false, false);
+ __ bind(not_taken);
+ __ profile_not_taken_branch(Z_tos);
+}
+
+void TemplateTable::if_icmp(Condition cc) {
+ transition(itos, vtos);
+
+ // Assume branch is more often taken than not (loops use backward branches).
+ NearLabel not_taken;
+ __ pop_i(Z_R0_scratch);
+ __ compare32_and_branch(Z_R0_scratch, Z_tos, j_not(cc), not_taken);
+ branch(false, false);
+ __ bind(not_taken);
+ __ profile_not_taken_branch(Z_tos);
+}
+
+void TemplateTable::if_nullcmp(Condition cc) {
+ transition(atos, vtos);
+
+ // Assume branch is more often taken than not (loops use backward branches) .
+ NearLabel not_taken;
+ __ compare64_and_branch(Z_tos, (intptr_t) 0, j_not(cc), not_taken);
+ branch(false, false);
+ __ bind(not_taken);
+ __ profile_not_taken_branch(Z_tos);
+}
+
+void TemplateTable::if_acmp(Condition cc) {
+ transition(atos, vtos);
+ // Assume branch is more often taken than not (loops use backward branches).
+ NearLabel not_taken;
+ __ pop_ptr(Z_ARG2);
+ __ verify_oop(Z_ARG2);
+ __ verify_oop(Z_tos);
+ __ compareU64_and_branch(Z_tos, Z_ARG2, j_not(cc), not_taken);
+ branch(false, false);
+ __ bind(not_taken);
+ __ profile_not_taken_branch(Z_ARG3);
+}
+
+void TemplateTable::ret() {
+ transition(vtos, vtos);
+
+ locals_index(Z_tmp_1);
+ // Get return bci, compute return bcp. Must load 64 bits.
+ __ mem2reg_opt(Z_tmp_1, iaddress(_masm, Z_tmp_1));
+ __ profile_ret(Z_tmp_1, Z_tmp_2);
+ __ get_method(Z_tos);
+ __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
+ __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
+ __ dispatch_next(vtos);
+}
+
+void TemplateTable::wide_ret() {
+ transition(vtos, vtos);
+
+ locals_index_wide(Z_tmp_1);
+ // Get return bci, compute return bcp.
+ __ mem2reg_opt(Z_tmp_1, aaddress(_masm, Z_tmp_1));
+ __ profile_ret(Z_tmp_1, Z_tmp_2);
+ __ get_method(Z_tos);
+ __ mem2reg_opt(Z_R1_scratch, Address(Z_tos, Method::const_offset()));
+ __ load_address(Z_bcp, Address(Z_R1_scratch, Z_tmp_1, ConstMethod::codes_offset()));
+ __ dispatch_next(vtos);
+}
+
+void TemplateTable::tableswitch () {
+ transition(itos, vtos);
+
+ NearLabel default_case, continue_execution;
+ Register bcp = Z_ARG5;
+ // Align bcp.
+ __ load_address(bcp, at_bcp(BytesPerInt));
+ __ z_nill(bcp, (-BytesPerInt) & 0xffff);
+
+ // Load lo & hi.
+ Register low = Z_tmp_1;
+ Register high = Z_tmp_2;
+
+ // Load low into 64 bits, since used for address calculation.
+ __ mem2reg_signed_opt(low, Address(bcp, BytesPerInt));
+ __ mem2reg_opt(high, Address(bcp, 2 * BytesPerInt), false);
+ // Sign extend "label" value for address calculation.
+ __ z_lgfr(Z_tos, Z_tos);
+
+ // Check against lo & hi.
+ __ compare32_and_branch(Z_tos, low, Assembler::bcondLow, default_case);
+ __ compare32_and_branch(Z_tos, high, Assembler::bcondHigh, default_case);
+
+ // Lookup dispatch offset.
+ __ z_sgr(Z_tos, low);
+ Register jump_table_offset = Z_ARG3;
+ // Index2offset; index in Z_tos is killed by profile_switch_case.
+ __ z_sllg(jump_table_offset, Z_tos, LogBytesPerInt);
+ __ profile_switch_case(Z_tos, Z_ARG4 /*tmp for mdp*/, low/*tmp*/, Z_bytecode/*tmp*/);
+
+ Register index = Z_tmp_2;
+
+ // Load index sign extended for addressing.
+ __ mem2reg_signed_opt(index, Address(bcp, jump_table_offset, 3 * BytesPerInt));
+
+ // Continue execution.
+ __ bind(continue_execution);
+
+ // Load next bytecode.
+ __ z_llgc(Z_bytecode, Address(Z_bcp, index));
+ __ z_agr(Z_bcp, index); // Advance bcp.
+ __ dispatch_only(vtos);
+
+ // Handle default.
+ __ bind(default_case);
+
+ __ profile_switch_default(Z_tos);
+ __ mem2reg_signed_opt(index, Address(bcp));
+ __ z_bru(continue_execution);
+}
+
+void TemplateTable::lookupswitch () {
+ transition(itos, itos);
+ __ stop("lookupswitch bytecode should have been rewritten");
+}
+
+void TemplateTable::fast_linearswitch () {
+ transition(itos, vtos);
+
+ Label loop_entry, loop, found, continue_execution;
+ Register bcp = Z_ARG5;
+
+ // Align bcp.
+ __ load_address(bcp, at_bcp(BytesPerInt));
+ __ z_nill(bcp, (-BytesPerInt) & 0xffff);
+
+ // Start search with last case.
+ Register current_case_offset = Z_tmp_1;
+
+ __ mem2reg_signed_opt(current_case_offset, Address(bcp, BytesPerInt));
+ __ z_sllg(current_case_offset, current_case_offset, LogBytesPerWord); // index2bytes
+ __ z_bru(loop_entry);
+
+ // table search
+ __ bind(loop);
+
+ __ z_c(Z_tos, Address(bcp, current_case_offset, 2 * BytesPerInt));
+ __ z_bre(found);
+
+ __ bind(loop_entry);
+ __ z_aghi(current_case_offset, -2 * BytesPerInt); // Decrement.
+ __ z_brnl(loop);
+
+ // default case
+ Register offset = Z_tmp_2;
+
+ __ profile_switch_default(Z_tos);
+ // Load offset sign extended for addressing.
+ __ mem2reg_signed_opt(offset, Address(bcp));
+ __ z_bru(continue_execution);
+
+ // Entry found -> get offset.
+ __ bind(found);
+ __ mem2reg_signed_opt(offset, Address(bcp, current_case_offset, 3 * BytesPerInt));
+ // Profile that this case was taken.
+ Register current_case_idx = Z_ARG4;
+ __ z_srlg(current_case_idx, current_case_offset, LogBytesPerWord); // bytes2index
+ __ profile_switch_case(current_case_idx, Z_tos, bcp, Z_bytecode);
+
+ // Continue execution.
+ __ bind(continue_execution);
+
+ // Load next bytecode.
+ __ z_llgc(Z_bytecode, Address(Z_bcp, offset, 0));
+ __ z_agr(Z_bcp, offset); // Advance bcp.
+ __ dispatch_only(vtos);
+}
+
+
+void TemplateTable::fast_binaryswitch() {
+
+ transition(itos, vtos);
+
+ // Implementation using the following core algorithm:
+ //
+ // int binary_search(int key, LookupswitchPair* array, int n) {
+ // // Binary search according to "Methodik des Programmierens" by
+ // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
+ // int i = 0;
+ // int j = n;
+ // while (i+1 < j) {
+ // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
+ // // with Q: for all i: 0 <= i < n: key < a[i]
+ // // where a stands for the array and assuming that the (inexisting)
+ // // element a[n] is infinitely big.
+ // int h = (i + j) >> 1;
+ // // i < h < j
+ // if (key < array[h].fast_match()) {
+ // j = h;
+ // } else {
+ // i = h;
+ // }
+ // }
+ // // R: a[i] <= key < a[i+1] or Q
+ // // (i.e., if key is within array, i is the correct index)
+ // return i;
+ // }
+
+ // Register allocation
+ // Note: Since we use the indices in address operands, we do all the
+ // computation in 64 bits.
+ const Register key = Z_tos; // Already set (tosca).
+ const Register array = Z_tmp_1;
+ const Register i = Z_tmp_2;
+ const Register j = Z_ARG5;
+ const Register h = Z_ARG4;
+ const Register temp = Z_R1_scratch;
+
+ // Find array start.
+ __ load_address(array, at_bcp(3 * BytesPerInt));
+ __ z_nill(array, (-BytesPerInt) & 0xffff); // align
+
+ // Initialize i & j.
+ __ clear_reg(i, true, false); // i = 0; Don't set CC.
+ __ mem2reg_signed_opt(j, Address(array, -BytesPerInt)); // j = length(array);
+
+ // And start.
+ Label entry;
+ __ z_bru(entry);
+
+ // binary search loop
+ {
+ NearLabel loop;
+
+ __ bind(loop);
+
+ // int h = (i + j) >> 1;
+ __ add2reg_with_index(h, 0, i, j); // h = i + j;
+ __ z_srag(h, h, 1); // h = (i + j) >> 1;
+
+ // if (key < array[h].fast_match()) {
+ // j = h;
+ // } else {
+ // i = h;
+ // }
+
+ // Convert array[h].match to native byte-ordering before compare.
+ __ z_sllg(temp, h, LogBytesPerWord); // index2bytes
+ __ mem2reg_opt(temp, Address(array, temp), false);
+
+ NearLabel else_;
+
+ __ compare32_and_branch(key, temp, Assembler::bcondNotLow, else_);
+ // j = h if (key < array[h].fast_match())
+ __ z_lgr(j, h);
+ __ z_bru(entry); // continue
+
+ __ bind(else_);
+
+ // i = h if (key >= array[h].fast_match())
+ __ z_lgr(i, h); // and fallthrough
+
+ // while (i+1 < j)
+ __ bind(entry);
+
+ // if (i + 1 < j) continue search
+ __ add2reg(h, 1, i);
+ __ compare64_and_branch(h, j, Assembler::bcondLow, loop);
+ }
+
+ // End of binary search, result index is i (must check again!).
+ NearLabel default_case;
+
+ // h is no longer needed, so use it to hold the byte offset.
+ __ z_sllg(h, i, LogBytesPerWord); // index2bytes
+ __ mem2reg_opt(temp, Address(array, h), false);
+ __ compare32_and_branch(key, temp, Assembler::bcondNotEqual, default_case);
+
+ // entry found -> j = offset
+ __ mem2reg_signed_opt(j, Address(array, h, BytesPerInt));
+ __ profile_switch_case(i, key, array, Z_bytecode);
+ // Load next bytecode.
+ __ z_llgc(Z_bytecode, Address(Z_bcp, j));
+ __ z_agr(Z_bcp, j); // Advance bcp.
+ __ dispatch_only(vtos);
+
+ // default case -> j = default offset
+ __ bind(default_case);
+
+ __ profile_switch_default(i);
+ __ mem2reg_signed_opt(j, Address(array, -2 * BytesPerInt));
+ // Load next bytecode.
+ __ z_llgc(Z_bytecode, Address(Z_bcp, j));
+ __ z_agr(Z_bcp, j); // Advance bcp.
+ __ dispatch_only(vtos);
+}
+
+void TemplateTable::_return(TosState state) {
+ transition(state, state);
+ assert(_desc->calls_vm(),
+ "inconsistent calls_vm information"); // call in remove_activation
+
+ if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
+ Register Rthis = Z_ARG2;
+ Register Rklass = Z_ARG5;
+ Label skip_register_finalizer;
+ assert(state == vtos, "only valid state");
+ __ z_lg(Rthis, aaddress(0));
+ __ load_klass(Rklass, Rthis);
+ __ testbit(Address(Rklass, Klass::access_flags_offset()), exact_log2(JVM_ACC_HAS_FINALIZER));
+ __ z_bfalse(skip_register_finalizer);
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), Rthis);
+ __ bind(skip_register_finalizer);
+ }
+
+ __ remove_activation(state, Z_R14);
+ __ z_br(Z_R14);
+}
+
+// ----------------------------------------------------------------------------
+// NOTE: Cpe_offset is already computed as byte offset, so we must not
+// shift it afterwards!
+void TemplateTable::resolve_cache_and_index(int byte_no,
+ Register Rcache,
+ Register cpe_offset,
+ size_t index_size) {
+ BLOCK_COMMENT("resolve_cache_and_index {");
+ NearLabel resolved;
+ const Register bytecode_in_cpcache = Z_R1_scratch;
+ const int total_f1_offset = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f1_offset());
+ assert_different_registers(Rcache, cpe_offset, bytecode_in_cpcache);
+
+ Bytecodes::Code code = bytecode();
+ switch (code) {
+ case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
+ case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
+ }
+
+ {
+ assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
+ __ get_cache_and_index_and_bytecode_at_bcp(Rcache, cpe_offset, bytecode_in_cpcache, byte_no, 1, index_size);
+ // Have we resolved this bytecode?
+ __ compare32_and_branch(bytecode_in_cpcache, (int)code, Assembler::bcondEqual, resolved);
+ }
+
+ // Resolve first time through.
+ address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
+ __ load_const_optimized(Z_ARG2, (int) code);
+ __ call_VM(noreg, entry, Z_ARG2);
+
+ // Update registers with resolved info.
+ __ get_cache_and_index_at_bcp(Rcache, cpe_offset, 1, index_size);
+ __ bind(resolved);
+ BLOCK_COMMENT("} resolve_cache_and_index");
+}
+
+// The Rcache and index registers must be set before call.
+// Index is already a byte offset, don't shift!
+void TemplateTable::load_field_cp_cache_entry(Register obj,
+ Register cache,
+ Register index,
+ Register off,
+ Register flags,
+ bool is_static = false) {
+ assert_different_registers(cache, index, flags, off);
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+
+ // Field offset
+ __ mem2reg_opt(off, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f2_offset()));
+ // Flags. Must load 64 bits.
+ __ mem2reg_opt(flags, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::flags_offset()));
+
+ // klass overwrite register
+ if (is_static) {
+ __ mem2reg_opt(obj, Address(cache, index, cp_base_offset + ConstantPoolCacheEntry::f1_offset()));
+ __ mem2reg_opt(obj, Address(obj, Klass::java_mirror_offset()));
+ }
+}
+
+void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
+ Register method,
+ Register itable_index,
+ Register flags,
+ bool is_invokevirtual,
+ bool is_invokevfinal, // unused
+ bool is_invokedynamic) {
+ BLOCK_COMMENT("load_invoke_cp_cache_entry {");
+ // Setup registers.
+ const Register cache = Z_ARG1;
+ const Register cpe_offset= flags;
+ const ByteSize base_off = ConstantPoolCache::base_offset();
+ const ByteSize f1_off = ConstantPoolCacheEntry::f1_offset();
+ const ByteSize f2_off = ConstantPoolCacheEntry::f2_offset();
+ const ByteSize flags_off = ConstantPoolCacheEntry::flags_offset();
+ const int method_offset = in_bytes(base_off + ((byte_no == f2_byte) ? f2_off : f1_off));
+ const int flags_offset = in_bytes(base_off + flags_off);
+ // Access constant pool cache fields.
+ const int index_offset = in_bytes(base_off + f2_off);
+
+ assert_different_registers(method, itable_index, flags, cache);
+ assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
+
+ if (is_invokevfinal) {
+ // Already resolved.
+ assert(itable_index == noreg, "register not used");
+ __ get_cache_and_index_at_bcp(cache, cpe_offset, 1);
+ } else {
+ // Need to resolve.
+ resolve_cache_and_index(byte_no, cache, cpe_offset, is_invokedynamic ? sizeof(u4) : sizeof(u2));
+ }
+ __ z_lg(method, Address(cache, cpe_offset, method_offset));
+
+ if (itable_index != noreg) {
+ __ z_lg(itable_index, Address(cache, cpe_offset, index_offset));
+ }
+
+ // Only load the lower 4 bytes and fill high bytes of flags with zeros.
+ // Callers depend on this zero-extension!!!
+ // Attention: overwrites cpe_offset == flags
+ __ z_llgf(flags, Address(cache, cpe_offset, flags_offset + (BytesPerLong-BytesPerInt)));
+
+ BLOCK_COMMENT("} load_invoke_cp_cache_entry");
+}
+
+// The registers cache and index expected to be set before call.
+// Correct values of the cache and index registers are preserved.
+void TemplateTable::jvmti_post_field_access(Register cache, Register index,
+ bool is_static, bool has_tos) {
+
+ // Do the JVMTI work here to avoid disturbing the register state below.
+ // We use c_rarg registers here because we want to use the register used in
+ // the call to the VM
+ if (!JvmtiExport::can_post_field_access()) {
+ return;
+ }
+
+ // Check to see if a field access watch has been set before we
+ // take the time to call into the VM.
+ Label exit;
+ assert_different_registers(cache, index, Z_tos);
+ __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_access_count_addr());
+ __ load_and_test_int(Z_R0, Address(Z_tos));
+ __ z_brz(exit);
+
+ // Index is returned as byte offset, do not shift!
+ __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
+
+ // cache entry pointer
+ __ add2reg_with_index(Z_ARG3,
+ in_bytes(ConstantPoolCache::base_offset()),
+ Z_ARG3, Z_R1_scratch);
+
+ if (is_static) {
+ __ clear_reg(Z_ARG2, true, false); // NULL object reference. Don't set CC.
+ } else {
+ __ mem2reg_opt(Z_ARG2, at_tos()); // Get object pointer without popping it.
+ __ verify_oop(Z_ARG2);
+ }
+ // Z_ARG2: object pointer or NULL
+ // Z_ARG3: cache entry pointer
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
+ Z_ARG2, Z_ARG3);
+ __ get_cache_and_index_at_bcp(cache, index, 1);
+
+ __ bind(exit);
+}
+
+void TemplateTable::pop_and_check_object(Register r) {
+ __ pop_ptr(r);
+ __ null_check(r); // for field access must check obj.
+ __ verify_oop(r);
+}
+
+void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
+ transition(vtos, vtos);
+
+ const Register cache = Z_tmp_1;
+ const Register index = Z_tmp_2;
+ const Register obj = Z_tmp_1;
+ const Register off = Z_ARG2;
+ const Register flags = Z_ARG1;
+ const Register bc = Z_tmp_1; // Uses same reg as obj, so don't mix them.
+
+ resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
+ jvmti_post_field_access(cache, index, is_static, false);
+ load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
+
+ if (!is_static) {
+ // Obj is on the stack.
+ pop_and_check_object(obj);
+ }
+
+ // Displacement is 0, so any store instruction will be fine on any CPU.
+ const Address field(obj, off);
+
+ Label is_Byte, is_Bool, is_Int, is_Short, is_Char,
+ is_Long, is_Float, is_Object, is_Double;
+ Label is_badState8, is_badState9, is_badStateA, is_badStateB,
+ is_badStateC, is_badStateD, is_badStateE, is_badStateF,
+ is_badState;
+ Label branchTable, atosHandler, Done;
+ Register br_tab = Z_R1_scratch;
+ bool do_rewrite = !is_static && (rc == may_rewrite);
+ bool dont_rewrite = (is_static || (rc == may_not_rewrite));
+
+ assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
+ assert(btos == 0, "change code, btos != 0");
+
+ // Calculate branch table size. Generated code size depends on ASSERT and on bytecode rewriting.
+#ifdef ASSERT
+ const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
+#else
+ const unsigned int bsize = dont_rewrite ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
+#endif
+
+ // Calculate address of branch table entry and branch there.
+ {
+ const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
+ const int r_bitpos = 63 - bit_shift;
+ const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
+ const int n_rotate = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
+ __ z_larl(br_tab, branchTable);
+ __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
+ }
+ __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
+
+ __ align_address(bsize);
+ BIND(branchTable);
+
+ // btos
+ BTB_BEGIN(is_Byte, bsize, "getfield_or_static:is_Byte");
+ __ z_lb(Z_tos, field);
+ __ push(btos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Byte, bsize, "getfield_or_static:is_Byte");
+
+ // ztos
+ BTB_BEGIN(is_Bool, bsize, "getfield_or_static:is_Bool");
+ __ z_lb(Z_tos, field);
+ __ push(ztos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ // Use btos rewriting, no truncating to t/f bit is needed for getfield.
+ patch_bytecode(Bytecodes::_fast_bgetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Bool, bsize, "getfield_or_static:is_Bool");
+
+ // ctos
+ BTB_BEGIN(is_Char, bsize, "getfield_or_static:is_Char");
+ // Load into 64 bits, works on all CPUs.
+ __ z_llgh(Z_tos, field);
+ __ push(ctos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_cgetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Char, bsize, "getfield_or_static:is_Char");
+
+ // stos
+ BTB_BEGIN(is_Short, bsize, "getfield_or_static:is_Short");
+ __ z_lh(Z_tos, field);
+ __ push(stos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_sgetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Short, bsize, "getfield_or_static:is_Short");
+
+ // itos
+ BTB_BEGIN(is_Int, bsize, "getfield_or_static:is_Int");
+ __ mem2reg_opt(Z_tos, field, false);
+ __ push(itos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_igetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Int, bsize, "getfield_or_static:is_Int");
+
+ // ltos
+ BTB_BEGIN(is_Long, bsize, "getfield_or_static:is_Long");
+ __ mem2reg_opt(Z_tos, field);
+ __ push(ltos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_lgetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Long, bsize, "getfield_or_static:is_Long");
+
+ // ftos
+ BTB_BEGIN(is_Float, bsize, "getfield_or_static:is_Float");
+ __ mem2freg_opt(Z_ftos, field, false);
+ __ push(ftos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_fgetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Float, bsize, "getfield_or_static:is_Float");
+
+ // dtos
+ BTB_BEGIN(is_Double, bsize, "getfield_or_static:is_Double");
+ __ mem2freg_opt(Z_ftos, field);
+ __ push(dtos);
+ // Rewrite bytecode to be faster.
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_dgetfield, bc, Z_ARG5);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Double, bsize, "getfield_or_static:is_Double");
+
+ // atos
+ BTB_BEGIN(is_Object, bsize, "getfield_or_static:is_Object");
+ __ z_bru(atosHandler);
+ BTB_END(is_Object, bsize, "getfield_or_static:is_Object");
+
+ // Bad state detection comes at no extra runtime cost.
+ BTB_BEGIN(is_badState8, bsize, "getfield_or_static:is_badState8");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badState8, bsize, "getfield_or_static:is_badState8");
+ BTB_BEGIN(is_badState9, bsize, "getfield_or_static:is_badState9");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badState9, bsize, "getfield_or_static:is_badState9");
+ BTB_BEGIN(is_badStateA, bsize, "getfield_or_static:is_badStateA");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateA, bsize, "getfield_or_static:is_badStateA");
+ BTB_BEGIN(is_badStateB, bsize, "getfield_or_static:is_badStateB");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateB, bsize, "getfield_or_static:is_badStateB");
+ BTB_BEGIN(is_badStateC, bsize, "getfield_or_static:is_badStateC");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateC, bsize, "getfield_or_static:is_badStateC");
+ BTB_BEGIN(is_badStateD, bsize, "getfield_or_static:is_badStateD");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateD, bsize, "getfield_or_static:is_badStateD");
+ BTB_BEGIN(is_badStateE, bsize, "getfield_or_static:is_badStateE");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateE, bsize, "getfield_or_static:is_badStateE");
+ BTB_BEGIN(is_badStateF, bsize, "getfield_or_static:is_badStateF");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateF, bsize, "getfield_or_static:is_badStateF");
+
+ __ align_address(64);
+ BIND(is_badState); // Do this outside branch table. Needs a lot of space.
+ {
+ unsigned int b_off = __ offset();
+ if (is_static) {
+ __ stop_static("Bad state in getstatic");
+ } else {
+ __ stop_static("Bad state in getfield");
+ }
+ unsigned int e_off = __ offset();
+ }
+
+ __ align_address(64);
+ BIND(atosHandler); // Oops are really complicated to handle.
+ // There is a lot of code generated.
+ // Therefore: generate the handler outside of branch table.
+ // There is no performance penalty. The additional branch
+ // to here is compensated for by the fallthru to "Done".
+ {
+ unsigned int b_off = __ offset();
+ __ load_heap_oop(Z_tos, field);
+ __ verify_oop(Z_tos);
+ __ push(atos);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_agetfield, bc, Z_ARG5);
+ }
+ unsigned int e_off = __ offset();
+ }
+
+ BIND(Done);
+}
+
+void TemplateTable::getfield(int byte_no) {
+ BLOCK_COMMENT("getfield {");
+ getfield_or_static(byte_no, false);
+ BLOCK_COMMENT("} getfield");
+}
+
+void TemplateTable::nofast_getfield(int byte_no) {
+ getfield_or_static(byte_no, false, may_not_rewrite);
+}
+
+void TemplateTable::getstatic(int byte_no) {
+ BLOCK_COMMENT("getstatic {");
+ getfield_or_static(byte_no, true);
+ BLOCK_COMMENT("} getstatic");
+}
+
+// The registers cache and index expected to be set before call. The
+// function may destroy various registers, just not the cache and
+// index registers.
+void TemplateTable::jvmti_post_field_mod(Register cache,
+ Register index, bool is_static) {
+ transition(vtos, vtos);
+
+ if (!JvmtiExport::can_post_field_modification()) {
+ return;
+ }
+
+ BLOCK_COMMENT("jvmti_post_field_mod {");
+
+ // Check to see if a field modification watch has been set before
+ // we take the time to call into the VM.
+ Label L1;
+ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
+ assert_different_registers(cache, index, Z_tos);
+
+ __ load_absolute_address(Z_tos, (address)JvmtiExport::get_field_modification_count_addr());
+ __ load_and_test_int(Z_R0, Address(Z_tos));
+ __ z_brz(L1);
+
+ // Index is returned as byte offset, do not shift!
+ __ get_cache_and_index_at_bcp(Z_ARG3, Z_R1_scratch, 1);
+
+ if (is_static) {
+ // Life is simple. Null out the object pointer.
+ __ clear_reg(Z_ARG2, true, false); // Don't set CC.
+ } else {
+ // Life is harder. The stack holds the value on top, followed by
+ // the object. We don't know the size of the value, though. It
+ // could be one or two words depending on its type. As a result,
+ // we must find the type to determine where the object is.
+ __ mem2reg_opt(Z_ARG4,
+ Address(Z_ARG3, Z_R1_scratch,
+ in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()) +
+ (BytesPerLong - BytesPerInt)),
+ false);
+ __ z_srl(Z_ARG4, ConstantPoolCacheEntry::tos_state_shift);
+ // Make sure we don't need to mask Z_ARG4 for tos_state after the above shift.
+ ConstantPoolCacheEntry::verify_tos_state_shift();
+ __ mem2reg_opt(Z_ARG2, at_tos(1)); // Initially assume a one word jvalue.
+
+ NearLabel load_dtos, cont;
+
+ __ compareU32_and_branch(Z_ARG4, (intptr_t) ltos,
+ Assembler::bcondNotEqual, load_dtos);
+ __ mem2reg_opt(Z_ARG2, at_tos(2)); // ltos (two word jvalue)
+ __ z_bru(cont);
+
+ __ bind(load_dtos);
+ __ compareU32_and_branch(Z_ARG4, (intptr_t)dtos, Assembler::bcondNotEqual, cont);
+ __ mem2reg_opt(Z_ARG2, at_tos(2)); // dtos (two word jvalue)
+
+ __ bind(cont);
+ }
+ // cache entry pointer
+
+ __ add2reg_with_index(Z_ARG3, in_bytes(cp_base_offset), Z_ARG3, Z_R1_scratch);
+
+ // object(tos)
+ __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
+ // Z_ARG2: object pointer set up above (NULL if static)
+ // Z_ARG3: cache entry pointer
+ // Z_ARG4: jvalue object on the stack
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
+ Z_ARG2, Z_ARG3, Z_ARG4);
+ __ get_cache_and_index_at_bcp(cache, index, 1);
+
+ __ bind(L1);
+ BLOCK_COMMENT("} jvmti_post_field_mod");
+}
+
+
+void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
+ transition(vtos, vtos);
+
+ const Register cache = Z_tmp_1;
+ const Register index = Z_ARG5;
+ const Register obj = Z_tmp_1;
+ const Register off = Z_tmp_2;
+ const Register flags = Z_R1_scratch;
+ const Register br_tab = Z_ARG5;
+ const Register bc = Z_tmp_1;
+ const Register oopStore_tmp1 = Z_R1_scratch;
+ const Register oopStore_tmp2 = Z_ARG5;
+ const Register oopStore_tmp3 = Z_R0_scratch;
+
+ resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
+ jvmti_post_field_mod(cache, index, is_static);
+ load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
+ // begin of life for:
+ // obj, off long life range
+ // flags short life range, up to branch into branch table
+ // end of life for:
+ // cache, index
+
+ const Address field(obj, off);
+ Label is_Byte, is_Bool, is_Int, is_Short, is_Char,
+ is_Long, is_Float, is_Object, is_Double;
+ Label is_badState8, is_badState9, is_badStateA, is_badStateB,
+ is_badStateC, is_badStateD, is_badStateE, is_badStateF,
+ is_badState;
+ Label branchTable, atosHandler, Done;
+ bool do_rewrite = !is_static && (rc == may_rewrite);
+ bool dont_rewrite = (is_static || (rc == may_not_rewrite));
+
+ assert(do_rewrite == !dont_rewrite, "Oops, code is not fit for that");
+
+ assert(btos == 0, "change code, btos != 0");
+
+#ifdef ASSERT
+ const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*4;
+#else
+ const unsigned int bsize = is_static ? BTB_MINSIZE*1 : BTB_MINSIZE*8;
+#endif
+
+ // Calculate address of branch table entry and branch there.
+ {
+ const int bit_shift = exact_log2(bsize); // Size of each branch table entry.
+ const int r_bitpos = 63 - bit_shift;
+ const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
+ const int n_rotate = (bit_shift-ConstantPoolCacheEntry::tos_state_shift);
+ __ z_larl(br_tab, branchTable);
+ __ rotate_then_insert(flags, flags, l_bitpos, r_bitpos, n_rotate, true);
+ __ z_bc(Assembler::bcondAlways, 0, flags, br_tab);
+ }
+ // end of life for:
+ // flags, br_tab
+
+ __ align_address(bsize);
+ BIND(branchTable);
+
+ // btos
+ BTB_BEGIN(is_Byte, bsize, "putfield_or_static:is_Byte");
+ __ pop(btos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ __ z_stc(Z_tos, field);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_bputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END( is_Byte, bsize, "putfield_or_static:is_Byte");
+
+ // ztos
+ BTB_BEGIN(is_Bool, bsize, "putfield_or_static:is_Bool");
+ __ pop(ztos);
+ if (do_rewrite) {
+ pop_and_check_object(obj);
+ }
+ __ z_nilf(Z_tos, 0x1);
+ __ z_stc(Z_tos, field);
+ if (!is_static) {
+ patch_bytecode(Bytecodes::_fast_zputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END(is_Bool, bsize, "putfield_or_static:is_Bool");
+
+ // ctos
+ BTB_BEGIN(is_Char, bsize, "putfield_or_static:is_Char");
+ __ pop(ctos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ __ z_sth(Z_tos, field);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_cputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END( is_Char, bsize, "putfield_or_static:is_Char");
+
+ // stos
+ BTB_BEGIN(is_Short, bsize, "putfield_or_static:is_Short");
+ __ pop(stos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ __ z_sth(Z_tos, field);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_sputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END( is_Short, bsize, "putfield_or_static:is_Short");
+
+ // itos
+ BTB_BEGIN(is_Int, bsize, "putfield_or_static:is_Int");
+ __ pop(itos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ __ reg2mem_opt(Z_tos, field, false);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_iputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END( is_Int, bsize, "putfield_or_static:is_Int");
+
+ // ltos
+ BTB_BEGIN(is_Long, bsize, "putfield_or_static:is_Long");
+ __ pop(ltos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ __ reg2mem_opt(Z_tos, field);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_lputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END( is_Long, bsize, "putfield_or_static:is_Long");
+
+ // ftos
+ BTB_BEGIN(is_Float, bsize, "putfield_or_static:is_Float");
+ __ pop(ftos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ __ freg2mem_opt(Z_ftos, field, false);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_fputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END( is_Float, bsize, "putfield_or_static:is_Float");
+
+ // dtos
+ BTB_BEGIN(is_Double, bsize, "putfield_or_static:is_Double");
+ __ pop(dtos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ __ freg2mem_opt(Z_ftos, field);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_dputfield, bc, Z_ARG5, true, byte_no);
+ }
+ __ z_bru(Done);
+ BTB_END( is_Double, bsize, "putfield_or_static:is_Double");
+
+ // atos
+ BTB_BEGIN(is_Object, bsize, "putfield_or_static:is_Object");
+ __ z_bru(atosHandler);
+ BTB_END( is_Object, bsize, "putfield_or_static:is_Object");
+
+ // Bad state detection comes at no extra runtime cost.
+ BTB_BEGIN(is_badState8, bsize, "putfield_or_static:is_badState8");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badState8, bsize, "putfield_or_static:is_badState8");
+ BTB_BEGIN(is_badState9, bsize, "putfield_or_static:is_badState9");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badState9, bsize, "putfield_or_static:is_badState9");
+ BTB_BEGIN(is_badStateA, bsize, "putfield_or_static:is_badStateA");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateA, bsize, "putfield_or_static:is_badStateA");
+ BTB_BEGIN(is_badStateB, bsize, "putfield_or_static:is_badStateB");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateB, bsize, "putfield_or_static:is_badStateB");
+ BTB_BEGIN(is_badStateC, bsize, "putfield_or_static:is_badStateC");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateC, bsize, "putfield_or_static:is_badStateC");
+ BTB_BEGIN(is_badStateD, bsize, "putfield_or_static:is_badStateD");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateD, bsize, "putfield_or_static:is_badStateD");
+ BTB_BEGIN(is_badStateE, bsize, "putfield_or_static:is_badStateE");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateE, bsize, "putfield_or_static:is_badStateE");
+ BTB_BEGIN(is_badStateF, bsize, "putfield_or_static:is_badStateF");
+ __ z_illtrap();
+ __ z_bru(is_badState);
+ BTB_END( is_badStateF, bsize, "putfield_or_static:is_badStateF");
+
+ __ align_address(64);
+ BIND(is_badState); // Do this outside branch table. Needs a lot of space.
+ {
+ unsigned int b_off = __ offset();
+ if (is_static) __ stop_static("Bad state in putstatic");
+ else __ stop_static("Bad state in putfield");
+ unsigned int e_off = __ offset();
+ }
+
+ __ align_address(64);
+ BIND(atosHandler); // Oops are really complicated to handle.
+ // There is a lot of code generated.
+ // Therefore: generate the handler outside of branch table.
+ // There is no performance penalty. The additional branch
+ // to here is compensated for by the fallthru to "Done".
+ {
+ unsigned int b_off = __ offset();
+ __ pop(atos);
+ if (!is_static) {
+ pop_and_check_object(obj);
+ }
+ // Store into the field
+ do_oop_store(_masm, obj, off, Z_tos, false,
+ oopStore_tmp1, oopStore_tmp2, oopStore_tmp3, _bs->kind(), false);
+ if (do_rewrite) {
+ patch_bytecode(Bytecodes::_fast_aputfield, bc, Z_ARG5, true, byte_no);
+ }
+ // __ z_bru(Done); // fallthru
+ unsigned int e_off = __ offset();
+ }
+
+ BIND(Done);
+
+ // Check for volatile store.
+ Label notVolatile;
+
+ __ testbit(Z_ARG4, ConstantPoolCacheEntry::is_volatile_shift);
+ __ z_brz(notVolatile);
+ __ z_fence();
+
+ BIND(notVolatile);
+}
+
+void TemplateTable::putfield(int byte_no) {
+ BLOCK_COMMENT("putfield {");
+ putfield_or_static(byte_no, false);
+ BLOCK_COMMENT("} putfield");
+}
+
+void TemplateTable::nofast_putfield(int byte_no) {
+ putfield_or_static(byte_no, false, may_not_rewrite);
+}
+
+void TemplateTable::putstatic(int byte_no) {
+ BLOCK_COMMENT("putstatic {");
+ putfield_or_static(byte_no, true);
+ BLOCK_COMMENT("} putstatic");
+}
+
+// Push the tos value back to the stack.
+// gc will find oops there and update.
+void TemplateTable::jvmti_post_fast_field_mod() {
+
+ if (!JvmtiExport::can_post_field_modification()) {
+ return;
+ }
+
+ // Check to see if a field modification watch has been set before
+ // we take the time to call into the VM.
+ Label exit;
+
+ BLOCK_COMMENT("jvmti_post_fast_field_mod {");
+
+ __ load_absolute_address(Z_R1_scratch,
+ (address) JvmtiExport::get_field_modification_count_addr());
+ __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
+ __ z_brz(exit);
+
+ Register obj = Z_tmp_1;
+
+ __ pop_ptr(obj); // Copy the object pointer from tos.
+ __ verify_oop(obj);
+ __ push_ptr(obj); // Put the object pointer back on tos.
+
+ // Save tos values before call_VM() clobbers them. Since we have
+ // to do it for every data type, we use the saved values as the
+ // jvalue object.
+ switch (bytecode()) { // Load values into the jvalue object.
+ case Bytecodes::_fast_aputfield:
+ __ push_ptr(Z_tos);
+ break;
+ case Bytecodes::_fast_bputfield:
+ case Bytecodes::_fast_zputfield:
+ case Bytecodes::_fast_sputfield:
+ case Bytecodes::_fast_cputfield:
+ case Bytecodes::_fast_iputfield:
+ __ push_i(Z_tos);
+ break;
+ case Bytecodes::_fast_dputfield:
+ __ push_d();
+ break;
+ case Bytecodes::_fast_fputfield:
+ __ push_f();
+ break;
+ case Bytecodes::_fast_lputfield:
+ __ push_l(Z_tos);
+ break;
+
+ default:
+ ShouldNotReachHere();
+ }
+
+ // jvalue on the stack
+ __ load_address(Z_ARG4, Address(Z_esp, Interpreter::stackElementSize));
+ // Access constant pool cache entry.
+ __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tos, 1);
+ __ verify_oop(obj);
+
+ // obj : object pointer copied above
+ // Z_ARG3: cache entry pointer
+ // Z_ARG4: jvalue object on the stack
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
+ obj, Z_ARG3, Z_ARG4);
+
+ switch (bytecode()) { // Restore tos values.
+ case Bytecodes::_fast_aputfield:
+ __ pop_ptr(Z_tos);
+ break;
+ case Bytecodes::_fast_bputfield:
+ case Bytecodes::_fast_zputfield:
+ case Bytecodes::_fast_sputfield:
+ case Bytecodes::_fast_cputfield:
+ case Bytecodes::_fast_iputfield:
+ __ pop_i(Z_tos);
+ break;
+ case Bytecodes::_fast_dputfield:
+ __ pop_d(Z_ftos);
+ break;
+ case Bytecodes::_fast_fputfield:
+ __ pop_f(Z_ftos);
+ break;
+ case Bytecodes::_fast_lputfield:
+ __ pop_l(Z_tos);
+ break;
+ }
+
+ __ bind(exit);
+ BLOCK_COMMENT("} jvmti_post_fast_field_mod");
+}
+
+void TemplateTable::fast_storefield(TosState state) {
+ transition(state, vtos);
+
+ ByteSize base = ConstantPoolCache::base_offset();
+ jvmti_post_fast_field_mod();
+
+ // Access constant pool cache.
+ Register cache = Z_tmp_1;
+ Register index = Z_tmp_2;
+ Register flags = Z_ARG5;
+
+ // Index comes in bytes, don't shift afterwards!
+ __ get_cache_and_index_at_bcp(cache, index, 1);
+
+ // Test for volatile.
+ assert(!flags->is_volatile(), "do_oop_store could perform leaf RT call");
+ __ z_lg(flags, Address(cache, index, base + ConstantPoolCacheEntry::flags_offset()));
+
+ // Replace index with field offset from cache entry.
+ Register field_offset = index;
+ __ z_lg(field_offset, Address(cache, index, base + ConstantPoolCacheEntry::f2_offset()));
+
+ // Get object from stack.
+ Register obj = cache;
+
+ pop_and_check_object(obj);
+
+ // field address
+ const Address field(obj, field_offset);
+
+ // access field
+ switch (bytecode()) {
+ case Bytecodes::_fast_aputfield:
+ do_oop_store(_masm, obj, field_offset, Z_tos, false,
+ Z_ARG2, Z_ARG3, Z_ARG4, _bs->kind(), false);
+ break;
+ case Bytecodes::_fast_lputfield:
+ __ reg2mem_opt(Z_tos, field);
+ break;
+ case Bytecodes::_fast_iputfield:
+ __ reg2mem_opt(Z_tos, field, false);
+ break;
+ case Bytecodes::_fast_zputfield:
+ __ z_nilf(Z_tos, 0x1);
+ // fall through to bputfield
+ case Bytecodes::_fast_bputfield:
+ __ z_stc(Z_tos, field);
+ break;
+ case Bytecodes::_fast_sputfield:
+ // fall through
+ case Bytecodes::_fast_cputfield:
+ __ z_sth(Z_tos, field);
+ break;
+ case Bytecodes::_fast_fputfield:
+ __ freg2mem_opt(Z_ftos, field, false);
+ break;
+ case Bytecodes::_fast_dputfield:
+ __ freg2mem_opt(Z_ftos, field);
+ break;
+ default:
+ ShouldNotReachHere();
+ }
+
+ // Check for volatile store.
+ Label notVolatile;
+
+ __ testbit(flags, ConstantPoolCacheEntry::is_volatile_shift);
+ __ z_brz(notVolatile);
+ __ z_fence();
+
+ __ bind(notVolatile);
+}
+
+void TemplateTable::fast_accessfield(TosState state) {
+ transition(atos, state);
+
+ Register obj = Z_tos;
+
+ // Do the JVMTI work here to avoid disturbing the register state below
+ if (JvmtiExport::can_post_field_access()) {
+ // Check to see if a field access watch has been set before we
+ // take the time to call into the VM.
+ Label cont;
+
+ __ load_absolute_address(Z_R1_scratch,
+ (address)JvmtiExport::get_field_access_count_addr());
+ __ load_and_test_int(Z_R0_scratch, Address(Z_R1_scratch));
+ __ z_brz(cont);
+
+ // Access constant pool cache entry.
+
+ __ get_cache_entry_pointer_at_bcp(Z_ARG3, Z_tmp_1, 1);
+ __ verify_oop(obj);
+ __ push_ptr(obj); // Save object pointer before call_VM() clobbers it.
+ __ z_lgr(Z_ARG2, obj);
+
+ // Z_ARG2: object pointer copied above
+ // Z_ARG3: cache entry pointer
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
+ Z_ARG2, Z_ARG3);
+ __ pop_ptr(obj); // Restore object pointer.
+
+ __ bind(cont);
+ }
+
+ // Access constant pool cache.
+ Register cache = Z_tmp_1;
+ Register index = Z_tmp_2;
+
+ // Index comes in bytes, don't shift afterwards!
+ __ get_cache_and_index_at_bcp(cache, index, 1);
+ // Replace index with field offset from cache entry.
+ __ mem2reg_opt(index,
+ Address(cache, index,
+ ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
+
+ __ verify_oop(obj);
+ __ null_check(obj);
+
+ Address field(obj, index);
+
+ // access field
+ switch (bytecode()) {
+ case Bytecodes::_fast_agetfield:
+ __ load_heap_oop(Z_tos, field);
+ __ verify_oop(Z_tos);
+ return;
+ case Bytecodes::_fast_lgetfield:
+ __ mem2reg_opt(Z_tos, field);
+ return;
+ case Bytecodes::_fast_igetfield:
+ __ mem2reg_opt(Z_tos, field, false);
+ return;
+ case Bytecodes::_fast_bgetfield:
+ __ z_lb(Z_tos, field);
+ return;
+ case Bytecodes::_fast_sgetfield:
+ __ z_lh(Z_tos, field);
+ return;
+ case Bytecodes::_fast_cgetfield:
+ __ z_llgh(Z_tos, field); // Load into 64 bits, works on all CPUs.
+ return;
+ case Bytecodes::_fast_fgetfield:
+ __ mem2freg_opt(Z_ftos, field, false);
+ return;
+ case Bytecodes::_fast_dgetfield:
+ __ mem2freg_opt(Z_ftos, field);
+ return;
+ default:
+ ShouldNotReachHere();
+ }
+}
+
+void TemplateTable::fast_xaccess(TosState state) {
+ transition(vtos, state);
+
+ Register receiver = Z_tos;
+ // Get receiver.
+ __ mem2reg_opt(Z_tos, aaddress(0));
+
+ // Access constant pool cache.
+ Register cache = Z_tmp_1;
+ Register index = Z_tmp_2;
+
+ // Index comes in bytes, don't shift afterwards!
+ __ get_cache_and_index_at_bcp(cache, index, 2);
+ // Replace index with field offset from cache entry.
+ __ mem2reg_opt(index,
+ Address(cache, index,
+ ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset()));
+
+ // Make sure exception is reported in correct bcp range (getfield is
+ // next instruction).
+ __ add2reg(Z_bcp, 1);
+ __ null_check(receiver);
+ switch (state) {
+ case itos:
+ __ mem2reg_opt(Z_tos, Address(receiver, index), false);
+ break;
+ case atos:
+ __ load_heap_oop(Z_tos, Address(receiver, index));
+ __ verify_oop(Z_tos);
+ break;
+ case ftos:
+ __ mem2freg_opt(Z_ftos, Address(receiver, index));
+ break;
+ default:
+ ShouldNotReachHere();
+ }
+
+ // Reset bcp to original position.
+ __ add2reg(Z_bcp, -1);
+}
+
+//-----------------------------------------------------------------------------
+// Calls
+
+void TemplateTable::prepare_invoke(int byte_no,
+ Register method, // linked method (or i-klass)
+ Register index, // itable index, MethodType, etc.
+ Register recv, // If caller wants to see it.
+ Register flags) { // If caller wants to test it.
+ // Determine flags.
+ const Bytecodes::Code code = bytecode();
+ const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
+ const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
+ const bool is_invokehandle = code == Bytecodes::_invokehandle;
+ const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
+ const bool is_invokespecial = code == Bytecodes::_invokespecial;
+ const bool load_receiver = (recv != noreg);
+ assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
+
+ // Setup registers & access constant pool cache.
+ if (recv == noreg) { recv = Z_ARG1; }
+ if (flags == noreg) { flags = Z_ARG2; }
+ assert_different_registers(method, Z_R14, index, recv, flags);
+
+ BLOCK_COMMENT("prepare_invoke {");
+
+ load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
+
+ // Maybe push appendix to arguments.
+ if (is_invokedynamic || is_invokehandle) {
+ Label L_no_push;
+ Register resolved_reference = Z_R1_scratch;
+ __ testbit(flags, ConstantPoolCacheEntry::has_appendix_shift);
+ __ z_bfalse(L_no_push);
+ // Push the appendix as a trailing parameter.
+ // This must be done before we get the receiver,
+ // since the parameter_size includes it.
+ __ load_resolved_reference_at_index(resolved_reference, index);
+ __ verify_oop(resolved_reference);
+ __ push_ptr(resolved_reference); // Push appendix (MethodType, CallSite, etc.).
+ __ bind(L_no_push);
+ }
+
+ // Load receiver if needed (after appendix is pushed so parameter size is correct).
+ if (load_receiver) {
+ assert(!is_invokedynamic, "");
+ // recv := int2long(flags & ConstantPoolCacheEntry::parameter_size_mask) << 3
+ // Flags is zero-extended int2long when loaded during load_invoke_cp_cache_entry().
+ // Only the least significant byte (psize) of flags is used.
+ {
+ const unsigned int logSES = Interpreter::logStackElementSize;
+ const int bit_shift = logSES;
+ const int r_bitpos = 63 - bit_shift;
+ const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::parameter_size_bits + 1;
+ const int n_rotate = bit_shift;
+ assert(ConstantPoolCacheEntry::parameter_size_mask == 255, "adapt bitpositions");
+ __ rotate_then_insert(recv, flags, l_bitpos, r_bitpos, n_rotate, true);
+ }
+ // Recv now contains #arguments * StackElementSize.
+
+ Address recv_addr(Z_esp, recv);
+ __ z_lg(recv, recv_addr);
+ __ verify_oop(recv);
+ }
+
+ // Compute return type.
+ // ret_type is used by callers (invokespecial, invokestatic) at least.
+ Register ret_type = Z_R1_scratch;
+ assert_different_registers(ret_type, method);
+
+ const address table_addr = (address)Interpreter::invoke_return_entry_table_for(code);
+ __ load_absolute_address(Z_R14, table_addr);
+
+ {
+ const int bit_shift = LogBytesPerWord; // Size of each table entry.
+ const int r_bitpos = 63 - bit_shift;
+ const int l_bitpos = r_bitpos - ConstantPoolCacheEntry::tos_state_bits + 1;
+ const int n_rotate = bit_shift-ConstantPoolCacheEntry::tos_state_shift;
+ __ rotate_then_insert(ret_type, flags, l_bitpos, r_bitpos, n_rotate, true);
+ // Make sure we don't need to mask flags for tos_state after the above shift.
+ ConstantPoolCacheEntry::verify_tos_state_shift();
+ }
+
+ __ z_lg(Z_R14, Address(Z_R14, ret_type)); // Load return address.
+ BLOCK_COMMENT("} prepare_invoke");
+}
+
+
+void TemplateTable::invokevirtual_helper(Register index,
+ Register recv,
+ Register flags) {
+ // Uses temporary registers Z_tmp_2, Z_ARG4.
+ assert_different_registers(index, recv, Z_tmp_2, Z_ARG4);
+
+ // Test for an invoke of a final method.
+ Label notFinal;
+
+ BLOCK_COMMENT("invokevirtual_helper {");
+
+ __ testbit(flags, ConstantPoolCacheEntry::is_vfinal_shift);
+ __ z_brz(notFinal);
+
+ const Register method = index; // Method must be Z_ARG3.
+ assert(method == Z_ARG3, "method must be second argument for interpreter calling convention");
+
+ // Do the call - the index is actually the method to call.
+ // That is, f2 is a vtable index if !is_vfinal, else f2 is a method.
+
+ // It's final, need a null check here!
+ __ null_check(recv);
+
+ // Profile this call.
+ __ profile_final_call(Z_tmp_2);
+ __ profile_arguments_type(Z_tmp_2, method, Z_ARG5, true); // Argument type profiling.
+ __ jump_from_interpreted(method, Z_tmp_2);
+
+ __ bind(notFinal);
+
+ // Get receiver klass.
+ __ null_check(recv, Z_R0_scratch, oopDesc::klass_offset_in_bytes());
+ __ load_klass(Z_tmp_2, recv);
+
+ // Profile this call.
+ __ profile_virtual_call(Z_tmp_2, Z_ARG4, Z_ARG5);
+
+ // Get target method & entry point.
+ __ z_sllg(index, index, exact_log2(vtableEntry::size_in_bytes()));
+ __ mem2reg_opt(method,
+ Address(Z_tmp_2, index,
+ Klass::vtable_start_offset() + in_ByteSize(vtableEntry::method_offset_in_bytes())));
+ __ profile_arguments_type(Z_ARG4, method, Z_ARG5, true);
+ __ jump_from_interpreted(method, Z_ARG4);
+ BLOCK_COMMENT("} invokevirtual_helper");
+}
+
+void TemplateTable::invokevirtual(int byte_no) {
+ transition(vtos, vtos);
+
+ assert(byte_no == f2_byte, "use this argument");
+ prepare_invoke(byte_no,
+ Z_ARG3, // method or vtable index
+ noreg, // unused itable index
+ Z_ARG1, // recv
+ Z_ARG2); // flags
+
+ // Z_ARG3 : index
+ // Z_ARG1 : receiver
+ // Z_ARG2 : flags
+ invokevirtual_helper(Z_ARG3, Z_ARG1, Z_ARG2);
+}
+
+void TemplateTable::invokespecial(int byte_no) {
+ transition(vtos, vtos);
+
+ assert(byte_no == f1_byte, "use this argument");
+ Register Rmethod = Z_tmp_2;
+ prepare_invoke(byte_no, Rmethod, noreg, // Get f1 method.
+ Z_ARG3); // Get receiver also for null check.
+ __ verify_oop(Z_ARG3);
+ __ null_check(Z_ARG3);
+ // Do the call.
+ __ profile_call(Z_ARG2);
+ __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
+ __ jump_from_interpreted(Rmethod, Z_R1_scratch);
+}
+
+void TemplateTable::invokestatic(int byte_no) {
+ transition(vtos, vtos);
+
+ assert(byte_no == f1_byte, "use this argument");
+ Register Rmethod = Z_tmp_2;
+ prepare_invoke(byte_no, Rmethod); // Get f1 method.
+ // Do the call.
+ __ profile_call(Z_ARG2);
+ __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
+ __ jump_from_interpreted(Rmethod, Z_R1_scratch);
+}
+
+// Outdated feature, and we don't support it.
+void TemplateTable::fast_invokevfinal(int byte_no) {
+ transition(vtos, vtos);
+ assert(byte_no == f2_byte, "use this argument");
+ __ stop("fast_invokevfinal not used on linuxs390x");
+}
+
+void TemplateTable::invokeinterface(int byte_no) {
+ transition(vtos, vtos);
+
+ assert(byte_no == f1_byte, "use this argument");
+ Register interface = Z_tos;
+ Register index = Z_ARG3;
+ Register receiver = Z_tmp_1;
+ Register flags = Z_ARG5;
+
+ BLOCK_COMMENT("invokeinterface {");
+
+ // Destroys Z_ARG1 and Z_ARG2, thus use Z_ARG4 and copy afterwards.
+ prepare_invoke(byte_no, Z_ARG4, index, // Get f1 klassOop, f2 itable index.
+ receiver, flags);
+
+ // Z_R14 (== Z_bytecode) : return entry
+
+ __ z_lgr(interface, Z_ARG4);
+
+ // Special case of invokeinterface called for virtual method of
+ // java.lang.Object. See cpCacheOop.cpp for details.
+ // This code isn't produced by javac, but could be produced by
+ // another compliant java compiler.
+ Label notMethod;
+ __ testbit(flags, ConstantPoolCacheEntry::is_forced_virtual_shift);
+ __ z_brz(notMethod);
+ invokevirtual_helper(index, receiver, flags);
+ __ bind(notMethod);
+
+ // Get receiver klass into klass - also a null check.
+ Register klass = flags;
+
+ __ restore_locals();
+ __ load_klass(klass, receiver);
+
+ // Profile this call.
+ __ profile_virtual_call(klass, Z_ARG2/*mdp*/, Z_ARG4/*scratch*/);
+
+ NearLabel no_such_interface, no_such_method;
+ Register method = Z_tmp_2;
+
+ // TK 2010-08-24: save the index to Z_ARG4. needed in case of an error
+ // in throw_AbstractMethodErrorByTemplateTable
+ __ z_lgr(Z_ARG4, index);
+ // TK 2011-03-24: copy also klass because it could be changed in
+ // lookup_interface_method
+ __ z_lgr(Z_ARG2, klass);
+ __ lookup_interface_method(// inputs: rec. class, interface, itable index
+ klass, interface, index,
+ // outputs: method, scan temp. reg
+ method, Z_tmp_2, Z_R1_scratch,
+ no_such_interface);
+
+ // Check for abstract method error.
+ // Note: This should be done more efficiently via a throw_abstract_method_error
+ // interpreter entry point and a conditional jump to it in case of a null
+ // method.
+ __ compareU64_and_branch(method, (intptr_t) 0,
+ Assembler::bcondZero, no_such_method);
+
+ __ profile_arguments_type(Z_ARG3, method, Z_ARG5, true);
+
+ // Do the call.
+ __ jump_from_interpreted(method, Z_ARG5);
+ __ should_not_reach_here();
+
+ // exception handling code follows...
+ // Note: Must restore interpreter registers to canonical
+ // state for exception handling to work correctly!
+
+ __ bind(no_such_method);
+
+ // Throw exception.
+ __ restore_bcp(); // Bcp must be correct for exception handler (was destroyed).
+ __ restore_locals(); // Make sure locals pointer is correct as well (was destroyed).
+ // TK 2010-08-24: Call throw_AbstractMethodErrorByTemplateTable now with the
+ // relevant information for generating a better error message
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address,
+ InterpreterRuntime::throw_AbstractMethodError),
+ Z_ARG2, interface, Z_ARG4);
+ // The call_VM checks for exception, so we should never return here.
+ __ should_not_reach_here();
+
+ __ bind(no_such_interface);
+
+ // Throw exception.
+ __ restore_bcp(); // Bcp must be correct for exception handler (was destroyed).
+ __ restore_locals(); // Make sure locals pointer is correct as well (was destroyed).
+ // TK 2010-08-24: Call throw_IncompatibleClassChangeErrorByTemplateTable now with the
+ // relevant information for generating a better error message
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address,
+ InterpreterRuntime::throw_IncompatibleClassChangeError),
+ Z_ARG2, interface);
+ // The call_VM checks for exception, so we should never return here.
+ __ should_not_reach_here();
+
+ BLOCK_COMMENT("} invokeinterface");
+ return;
+}
+
+void TemplateTable::invokehandle(int byte_no) {
+ transition(vtos, vtos);
+
+ const Register method = Z_tmp_2;
+ const Register recv = Z_ARG5;
+ const Register mtype = Z_tmp_1;
+ prepare_invoke(byte_no,
+ method, mtype, // Get f2 method, f1 MethodType.
+ recv);
+ __ verify_method_ptr(method);
+ __ verify_oop(recv);
+ __ null_check(recv);
+
+ // Note: Mtype is already pushed (if necessary) by prepare_invoke.
+
+ // FIXME: profile the LambdaForm also.
+ __ profile_final_call(Z_ARG2);
+ __ profile_arguments_type(Z_ARG3, method, Z_ARG5, true);
+
+ __ jump_from_interpreted(method, Z_ARG3);
+}
+
+void TemplateTable::invokedynamic(int byte_no) {
+ transition(vtos, vtos);
+
+ const Register Rmethod = Z_tmp_2;
+ const Register Rcallsite = Z_tmp_1;
+
+ prepare_invoke(byte_no, Rmethod, Rcallsite);
+
+ // Rmethod: CallSite object (from f1)
+ // Rcallsite: MH.linkToCallSite method (from f2)
+
+ // Note: Callsite is already pushed by prepare_invoke.
+
+ // TODO: should make a type profile for any invokedynamic that takes a ref argument.
+ // Profile this call.
+ __ profile_call(Z_ARG2);
+ __ profile_arguments_type(Z_ARG2, Rmethod, Z_ARG5, false);
+ __ jump_from_interpreted(Rmethod, Z_ARG2);
+}
+
+//-----------------------------------------------------------------------------
+// Allocation
+
+// Original comment on "allow_shared_alloc":
+// Always go the slow path.
+// + Eliminated optimization within the template-based interpreter:
+// If an allocation is done within the interpreter without using
+// tlabs, the interpreter tries to do the allocation directly
+// on the heap.
+// + That means the profiling hooks are not considered and allocations
+// get lost for the profiling framework.
+// + However, we do not think that this optimization is really needed,
+// so we always go now the slow path through the VM in this case --
+// spec jbb2005 shows no measurable performance degradation.
+void TemplateTable::_new() {
+ transition(vtos, atos);
+ address prev_instr_address = NULL;
+ Register tags = Z_tmp_1;
+ Register RallocatedObject = Z_tos;
+ Register cpool = Z_ARG2;
+ Register tmp = Z_ARG3; // RobjectFields==tmp and Rsize==offset must be a register pair.
+ Register offset = Z_ARG4;
+ Label slow_case;
+ Label done;
+ Label initialize_header;
+ Label initialize_object; // Including clearing the fields.
+ Label allocate_shared;
+
+ BLOCK_COMMENT("TemplateTable::_new {");
+ __ get_2_byte_integer_at_bcp(offset/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
+ __ get_cpool_and_tags(cpool, tags);
+ // Make sure the class we're about to instantiate has been resolved.
+ // This is done before loading InstanceKlass to be consistent with the order
+ // how Constant Pool is updated (see ConstantPool::klass_at_put).
+ const int tags_offset = Array<u1>::base_offset_in_bytes();
+ __ load_address(tmp, Address(tags, offset, tags_offset));
+ __ z_cli(0, tmp, JVM_CONSTANT_Class);
+ __ z_brne(slow_case);
+
+ __ z_sllg(offset, offset, LogBytesPerWord); // Convert to to offset.
+ // Get InstanceKlass.
+ Register iklass = cpool;
+ __ load_resolved_klass_at_offset(cpool, offset, iklass);
+
+ // Make sure klass is initialized & doesn't have finalizer.
+ // Make sure klass is fully initialized.
+ const int state_offset = in_bytes(InstanceKlass::init_state_offset());
+ if (Immediate::is_uimm12(state_offset)) {
+ __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
+ } else {
+ __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
+ }
+ __ z_brne(slow_case);
+
+ // Get instance_size in InstanceKlass (scaled to a count of bytes).
+ Register Rsize = offset;
+ const int mask = 1 << Klass::_lh_instance_slow_path_bit;
+ __ z_llgf(Rsize, Address(iklass, Klass::layout_helper_offset()));
+ __ z_tmll(Rsize, mask);
+ __ z_btrue(slow_case);
+
+ // Allocate the instance
+ // 1) Try to allocate in the TLAB.
+ // 2) If fail and the object is large allocate in the shared Eden.
+ // 3) If the above fails (or is not applicable), go to a slow case
+ // (creates a new TLAB, etc.).
+
+ // Always go the slow path. See comment above this template.
+ const bool allow_shared_alloc = false;
+
+ if (UseTLAB) {
+ Register RoldTopValue = RallocatedObject;
+ Register RnewTopValue = tmp;
+ __ z_lg(RoldTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
+ __ load_address(RnewTopValue, Address(RoldTopValue, Rsize));
+ __ z_cg(RnewTopValue, Address(Z_thread, JavaThread::tlab_end_offset()));
+ __ z_brh(allow_shared_alloc ? allocate_shared : slow_case);
+ __ z_stg(RnewTopValue, Address(Z_thread, JavaThread::tlab_top_offset()));
+ if (ZeroTLAB) {
+ // The fields have been already cleared.
+ __ z_bru(initialize_header);
+ } else {
+ // Initialize both the header and fields.
+ if (allow_shared_alloc) {
+ __ z_bru(initialize_object);
+ } else {
+ // Fallthrough to initialize_object, but assert that it is on fall through path.
+ prev_instr_address = __ pc();
+ }
+ }
+ }
+
+ if (allow_shared_alloc) {
+ // Allocation in shared Eden not implemented, because sapjvm allocation trace does not allow it.
+ Unimplemented();
+ }
+
+ if (UseTLAB) {
+ Register RobjectFields = tmp;
+ Register Rzero = Z_R1_scratch;
+
+ assert(ZeroTLAB || prev_instr_address == __ pc(),
+ "must not omit jump to initialize_object above, as it is not on the fall through path");
+ __ clear_reg(Rzero, true /*whole reg*/, false); // Load 0L into Rzero. Don't set CC.
+
+ // The object is initialized before the header. If the object size is
+ // zero, go directly to the header initialization.
+ __ bind(initialize_object);
+ __ z_aghi(Rsize, (int)-sizeof(oopDesc)); // Subtract header size, set CC.
+ __ z_bre(initialize_header); // Jump if size of fields is zero.
+
+ // Initialize object fields.
+ // See documentation for MVCLE instruction!!!
+ assert(RobjectFields->encoding() % 2 == 0, "RobjectFields must be an even register");
+ assert(Rsize->encoding() == (RobjectFields->encoding()+1),
+ "RobjectFields and Rsize must be a register pair");
+ assert(Rzero->encoding() % 2 == 1, "Rzero must be an odd register");
+
+ // Set Rzero to 0 and use it as src length, then mvcle will copy nothing
+ // and fill the object with the padding value 0.
+ __ add2reg(RobjectFields, sizeof(oopDesc), RallocatedObject);
+ __ move_long_ext(RobjectFields, as_Register(Rzero->encoding() - 1), 0);
+
+ // Initialize object header only.
+ __ bind(initialize_header);
+ if (UseBiasedLocking) {
+ Register prototype = RobjectFields;
+ __ z_lg(prototype, Address(iklass, Klass::prototype_header_offset()));
+ __ z_stg(prototype, Address(RallocatedObject, oopDesc::mark_offset_in_bytes()));
+ } else {
+ __ store_const(Address(RallocatedObject, oopDesc::mark_offset_in_bytes()),
+ (long)markOopDesc::prototype());
+ }
+
+ __ store_klass_gap(Rzero, RallocatedObject); // Zero klass gap for compressed oops.
+ __ store_klass(iklass, RallocatedObject); // Store klass last.
+
+ {
+ SkipIfEqual skip(_masm, &DTraceAllocProbes, false, Z_ARG5 /*scratch*/);
+ // Trigger dtrace event for fastpath.
+ __ push(atos); // Save the return value.
+ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), RallocatedObject);
+ __ pop(atos); // Restore the return value.
+ }
+ __ z_bru(done);
+ }
+
+ // slow case
+ __ bind(slow_case);
+ __ get_constant_pool(Z_ARG2);
+ __ get_2_byte_integer_at_bcp(Z_ARG3/*dest*/, 1, InterpreterMacroAssembler::Unsigned);
+ call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Z_ARG2, Z_ARG3);
+ __ verify_oop(Z_tos);
+
+ // continue
+ __ bind(done);
+
+ BLOCK_COMMENT("} TemplateTable::_new");
+}
+
+void TemplateTable::newarray() {
+ transition(itos, atos);
+
+ // Call runtime.
+ __ z_llgc(Z_ARG2, at_bcp(1)); // type
+ __ z_lgfr(Z_ARG3, Z_tos); // size
+ call_VM(Z_RET,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
+ Z_ARG2, Z_ARG3);
+}
+
+void TemplateTable::anewarray() {
+ transition(itos, atos);
+ __ get_2_byte_integer_at_bcp(Z_ARG3, 1, InterpreterMacroAssembler::Unsigned);
+ __ get_constant_pool(Z_ARG2);
+ __ z_lgfr(Z_ARG4, Z_tos);
+ call_VM(Z_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
+ Z_ARG2, Z_ARG3, Z_ARG4);
+}
+
+void TemplateTable::arraylength() {
+ transition(atos, itos);
+
+ int offset = arrayOopDesc::length_offset_in_bytes();
+
+ __ null_check(Z_tos, Z_R0_scratch, offset);
+ __ mem2reg_opt(Z_tos, Address(Z_tos, offset), false);
+}
+
+void TemplateTable::checkcast() {
+ transition(atos, atos);
+
+ NearLabel done, is_null, ok_is_subtype, quicked, resolved;
+
+ BLOCK_COMMENT("checkcast {");
+ // If object is NULL, we are almost done.
+ __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
+
+ // Get cpool & tags index.
+ Register cpool = Z_tmp_1;
+ Register tags = Z_tmp_2;
+ Register index = Z_ARG5;
+
+ __ get_cpool_and_tags(cpool, tags);
+ __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
+ // See if bytecode has already been quicked.
+ // Note: For CLI, we would have to add the index to the tags pointer first,
+ // thus load and compare in a "classic" manner.
+ __ z_llgc(Z_R0_scratch,
+ Address(tags, index, Array<u1>::base_offset_in_bytes()));
+ __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class,
+ Assembler::bcondEqual, quicked);
+
+ __ push(atos); // Save receiver for result, and for GC.
+ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
+ __ get_vm_result_2(Z_tos);
+
+ Register receiver = Z_ARG4;
+ Register klass = Z_tos;
+ Register subklass = Z_ARG5;
+
+ __ pop_ptr(receiver); // restore receiver
+ __ z_bru(resolved);
+
+ // Get superklass in klass and subklass in subklass.
+ __ bind(quicked);
+
+ __ z_lgr(Z_ARG4, Z_tos); // Save receiver.
+ __ z_sllg(index, index, LogBytesPerWord); // index2bytes for addressing
+ __ load_resolved_klass_at_offset(cpool, index, klass);
+
+ __ bind(resolved);
+
+ __ load_klass(subklass, receiver);
+
+ // Generate subtype check. Object in receiver.
+ // Superklass in klass. Subklass in subklass.
+ __ gen_subtype_check(subklass, klass, Z_ARG3, Z_tmp_1, ok_is_subtype);
+
+ // Come here on failure.
+ __ push_ptr(receiver);
+ // Object is at TOS, target klass oop expected in rax by convention.
+ __ z_brul((address) Interpreter::_throw_ClassCastException_entry);
+
+ // Come here on success.
+ __ bind(ok_is_subtype);
+
+ __ z_lgr(Z_tos, receiver); // Restore object.
+
+ // Collect counts on whether this test sees NULLs a lot or not.
+ if (ProfileInterpreter) {
+ __ z_bru(done);
+ __ bind(is_null);
+ __ profile_null_seen(Z_tmp_1);
+ } else {
+ __ bind(is_null); // Same as 'done'.
+ }
+
+ __ bind(done);
+ BLOCK_COMMENT("} checkcast");
+}
+
+void TemplateTable::instanceof() {
+ transition(atos, itos);
+
+ NearLabel done, is_null, ok_is_subtype, quicked, resolved;
+
+ BLOCK_COMMENT("instanceof {");
+ // If object is NULL, we are almost done.
+ __ compareU64_and_branch(Z_tos, (intptr_t) 0, Assembler::bcondZero, is_null);
+
+ // Get cpool & tags index.
+ Register cpool = Z_tmp_1;
+ Register tags = Z_tmp_2;
+ Register index = Z_ARG5;
+
+ __ get_cpool_and_tags(cpool, tags);
+ __ get_2_byte_integer_at_bcp(index, 1, InterpreterMacroAssembler::Unsigned);
+ // See if bytecode has already been quicked.
+ // Note: For CLI, we would have to add the index to the tags pointer first,
+ // thus load and compare in a "classic" manner.
+ __ z_llgc(Z_R0_scratch,
+ Address(tags, index, Array<u1>::base_offset_in_bytes()));
+ __ compareU64_and_branch(Z_R0_scratch, JVM_CONSTANT_Class, Assembler::bcondEqual, quicked);
+
+ __ push(atos); // Save receiver for result, and for GC.
+ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
+ __ get_vm_result_2(Z_tos);
+
+ Register receiver = Z_tmp_2;
+ Register klass = Z_tos;
+ Register subklass = Z_tmp_2;
+
+ __ pop_ptr(receiver); // Restore receiver.
+ __ verify_oop(receiver);
+ __ load_klass(subklass, subklass);
+ __ z_bru(resolved);
+
+ // Get superklass in klass and subklass in subklass.
+ __ bind(quicked);
+
+ __ load_klass(subklass, Z_tos);
+ __ z_sllg(index, index, LogBytesPerWord); // index2bytes for addressing
+ __ load_resolved_klass_at_offset(cpool, index, klass);
+
+ __ bind(resolved);
+
+ // Generate subtype check.
+ // Superklass in klass. Subklass in subklass.
+ __ gen_subtype_check(subklass, klass, Z_ARG4, Z_ARG5, ok_is_subtype);
+
+ // Come here on failure.
+ __ clear_reg(Z_tos, true, false);
+ __ z_bru(done);
+
+ // Come here on success.
+ __ bind(ok_is_subtype);
+ __ load_const_optimized(Z_tos, 1);
+
+ // Collect counts on whether this test sees NULLs a lot or not.
+ if (ProfileInterpreter) {
+ __ z_bru(done);
+ __ bind(is_null);
+ __ profile_null_seen(Z_tmp_1);
+ } else {
+ __ bind(is_null); // same as 'done'
+ }
+
+ __ bind(done);
+ // tos = 0: obj == NULL or obj is not an instanceof the specified klass
+ // tos = 1: obj != NULL and obj is an instanceof the specified klass
+ BLOCK_COMMENT("} instanceof");
+}
+
+//-----------------------------------------------------------------------------
+// Breakpoints
+void TemplateTable::_breakpoint() {
+
+ // Note: We get here even if we are single stepping.
+ // Jbug insists on setting breakpoints at every bytecode
+ // even if we are in single step mode.
+
+ transition(vtos, vtos);
+
+ // Get the unpatched byte code.
+ __ get_method(Z_ARG2);
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at),
+ Z_ARG2, Z_bcp);
+ // Save the result to a register that is preserved over C-function calls.
+ __ z_lgr(Z_tmp_1, Z_RET);
+
+ // Post the breakpoint event.
+ __ get_method(Z_ARG2);
+ __ call_VM(noreg,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
+ Z_ARG2, Z_bcp);
+
+ // Must restore the bytecode, because call_VM destroys Z_bytecode.
+ __ z_lgr(Z_bytecode, Z_tmp_1);
+
+ // Complete the execution of original bytecode.
+ __ dispatch_only_normal(vtos);
+}
+
+
+// Exceptions
+
+void TemplateTable::athrow() {
+ transition(atos, vtos);
+ __ null_check(Z_tos);
+ __ load_absolute_address(Z_ARG2, Interpreter::throw_exception_entry());
+ __ z_br(Z_ARG2);
+}
+
+// Synchronization
+//
+// Note: monitorenter & exit are symmetric routines; which is reflected
+// in the assembly code structure as well
+//
+// Stack layout:
+//
+// callers_sp <- Z_SP (callers_sp == Z_fp (own fp))
+// return_pc
+// [rest of ABI_160]
+// /slot o: free
+// / ... free
+// oper. | slot n+1: free <- Z_esp points to first free slot
+// stack | slot n: val caches IJAVA_STATE.esp
+// | ...
+// \slot 0: val
+// /slot m <- IJAVA_STATE.monitors = monitor block top
+// | ...
+// monitors| slot 2
+// | slot 1
+// \slot 0
+// /slot l <- monitor block bot
+// ijava_state | ...
+// | slot 2
+// \slot 0
+// <- Z_fp
+void TemplateTable::monitorenter() {
+ transition(atos, vtos);
+
+ BLOCK_COMMENT("monitorenter {");
+
+ // Check for NULL object.
+ __ null_check(Z_tos);
+ const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
+ NearLabel allocated;
+ // Initialize entry pointer.
+ const Register Rfree_slot = Z_tmp_1;
+ __ clear_reg(Rfree_slot, true, false); // Points to free slot or NULL. Don't set CC.
+
+ // Find a free slot in the monitor block from top to bot (result in Rfree_slot).
+ {
+ const Register Rcurr_monitor = Z_ARG2;
+ const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
+ const Register Rlocked_obj = Z_ARG4;
+ NearLabel loop, exit, not_free;
+ // Starting with top-most entry.
+ __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
+ __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
+
+#ifdef ASSERT
+ address reentry = NULL;
+ { NearLabel ok;
+ __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
+ reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
+ __ bind(ok);
+ }
+ { NearLabel ok;
+ __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
+ reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
+ __ bind(ok);
+ }
+#endif
+
+ // Check if bottom reached, i.e. if there is at least one monitor.
+ __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, exit);
+
+ __ bind(loop);
+ // Check if current entry is used.
+ __ load_and_test_long(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
+ __ z_brne(not_free);
+ // If not used then remember entry in Rfree_slot.
+ __ z_lgr(Rfree_slot, Rcurr_monitor);
+ __ bind(not_free);
+ // Exit if current entry is for same object; this guarantees, that new monitor
+ // used for recursive lock is above the older one.
+ __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, exit);
+ // otherwise advance to next entry
+ __ add2reg(Rcurr_monitor, entry_size);
+ // Check if bottom reached, if not at bottom then check this entry.
+ __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
+ __ bind(exit);
+ }
+
+ // Rfree_slot != NULL -> found one
+ __ compareU64_and_branch(Rfree_slot, (intptr_t)0L, Assembler::bcondNotEqual, allocated);
+
+ // Allocate one if there's no free slot.
+ __ add_monitor_to_stack(false, Z_ARG3, Z_ARG4, Z_ARG5);
+ __ get_monitors(Rfree_slot);
+
+ // Rfree_slot: points to monitor entry.
+ __ bind(allocated);
+
+ // Increment bcp to point to the next bytecode, so exception
+ // handling for async. exceptions work correctly.
+ // The object has already been poped from the stack, so the
+ // expression stack looks correct.
+ __ add2reg(Z_bcp, 1, Z_bcp);
+
+ // Store object.
+ __ z_stg(Z_tos, BasicObjectLock::obj_offset_in_bytes(), Rfree_slot);
+ __ lock_object(Rfree_slot, Z_tos);
+
+ // Check to make sure this monitor doesn't cause stack overflow after locking.
+ __ save_bcp(); // in case of exception
+ __ generate_stack_overflow_check(0);
+
+ // The bcp has already been incremented. Just need to dispatch to
+ // next instruction.
+ __ dispatch_next(vtos);
+
+ BLOCK_COMMENT("} monitorenter");
+}
+
+
+void TemplateTable::monitorexit() {
+ transition(atos, vtos);
+
+ BLOCK_COMMENT("monitorexit {");
+
+ // Check for NULL object.
+ __ null_check(Z_tos);
+
+ NearLabel found, not_found;
+ const Register Rcurr_monitor = Z_ARG2;
+
+ // Find matching slot.
+ {
+ const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
+ NearLabel entry, loop;
+
+ const Register Rbot = Z_ARG3; // Points to word under bottom of monitor block.
+ const Register Rlocked_obj = Z_ARG4;
+ // Starting with top-most entry.
+ __ get_monitors(Rcurr_monitor); // Rcur_monitor = IJAVA_STATE.monitors
+ __ add2reg(Rbot, -frame::z_ijava_state_size, Z_fp);
+
+#ifdef ASSERT
+ address reentry = NULL;
+ { NearLabel ok;
+ __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotHigh, ok);
+ reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors points below monitor block bottom");
+ __ bind(ok);
+ }
+ { NearLabel ok;
+ __ compareU64_and_branch(Rcurr_monitor, Z_esp, Assembler::bcondHigh, ok);
+ reentry = __ stop_chain_static(reentry, "IJAVA_STATE.monitors above Z_esp");
+ __ bind(ok);
+ }
+#endif
+
+ // Check if bottom reached, i.e. if there is at least one monitor.
+ __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondEqual, not_found);
+
+ __ bind(loop);
+ // Check if current entry is for same object.
+ __ z_lg(Rlocked_obj, Address(Rcurr_monitor, BasicObjectLock::obj_offset_in_bytes()));
+ // If same object then stop searching.
+ __ compareU64_and_branch(Rlocked_obj, Z_tos, Assembler::bcondEqual, found);
+ // Otherwise advance to next entry.
+ __ add2reg(Rcurr_monitor, entry_size);
+ // Check if bottom reached, if not at bottom then check this entry.
+ __ compareU64_and_branch(Rcurr_monitor, Rbot, Assembler::bcondNotEqual, loop);
+ }
+
+ __ bind(not_found);
+ // Error handling. Unlocking was not block-structured.
+ __ call_VM(noreg, CAST_FROM_FN_PTR(address,
+ InterpreterRuntime::throw_illegal_monitor_state_exception));
+ __ should_not_reach_here();
+
+ __ bind(found);
+ __ push_ptr(Z_tos); // Make sure object is on stack (contract with oopMaps).
+ __ unlock_object(Rcurr_monitor, Z_tos);
+ __ pop_ptr(Z_tos); // Discard object.
+ BLOCK_COMMENT("} monitorexit");
+}
+
+// Wide instructions
+void TemplateTable::wide() {
+ transition(vtos, vtos);
+
+ __ z_llgc(Z_R1_scratch, at_bcp(1));
+ __ z_sllg(Z_R1_scratch, Z_R1_scratch, LogBytesPerWord);
+ __ load_absolute_address(Z_tmp_1, (address) Interpreter::_wentry_point);
+ __ mem2reg_opt(Z_tmp_1, Address(Z_tmp_1, Z_R1_scratch));
+ __ z_br(Z_tmp_1);
+ // Note: the bcp increment step is part of the individual wide
+ // bytecode implementations.
+}
+
+// Multi arrays
+void TemplateTable::multianewarray() {
+ transition(vtos, atos);
+
+ __ z_llgc(Z_tmp_1, at_bcp(3)); // Get number of dimensions.
+ // Slot count to byte offset.
+ __ z_sllg(Z_tmp_1, Z_tmp_1, Interpreter::logStackElementSize);
+ // Z_esp points past last_dim, so set to Z_ARG2 to first_dim address.
+ __ load_address(Z_ARG2, Address(Z_esp, Z_tmp_1));
+ call_VM(Z_RET,
+ CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
+ Z_ARG2);
+ // Pop dimensions from expression stack.
+ __ z_agr(Z_esp, Z_tmp_1);
+}