--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/jdk.pack/share/native/common-unpack/unpack.cpp Wed Dec 14 10:51:13 2016 -0800
@@ -0,0 +1,5244 @@
+/*
+ * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation. Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+// -*- C++ -*-
+// Program for unpacking specially compressed Java packages.
+// John R. Rose
+
+/*
+ * When compiling for a 64bit LP64 system (longs and pointers being 64bits),
+ * the printf format %ld is correct and use of %lld will cause warning
+ * errors from some compilers (gcc/g++).
+ * _LP64 can be explicitly set (used on Linux).
+ * Should be checking for the Visual C++ since the _LP64 is set on the 64-bit
+ * systems but the correct format prefix for 64-bit integers is ll.
+ * Solaris compilers will define __sparcv9 or __x86_64 on 64bit compilations.
+ */
+#if !defined (_MSC_VER) && \
+ (defined(_LP64) || defined(__sparcv9) || defined(__x86_64))
+ #define LONG_LONG_FORMAT "%ld"
+ #define LONG_LONG_HEX_FORMAT "%lx"
+#else
+ #define LONG_LONG_FORMAT "%lld"
+ #define LONG_LONG_HEX_FORMAT "%016llx"
+#endif
+
+#include <sys/types.h>
+
+#include <stdio.h>
+#include <string.h>
+#include <stdlib.h>
+#include <stdarg.h>
+
+#include <limits.h>
+#include <time.h>
+
+
+
+
+#include "defines.h"
+#include "bytes.h"
+#include "utils.h"
+#include "coding.h"
+#include "bands.h"
+
+#include "constants.h"
+
+#include "zip.h"
+
+#include "unpack.h"
+
+
+// tags, in canonical order:
+static const byte TAGS_IN_ORDER[] = {
+ CONSTANT_Utf8,
+ CONSTANT_Integer,
+ CONSTANT_Float,
+ CONSTANT_Long,
+ CONSTANT_Double,
+ CONSTANT_String,
+ CONSTANT_Class,
+ CONSTANT_Signature,
+ CONSTANT_NameandType,
+ CONSTANT_Fieldref,
+ CONSTANT_Methodref,
+ CONSTANT_InterfaceMethodref,
+ // constants defined as of JDK 7
+ CONSTANT_MethodHandle,
+ CONSTANT_MethodType,
+ CONSTANT_BootstrapMethod,
+ CONSTANT_InvokeDynamic
+};
+#define N_TAGS_IN_ORDER (sizeof TAGS_IN_ORDER)
+
+#ifndef PRODUCT
+static const char* TAG_NAME[] = {
+ "*None",
+ "Utf8",
+ "*Unicode",
+ "Integer",
+ "Float",
+ "Long",
+ "Double",
+ "Class",
+ "String",
+ "Fieldref",
+ "Methodref",
+ "InterfaceMethodref",
+ "NameandType",
+ "*Signature",
+ "unused14",
+ "MethodHandle",
+ "MethodType",
+ "*BootstrapMethod",
+ "InvokeDynamic",
+ 0
+};
+
+static const char* ATTR_CONTEXT_NAME[] = { // match ATTR_CONTEXT_NAME, etc.
+ "class", "field", "method", "code"
+};
+
+#else
+
+#define ATTR_CONTEXT_NAME ((const char**)null)
+
+#endif
+
+// Note that REQUESTED_LDC comes first, then the normal REQUESTED,
+// in the regular constant pool.
+enum { REQUESTED_NONE = -1,
+ // The codes below REQUESTED_NONE are in constant pool output order,
+ // for the sake of outputEntry_cmp:
+ REQUESTED_LDC = -99, REQUESTED
+};
+
+#define NO_INORD ((uint)-1)
+
+struct entry {
+ byte tag;
+
+ #if 0
+ byte bits;
+ enum {
+ //EB_EXTRA = 1,
+ EB_SUPER = 2
+ };
+ #endif
+ unsigned short nrefs; // pack w/ tag
+
+ int outputIndex;
+ uint inord; // &cp.entries[cp.tag_base[this->tag]+this->inord] == this
+
+ entry* *refs;
+
+ // put last to pack best
+ union {
+ bytes b;
+ int i;
+ jlong l;
+ } value;
+
+ void requestOutputIndex(cpool& cp, int req = REQUESTED);
+ int getOutputIndex() {
+ assert(outputIndex > REQUESTED_NONE);
+ return outputIndex;
+ }
+
+ entry* ref(int refnum) {
+ assert((uint)refnum < nrefs);
+ return refs[refnum];
+ }
+
+ const char* utf8String() {
+ assert(tagMatches(CONSTANT_Utf8));
+ if (value.b.len != strlen((const char*)value.b.ptr)) {
+ unpack_abort("bad utf8 encoding");
+ // and fall through
+ }
+ return (const char*)value.b.ptr;
+ }
+
+ entry* className() {
+ assert(tagMatches(CONSTANT_Class));
+ return ref(0);
+ }
+
+ entry* memberClass() {
+ assert(tagMatches(CONSTANT_AnyMember));
+ return ref(0);
+ }
+
+ entry* memberDescr() {
+ assert(tagMatches(CONSTANT_AnyMember));
+ return ref(1);
+ }
+
+ entry* descrName() {
+ assert(tagMatches(CONSTANT_NameandType));
+ return ref(0);
+ }
+
+ entry* descrType() {
+ assert(tagMatches(CONSTANT_NameandType));
+ return ref(1);
+ }
+
+ int typeSize();
+
+ bytes& asUtf8();
+ int asInteger() { assert(tag == CONSTANT_Integer); return value.i; }
+
+ bool isUtf8(bytes& b) { return tagMatches(CONSTANT_Utf8) && value.b.equals(b); }
+
+ bool isDoubleWord() { return tag == CONSTANT_Double || tag == CONSTANT_Long; }
+
+ bool tagMatches(byte tag2) {
+ return (tag2 == tag)
+ || (tag2 == CONSTANT_Utf8 && tag == CONSTANT_Signature)
+ #ifndef PRODUCT
+ || (tag2 == CONSTANT_FieldSpecific
+ && tag >= CONSTANT_Integer && tag <= CONSTANT_String && tag != CONSTANT_Class)
+ || (tag2 == CONSTANT_AnyMember
+ && tag >= CONSTANT_Fieldref && tag <= CONSTANT_InterfaceMethodref)
+ #endif
+ ;
+ }
+
+#ifdef PRODUCT
+ const char* string() { return NULL; }
+#else
+ const char* string(); // see far below
+#endif
+};
+
+entry* cpindex::get(uint i) {
+ if (i >= len)
+ return null;
+ else if (base1 != null)
+ // primary index
+ return &base1[i];
+ else
+ // secondary index
+ return base2[i];
+}
+
+inline bytes& entry::asUtf8() {
+ assert(tagMatches(CONSTANT_Utf8));
+ return value.b;
+}
+
+int entry::typeSize() {
+ assert(tagMatches(CONSTANT_Utf8));
+ const char* sigp = (char*) value.b.ptr;
+ switch (*sigp) {
+ case '(': sigp++; break; // skip opening '('
+ case 'D':
+ case 'J': return 2; // double field
+ default: return 1; // field
+ }
+ int siglen = 0;
+ for (;;) {
+ int ch = *sigp++;
+ switch (ch) {
+ case 'D': case 'J':
+ siglen += 1;
+ break;
+ case '[':
+ // Skip rest of array info.
+ while (ch == '[') { ch = *sigp++; }
+ if (ch != 'L') break;
+ // else fall through
+ case 'L':
+ sigp = strchr(sigp, ';');
+ if (sigp == null) {
+ unpack_abort("bad data");
+ return 0;
+ }
+ sigp += 1;
+ break;
+ case ')': // closing ')'
+ return siglen;
+ }
+ siglen += 1;
+ }
+}
+
+inline cpindex* cpool::getFieldIndex(entry* classRef) {
+ if (classRef == NULL) { abort("missing class reference"); return NULL; }
+ assert(classRef->tagMatches(CONSTANT_Class));
+ assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
+ return &member_indexes[classRef->inord*2+0];
+}
+inline cpindex* cpool::getMethodIndex(entry* classRef) {
+ if (classRef == NULL) { abort("missing class reference"); return NULL; }
+ assert(classRef->tagMatches(CONSTANT_Class));
+ assert((uint)classRef->inord < (uint)tag_count[CONSTANT_Class]);
+ return &member_indexes[classRef->inord*2+1];
+}
+
+struct inner_class {
+ entry* inner;
+ entry* outer;
+ entry* name;
+ int flags;
+ inner_class* next_sibling;
+ bool requested;
+};
+
+// Here is where everything gets deallocated:
+void unpacker::free() {
+ int i;
+ assert(jniobj == null); // caller resp.
+ assert(infileptr == null); // caller resp.
+ if (jarout != null) jarout->reset();
+ if (gzin != null) { gzin->free(); gzin = null; }
+ if (free_input) input.free();
+ // free everybody ever allocated with U_NEW or (recently) with T_NEW
+ assert(smallbuf.base() == null || mallocs.contains(smallbuf.base()));
+ assert(tsmallbuf.base() == null || tmallocs.contains(tsmallbuf.base()));
+ mallocs.freeAll();
+ tmallocs.freeAll();
+ smallbuf.init();
+ tsmallbuf.init();
+ bcimap.free();
+ class_fixup_type.free();
+ class_fixup_offset.free();
+ class_fixup_ref.free();
+ code_fixup_type.free();
+ code_fixup_offset.free();
+ code_fixup_source.free();
+ requested_ics.free();
+ cp.requested_bsms.free();
+ cur_classfile_head.free();
+ cur_classfile_tail.free();
+ for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
+ attr_defs[i].free();
+
+ // free CP state
+ cp.outputEntries.free();
+ for (i = 0; i < CONSTANT_Limit; i++)
+ cp.tag_extras[i].free();
+}
+
+// input handling
+// Attempts to advance rplimit so that (rplimit-rp) is at least 'more'.
+// Will eagerly read ahead by larger chunks, if possible.
+// Returns false if (rplimit-rp) is not at least 'more',
+// unless rplimit hits input.limit().
+bool unpacker::ensure_input(jlong more) {
+ julong want = more - input_remaining();
+ if ((jlong)want <= 0) return true; // it's already in the buffer
+ if (rplimit == input.limit()) return true; // not expecting any more
+
+ if (read_input_fn == null) {
+ // assume it is already all there
+ bytes_read += input.limit() - rplimit;
+ rplimit = input.limit();
+ return true;
+ }
+ CHECK_0;
+
+ julong remaining = (input.limit() - rplimit); // how much left to read?
+ byte* rpgoal = (want >= remaining)? input.limit(): rplimit + (size_t)want;
+ enum { CHUNK_SIZE = (1<<14) };
+ julong fetch = want;
+ if (fetch < CHUNK_SIZE)
+ fetch = CHUNK_SIZE;
+ if (fetch > remaining*3/4)
+ fetch = remaining;
+ // Try to fetch at least "more" bytes.
+ while ((jlong)fetch > 0) {
+ jlong nr = (*read_input_fn)(this, rplimit, fetch, remaining);
+ if (nr <= 0) {
+ return (rplimit >= rpgoal);
+ }
+ remaining -= nr;
+ rplimit += nr;
+ fetch -= nr;
+ bytes_read += nr;
+ assert(remaining == (julong)(input.limit() - rplimit));
+ }
+ return true;
+}
+
+// output handling
+
+fillbytes* unpacker::close_output(fillbytes* which) {
+ assert(wp != null);
+ if (which == null) {
+ if (wpbase == cur_classfile_head.base()) {
+ which = &cur_classfile_head;
+ } else {
+ which = &cur_classfile_tail;
+ }
+ }
+ assert(wpbase == which->base());
+ assert(wplimit == which->end());
+ which->setLimit(wp);
+ wp = null;
+ wplimit = null;
+ //wpbase = null;
+ return which;
+}
+
+//maybe_inline
+void unpacker::ensure_put_space(size_t size) {
+ if (wp + size <= wplimit) return;
+ // Determine which segment needs expanding.
+ fillbytes* which = close_output();
+ byte* wp0 = which->grow(size);
+ wpbase = which->base();
+ wplimit = which->end();
+ wp = wp0;
+}
+
+maybe_inline
+byte* unpacker::put_space(size_t size) {
+ byte* wp0 = wp;
+ byte* wp1 = wp0 + size;
+ if (wp1 > wplimit) {
+ ensure_put_space(size);
+ wp0 = wp;
+ wp1 = wp0 + size;
+ }
+ wp = wp1;
+ return wp0;
+}
+
+maybe_inline
+void unpacker::putu2_at(byte* wp, int n) {
+ if (n != (unsigned short)n) {
+ unpack_abort(ERROR_OVERFLOW);
+ return;
+ }
+ wp[0] = (n) >> 8;
+ wp[1] = (n) >> 0;
+}
+
+maybe_inline
+void unpacker::putu4_at(byte* wp, int n) {
+ wp[0] = (n) >> 24;
+ wp[1] = (n) >> 16;
+ wp[2] = (n) >> 8;
+ wp[3] = (n) >> 0;
+}
+
+maybe_inline
+void unpacker::putu8_at(byte* wp, jlong n) {
+ putu4_at(wp+0, (int)((julong)n >> 32));
+ putu4_at(wp+4, (int)((julong)n >> 0));
+}
+
+maybe_inline
+void unpacker::putu2(int n) {
+ putu2_at(put_space(2), n);
+}
+
+maybe_inline
+void unpacker::putu4(int n) {
+ putu4_at(put_space(4), n);
+}
+
+maybe_inline
+void unpacker::putu8(jlong n) {
+ putu8_at(put_space(8), n);
+}
+
+maybe_inline
+int unpacker::putref_index(entry* e, int size) {
+ if (e == null)
+ return 0;
+ else if (e->outputIndex > REQUESTED_NONE)
+ return e->outputIndex;
+ else if (e->tag == CONSTANT_Signature)
+ return putref_index(e->ref(0), size);
+ else {
+ e->requestOutputIndex(cp, (size == 1 ? REQUESTED_LDC : REQUESTED));
+ // Later on we'll fix the bits.
+ class_fixup_type.addByte(size);
+ class_fixup_offset.add((int)wpoffset());
+ class_fixup_ref.add(e);
+#ifdef PRODUCT
+ return 0;
+#else
+ return 0x20+size; // 0x22 is easy to eyeball
+#endif
+ }
+}
+
+maybe_inline
+void unpacker::putref(entry* e) {
+ int oidx = putref_index(e, 2);
+ putu2_at(put_space(2), oidx);
+}
+
+maybe_inline
+void unpacker::putu1ref(entry* e) {
+ int oidx = putref_index(e, 1);
+ putu1_at(put_space(1), oidx);
+}
+
+
+static int total_cp_size[] = {0, 0};
+static int largest_cp_ref[] = {0, 0};
+static int hash_probes[] = {0, 0};
+
+// Allocation of small and large blocks.
+
+enum { CHUNK = (1 << 14), SMALL = (1 << 9) };
+
+// Call malloc. Try to combine small blocks and free much later.
+void* unpacker::alloc_heap(size_t size, bool smallOK, bool temp) {
+ if (!smallOK || size > SMALL) {
+ void* res = must_malloc((int)size);
+ (temp ? &tmallocs : &mallocs)->add(res);
+ return res;
+ }
+ fillbytes& xsmallbuf = *(temp ? &tsmallbuf : &smallbuf);
+ if (!xsmallbuf.canAppend(size+1)) {
+ xsmallbuf.init(CHUNK);
+ (temp ? &tmallocs : &mallocs)->add(xsmallbuf.base());
+ }
+ int growBy = (int)size;
+ growBy += -growBy & 7; // round up mod 8
+ return xsmallbuf.grow(growBy);
+}
+
+maybe_inline
+void unpacker::saveTo(bytes& b, byte* ptr, size_t len) {
+ b.ptr = U_NEW(byte, add_size(len,1));
+ if (aborting()) {
+ b.len = 0;
+ return;
+ }
+ b.len = len;
+ b.copyFrom(ptr, len);
+}
+
+bool testBit(int archive_options, int bitMask) {
+ return (archive_options & bitMask) != 0;
+}
+
+// Read up through band_headers.
+// Do the archive_size dance to set the size of the input mega-buffer.
+void unpacker::read_file_header() {
+ // Read file header to determine file type and total size.
+ enum {
+ MAGIC_BYTES = 4,
+ AH_LENGTH_0 = 3, // archive_header_0 = {minver, majver, options}
+ AH_LENGTH_MIN = 15, // observed in spec {header_0[3], cp_counts[8], class_counts[4]}
+ AH_LENGTH_0_MAX = AH_LENGTH_0 + 1, // options might have 2 bytes
+ AH_LENGTH = 30, //maximum archive header length (w/ all fields)
+ // Length contributions from optional header fields:
+ AH_LENGTH_S = 2, // archive_header_S = optional {size_hi, size_lo}
+ AH_ARCHIVE_SIZE_HI = 0, // offset in archive_header_S
+ AH_ARCHIVE_SIZE_LO = 1, // offset in archive_header_S
+ AH_FILE_HEADER_LEN = 5, // file_counts = {{size_hi, size_lo), next, modtile, files}
+ AH_SPECIAL_FORMAT_LEN = 2, // special_count = {layouts, band_headers}
+ AH_CP_NUMBER_LEN = 4, // cp_number_counts = {int, float, long, double}
+ AH_CP_EXTRA_LEN = 4, // cp_attr_counts = {MH, MT, InDy, BSM}
+ ARCHIVE_SIZE_MIN = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S,
+ FIRST_READ = MAGIC_BYTES + AH_LENGTH_MIN
+ };
+
+ assert(AH_LENGTH_MIN == 15); // # of UNSIGNED5 fields required after archive_magic
+ // An absolute minimum null archive is magic[4], {minver,majver,options}[3],
+ // archive_size[0], cp_counts[8], class_counts[4], for a total of 19 bytes.
+ // (Note that archive_size is optional; it may be 0..10 bytes in length.)
+ // The first read must capture everything up through the options field.
+ // This happens to work even if {minver,majver,options} is a pathological
+ // 15 bytes long. Legal pack files limit those three fields to 1+1+2 bytes.
+ assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0 * B_MAX);
+
+ // Up through archive_size, the largest possible archive header is
+ // magic[4], {minver,majver,options}[4], archive_size[10].
+ // (Note only the low 12 bits of options are allowed to be non-zero.)
+ // In order to parse archive_size, we need at least this many bytes
+ // in the first read. Of course, if archive_size_hi is more than
+ // a byte, we probably will fail to allocate the buffer, since it
+ // will be many gigabytes long. This is a practical, not an
+ // architectural limit to Pack200 archive sizes.
+ assert(FIRST_READ >= MAGIC_BYTES + AH_LENGTH_0_MAX + 2*B_MAX);
+
+ bool foreign_buf = (read_input_fn == null);
+ byte initbuf[(int)FIRST_READ + (int)C_SLOP + 200]; // 200 is for JAR I/O
+ if (foreign_buf) {
+ // inbytes is all there is
+ input.set(inbytes);
+ rp = input.base();
+ rplimit = input.limit();
+ } else {
+ // inbytes, if not empty, contains some read-ahead we must use first
+ // ensure_input will take care of copying it into initbuf,
+ // then querying read_input_fn for any additional data needed.
+ // However, the caller must assume that we use up all of inbytes.
+ // There is no way to tell the caller that we used only part of them.
+ // Therefore, the caller must use only a bare minimum of read-ahead.
+ if (inbytes.len > FIRST_READ) {
+ abort("too much read-ahead");
+ return;
+ }
+ input.set(initbuf, sizeof(initbuf));
+ input.b.clear();
+ input.b.copyFrom(inbytes);
+ rplimit = rp = input.base();
+ rplimit += inbytes.len;
+ bytes_read += inbytes.len;
+ }
+ // Read only 19 bytes, which is certain to contain #archive_options fields,
+ // but is certain not to overflow past the archive_header.
+ input.b.len = FIRST_READ;
+ if (!ensure_input(FIRST_READ))
+ abort("EOF reading archive magic number");
+
+ if (rp[0] == 'P' && rp[1] == 'K') {
+#ifdef UNPACK_JNI
+ // Java driver must handle this case before we get this far.
+ abort("encountered a JAR header in unpacker");
+#else
+ // In the Unix-style program, we simply simulate a copy command.
+ // Copy until EOF; assume the JAR file is the last segment.
+ fprintf(errstrm, "Copy-mode.\n");
+ for (;;) {
+ jarout->write_data(rp, (int)input_remaining());
+ if (foreign_buf)
+ break; // one-time use of a passed in buffer
+ if (input.size() < CHUNK) {
+ // Get some breathing room.
+ input.set(U_NEW(byte, (size_t) CHUNK + C_SLOP), (size_t) CHUNK);
+ CHECK;
+ }
+ rp = rplimit = input.base();
+ if (!ensure_input(1))
+ break;
+ }
+ jarout->closeJarFile(false);
+#endif
+ return;
+ }
+
+ // Read the magic number.
+ magic = 0;
+ for (int i1 = 0; i1 < (int)sizeof(magic); i1++) {
+ magic <<= 8;
+ magic += (*rp++ & 0xFF);
+ }
+
+ // Read the first 3 values from the header.
+ value_stream hdr;
+ int hdrVals = 0;
+ int hdrValsSkipped = 0; // for assert
+ hdr.init(rp, rplimit, UNSIGNED5_spec);
+ minver = hdr.getInt();
+ majver = hdr.getInt();
+ hdrVals += 2;
+
+ int majmin[4][2] = {
+ {JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION},
+ {JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION},
+ {JAVA7_PACKAGE_MAJOR_VERSION, JAVA7_PACKAGE_MINOR_VERSION},
+ {JAVA8_PACKAGE_MAJOR_VERSION, JAVA8_PACKAGE_MINOR_VERSION}
+ };
+ int majminfound = false;
+ for (int i = 0 ; i < 4 ; i++) {
+ if (majver == majmin[i][0] && minver == majmin[i][1]) {
+ majminfound = true;
+ break;
+ }
+ }
+ if (majminfound == null) {
+ char message[200];
+ sprintf(message, "@" ERROR_FORMAT ": magic/ver = "
+ "%08X/%d.%d should be %08X/%d.%d OR %08X/%d.%d OR %08X/%d.%d OR %08X/%d.%d\n",
+ magic, majver, minver,
+ JAVA_PACKAGE_MAGIC, JAVA5_PACKAGE_MAJOR_VERSION, JAVA5_PACKAGE_MINOR_VERSION,
+ JAVA_PACKAGE_MAGIC, JAVA6_PACKAGE_MAJOR_VERSION, JAVA6_PACKAGE_MINOR_VERSION,
+ JAVA_PACKAGE_MAGIC, JAVA7_PACKAGE_MAJOR_VERSION, JAVA7_PACKAGE_MINOR_VERSION,
+ JAVA_PACKAGE_MAGIC, JAVA8_PACKAGE_MAJOR_VERSION, JAVA8_PACKAGE_MINOR_VERSION);
+ abort(message);
+ }
+ CHECK;
+
+ archive_options = hdr.getInt();
+ hdrVals += 1;
+ assert(hdrVals == AH_LENGTH_0); // first three fields only
+ bool haveSizeHi = testBit(archive_options, AO_HAVE_FILE_SIZE_HI);
+ bool haveModTime = testBit(archive_options, AO_HAVE_FILE_MODTIME);
+ bool haveFileOpt = testBit(archive_options, AO_HAVE_FILE_OPTIONS);
+
+ bool haveSpecial = testBit(archive_options, AO_HAVE_SPECIAL_FORMATS);
+ bool haveFiles = testBit(archive_options, AO_HAVE_FILE_HEADERS);
+ bool haveNumbers = testBit(archive_options, AO_HAVE_CP_NUMBERS);
+ bool haveCPExtra = testBit(archive_options, AO_HAVE_CP_EXTRAS);
+
+ if (majver < JAVA7_PACKAGE_MAJOR_VERSION) {
+ if (haveCPExtra) {
+ abort("Format bits for Java 7 must be zero in previous releases");
+ return;
+ }
+ }
+ if (testBit(archive_options, AO_UNUSED_MBZ)) {
+ abort("High archive option bits are reserved and must be zero");
+ return;
+ }
+ if (haveFiles) {
+ uint hi = hdr.getInt();
+ uint lo = hdr.getInt();
+ julong x = band::makeLong(hi, lo);
+ archive_size = (size_t) x;
+ if (archive_size != x) {
+ // Silly size specified; force overflow.
+ archive_size = PSIZE_MAX+1;
+ }
+ hdrVals += 2;
+ } else {
+ hdrValsSkipped += 2;
+ }
+
+ // Now we can size the whole archive.
+ // Read everything else into a mega-buffer.
+ rp = hdr.rp;
+ size_t header_size_0 = (rp - input.base()); // used-up header (4byte + 3int)
+ size_t header_size_1 = (rplimit - rp); // buffered unused initial fragment
+ size_t header_size = header_size_0 + header_size_1;
+ unsized_bytes_read = header_size_0;
+ CHECK;
+ if (foreign_buf) {
+ if (archive_size > header_size_1) {
+ abort("EOF reading fixed input buffer");
+ return;
+ }
+ } else if (archive_size != 0) {
+ if (archive_size < ARCHIVE_SIZE_MIN) {
+ abort("impossible archive size"); // bad input data
+ return;
+ }
+ if (archive_size < header_size_1) {
+ abort("too much read-ahead"); // somehow we pre-fetched too much?
+ return;
+ }
+ input.set(U_NEW(byte, add_size(header_size_0, archive_size, C_SLOP)),
+ header_size_0 + archive_size);
+ CHECK;
+ assert(input.limit()[0] == 0);
+ // Move all the bytes we read initially into the real buffer.
+ input.b.copyFrom(initbuf, header_size);
+ rp = input.b.ptr + header_size_0;
+ rplimit = input.b.ptr + header_size;
+ } else {
+ // It's more complicated and painful.
+ // A zero archive_size means that we must read until EOF.
+ input.init(CHUNK*2);
+ CHECK;
+ input.b.len = input.allocated;
+ rp = rplimit = input.base();
+ // Set up input buffer as if we already read the header:
+ input.b.copyFrom(initbuf, header_size);
+ CHECK;
+ rplimit += header_size;
+ while (ensure_input(input.limit() - rp)) {
+ size_t dataSoFar = input_remaining();
+ size_t nextSize = add_size(dataSoFar, CHUNK);
+ input.ensureSize(nextSize);
+ CHECK;
+ input.b.len = input.allocated;
+ rp = rplimit = input.base();
+ rplimit += dataSoFar;
+ }
+ size_t dataSize = (rplimit - input.base());
+ input.b.len = dataSize;
+ input.grow(C_SLOP);
+ CHECK;
+ free_input = true; // free it later
+ input.b.len = dataSize;
+ assert(input.limit()[0] == 0);
+ rp = rplimit = input.base();
+ rplimit += dataSize;
+ rp += header_size_0; // already scanned these bytes...
+ }
+ live_input = true; // mark as "do not reuse"
+ if (aborting()) {
+ abort("cannot allocate large input buffer for package file");
+ return;
+ }
+
+ // read the rest of the header fields int assertSkipped = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S;
+ int remainingHeaders = AH_LENGTH_MIN - AH_LENGTH_0 - AH_LENGTH_S;
+ if (haveSpecial)
+ remainingHeaders += AH_SPECIAL_FORMAT_LEN;
+ if (haveFiles)
+ remainingHeaders += AH_FILE_HEADER_LEN;
+ if (haveNumbers)
+ remainingHeaders += AH_CP_NUMBER_LEN;
+ if (haveCPExtra)
+ remainingHeaders += AH_CP_EXTRA_LEN;
+
+ ensure_input(remainingHeaders * B_MAX);
+ CHECK;
+ hdr.rp = rp;
+ hdr.rplimit = rplimit;
+
+ if (haveFiles) {
+ archive_next_count = hdr.getInt();
+ CHECK_COUNT(archive_next_count);
+ archive_modtime = hdr.getInt();
+ file_count = hdr.getInt();
+ CHECK_COUNT(file_count);
+ hdrVals += 3;
+ } else {
+ hdrValsSkipped += 3;
+ }
+
+ if (haveSpecial) {
+ band_headers_size = hdr.getInt();
+ CHECK_COUNT(band_headers_size);
+ attr_definition_count = hdr.getInt();
+ CHECK_COUNT(attr_definition_count);
+ hdrVals += 2;
+ } else {
+ hdrValsSkipped += 2;
+ }
+
+ int cp_counts[N_TAGS_IN_ORDER];
+ for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
+ if (!haveNumbers) {
+ switch (TAGS_IN_ORDER[k]) {
+ case CONSTANT_Integer:
+ case CONSTANT_Float:
+ case CONSTANT_Long:
+ case CONSTANT_Double:
+ cp_counts[k] = 0;
+ hdrValsSkipped += 1;
+ continue;
+ }
+ }
+ if (!haveCPExtra) {
+ switch(TAGS_IN_ORDER[k]) {
+ case CONSTANT_MethodHandle:
+ case CONSTANT_MethodType:
+ case CONSTANT_InvokeDynamic:
+ case CONSTANT_BootstrapMethod:
+ cp_counts[k] = 0;
+ hdrValsSkipped += 1;
+ continue;
+ }
+ }
+ cp_counts[k] = hdr.getInt();
+ CHECK_COUNT(cp_counts[k]);
+ hdrVals += 1;
+ }
+
+ ic_count = hdr.getInt();
+ CHECK_COUNT(ic_count);
+ default_class_minver = hdr.getInt();
+ default_class_majver = hdr.getInt();
+ class_count = hdr.getInt();
+ CHECK_COUNT(class_count);
+ hdrVals += 4;
+
+ // done with archive_header, time to reconcile to ensure
+ // we have read everything correctly
+ hdrVals += hdrValsSkipped;
+ assert(hdrVals == AH_LENGTH);
+ rp = hdr.rp;
+ if (rp > rplimit)
+ abort("EOF reading archive header");
+
+ // Now size the CP.
+#ifndef PRODUCT
+ // bool x = (N_TAGS_IN_ORDER == CONSTANT_Limit);
+ // assert(x);
+#endif //PRODUCT
+ cp.init(this, cp_counts);
+ CHECK;
+
+ default_file_modtime = archive_modtime;
+ if (default_file_modtime == 0 && haveModTime)
+ default_file_modtime = DEFAULT_ARCHIVE_MODTIME; // taken from driver
+ if (testBit(archive_options, AO_DEFLATE_HINT))
+ default_file_options |= FO_DEFLATE_HINT;
+
+ // meta-bytes, if any, immediately follow archive header
+ //band_headers.readData(band_headers_size);
+ ensure_input(band_headers_size);
+ if (input_remaining() < (size_t)band_headers_size) {
+ abort("EOF reading band headers");
+ return;
+ }
+ bytes band_headers;
+ // The "1+" allows an initial byte to be pushed on the front.
+ band_headers.set(1+U_NEW(byte, 1+band_headers_size+C_SLOP),
+ band_headers_size);
+ CHECK;
+ // Start scanning band headers here:
+ band_headers.copyFrom(rp, band_headers.len);
+ rp += band_headers.len;
+ assert(rp <= rplimit);
+ meta_rp = band_headers.ptr;
+ // Put evil meta-codes at the end of the band headers,
+ // so we are sure to throw an error if we run off the end.
+ bytes::of(band_headers.limit(), C_SLOP).clear(_meta_error);
+}
+
+void unpacker::finish() {
+ if (verbose >= 1) {
+ fprintf(errstrm,
+ "A total of "
+ LONG_LONG_FORMAT " bytes were read in %d segment(s).\n",
+ (bytes_read_before_reset+bytes_read),
+ segments_read_before_reset+1);
+ fprintf(errstrm,
+ "A total of "
+ LONG_LONG_FORMAT " file content bytes were written.\n",
+ (bytes_written_before_reset+bytes_written));
+ fprintf(errstrm,
+ "A total of %d files (of which %d are classes) were written to output.\n",
+ files_written_before_reset+files_written,
+ classes_written_before_reset+classes_written);
+ }
+ if (jarout != null)
+ jarout->closeJarFile(true);
+ if (errstrm != null) {
+ if (errstrm == stdout || errstrm == stderr) {
+ fflush(errstrm);
+ } else {
+ fclose(errstrm);
+ }
+ errstrm = null;
+ errstrm_name = null;
+ }
+}
+
+
+// Cf. PackageReader.readConstantPoolCounts
+void cpool::init(unpacker* u_, int counts[CONSTANT_Limit]) {
+ this->u = u_;
+
+ // Fill-pointer for CP.
+ int next_entry = 0;
+
+ // Size the constant pool:
+ for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
+ byte tag = TAGS_IN_ORDER[k];
+ int len = counts[k];
+ tag_count[tag] = len;
+ tag_base[tag] = next_entry;
+ next_entry += len;
+ // Detect and defend against constant pool size overflow.
+ // (Pack200 forbids the sum of CP counts to exceed 2^29-1.)
+ enum {
+ CP_SIZE_LIMIT = (1<<29),
+ IMPLICIT_ENTRY_COUNT = 1 // empty Utf8 string
+ };
+ if (len >= (1<<29) || len < 0
+ || next_entry >= CP_SIZE_LIMIT+IMPLICIT_ENTRY_COUNT) {
+ abort("archive too large: constant pool limit exceeded");
+ return;
+ }
+ }
+
+ // Close off the end of the CP:
+ nentries = next_entry;
+
+ // place a limit on future CP growth:
+ size_t generous = 0;
+ generous = add_size(generous, u->ic_count); // implicit name
+ generous = add_size(generous, u->ic_count); // outer
+ generous = add_size(generous, u->ic_count); // outer.utf8
+ generous = add_size(generous, 40); // WKUs, misc
+ generous = add_size(generous, u->class_count); // implicit SourceFile strings
+ maxentries = (uint)add_size(nentries, generous);
+
+ // Note that this CP does not include "empty" entries
+ // for longs and doubles. Those are introduced when
+ // the entries are renumbered for classfile output.
+
+ entries = U_NEW(entry, maxentries);
+ CHECK;
+
+ first_extra_entry = &entries[nentries];
+
+ // Initialize the standard indexes.
+ for (int tag = 0; tag < CONSTANT_Limit; tag++) {
+ entry* cpMap = &entries[tag_base[tag]];
+ tag_index[tag].init(tag_count[tag], cpMap, tag);
+ }
+
+ // Initialize *all* our entries once
+ for (uint i = 0 ; i < maxentries ; i++) {
+ entries[i].outputIndex = REQUESTED_NONE;
+ }
+
+ initGroupIndexes();
+ // Initialize hashTab to a generous power-of-two size.
+ uint pow2 = 1;
+ uint target = maxentries + maxentries/2; // 60% full
+ while (pow2 < target) pow2 <<= 1;
+ hashTab = U_NEW(entry*, hashTabLength = pow2);
+}
+
+static byte* store_Utf8_char(byte* cp, unsigned short ch) {
+ if (ch >= 0x001 && ch <= 0x007F) {
+ *cp++ = (byte) ch;
+ } else if (ch <= 0x07FF) {
+ *cp++ = (byte) (0xC0 | ((ch >> 6) & 0x1F));
+ *cp++ = (byte) (0x80 | ((ch >> 0) & 0x3F));
+ } else {
+ *cp++ = (byte) (0xE0 | ((ch >> 12) & 0x0F));
+ *cp++ = (byte) (0x80 | ((ch >> 6) & 0x3F));
+ *cp++ = (byte) (0x80 | ((ch >> 0) & 0x3F));
+ }
+ return cp;
+}
+
+static byte* skip_Utf8_chars(byte* cp, int len) {
+ for (;; cp++) {
+ int ch = *cp & 0xFF;
+ if ((ch & 0xC0) != 0x80) {
+ if (len-- == 0)
+ return cp;
+ if (ch < 0x80 && len == 0)
+ return cp+1;
+ }
+ }
+}
+
+static int compare_Utf8_chars(bytes& b1, bytes& b2) {
+ int l1 = (int)b1.len;
+ int l2 = (int)b2.len;
+ int l0 = (l1 < l2) ? l1 : l2;
+ byte* p1 = b1.ptr;
+ byte* p2 = b2.ptr;
+ int c0 = 0;
+ for (int i = 0; i < l0; i++) {
+ int c1 = p1[i] & 0xFF;
+ int c2 = p2[i] & 0xFF;
+ if (c1 != c2) {
+ // Before returning the obvious answer,
+ // check to see if c1 or c2 is part of a 0x0000,
+ // which encodes as {0xC0,0x80}. The 0x0000 is the
+ // lowest-sorting Java char value, and yet it encodes
+ // as if it were the first char after 0x7F, which causes
+ // strings containing nulls to sort too high. All other
+ // comparisons are consistent between Utf8 and Java chars.
+ if (c1 == 0xC0 && (p1[i+1] & 0xFF) == 0x80) c1 = 0;
+ if (c2 == 0xC0 && (p2[i+1] & 0xFF) == 0x80) c2 = 0;
+ if (c0 == 0xC0) {
+ assert(((c1|c2) & 0xC0) == 0x80); // c1 & c2 are extension chars
+ if (c1 == 0x80) c1 = 0; // will sort below c2
+ if (c2 == 0x80) c2 = 0; // will sort below c1
+ }
+ return c1 - c2;
+ }
+ c0 = c1; // save away previous char
+ }
+ // common prefix is identical; return length difference if any
+ return l1 - l2;
+}
+
+// Cf. PackageReader.readUtf8Bands
+local_inline
+void unpacker::read_Utf8_values(entry* cpMap, int len) {
+ // Implicit first Utf8 string is the empty string.
+ enum {
+ // certain bands begin with implicit zeroes
+ PREFIX_SKIP_2 = 2,
+ SUFFIX_SKIP_1 = 1
+ };
+
+ int i;
+
+ // First band: Read lengths of shared prefixes.
+ if (len > PREFIX_SKIP_2)
+ cp_Utf8_prefix.readData(len - PREFIX_SKIP_2);
+ NOT_PRODUCT(else cp_Utf8_prefix.readData(0)); // for asserts
+
+ // Second band: Read lengths of unshared suffixes:
+ if (len > SUFFIX_SKIP_1)
+ cp_Utf8_suffix.readData(len - SUFFIX_SKIP_1);
+ NOT_PRODUCT(else cp_Utf8_suffix.readData(0)); // for asserts
+
+ bytes* allsuffixes = T_NEW(bytes, len);
+ CHECK;
+
+ int nbigsuf = 0;
+ fillbytes charbuf; // buffer to allocate small strings
+ charbuf.init();
+
+ // Third band: Read the char values in the unshared suffixes:
+ cp_Utf8_chars.readData(cp_Utf8_suffix.getIntTotal());
+ for (i = 0; i < len; i++) {
+ int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
+ if (suffix < 0) {
+ abort("bad utf8 suffix");
+ return;
+ }
+ if (suffix == 0 && i >= SUFFIX_SKIP_1) {
+ // chars are packed in cp_Utf8_big_chars
+ nbigsuf += 1;
+ continue;
+ }
+ bytes& chars = allsuffixes[i];
+ uint size3 = suffix * 3; // max Utf8 length
+ bool isMalloc = (suffix > SMALL);
+ if (isMalloc) {
+ chars.malloc(size3);
+ } else {
+ if (!charbuf.canAppend(size3+1)) {
+ assert(charbuf.allocated == 0 || tmallocs.contains(charbuf.base()));
+ charbuf.init(CHUNK); // Reset to new buffer.
+ tmallocs.add(charbuf.base());
+ }
+ chars.set(charbuf.grow(size3+1), size3);
+ }
+ CHECK;
+ byte* chp = chars.ptr;
+ for (int j = 0; j < suffix; j++) {
+ unsigned short ch = cp_Utf8_chars.getInt();
+ chp = store_Utf8_char(chp, ch);
+ }
+ // shrink to fit:
+ if (isMalloc) {
+ chars.realloc(chp - chars.ptr);
+ CHECK;
+ tmallocs.add(chars.ptr); // free it later
+ } else {
+ int shrink = (int)(chars.limit() - chp);
+ chars.len -= shrink;
+ charbuf.b.len -= shrink; // ungrow to reclaim buffer space
+ // Note that we did not reclaim the final '\0'.
+ assert(chars.limit() == charbuf.limit()-1);
+ assert(strlen((char*)chars.ptr) == chars.len);
+ }
+ }
+ //cp_Utf8_chars.done();
+#ifndef PRODUCT
+ charbuf.b.set(null, 0); // tidy
+#endif
+
+ // Fourth band: Go back and size the specially packed strings.
+ int maxlen = 0;
+ cp_Utf8_big_suffix.readData(nbigsuf);
+ cp_Utf8_suffix.rewind();
+ for (i = 0; i < len; i++) {
+ int suffix = (i < SUFFIX_SKIP_1)? 0: cp_Utf8_suffix.getInt();
+ int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
+ if (prefix < 0 || prefix+suffix < 0) {
+ abort("bad utf8 prefix");
+ return;
+ }
+ bytes& chars = allsuffixes[i];
+ if (suffix == 0 && i >= SUFFIX_SKIP_1) {
+ suffix = cp_Utf8_big_suffix.getInt();
+ assert(chars.ptr == null);
+ chars.len = suffix; // just a momentary hack
+ } else {
+ assert(chars.ptr != null);
+ }
+ if (maxlen < prefix + suffix) {
+ maxlen = prefix + suffix;
+ }
+ }
+ //cp_Utf8_suffix.done(); // will use allsuffixes[i].len (ptr!=null)
+ //cp_Utf8_big_suffix.done(); // will use allsuffixes[i].len
+
+ // Fifth band(s): Get the specially packed characters.
+ cp_Utf8_big_suffix.rewind();
+ for (i = 0; i < len; i++) {
+ bytes& chars = allsuffixes[i];
+ if (chars.ptr != null) continue; // already input
+ int suffix = (int)chars.len; // pick up the hack
+ uint size3 = suffix * 3;
+ if (suffix == 0) continue; // done with empty string
+ chars.malloc(size3);
+ CHECK;
+ byte* chp = chars.ptr;
+ band saved_band = cp_Utf8_big_chars;
+ cp_Utf8_big_chars.readData(suffix);
+ CHECK;
+ for (int j = 0; j < suffix; j++) {
+ unsigned short ch = cp_Utf8_big_chars.getInt();
+ CHECK;
+ chp = store_Utf8_char(chp, ch);
+ }
+ chars.realloc(chp - chars.ptr);
+ CHECK;
+ tmallocs.add(chars.ptr); // free it later
+ //cp_Utf8_big_chars.done();
+ cp_Utf8_big_chars = saved_band; // reset the band for the next string
+ }
+ cp_Utf8_big_chars.readData(0); // zero chars
+ //cp_Utf8_big_chars.done();
+
+ // Finally, sew together all the prefixes and suffixes.
+ bytes bigbuf;
+ bigbuf.malloc(maxlen * 3 + 1); // max Utf8 length, plus slop for null
+ CHECK;
+ int prevlen = 0; // previous string length (in chars)
+ tmallocs.add(bigbuf.ptr); // free after this block
+ CHECK;
+ cp_Utf8_prefix.rewind();
+ for (i = 0; i < len; i++) {
+ bytes& chars = allsuffixes[i];
+ int prefix = (i < PREFIX_SKIP_2)? 0: cp_Utf8_prefix.getInt();
+ CHECK;
+ int suffix = (int)chars.len;
+ byte* fillp;
+ // by induction, the buffer is already filled with the prefix
+ // make sure the prefix value is not corrupted, though:
+ if (prefix > prevlen) {
+ abort("utf8 prefix overflow");
+ return;
+ }
+ fillp = skip_Utf8_chars(bigbuf.ptr, prefix);
+ // copy the suffix into the same buffer:
+ fillp = chars.writeTo(fillp);
+ assert(bigbuf.inBounds(fillp));
+ *fillp = 0; // bigbuf must contain a well-formed Utf8 string
+ int length = (int)(fillp - bigbuf.ptr);
+ bytes& value = cpMap[i].value.b;
+ value.set(U_NEW(byte, add_size(length,1)), length);
+ value.copyFrom(bigbuf.ptr, length);
+ CHECK;
+ // Index all Utf8 strings
+ entry* &htref = cp.hashTabRef(CONSTANT_Utf8, value);
+ if (htref == null) {
+ // Note that if two identical strings are transmitted,
+ // the first is taken to be the canonical one.
+ htref = &cpMap[i];
+ }
+ prevlen = prefix + suffix;
+ }
+ //cp_Utf8_prefix.done();
+
+ // Free intermediate buffers.
+ free_temps();
+}
+
+local_inline
+void unpacker::read_single_words(band& cp_band, entry* cpMap, int len) {
+ cp_band.readData(len);
+ for (int i = 0; i < len; i++) {
+ cpMap[i].value.i = cp_band.getInt(); // coding handles signs OK
+ }
+}
+
+maybe_inline
+void unpacker::read_double_words(band& cp_bands, entry* cpMap, int len) {
+ band& cp_band_hi = cp_bands;
+ band& cp_band_lo = cp_bands.nextBand();
+ cp_band_hi.readData(len);
+ cp_band_lo.readData(len);
+ for (int i = 0; i < len; i++) {
+ cpMap[i].value.l = cp_band_hi.getLong(cp_band_lo, true);
+ }
+ //cp_band_hi.done();
+ //cp_band_lo.done();
+}
+
+maybe_inline
+void unpacker::read_single_refs(band& cp_band, byte refTag, entry* cpMap, int len) {
+ assert(refTag == CONSTANT_Utf8);
+ cp_band.setIndexByTag(refTag);
+ cp_band.readData(len);
+ CHECK;
+ int indexTag = (cp_band.bn == e_cp_Class) ? CONSTANT_Class : 0;
+ for (int i = 0; i < len; i++) {
+ entry& e = cpMap[i];
+ e.refs = U_NEW(entry*, e.nrefs = 1);
+ entry* utf = cp_band.getRef();
+ CHECK;
+ e.refs[0] = utf;
+ e.value.b = utf->value.b; // copy value of Utf8 string to self
+ if (indexTag != 0) {
+ // Maintain cross-reference:
+ entry* &htref = cp.hashTabRef(indexTag, e.value.b);
+ if (htref == null) {
+ // Note that if two identical classes are transmitted,
+ // the first is taken to be the canonical one.
+ htref = &e;
+ }
+ }
+ }
+ //cp_band.done();
+}
+
+maybe_inline
+void unpacker::read_double_refs(band& cp_band, byte ref1Tag, byte ref2Tag,
+ entry* cpMap, int len) {
+ band& cp_band1 = cp_band;
+ band& cp_band2 = cp_band.nextBand();
+ cp_band1.setIndexByTag(ref1Tag);
+ cp_band2.setIndexByTag(ref2Tag);
+ cp_band1.readData(len);
+ cp_band2.readData(len);
+ CHECK;
+ for (int i = 0; i < len; i++) {
+ entry& e = cpMap[i];
+ e.refs = U_NEW(entry*, e.nrefs = 2);
+ e.refs[0] = cp_band1.getRef();
+ CHECK;
+ e.refs[1] = cp_band2.getRef();
+ CHECK;
+ }
+ //cp_band1.done();
+ //cp_band2.done();
+}
+
+// Cf. PackageReader.readSignatureBands
+maybe_inline
+void unpacker::read_signature_values(entry* cpMap, int len) {
+ cp_Signature_form.setIndexByTag(CONSTANT_Utf8);
+ cp_Signature_form.readData(len);
+ CHECK;
+ int ncTotal = 0;
+ int i;
+ for (i = 0; i < len; i++) {
+ entry& e = cpMap[i];
+ entry& form = *cp_Signature_form.getRef();
+ CHECK;
+ int nc = 0;
+
+ for (int j = 0; j < (int)form.value.b.len; j++) {
+ int c = form.value.b.ptr[j];
+ if (c == 'L') nc++;
+ }
+ ncTotal += nc;
+ e.refs = U_NEW(entry*, cpMap[i].nrefs = 1 + nc);
+ CHECK;
+ e.refs[0] = &form;
+ }
+ //cp_Signature_form.done();
+ cp_Signature_classes.setIndexByTag(CONSTANT_Class);
+ cp_Signature_classes.readData(ncTotal);
+ for (i = 0; i < len; i++) {
+ entry& e = cpMap[i];
+ for (int j = 1; j < e.nrefs; j++) {
+ e.refs[j] = cp_Signature_classes.getRef();
+ CHECK;
+ }
+ }
+ //cp_Signature_classes.done();
+}
+
+maybe_inline
+void unpacker::checkLegacy(const char* name) {
+ if (u->majver < JAVA7_PACKAGE_MAJOR_VERSION) {
+ char message[100];
+ snprintf(message, 99, "unexpected band %s\n", name);
+ abort(message);
+ }
+}
+
+maybe_inline
+void unpacker::read_method_handle(entry* cpMap, int len) {
+ if (len > 0) {
+ checkLegacy(cp_MethodHandle_refkind.name);
+ }
+ cp_MethodHandle_refkind.readData(len);
+ cp_MethodHandle_member.setIndexByTag(CONSTANT_AnyMember);
+ cp_MethodHandle_member.readData(len);
+ for (int i = 0 ; i < len ; i++) {
+ entry& e = cpMap[i];
+ e.value.i = cp_MethodHandle_refkind.getInt();
+ e.refs = U_NEW(entry*, e.nrefs = 1);
+ e.refs[0] = cp_MethodHandle_member.getRef();
+ CHECK;
+ }
+}
+
+maybe_inline
+void unpacker::read_method_type(entry* cpMap, int len) {
+ if (len > 0) {
+ checkLegacy(cp_MethodType.name);
+ }
+ cp_MethodType.setIndexByTag(CONSTANT_Signature);
+ cp_MethodType.readData(len);
+ for (int i = 0 ; i < len ; i++) {
+ entry& e = cpMap[i];
+ e.refs = U_NEW(entry*, e.nrefs = 1);
+ e.refs[0] = cp_MethodType.getRef();
+ CHECK;
+ }
+}
+
+maybe_inline
+void unpacker::read_bootstrap_methods(entry* cpMap, int len) {
+ if (len > 0) {
+ checkLegacy(cp_BootstrapMethod_ref.name);
+ }
+ cp_BootstrapMethod_ref.setIndexByTag(CONSTANT_MethodHandle);
+ cp_BootstrapMethod_ref.readData(len);
+
+ cp_BootstrapMethod_arg_count.readData(len);
+ int totalArgCount = cp_BootstrapMethod_arg_count.getIntTotal();
+ cp_BootstrapMethod_arg.setIndexByTag(CONSTANT_LoadableValue);
+ cp_BootstrapMethod_arg.readData(totalArgCount);
+ for (int i = 0; i < len; i++) {
+ entry& e = cpMap[i];
+ int argc = cp_BootstrapMethod_arg_count.getInt();
+ e.value.i = argc;
+ e.refs = U_NEW(entry*, e.nrefs = argc + 1);
+ e.refs[0] = cp_BootstrapMethod_ref.getRef();
+ for (int j = 1 ; j < e.nrefs ; j++) {
+ e.refs[j] = cp_BootstrapMethod_arg.getRef();
+ CHECK;
+ }
+ }
+}
+// Cf. PackageReader.readConstantPool
+void unpacker::read_cp() {
+ byte* rp0 = rp;
+
+ int i;
+
+ for (int k = 0; k < (int)N_TAGS_IN_ORDER; k++) {
+ byte tag = TAGS_IN_ORDER[k];
+ int len = cp.tag_count[tag];
+ int base = cp.tag_base[tag];
+
+ PRINTCR((1,"Reading %d %s entries...", len, NOT_PRODUCT(TAG_NAME[tag])+0));
+ entry* cpMap = &cp.entries[base];
+ for (i = 0; i < len; i++) {
+ cpMap[i].tag = tag;
+ cpMap[i].inord = i;
+ }
+ // Initialize the tag's CP index right away, since it might be needed
+ // in the next pass to initialize the CP for another tag.
+#ifndef PRODUCT
+ cpindex* ix = &cp.tag_index[tag];
+ assert(ix->ixTag == tag);
+ assert((int)ix->len == len);
+ assert(ix->base1 == cpMap);
+#endif
+
+ switch (tag) {
+ case CONSTANT_Utf8:
+ read_Utf8_values(cpMap, len);
+ break;
+ case CONSTANT_Integer:
+ read_single_words(cp_Int, cpMap, len);
+ break;
+ case CONSTANT_Float:
+ read_single_words(cp_Float, cpMap, len);
+ break;
+ case CONSTANT_Long:
+ read_double_words(cp_Long_hi /*& cp_Long_lo*/, cpMap, len);
+ break;
+ case CONSTANT_Double:
+ read_double_words(cp_Double_hi /*& cp_Double_lo*/, cpMap, len);
+ break;
+ case CONSTANT_String:
+ read_single_refs(cp_String, CONSTANT_Utf8, cpMap, len);
+ break;
+ case CONSTANT_Class:
+ read_single_refs(cp_Class, CONSTANT_Utf8, cpMap, len);
+ break;
+ case CONSTANT_Signature:
+ read_signature_values(cpMap, len);
+ break;
+ case CONSTANT_NameandType:
+ read_double_refs(cp_Descr_name /*& cp_Descr_type*/,
+ CONSTANT_Utf8, CONSTANT_Signature,
+ cpMap, len);
+ break;
+ case CONSTANT_Fieldref:
+ read_double_refs(cp_Field_class /*& cp_Field_desc*/,
+ CONSTANT_Class, CONSTANT_NameandType,
+ cpMap, len);
+ break;
+ case CONSTANT_Methodref:
+ read_double_refs(cp_Method_class /*& cp_Method_desc*/,
+ CONSTANT_Class, CONSTANT_NameandType,
+ cpMap, len);
+ break;
+ case CONSTANT_InterfaceMethodref:
+ read_double_refs(cp_Imethod_class /*& cp_Imethod_desc*/,
+ CONSTANT_Class, CONSTANT_NameandType,
+ cpMap, len);
+ break;
+ case CONSTANT_MethodHandle:
+ // consumes cp_MethodHandle_refkind and cp_MethodHandle_member
+ read_method_handle(cpMap, len);
+ break;
+ case CONSTANT_MethodType:
+ // consumes cp_MethodType
+ read_method_type(cpMap, len);
+ break;
+ case CONSTANT_InvokeDynamic:
+ read_double_refs(cp_InvokeDynamic_spec, CONSTANT_BootstrapMethod,
+ CONSTANT_NameandType,
+ cpMap, len);
+ break;
+ case CONSTANT_BootstrapMethod:
+ // consumes cp_BootstrapMethod_ref, cp_BootstrapMethod_arg_count and cp_BootstrapMethod_arg
+ read_bootstrap_methods(cpMap, len);
+ break;
+ default:
+ assert(false);
+ break;
+ }
+ CHECK;
+ }
+
+ cp.expandSignatures();
+ CHECK;
+ cp.initMemberIndexes();
+ CHECK;
+
+ PRINTCR((1,"parsed %d constant pool entries in %d bytes", cp.nentries, (rp - rp0)));
+
+ #define SNAME(n,s) #s "\0"
+ const char* symNames = (
+ ALL_ATTR_DO(SNAME)
+ "<init>"
+ );
+ #undef SNAME
+
+ for (int sn = 0; sn < cpool::s_LIMIT; sn++) {
+ assert(symNames[0] >= '0' && symNames[0] <= 'Z'); // sanity
+ bytes name; name.set(symNames);
+ if (name.len > 0 && name.ptr[0] != '0') {
+ cp.sym[sn] = cp.ensureUtf8(name);
+ PRINTCR((4, "well-known sym %d=%s", sn, cp.sym[sn]->string()));
+ }
+ symNames += name.len + 1; // skip trailing null to next name
+ }
+
+ band::initIndexes(this);
+}
+
+static band* no_bands[] = { null }; // shared empty body
+
+inline
+band& unpacker::attr_definitions::fixed_band(int e_class_xxx) {
+ return u->all_bands[xxx_flags_hi_bn + (e_class_xxx-e_class_flags_hi)];
+}
+inline band& unpacker::attr_definitions::xxx_flags_hi()
+ { return fixed_band(e_class_flags_hi); }
+inline band& unpacker::attr_definitions::xxx_flags_lo()
+ { return fixed_band(e_class_flags_lo); }
+inline band& unpacker::attr_definitions::xxx_attr_count()
+ { return fixed_band(e_class_attr_count); }
+inline band& unpacker::attr_definitions::xxx_attr_indexes()
+ { return fixed_band(e_class_attr_indexes); }
+inline band& unpacker::attr_definitions::xxx_attr_calls()
+ { return fixed_band(e_class_attr_calls); }
+
+
+inline
+unpacker::layout_definition*
+unpacker::attr_definitions::defineLayout(int idx,
+ entry* nameEntry,
+ const char* layout) {
+ const char* name = nameEntry->value.b.strval();
+ layout_definition* lo = defineLayout(idx, name, layout);
+ CHECK_0;
+ lo->nameEntry = nameEntry;
+ return lo;
+}
+
+unpacker::layout_definition*
+unpacker::attr_definitions::defineLayout(int idx,
+ const char* name,
+ const char* layout) {
+ assert(flag_limit != 0); // must be set up already
+ if (idx >= 0) {
+ // Fixed attr.
+ if (idx >= (int)flag_limit)
+ abort("attribute index too large");
+ if (isRedefined(idx))
+ abort("redefined attribute index");
+ redef |= ((julong)1<<idx);
+ } else {
+ idx = flag_limit + overflow_count.length();
+ overflow_count.add(0); // make a new counter
+ }
+ layout_definition* lo = U_NEW(layout_definition, 1);
+ CHECK_0;
+ lo->idx = idx;
+ lo->name = name;
+ lo->layout = layout;
+ for (int adds = (idx+1) - layouts.length(); adds > 0; adds--) {
+ layouts.add(null);
+ }
+ CHECK_0;
+ layouts.get(idx) = lo;
+ return lo;
+}
+
+band**
+unpacker::attr_definitions::buildBands(unpacker::layout_definition* lo) {
+ int i;
+ if (lo->elems != null)
+ return lo->bands();
+ if (lo->layout[0] == '\0') {
+ lo->elems = no_bands;
+ } else {
+ // Create bands for this attribute by parsing the layout.
+ bool hasCallables = lo->hasCallables();
+ bands_made = 0x10000; // base number for bands made
+ const char* lp = lo->layout;
+ lp = parseLayout(lp, lo->elems, -1);
+ CHECK_0;
+ if (lp[0] != '\0' || band_stack.length() > 0) {
+ abort("garbage at end of layout");
+ }
+ band_stack.popTo(0);
+ CHECK_0;
+
+ // Fix up callables to point at their callees.
+ band** bands = lo->elems;
+ assert(bands == lo->bands());
+ int num_callables = 0;
+ if (hasCallables) {
+ while (bands[num_callables] != null) {
+ if (bands[num_callables]->le_kind != EK_CBLE) {
+ abort("garbage mixed with callables");
+ break;
+ }
+ num_callables += 1;
+ }
+ }
+ for (i = 0; i < calls_to_link.length(); i++) {
+ band& call = *(band*) calls_to_link.get(i);
+ assert(call.le_kind == EK_CALL);
+ // Determine the callee.
+ int call_num = call.le_len;
+ if (call_num < 0 || call_num >= num_callables) {
+ abort("bad call in layout");
+ break;
+ }
+ band& cble = *bands[call_num];
+ // Link the call to it.
+ call.le_body[0] = &cble;
+ // Distinguish backward calls and callables:
+ assert(cble.le_kind == EK_CBLE);
+ assert(cble.le_len == call_num);
+ cble.le_back |= call.le_back;
+ }
+ calls_to_link.popTo(0);
+ }
+ return lo->elems;
+}
+
+/* attribute layout language parser
+
+ attribute_layout:
+ ( layout_element )* | ( callable )+
+ layout_element:
+ ( integral | replication | union | call | reference )
+
+ callable:
+ '[' body ']'
+ body:
+ ( layout_element )+
+
+ integral:
+ ( unsigned_int | signed_int | bc_index | bc_offset | flag )
+ unsigned_int:
+ uint_type
+ signed_int:
+ 'S' uint_type
+ any_int:
+ ( unsigned_int | signed_int )
+ bc_index:
+ ( 'P' uint_type | 'PO' uint_type )
+ bc_offset:
+ 'O' any_int
+ flag:
+ 'F' uint_type
+ uint_type:
+ ( 'B' | 'H' | 'I' | 'V' )
+
+ replication:
+ 'N' uint_type '[' body ']'
+
+ union:
+ 'T' any_int (union_case)* '(' ')' '[' (body)? ']'
+ union_case:
+ '(' union_case_tag (',' union_case_tag)* ')' '[' (body)? ']'
+ union_case_tag:
+ ( numeral | numeral '-' numeral )
+ call:
+ '(' numeral ')'
+
+ reference:
+ reference_type ( 'N' )? uint_type
+ reference_type:
+ ( constant_ref | schema_ref | utf8_ref | untyped_ref )
+ constant_ref:
+ ( 'KI' | 'KJ' | 'KF' | 'KD' | 'KS' | 'KQ' )
+ schema_ref:
+ ( 'RC' | 'RS' | 'RD' | 'RF' | 'RM' | 'RI' )
+ utf8_ref:
+ 'RU'
+ untyped_ref:
+ 'RQ'
+
+ numeral:
+ '(' ('-')? (digit)+ ')'
+ digit:
+ ( '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' )
+
+*/
+
+const char*
+unpacker::attr_definitions::parseIntLayout(const char* lp, band* &res,
+ byte le_kind, bool can_be_signed) {
+ const char* lp0 = lp;
+ band* b = U_NEW(band, 1);
+ CHECK_(lp);
+ char le = *lp++;
+ int spec = UNSIGNED5_spec;
+ if (le == 'S' && can_be_signed) {
+ // Note: This is the last use of sign. There is no 'EF_SIGN'.
+ spec = SIGNED5_spec;
+ le = *lp++;
+ } else if (le == 'B') {
+ spec = BYTE1_spec; // unsigned byte
+ }
+ b->init(u, bands_made++, spec);
+ b->le_kind = le_kind;
+ int le_len = 0;
+ switch (le) {
+ case 'B': le_len = 1; break;
+ case 'H': le_len = 2; break;
+ case 'I': le_len = 4; break;
+ case 'V': le_len = 0; break;
+ default: abort("bad layout element");
+ }
+ b->le_len = le_len;
+ band_stack.add(b);
+ res = b;
+ return lp;
+}
+
+const char*
+unpacker::attr_definitions::parseNumeral(const char* lp, int &res) {
+ const char* lp0 = lp;
+ bool sgn = false;
+ if (*lp == '0') { res = 0; return lp+1; } // special case '0'
+ if (*lp == '-') { sgn = true; lp++; }
+ const char* dp = lp;
+ int con = 0;
+ while (*dp >= '0' && *dp <= '9') {
+ int con0 = con;
+ con *= 10;
+ con += (*dp++) - '0';
+ if (con <= con0) { con = -1; break; } // numeral overflow
+ }
+ if (lp == dp) {
+ abort("missing numeral in layout");
+ return "";
+ }
+ lp = dp;
+ if (con < 0 && !(sgn && con == -con)) {
+ // (Portability note: Misses the error if int is not 32 bits.)
+ abort("numeral overflow");
+ return "" ;
+ }
+ if (sgn) con = -con;
+ res = con;
+ return lp;
+}
+
+band**
+unpacker::attr_definitions::popBody(int bs_base) {
+ // Return everything that was pushed, as a null-terminated pointer array.
+ int bs_limit = band_stack.length();
+ if (bs_base == bs_limit) {
+ return no_bands;
+ } else {
+ int nb = bs_limit - bs_base;
+ band** res = U_NEW(band*, add_size(nb, 1));
+ CHECK_(no_bands);
+ for (int i = 0; i < nb; i++) {
+ band* b = (band*) band_stack.get(bs_base + i);
+ res[i] = b;
+ }
+ band_stack.popTo(bs_base);
+ return res;
+ }
+}
+
+const char*
+unpacker::attr_definitions::parseLayout(const char* lp, band** &res,
+ int curCble) {
+ const char* lp0 = lp;
+ int bs_base = band_stack.length();
+ bool top_level = (bs_base == 0);
+ band* b;
+ enum { can_be_signed = true }; // optional arg to parseIntLayout
+
+ for (bool done = false; !done; ) {
+ switch (*lp++) {
+ case 'B': case 'H': case 'I': case 'V': // unsigned_int
+ case 'S': // signed_int
+ --lp; // reparse
+ case 'F':
+ lp = parseIntLayout(lp, b, EK_INT);
+ break;
+ case 'P':
+ {
+ int le_bci = EK_BCI;
+ if (*lp == 'O') {
+ ++lp;
+ le_bci = EK_BCID;
+ }
+ assert(*lp != 'S'); // no PSH, etc.
+ lp = parseIntLayout(lp, b, EK_INT);
+ b->le_bci = le_bci;
+ if (le_bci == EK_BCI)
+ b->defc = coding::findBySpec(BCI5_spec);
+ else
+ b->defc = coding::findBySpec(BRANCH5_spec);
+ }
+ break;
+ case 'O':
+ lp = parseIntLayout(lp, b, EK_INT, can_be_signed);
+ b->le_bci = EK_BCO;
+ b->defc = coding::findBySpec(BRANCH5_spec);
+ break;
+ case 'N': // replication: 'N' uint '[' elem ... ']'
+ lp = parseIntLayout(lp, b, EK_REPL);
+ assert(*lp == '[');
+ ++lp;
+ lp = parseLayout(lp, b->le_body, curCble);
+ CHECK_(lp);
+ break;
+ case 'T': // union: 'T' any_int union_case* '(' ')' '[' body ']'
+ lp = parseIntLayout(lp, b, EK_UN, can_be_signed);
+ {
+ int union_base = band_stack.length();
+ for (;;) { // for each case
+ band& k_case = *U_NEW(band, 1);
+ CHECK_(lp);
+ band_stack.add(&k_case);
+ k_case.le_kind = EK_CASE;
+ k_case.bn = bands_made++;
+ if (*lp++ != '(') {
+ abort("bad union case");
+ return "";
+ }
+ if (*lp++ != ')') {
+ --lp; // reparse
+ // Read some case values. (Use band_stack for temp. storage.)
+ int case_base = band_stack.length();
+ for (;;) {
+ int caseval = 0;
+ lp = parseNumeral(lp, caseval);
+ band_stack.add((void*)(size_t)caseval);
+ if (*lp == '-') {
+ // new in version 160, allow (1-5) for (1,2,3,4,5)
+ if (u->majver < JAVA6_PACKAGE_MAJOR_VERSION) {
+ abort("bad range in union case label (old archive format)");
+ return "";
+ }
+ int caselimit = caseval;
+ lp++;
+ lp = parseNumeral(lp, caselimit);
+ if (caseval >= caselimit
+ || (uint)(caselimit - caseval) > 0x10000) {
+ // Note: 0x10000 is arbitrary implementation restriction.
+ // We can remove it later if it's important to.
+ abort("bad range in union case label");
+ return "";
+ }
+ for (;;) {
+ ++caseval;
+ band_stack.add((void*)(size_t)caseval);
+ if (caseval == caselimit) break;
+ }
+ }
+ if (*lp != ',') break;
+ lp++;
+ }
+ if (*lp++ != ')') {
+ abort("bad case label");
+ return "";
+ }
+ // save away the case labels
+ int ntags = band_stack.length() - case_base;
+ int* tags = U_NEW(int, add_size(ntags, 1));
+ CHECK_(lp);
+ k_case.le_casetags = tags;
+ *tags++ = ntags;
+ for (int i = 0; i < ntags; i++) {
+ *tags++ = ptrlowbits(band_stack.get(case_base+i));
+ }
+ band_stack.popTo(case_base);
+ CHECK_(lp);
+ }
+ // Got le_casetags. Now grab the body.
+ assert(*lp == '[');
+ ++lp;
+ lp = parseLayout(lp, k_case.le_body, curCble);
+ CHECK_(lp);
+ if (k_case.le_casetags == null) break; // done
+ }
+ b->le_body = popBody(union_base);
+ }
+ break;
+ case '(': // call: '(' -?NN* ')'
+ {
+ band& call = *U_NEW(band, 1);
+ CHECK_(lp);
+ band_stack.add(&call);
+ call.le_kind = EK_CALL;
+ call.bn = bands_made++;
+ call.le_body = U_NEW(band*, 2); // fill in later
+ int call_num = 0;
+ lp = parseNumeral(lp, call_num);
+ call.le_back = (call_num <= 0);
+ call_num += curCble; // numeral is self-relative offset
+ call.le_len = call_num; //use le_len as scratch
+ calls_to_link.add(&call);
+ CHECK_(lp);
+ if (*lp++ != ')') {
+ abort("bad call label");
+ return "";
+ }
+ }
+ break;
+ case 'K': // reference_type: constant_ref
+ case 'R': // reference_type: schema_ref
+ {
+ int ixTag = CONSTANT_None;
+ if (lp[-1] == 'K') {
+ switch (*lp++) {
+ case 'I': ixTag = CONSTANT_Integer; break;
+ case 'J': ixTag = CONSTANT_Long; break;
+ case 'F': ixTag = CONSTANT_Float; break;
+ case 'D': ixTag = CONSTANT_Double; break;
+ case 'S': ixTag = CONSTANT_String; break;
+ case 'Q': ixTag = CONSTANT_FieldSpecific; break;
+
+ // new in 1.7
+ case 'M': ixTag = CONSTANT_MethodHandle; break;
+ case 'T': ixTag = CONSTANT_MethodType; break;
+ case 'L': ixTag = CONSTANT_LoadableValue; break;
+ }
+ } else {
+ switch (*lp++) {
+ case 'C': ixTag = CONSTANT_Class; break;
+ case 'S': ixTag = CONSTANT_Signature; break;
+ case 'D': ixTag = CONSTANT_NameandType; break;
+ case 'F': ixTag = CONSTANT_Fieldref; break;
+ case 'M': ixTag = CONSTANT_Methodref; break;
+ case 'I': ixTag = CONSTANT_InterfaceMethodref; break;
+ case 'U': ixTag = CONSTANT_Utf8; break; //utf8_ref
+ case 'Q': ixTag = CONSTANT_All; break; //untyped_ref
+
+ // new in 1.7
+ case 'Y': ixTag = CONSTANT_InvokeDynamic; break;
+ case 'B': ixTag = CONSTANT_BootstrapMethod; break;
+ case 'N': ixTag = CONSTANT_AnyMember; break;
+ }
+ }
+ if (ixTag == CONSTANT_None) {
+ abort("bad reference layout");
+ break;
+ }
+ bool nullOK = false;
+ if (*lp == 'N') {
+ nullOK = true;
+ lp++;
+ }
+ lp = parseIntLayout(lp, b, EK_REF);
+ b->defc = coding::findBySpec(UNSIGNED5_spec);
+ b->initRef(ixTag, nullOK);
+ }
+ break;
+ case '[':
+ {
+ // [callable1][callable2]...
+ if (!top_level) {
+ abort("bad nested callable");
+ break;
+ }
+ curCble += 1;
+ NOT_PRODUCT(int call_num = band_stack.length() - bs_base);
+ band& cble = *U_NEW(band, 1);
+ CHECK_(lp);
+ band_stack.add(&cble);
+ cble.le_kind = EK_CBLE;
+ NOT_PRODUCT(cble.le_len = call_num);
+ cble.bn = bands_made++;
+ lp = parseLayout(lp, cble.le_body, curCble);
+ }
+ break;
+ case ']':
+ // Hit a closing brace. This ends whatever body we were in.
+ done = true;
+ break;
+ case '\0':
+ // Hit a null. Also ends the (top-level) body.
+ --lp; // back up, so caller can see the null also
+ done = true;
+ break;
+ default:
+ abort("bad layout");
+ break;
+ }
+ CHECK_(lp);
+ }
+
+ // Return the accumulated bands:
+ res = popBody(bs_base);
+ return lp;
+}
+
+void unpacker::read_attr_defs() {
+ int i;
+
+ // Tell each AD which attrc it is and where its fixed flags are:
+ attr_defs[ATTR_CONTEXT_CLASS].attrc = ATTR_CONTEXT_CLASS;
+ attr_defs[ATTR_CONTEXT_CLASS].xxx_flags_hi_bn = e_class_flags_hi;
+ attr_defs[ATTR_CONTEXT_FIELD].attrc = ATTR_CONTEXT_FIELD;
+ attr_defs[ATTR_CONTEXT_FIELD].xxx_flags_hi_bn = e_field_flags_hi;
+ attr_defs[ATTR_CONTEXT_METHOD].attrc = ATTR_CONTEXT_METHOD;
+ attr_defs[ATTR_CONTEXT_METHOD].xxx_flags_hi_bn = e_method_flags_hi;
+ attr_defs[ATTR_CONTEXT_CODE].attrc = ATTR_CONTEXT_CODE;
+ attr_defs[ATTR_CONTEXT_CODE].xxx_flags_hi_bn = e_code_flags_hi;
+
+ // Decide whether bands for the optional high flag words are present.
+ attr_defs[ATTR_CONTEXT_CLASS]
+ .setHaveLongFlags(testBit(archive_options, AO_HAVE_CLASS_FLAGS_HI));
+ attr_defs[ATTR_CONTEXT_FIELD]
+ .setHaveLongFlags(testBit(archive_options, AO_HAVE_FIELD_FLAGS_HI));
+ attr_defs[ATTR_CONTEXT_METHOD]
+ .setHaveLongFlags(testBit(archive_options, AO_HAVE_METHOD_FLAGS_HI));
+ attr_defs[ATTR_CONTEXT_CODE]
+ .setHaveLongFlags(testBit(archive_options, AO_HAVE_CODE_FLAGS_HI));
+
+ // Set up built-in attrs.
+ // (The simple ones are hard-coded. The metadata layouts are not.)
+ const char* md_layout = (
+ // parameter annotations:
+#define MDL0 \
+ "[NB[(1)]]"
+ MDL0
+ // annotations:
+#define MDL1 \
+ "[NH[(1)]]"
+ MDL1
+#define MDL2 \
+ "[RSHNH[RUH(1)]]"
+ MDL2
+ // element_value:
+#define MDL3 \
+ "[TB" \
+ "(66,67,73,83,90)[KIH]" \
+ "(68)[KDH]" \
+ "(70)[KFH]" \
+ "(74)[KJH]" \
+ "(99)[RSH]" \
+ "(101)[RSHRUH]" \
+ "(115)[RUH]" \
+ "(91)[NH[(0)]]" \
+ "(64)[" \
+ /* nested annotation: */ \
+ "RSH" \
+ "NH[RUH(0)]" \
+ "]" \
+ "()[]" \
+ "]"
+ MDL3
+ );
+
+ const char* md_layout_P = md_layout;
+ const char* md_layout_A = md_layout+strlen(MDL0);
+ const char* md_layout_V = md_layout+strlen(MDL0 MDL1 MDL2);
+ assert(0 == strncmp(&md_layout_A[-3], ")]][", 4));
+ assert(0 == strncmp(&md_layout_V[-3], ")]][", 4));
+
+const char* type_md_layout(
+ "[NH[(1)(2)(3)]]"
+ // target-type + target_info
+ "[TB"
+ "(0,1)[B]"
+ "(16)[FH]"
+ "(17,18)[BB]"
+ "(19,20,21)[]"
+ "(22)[B]"
+ "(23)[H]"
+ "(64,65)[NH[PHOHH]]"
+ "(66)[H]"
+ "(67,68,69,70)[PH]"
+ "(71,72,73,74,75)[PHB]"
+ "()[]]"
+ // target-path
+ "[NB[BB]]"
+ // annotation + element_value
+ MDL2
+ MDL3
+);
+
+ for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
+ attr_definitions& ad = attr_defs[i];
+ if (i != ATTR_CONTEXT_CODE) {
+ ad.defineLayout(X_ATTR_RuntimeVisibleAnnotations,
+ "RuntimeVisibleAnnotations", md_layout_A);
+ ad.defineLayout(X_ATTR_RuntimeInvisibleAnnotations,
+ "RuntimeInvisibleAnnotations", md_layout_A);
+ if (i == ATTR_CONTEXT_METHOD) {
+ ad.defineLayout(METHOD_ATTR_RuntimeVisibleParameterAnnotations,
+ "RuntimeVisibleParameterAnnotations", md_layout_P);
+ ad.defineLayout(METHOD_ATTR_RuntimeInvisibleParameterAnnotations,
+ "RuntimeInvisibleParameterAnnotations", md_layout_P);
+ ad.defineLayout(METHOD_ATTR_AnnotationDefault,
+ "AnnotationDefault", md_layout_V);
+ }
+ }
+ ad.defineLayout(X_ATTR_RuntimeVisibleTypeAnnotations,
+ "RuntimeVisibleTypeAnnotations", type_md_layout);
+ ad.defineLayout(X_ATTR_RuntimeInvisibleTypeAnnotations,
+ "RuntimeInvisibleTypeAnnotations", type_md_layout);
+ }
+
+ attr_definition_headers.readData(attr_definition_count);
+ attr_definition_name.readData(attr_definition_count);
+ attr_definition_layout.readData(attr_definition_count);
+
+ CHECK;
+
+ // Initialize correct predef bits, to distinguish predefs from new defs.
+#define ORBIT(n,s) |((julong)1<<n)
+ attr_defs[ATTR_CONTEXT_CLASS].predef
+ = (0 X_ATTR_DO(ORBIT) CLASS_ATTR_DO(ORBIT));
+ attr_defs[ATTR_CONTEXT_FIELD].predef
+ = (0 X_ATTR_DO(ORBIT) FIELD_ATTR_DO(ORBIT));
+ attr_defs[ATTR_CONTEXT_METHOD].predef
+ = (0 X_ATTR_DO(ORBIT) METHOD_ATTR_DO(ORBIT));
+ attr_defs[ATTR_CONTEXT_CODE].predef
+ = (0 O_ATTR_DO(ORBIT) CODE_ATTR_DO(ORBIT));
+#undef ORBIT
+ // Clear out the redef bits, folding them back into predef.
+ for (i = 0; i < ATTR_CONTEXT_LIMIT; i++) {
+ attr_defs[i].predef |= attr_defs[i].redef;
+ attr_defs[i].redef = 0;
+ }
+
+ // Now read the transmitted locally defined attrs.
+ // This will set redef bits again.
+ for (i = 0; i < attr_definition_count; i++) {
+ int header = attr_definition_headers.getByte();
+ int attrc = ADH_BYTE_CONTEXT(header);
+ int idx = ADH_BYTE_INDEX(header);
+ entry* name = attr_definition_name.getRef();
+ CHECK;
+ entry* layout = attr_definition_layout.getRef();
+ CHECK;
+ attr_defs[attrc].defineLayout(idx, name, layout->value.b.strval());
+ }
+}
+
+#define NO_ENTRY_YET ((entry*)-1)
+
+static bool isDigitString(bytes& x, int beg, int end) {
+ if (beg == end) return false; // null string
+ byte* xptr = x.ptr;
+ for (int i = beg; i < end; i++) {
+ char ch = xptr[i];
+ if (!(ch >= '0' && ch <= '9')) return false;
+ }
+ return true;
+}
+
+enum { // constants for parsing class names
+ SLASH_MIN = '.',
+ SLASH_MAX = '/',
+ DOLLAR_MIN = 0,
+ DOLLAR_MAX = '-'
+};
+
+static int lastIndexOf(int chmin, int chmax, bytes& x, int pos) {
+ byte* ptr = x.ptr;
+ for (byte* cp = ptr + pos; --cp >= ptr; ) {
+ assert(x.inBounds(cp));
+ if (*cp >= chmin && *cp <= chmax)
+ return (int)(cp - ptr);
+ }
+ return -1;
+}
+
+maybe_inline
+inner_class* cpool::getIC(entry* inner) {
+ if (inner == null) return null;
+ assert(inner->tag == CONSTANT_Class);
+ if (inner->inord == NO_INORD) return null;
+ inner_class* ic = ic_index[inner->inord];
+ assert(ic == null || ic->inner == inner);
+ return ic;
+}
+
+maybe_inline
+inner_class* cpool::getFirstChildIC(entry* outer) {
+ if (outer == null) return null;
+ assert(outer->tag == CONSTANT_Class);
+ if (outer->inord == NO_INORD) return null;
+ inner_class* ic = ic_child_index[outer->inord];
+ assert(ic == null || ic->outer == outer);
+ return ic;
+}
+
+maybe_inline
+inner_class* cpool::getNextChildIC(inner_class* child) {
+ inner_class* ic = child->next_sibling;
+ assert(ic == null || ic->outer == child->outer);
+ return ic;
+}
+
+void unpacker::read_ics() {
+ int i;
+ int index_size = cp.tag_count[CONSTANT_Class];
+ inner_class** ic_index = U_NEW(inner_class*, index_size);
+ inner_class** ic_child_index = U_NEW(inner_class*, index_size);
+ cp.ic_index = ic_index;
+ cp.ic_child_index = ic_child_index;
+ ics = U_NEW(inner_class, ic_count);
+ ic_this_class.readData(ic_count);
+ ic_flags.readData(ic_count);
+ CHECK;
+ // Scan flags to get count of long-form bands.
+ int long_forms = 0;
+ for (i = 0; i < ic_count; i++) {
+ int flags = ic_flags.getInt(); // may be long form!
+ if ((flags & ACC_IC_LONG_FORM) != 0) {
+ long_forms += 1;
+ ics[i].name = NO_ENTRY_YET;
+ }
+ flags &= ~ACC_IC_LONG_FORM;
+ entry* inner = ic_this_class.getRef();
+ CHECK;
+ uint inord = inner->inord;
+ assert(inord < (uint)cp.tag_count[CONSTANT_Class]);
+ if (ic_index[inord] != null) {
+ abort("identical inner class");
+ break;
+ }
+ ic_index[inord] = &ics[i];
+ ics[i].inner = inner;
+ ics[i].flags = flags;
+ assert(cp.getIC(inner) == &ics[i]);
+ }
+ CHECK;
+ //ic_this_class.done();
+ //ic_flags.done();
+ ic_outer_class.readData(long_forms);
+ ic_name.readData(long_forms);
+ for (i = 0; i < ic_count; i++) {
+ if (ics[i].name == NO_ENTRY_YET) {
+ // Long form.
+ ics[i].outer = ic_outer_class.getRefN();
+ CHECK;
+ ics[i].name = ic_name.getRefN();
+ CHECK;
+ } else {
+ // Fill in outer and name based on inner.
+ bytes& n = ics[i].inner->value.b;
+ bytes pkgOuter;
+ bytes number;
+ bytes name;
+ // Parse n into pkgOuter and name (and number).
+ PRINTCR((5, "parse short IC name %s", n.ptr));
+ int dollar1, dollar2; // pointers to $ in the pattern
+ // parse n = (<pkg>/)*<outer>($<number>)?($<name>)?
+ int nlen = (int)n.len;
+ int pkglen = lastIndexOf(SLASH_MIN, SLASH_MAX, n, nlen) + 1;
+ dollar2 = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, nlen);
+ if (dollar2 < 0) {
+ abort();
+ return;
+ }
+ assert(dollar2 >= pkglen);
+ if (isDigitString(n, dollar2+1, nlen)) {
+ // n = (<pkg>/)*<outer>$<number>
+ number = n.slice(dollar2+1, nlen);
+ name.set(null,0);
+ dollar1 = dollar2;
+ } else if (pkglen < (dollar1
+ = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, n, dollar2-1))
+ && isDigitString(n, dollar1+1, dollar2)) {
+ // n = (<pkg>/)*<outer>$<number>$<name>
+ number = n.slice(dollar1+1, dollar2);
+ name = n.slice(dollar2+1, nlen);
+ } else {
+ // n = (<pkg>/)*<outer>$<name>
+ dollar1 = dollar2;
+ number.set(null,0);
+ name = n.slice(dollar2+1, nlen);
+ }
+ if (number.ptr == null) {
+ if (dollar1 < 0) {
+ abort();
+ return;
+ }
+ pkgOuter = n.slice(0, dollar1);
+ } else {
+ pkgOuter.set(null,0);
+ }
+ PRINTCR((5,"=> %s$ 0%s $%s",
+ pkgOuter.string(), number.string(), name.string()));
+
+ if (pkgOuter.ptr != null)
+ ics[i].outer = cp.ensureClass(pkgOuter);
+
+ if (name.ptr != null)
+ ics[i].name = cp.ensureUtf8(name);
+ }
+
+ // update child/sibling list
+ if (ics[i].outer != null) {
+ uint outord = ics[i].outer->inord;
+ if (outord != NO_INORD) {
+ assert(outord < (uint)cp.tag_count[CONSTANT_Class]);
+ ics[i].next_sibling = ic_child_index[outord];
+ ic_child_index[outord] = &ics[i];
+ }
+ }
+ }
+ //ic_outer_class.done();
+ //ic_name.done();
+}
+
+void unpacker::read_classes() {
+ PRINTCR((1," ...scanning %d classes...", class_count));
+ class_this.readData(class_count);
+ class_super.readData(class_count);
+ class_interface_count.readData(class_count);
+ class_interface.readData(class_interface_count.getIntTotal());
+
+ CHECK;
+
+ #if 0
+ int i;
+ // Make a little mark on super-classes.
+ for (i = 0; i < class_count; i++) {
+ entry* e = class_super.getRefN();
+ if (e != null) e->bits |= entry::EB_SUPER;
+ }
+ class_super.rewind();
+ #endif
+
+ // Members.
+ class_field_count.readData(class_count);
+ class_method_count.readData(class_count);
+
+ CHECK;
+
+ int field_count = class_field_count.getIntTotal();
+ int method_count = class_method_count.getIntTotal();
+
+ field_descr.readData(field_count);
+ read_attrs(ATTR_CONTEXT_FIELD, field_count);
+ CHECK;
+
+ method_descr.readData(method_count);
+ read_attrs(ATTR_CONTEXT_METHOD, method_count);
+
+ CHECK;
+
+ read_attrs(ATTR_CONTEXT_CLASS, class_count);
+ CHECK;
+
+ read_code_headers();
+
+ PRINTCR((1,"scanned %d classes, %d fields, %d methods, %d code headers",
+ class_count, field_count, method_count, code_count));
+}
+
+maybe_inline
+int unpacker::attr_definitions::predefCount(uint idx) {
+ return isPredefined(idx) ? flag_count[idx] : 0;
+}
+
+void unpacker::read_attrs(int attrc, int obj_count) {
+ attr_definitions& ad = attr_defs[attrc];
+ assert(ad.attrc == attrc);
+
+ int i, idx, count;
+
+ CHECK;
+
+ bool haveLongFlags = ad.haveLongFlags();
+
+ band& xxx_flags_hi = ad.xxx_flags_hi();
+ assert(endsWith(xxx_flags_hi.name, "_flags_hi"));
+ if (haveLongFlags)
+ xxx_flags_hi.readData(obj_count);
+ CHECK;
+
+ band& xxx_flags_lo = ad.xxx_flags_lo();
+ assert(endsWith(xxx_flags_lo.name, "_flags_lo"));
+ xxx_flags_lo.readData(obj_count);
+ CHECK;
+
+ // pre-scan flags, counting occurrences of each index bit
+ julong indexMask = ad.flagIndexMask(); // which flag bits are index bits?
+ for (i = 0; i < obj_count; i++) {
+ julong indexBits = xxx_flags_hi.getLong(xxx_flags_lo, haveLongFlags);
+ if ((indexBits & ~indexMask) > (ushort)-1) {
+ abort("undefined attribute flag bit");
+ return;
+ }
+ indexBits &= indexMask; // ignore classfile flag bits
+ for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
+ ad.flag_count[idx] += (int)(indexBits & 1);
+ }
+ }
+ // we'll scan these again later for output:
+ xxx_flags_lo.rewind();
+ xxx_flags_hi.rewind();
+
+ band& xxx_attr_count = ad.xxx_attr_count();
+ assert(endsWith(xxx_attr_count.name, "_attr_count"));
+ // There is one count element for each 1<<16 bit set in flags:
+ xxx_attr_count.readData(ad.predefCount(X_ATTR_OVERFLOW));
+ CHECK;
+
+ band& xxx_attr_indexes = ad.xxx_attr_indexes();
+ assert(endsWith(xxx_attr_indexes.name, "_attr_indexes"));
+ int overflowIndexCount = xxx_attr_count.getIntTotal();
+ xxx_attr_indexes.readData(overflowIndexCount);
+ CHECK;
+ // pre-scan attr indexes, counting occurrences of each value
+ for (i = 0; i < overflowIndexCount; i++) {
+ idx = xxx_attr_indexes.getInt();
+ if (!ad.isIndex(idx)) {
+ abort("attribute index out of bounds");
+ return;
+ }
+ ad.getCount(idx) += 1;
+ }
+ xxx_attr_indexes.rewind(); // we'll scan it again later for output
+
+ // We will need a backward call count for each used backward callable.
+ int backwardCounts = 0;
+ for (idx = 0; idx < ad.layouts.length(); idx++) {
+ layout_definition* lo = ad.getLayout(idx);
+ if (lo != null && ad.getCount(idx) != 0) {
+ // Build the bands lazily, only when they are used.
+ band** bands = ad.buildBands(lo);
+ CHECK;
+ if (lo->hasCallables()) {
+ for (i = 0; bands[i] != null; i++) {
+ if (bands[i]->le_back) {
+ assert(bands[i]->le_kind == EK_CBLE);
+ backwardCounts += 1;
+ }
+ }
+ }
+ }
+ }
+ ad.xxx_attr_calls().readData(backwardCounts);
+ CHECK;
+
+ // Read built-in bands.
+ // Mostly, these are hand-coded equivalents to readBandData().
+ switch (attrc) {
+ case ATTR_CONTEXT_CLASS:
+
+ count = ad.predefCount(CLASS_ATTR_SourceFile);
+ class_SourceFile_RUN.readData(count);
+ CHECK;
+
+ count = ad.predefCount(CLASS_ATTR_EnclosingMethod);
+ class_EnclosingMethod_RC.readData(count);
+ class_EnclosingMethod_RDN.readData(count);
+ CHECK;
+
+ count = ad.predefCount(X_ATTR_Signature);
+ class_Signature_RS.readData(count);
+ CHECK;
+
+ ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
+ ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
+ CHECK;
+
+ count = ad.predefCount(CLASS_ATTR_InnerClasses);
+ class_InnerClasses_N.readData(count);
+ CHECK;
+
+ count = class_InnerClasses_N.getIntTotal();
+ class_InnerClasses_RC.readData(count);
+ class_InnerClasses_F.readData(count);
+ CHECK;
+ // Drop remaining columns wherever flags are zero:
+ count -= class_InnerClasses_F.getIntCount(0);
+ class_InnerClasses_outer_RCN.readData(count);
+ class_InnerClasses_name_RUN.readData(count);
+ CHECK;
+
+ count = ad.predefCount(CLASS_ATTR_ClassFile_version);
+ class_ClassFile_version_minor_H.readData(count);
+ class_ClassFile_version_major_H.readData(count);
+ CHECK;
+
+ ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
+ ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
+ CHECK;
+ break;
+
+ case ATTR_CONTEXT_FIELD:
+
+ count = ad.predefCount(FIELD_ATTR_ConstantValue);
+ field_ConstantValue_KQ.readData(count);
+ CHECK;
+
+ count = ad.predefCount(X_ATTR_Signature);
+ field_Signature_RS.readData(count);
+ CHECK;
+
+ ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
+ ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
+ CHECK;
+
+ ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
+ ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
+ CHECK;
+ break;
+
+ case ATTR_CONTEXT_METHOD:
+
+ code_count = ad.predefCount(METHOD_ATTR_Code);
+ // Code attrs are handled very specially below...
+
+ count = ad.predefCount(METHOD_ATTR_Exceptions);
+ method_Exceptions_N.readData(count);
+ count = method_Exceptions_N.getIntTotal();
+ method_Exceptions_RC.readData(count);
+ CHECK;
+
+ count = ad.predefCount(X_ATTR_Signature);
+ method_Signature_RS.readData(count);
+ CHECK;
+
+ ad.readBandData(X_ATTR_RuntimeVisibleAnnotations);
+ ad.readBandData(X_ATTR_RuntimeInvisibleAnnotations);
+ ad.readBandData(METHOD_ATTR_RuntimeVisibleParameterAnnotations);
+ ad.readBandData(METHOD_ATTR_RuntimeInvisibleParameterAnnotations);
+ ad.readBandData(METHOD_ATTR_AnnotationDefault);
+ CHECK;
+
+ count = ad.predefCount(METHOD_ATTR_MethodParameters);
+ method_MethodParameters_NB.readData(count);
+ count = method_MethodParameters_NB.getIntTotal();
+ method_MethodParameters_name_RUN.readData(count);
+ method_MethodParameters_flag_FH.readData(count);
+ CHECK;
+
+ ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
+ ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
+ CHECK;
+
+ break;
+
+ case ATTR_CONTEXT_CODE:
+ // (keep this code aligned with its brother in unpacker::write_attrs)
+ count = ad.predefCount(CODE_ATTR_StackMapTable);
+ // disable this feature in old archives!
+ if (count != 0 && majver < JAVA6_PACKAGE_MAJOR_VERSION) {
+ abort("undefined StackMapTable attribute (old archive format)");
+ return;
+ }
+ code_StackMapTable_N.readData(count);
+ CHECK;
+ count = code_StackMapTable_N.getIntTotal();
+ code_StackMapTable_frame_T.readData(count);
+ CHECK;
+ // the rest of it depends in a complicated way on frame tags
+ {
+ int fat_frame_count = 0;
+ int offset_count = 0;
+ int type_count = 0;
+ for (int k = 0; k < count; k++) {
+ int tag = code_StackMapTable_frame_T.getByte();
+ if (tag <= 127) {
+ // (64-127) [(2)]
+ if (tag >= 64) type_count++;
+ } else if (tag <= 251) {
+ // (247) [(1)(2)]
+ // (248-251) [(1)]
+ if (tag >= 247) offset_count++;
+ if (tag == 247) type_count++;
+ } else if (tag <= 254) {
+ // (252) [(1)(2)]
+ // (253) [(1)(2)(2)]
+ // (254) [(1)(2)(2)(2)]
+ offset_count++;
+ type_count += (tag - 251);
+ } else {
+ // (255) [(1)NH[(2)]NH[(2)]]
+ fat_frame_count++;
+ }
+ }
+
+ // done pre-scanning frame tags:
+ code_StackMapTable_frame_T.rewind();
+
+ // deal completely with fat frames:
+ offset_count += fat_frame_count;
+ code_StackMapTable_local_N.readData(fat_frame_count);
+ CHECK;
+ type_count += code_StackMapTable_local_N.getIntTotal();
+ code_StackMapTable_stack_N.readData(fat_frame_count);
+ type_count += code_StackMapTable_stack_N.getIntTotal();
+ CHECK;
+ // read the rest:
+ code_StackMapTable_offset.readData(offset_count);
+ code_StackMapTable_T.readData(type_count);
+ CHECK;
+ // (7) [RCH]
+ count = code_StackMapTable_T.getIntCount(7);
+ code_StackMapTable_RC.readData(count);
+ CHECK;
+ // (8) [PH]
+ count = code_StackMapTable_T.getIntCount(8);
+ code_StackMapTable_P.readData(count);
+ CHECK;
+ }
+
+ count = ad.predefCount(CODE_ATTR_LineNumberTable);
+ code_LineNumberTable_N.readData(count);
+ CHECK;
+ count = code_LineNumberTable_N.getIntTotal();
+ code_LineNumberTable_bci_P.readData(count);
+ code_LineNumberTable_line.readData(count);
+ CHECK;
+
+ count = ad.predefCount(CODE_ATTR_LocalVariableTable);
+ code_LocalVariableTable_N.readData(count);
+ CHECK;
+ count = code_LocalVariableTable_N.getIntTotal();
+ code_LocalVariableTable_bci_P.readData(count);
+ code_LocalVariableTable_span_O.readData(count);
+ code_LocalVariableTable_name_RU.readData(count);
+ code_LocalVariableTable_type_RS.readData(count);
+ code_LocalVariableTable_slot.readData(count);
+ CHECK;
+
+ count = ad.predefCount(CODE_ATTR_LocalVariableTypeTable);
+ code_LocalVariableTypeTable_N.readData(count);
+ count = code_LocalVariableTypeTable_N.getIntTotal();
+ code_LocalVariableTypeTable_bci_P.readData(count);
+ code_LocalVariableTypeTable_span_O.readData(count);
+ code_LocalVariableTypeTable_name_RU.readData(count);
+ code_LocalVariableTypeTable_type_RS.readData(count);
+ code_LocalVariableTypeTable_slot.readData(count);
+ CHECK;
+
+ ad.readBandData(X_ATTR_RuntimeVisibleTypeAnnotations);
+ ad.readBandData(X_ATTR_RuntimeInvisibleTypeAnnotations);
+ CHECK;
+
+ break;
+ }
+
+ // Read compressor-defined bands.
+ for (idx = 0; idx < ad.layouts.length(); idx++) {
+ if (ad.getLayout(idx) == null)
+ continue; // none at this fixed index <32
+ if (idx < (int)ad.flag_limit && ad.isPredefined(idx))
+ continue; // already handled
+ if (ad.getCount(idx) == 0)
+ continue; // no attributes of this type (then why transmit layouts?)
+ ad.readBandData(idx);
+ }
+}
+
+void unpacker::attr_definitions::readBandData(int idx) {
+ int j;
+ uint count = getCount(idx);
+ if (count == 0) return;
+ layout_definition* lo = getLayout(idx);
+ if (lo != null) {
+ PRINTCR((1, "counted %d [redefined = %d predefined = %d] attributes of type %s.%s",
+ count, isRedefined(idx), isPredefined(idx),
+ ATTR_CONTEXT_NAME[attrc], lo->name));
+ }
+ bool hasCallables = lo->hasCallables();
+ band** bands = lo->bands();
+ if (!hasCallables) {
+ // Read through the rest of the bands in a regular way.
+ readBandData(bands, count);
+ } else {
+ // Deal with the callables.
+ // First set up the forward entry count for each callable.
+ // This is stored on band::length of the callable.
+ bands[0]->expectMoreLength(count);
+ for (j = 0; bands[j] != null; j++) {
+ band& j_cble = *bands[j];
+ assert(j_cble.le_kind == EK_CBLE);
+ if (j_cble.le_back) {
+ // Add in the predicted effects of backward calls, too.
+ int back_calls = xxx_attr_calls().getInt();
+ j_cble.expectMoreLength(back_calls);
+ // In a moment, more forward calls may increment j_cble.length.
+ }
+ }
+ // Now consult whichever callables have non-zero entry counts.
+ readBandData(bands, (uint)-1);
+ }
+}
+
+// Recursive helper to the previous function:
+void unpacker::attr_definitions::readBandData(band** body, uint count) {
+ int j, k;
+ for (j = 0; body[j] != null; j++) {
+ band& b = *body[j];
+ if (b.defc != null) {
+ // It has data, so read it.
+ b.readData(count);
+ }
+ switch (b.le_kind) {
+ case EK_REPL:
+ {
+ int reps = b.getIntTotal();
+ readBandData(b.le_body, reps);
+ }
+ break;
+ case EK_UN:
+ {
+ int remaining = count;
+ for (k = 0; b.le_body[k] != null; k++) {
+ band& k_case = *b.le_body[k];
+ int k_count = 0;
+ if (k_case.le_casetags == null) {
+ k_count = remaining; // last (empty) case
+ } else {
+ int* tags = k_case.le_casetags;
+ int ntags = *tags++; // 1st element is length (why not?)
+ while (ntags-- > 0) {
+ int tag = *tags++;
+ k_count += b.getIntCount(tag);
+ }
+ }
+ readBandData(k_case.le_body, k_count);
+ remaining -= k_count;
+ }
+ assert(remaining == 0);
+ }
+ break;
+ case EK_CALL:
+ // Push the count forward, if it is not a backward call.
+ if (!b.le_back) {
+ band& cble = *b.le_body[0];
+ assert(cble.le_kind == EK_CBLE);
+ cble.expectMoreLength(count);
+ }
+ break;
+ case EK_CBLE:
+ assert((int)count == -1); // incoming count is meaningless
+ k = b.length;
+ assert(k >= 0);
+ // This is intended and required for non production mode.
+ assert((b.length = -1)); // make it unable to accept more calls now.
+ readBandData(b.le_body, k);
+ break;
+ }
+ }
+}
+
+static inline
+band** findMatchingCase(int matchTag, band** cases) {
+ for (int k = 0; cases[k] != null; k++) {
+ band& k_case = *cases[k];
+ if (k_case.le_casetags != null) {
+ // If it has tags, it must match a tag.
+ int* tags = k_case.le_casetags;
+ int ntags = *tags++; // 1st element is length
+ for (; ntags > 0; ntags--) {
+ int tag = *tags++;
+ if (tag == matchTag)
+ break;
+ }
+ if (ntags == 0)
+ continue; // does not match
+ }
+ return k_case.le_body;
+ }
+ return null;
+}
+
+// write attribute band data:
+void unpacker::putlayout(band** body) {
+ int i;
+ int prevBII = -1;
+ int prevBCI = -1;
+ if (body == NULL) {
+ abort("putlayout: unexpected NULL for body");
+ return;
+ }
+ for (i = 0; body[i] != null; i++) {
+ band& b = *body[i];
+ byte le_kind = b.le_kind;
+
+ // Handle scalar part, if any.
+ int x = 0;
+ entry* e = null;
+ if (b.defc != null) {
+ // It has data, so unparse an element.
+ if (b.ixTag != CONSTANT_None) {
+ assert(le_kind == EK_REF);
+ if (b.ixTag == CONSTANT_FieldSpecific)
+ e = b.getRefUsing(cp.getKQIndex());
+ else
+ e = b.getRefN();
+ CHECK;
+ switch (b.le_len) {
+ case 0: break;
+ case 1: putu1ref(e); break;
+ case 2: putref(e); break;
+ case 4: putu2(0); putref(e); break;
+ default: assert(false);
+ }
+ } else {
+ assert(le_kind == EK_INT || le_kind == EK_REPL || le_kind == EK_UN);
+ x = b.getInt();
+
+ assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
+ switch (b.le_bci) {
+ case EK_BCI: // PH: transmit R(bci), store bci
+ x = to_bci(prevBII = x);
+ prevBCI = x;
+ break;
+ case EK_BCID: // POH: transmit D(R(bci)), store bci
+ x = to_bci(prevBII += x);
+ prevBCI = x;
+ break;
+ case EK_BCO: // OH: transmit D(R(bci)), store D(bci)
+ x = to_bci(prevBII += x) - prevBCI;
+ prevBCI += x;
+ break;
+ }
+ assert(!b.le_bci || prevBCI == (int)to_bci(prevBII));
+
+ CHECK;
+ switch (b.le_len) {
+ case 0: break;
+ case 1: putu1(x); break;
+ case 2: putu2(x); break;
+ case 4: putu4(x); break;
+ default: assert(false);
+ }
+ }
+ }
+
+ // Handle subparts, if any.
+ switch (le_kind) {
+ case EK_REPL:
+ // x is the repeat count
+ while (x-- > 0) {
+ putlayout(b.le_body);
+ }
+ break;
+ case EK_UN:
+ // x is the tag
+ putlayout(findMatchingCase(x, b.le_body));
+ break;
+ case EK_CALL:
+ {
+ band& cble = *b.le_body[0];
+ assert(cble.le_kind == EK_CBLE);
+ assert(cble.le_len == b.le_len);
+ putlayout(cble.le_body);
+ }
+ break;
+
+ #ifndef PRODUCT
+ case EK_CBLE:
+ case EK_CASE:
+ assert(false); // should not reach here
+ #endif
+ }
+ }
+}
+
+void unpacker::read_files() {
+ file_name.readData(file_count);
+ if (testBit(archive_options, AO_HAVE_FILE_SIZE_HI))
+ file_size_hi.readData(file_count);
+ file_size_lo.readData(file_count);
+ if (testBit(archive_options, AO_HAVE_FILE_MODTIME))
+ file_modtime.readData(file_count);
+ int allFiles = file_count + class_count;
+ if (testBit(archive_options, AO_HAVE_FILE_OPTIONS)) {
+ file_options.readData(file_count);
+ // FO_IS_CLASS_STUB might be set, causing overlap between classes and files
+ for (int i = 0; i < file_count; i++) {
+ if ((file_options.getInt() & FO_IS_CLASS_STUB) != 0) {
+ allFiles -= 1; // this one counts as both class and file
+ }
+ }
+ file_options.rewind();
+ }
+ assert((default_file_options & FO_IS_CLASS_STUB) == 0);
+ files_remaining = allFiles;
+}
+
+maybe_inline
+void unpacker::get_code_header(int& max_stack,
+ int& max_na_locals,
+ int& handler_count,
+ int& cflags) {
+ int sc = code_headers.getByte();
+ if (sc == 0) {
+ max_stack = max_na_locals = handler_count = cflags = -1;
+ return;
+ }
+ // Short code header is the usual case:
+ int nh;
+ int mod;
+ if (sc < 1 + 12*12) {
+ sc -= 1;
+ nh = 0;
+ mod = 12;
+ } else if (sc < 1 + 12*12 + 8*8) {
+ sc -= 1 + 12*12;
+ nh = 1;
+ mod = 8;
+ } else {
+ assert(sc < 1 + 12*12 + 8*8 + 7*7);
+ sc -= 1 + 12*12 + 8*8;
+ nh = 2;
+ mod = 7;
+ }
+ max_stack = sc % mod;
+ max_na_locals = sc / mod; // caller must add static, siglen
+ handler_count = nh;
+ if (testBit(archive_options, AO_HAVE_ALL_CODE_FLAGS))
+ cflags = -1;
+ else
+ cflags = 0; // this one has no attributes
+}
+
+// Cf. PackageReader.readCodeHeaders
+void unpacker::read_code_headers() {
+ code_headers.readData(code_count);
+ CHECK;
+ int totalHandlerCount = 0;
+ int totalFlagsCount = 0;
+ for (int i = 0; i < code_count; i++) {
+ int max_stack, max_locals, handler_count, cflags;
+ get_code_header(max_stack, max_locals, handler_count, cflags);
+ if (max_stack < 0) code_max_stack.expectMoreLength(1);
+ if (max_locals < 0) code_max_na_locals.expectMoreLength(1);
+ if (handler_count < 0) code_handler_count.expectMoreLength(1);
+ else totalHandlerCount += handler_count;
+ if (cflags < 0) totalFlagsCount += 1;
+ }
+ code_headers.rewind(); // replay later during writing
+
+ code_max_stack.readData();
+ code_max_na_locals.readData();
+ code_handler_count.readData();
+ totalHandlerCount += code_handler_count.getIntTotal();
+ CHECK;
+
+ // Read handler specifications.
+ // Cf. PackageReader.readCodeHandlers.
+ code_handler_start_P.readData(totalHandlerCount);
+ code_handler_end_PO.readData(totalHandlerCount);
+ code_handler_catch_PO.readData(totalHandlerCount);
+ code_handler_class_RCN.readData(totalHandlerCount);
+ CHECK;
+
+ read_attrs(ATTR_CONTEXT_CODE, totalFlagsCount);
+ CHECK;
+}
+
+static inline bool is_in_range(uint n, uint min, uint max) {
+ return n - min <= max - min; // unsigned arithmetic!
+}
+static inline bool is_field_op(int bc) {
+ return is_in_range(bc, bc_getstatic, bc_putfield);
+}
+static inline bool is_invoke_init_op(int bc) {
+ return is_in_range(bc, _invokeinit_op, _invokeinit_limit-1);
+}
+static inline bool is_self_linker_op(int bc) {
+ return is_in_range(bc, _self_linker_op, _self_linker_limit-1);
+}
+static bool is_branch_op(int bc) {
+ return is_in_range(bc, bc_ifeq, bc_jsr)
+ || is_in_range(bc, bc_ifnull, bc_jsr_w);
+}
+static bool is_local_slot_op(int bc) {
+ return is_in_range(bc, bc_iload, bc_aload)
+ || is_in_range(bc, bc_istore, bc_astore)
+ || bc == bc_iinc || bc == bc_ret;
+}
+band* unpacker::ref_band_for_op(int bc) {
+ switch (bc) {
+ case bc_ildc:
+ case bc_ildc_w:
+ return &bc_intref;
+ case bc_fldc:
+ case bc_fldc_w:
+ return &bc_floatref;
+ case bc_lldc2_w:
+ return &bc_longref;
+ case bc_dldc2_w:
+ return &bc_doubleref;
+ case bc_sldc:
+ case bc_sldc_w:
+ return &bc_stringref;
+ case bc_cldc:
+ case bc_cldc_w:
+ return &bc_classref;
+ case bc_qldc: case bc_qldc_w:
+ return &bc_loadablevalueref;
+
+ case bc_getstatic:
+ case bc_putstatic:
+ case bc_getfield:
+ case bc_putfield:
+ return &bc_fieldref;
+
+ case _invokespecial_int:
+ case _invokestatic_int:
+ return &bc_imethodref;
+ case bc_invokevirtual:
+ case bc_invokespecial:
+ case bc_invokestatic:
+ return &bc_methodref;
+ case bc_invokeinterface:
+ return &bc_imethodref;
+ case bc_invokedynamic:
+ return &bc_indyref;
+
+ case bc_new:
+ case bc_anewarray:
+ case bc_checkcast:
+ case bc_instanceof:
+ case bc_multianewarray:
+ return &bc_classref;
+ }
+ return null;
+}
+
+maybe_inline
+band* unpacker::ref_band_for_self_op(int bc, bool& isAloadVar, int& origBCVar) {
+ if (!is_self_linker_op(bc)) return null;
+ int idx = (bc - _self_linker_op);
+ bool isSuper = (idx >= _self_linker_super_flag);
+ if (isSuper) idx -= _self_linker_super_flag;
+ bool isAload = (idx >= _self_linker_aload_flag);
+ if (isAload) idx -= _self_linker_aload_flag;
+ int origBC = _first_linker_op + idx;
+ bool isField = is_field_op(origBC);
+ isAloadVar = isAload;
+ origBCVar = _first_linker_op + idx;
+ if (!isSuper)
+ return isField? &bc_thisfield: &bc_thismethod;
+ else
+ return isField? &bc_superfield: &bc_supermethod;
+}
+
+// Cf. PackageReader.readByteCodes
+inline // called exactly once => inline
+void unpacker::read_bcs() {
+ PRINTCR((3, "reading compressed bytecodes and operands for %d codes...",
+ code_count));
+
+ // read from bc_codes and bc_case_count
+ fillbytes all_switch_ops;
+ all_switch_ops.init();
+ CHECK;
+
+ // Read directly from rp/rplimit.
+ //Do this later: bc_codes.readData(...)
+ byte* rp0 = rp;
+
+ band* bc_which;
+ byte* opptr = rp;
+ byte* oplimit = rplimit;
+
+ bool isAload; // passed by ref and then ignored
+ int junkBC; // passed by ref and then ignored
+ for (int k = 0; k < code_count; k++) {
+ // Scan one method:
+ for (;;) {
+ if (opptr+2 > oplimit) {
+ rp = opptr;
+ ensure_input(2);
+ oplimit = rplimit;
+ rp = rp0; // back up
+ }
+ if (opptr == oplimit) { abort(); break; }
+ int bc = *opptr++ & 0xFF;
+ bool isWide = false;
+ if (bc == bc_wide) {
+ if (opptr == oplimit) { abort(); break; }
+ bc = *opptr++ & 0xFF;
+ isWide = true;
+ }
+ // Adjust expectations of various band sizes.
+ switch (bc) {
+ case bc_tableswitch:
+ case bc_lookupswitch:
+ all_switch_ops.addByte(bc);
+ break;
+ case bc_iinc:
+ bc_local.expectMoreLength(1);
+ bc_which = isWide ? &bc_short : &bc_byte;
+ bc_which->expectMoreLength(1);
+ break;
+ case bc_sipush:
+ bc_short.expectMoreLength(1);
+ break;
+ case bc_bipush:
+ bc_byte.expectMoreLength(1);
+ break;
+ case bc_newarray:
+ bc_byte.expectMoreLength(1);
+ break;
+ case bc_multianewarray:
+ assert(ref_band_for_op(bc) == &bc_classref);
+ bc_classref.expectMoreLength(1);
+ bc_byte.expectMoreLength(1);
+ break;
+ case bc_ref_escape:
+ bc_escrefsize.expectMoreLength(1);
+ bc_escref.expectMoreLength(1);
+ break;
+ case bc_byte_escape:
+ bc_escsize.expectMoreLength(1);
+ // bc_escbyte will have to be counted too
+ break;
+ default:
+ if (is_invoke_init_op(bc)) {
+ bc_initref.expectMoreLength(1);
+ break;
+ }
+ bc_which = ref_band_for_self_op(bc, isAload, junkBC);
+ if (bc_which != null) {
+ bc_which->expectMoreLength(1);
+ break;
+ }
+ if (is_branch_op(bc)) {
+ bc_label.expectMoreLength(1);
+ break;
+ }
+ bc_which = ref_band_for_op(bc);
+ if (bc_which != null) {
+ bc_which->expectMoreLength(1);
+ assert(bc != bc_multianewarray); // handled elsewhere
+ break;
+ }
+ if (is_local_slot_op(bc)) {
+ bc_local.expectMoreLength(1);
+ break;
+ }
+ break;
+ case bc_end_marker:
+ // Increment k and test against code_count.
+ goto doneScanningMethod;
+ }
+ }
+ doneScanningMethod:{}
+ if (aborting()) break;
+ }
+
+ // Go through the formality, so we can use it in a regular fashion later:
+ assert(rp == rp0);
+ bc_codes.readData((int)(opptr - rp));
+
+ int i = 0;
+
+ // To size instruction bands correctly, we need info on switches:
+ bc_case_count.readData((int)all_switch_ops.size());
+ for (i = 0; i < (int)all_switch_ops.size(); i++) {
+ int caseCount = bc_case_count.getInt();
+ int bc = all_switch_ops.getByte(i);
+ bc_label.expectMoreLength(1+caseCount); // default label + cases
+ bc_case_value.expectMoreLength(bc == bc_tableswitch ? 1 : caseCount);
+ PRINTCR((2, "switch bc=%d caseCount=%d", bc, caseCount));
+ }
+ bc_case_count.rewind(); // uses again for output
+
+ all_switch_ops.free();
+
+ for (i = e_bc_case_value; i <= e_bc_escsize; i++) {
+ all_bands[i].readData();
+ }
+
+ // The bc_escbyte band is counted by the immediately previous band.
+ bc_escbyte.readData(bc_escsize.getIntTotal());
+
+ PRINTCR((3, "scanned %d opcode and %d operand bytes for %d codes...",
+ (int)(bc_codes.size()),
+ (int)(bc_escsize.maxRP() - bc_case_value.minRP()),
+ code_count));
+}
+
+void unpacker::read_bands() {
+ byte* rp0 = rp;
+ CHECK;
+ read_file_header();
+ CHECK;
+
+ if (cp.nentries == 0) {
+ // read_file_header failed to read a CP, because it copied a JAR.
+ return;
+ }
+
+ // Do this after the file header has been read:
+ check_options();
+
+ read_cp();
+ CHECK;
+ read_attr_defs();
+ CHECK;
+ read_ics();
+ CHECK;
+ read_classes();
+ CHECK;
+ read_bcs();
+ CHECK;
+ read_files();
+}
+
+/// CP routines
+
+entry*& cpool::hashTabRef(byte tag, bytes& b) {
+ PRINTCR((5, "hashTabRef tag=%d %s[%d]", tag, b.string(), b.len));
+ uint hash = tag + (int)b.len;
+ for (int i = 0; i < (int)b.len; i++) {
+ hash = hash * 31 + (0xFF & b.ptr[i]);
+ }
+ entry** ht = hashTab;
+ int hlen = hashTabLength;
+ assert((hlen & (hlen-1)) == 0); // must be power of 2
+ uint hash1 = hash & (hlen-1); // == hash % hlen
+ uint hash2 = 0; // lazily computed (requires mod op.)
+ int probes = 0;
+ while (ht[hash1] != null) {
+ entry& e = *ht[hash1];
+ if (e.value.b.equals(b) && e.tag == tag)
+ break;
+ if (hash2 == 0)
+ // Note: hash2 must be relatively prime to hlen, hence the "|1".
+ hash2 = (((hash % 499) & (hlen-1)) | 1);
+ hash1 += hash2;
+ if (hash1 >= (uint)hlen) hash1 -= hlen;
+ assert(hash1 < (uint)hlen);
+ assert(++probes < hlen);
+ }
+ #ifndef PRODUCT
+ hash_probes[0] += 1;
+ hash_probes[1] += probes;
+ #endif
+ PRINTCR((5, " => @%d %p", hash1, ht[hash1]));
+ return ht[hash1];
+}
+
+maybe_inline
+static void insert_extra(entry* e, ptrlist& extras) {
+ // This ordering helps implement the Pack200 requirement
+ // of a predictable CP order in the class files produced.
+ e->inord = NO_INORD; // mark as an "extra"
+ extras.add(e);
+ // Note: We will sort the list (by string-name) later.
+}
+
+entry* cpool::ensureUtf8(bytes& b) {
+ entry*& ix = hashTabRef(CONSTANT_Utf8, b);
+ if (ix != null) return ix;
+ // Make one.
+ if (nentries == maxentries) {
+ abort("cp utf8 overflow");
+ return &entries[tag_base[CONSTANT_Utf8]]; // return something
+ }
+ entry& e = entries[nentries++];
+ e.tag = CONSTANT_Utf8;
+ u->saveTo(e.value.b, b);
+ assert(&e >= first_extra_entry);
+ insert_extra(&e, tag_extras[CONSTANT_Utf8]);
+ PRINTCR((4,"ensureUtf8 miss %s", e.string()));
+ return ix = &e;
+}
+
+entry* cpool::ensureClass(bytes& b) {
+ entry*& ix = hashTabRef(CONSTANT_Class, b);
+ if (ix != null) return ix;
+ // Make one.
+ if (nentries == maxentries) {
+ abort("cp class overflow");
+ return &entries[tag_base[CONSTANT_Class]]; // return something
+ }
+ entry& e = entries[nentries++];
+ e.tag = CONSTANT_Class;
+ e.nrefs = 1;
+ e.refs = U_NEW(entry*, 1);
+ ix = &e; // hold my spot in the index
+ entry* utf = ensureUtf8(b);
+ e.refs[0] = utf;
+ e.value.b = utf->value.b;
+ assert(&e >= first_extra_entry);
+ insert_extra(&e, tag_extras[CONSTANT_Class]);
+ PRINTCR((4,"ensureClass miss %s", e.string()));
+ return &e;
+}
+
+void cpool::expandSignatures() {
+ int i;
+ int nsigs = 0;
+ int nreused = 0;
+ int first_sig = tag_base[CONSTANT_Signature];
+ int sig_limit = tag_count[CONSTANT_Signature] + first_sig;
+ fillbytes buf;
+ buf.init(1<<10);
+ CHECK;
+ for (i = first_sig; i < sig_limit; i++) {
+ entry& e = entries[i];
+ assert(e.tag == CONSTANT_Signature);
+ int refnum = 0;
+ bytes form = e.refs[refnum++]->asUtf8();
+ buf.empty();
+ for (int j = 0; j < (int)form.len; j++) {
+ int c = form.ptr[j];
+ buf.addByte(c);
+ if (c == 'L') {
+ entry* cls = e.refs[refnum++];
+ buf.append(cls->className()->asUtf8());
+ }
+ }
+ assert(refnum == e.nrefs);
+ bytes& sig = buf.b;
+ PRINTCR((5,"signature %d %s -> %s", i, form.ptr, sig.ptr));
+
+ // try to find a pre-existing Utf8:
+ entry* &e2 = hashTabRef(CONSTANT_Utf8, sig);
+ if (e2 != null) {
+ assert(e2->isUtf8(sig));
+ e.value.b = e2->value.b;
+ e.refs[0] = e2;
+ e.nrefs = 1;
+ PRINTCR((5,"signature replaced %d => %s", i, e.string()));
+ nreused++;
+ } else {
+ // there is no other replacement; reuse this CP entry as a Utf8
+ u->saveTo(e.value.b, sig);
+ e.tag = CONSTANT_Utf8;
+ e.nrefs = 0;
+ e2 = &e;
+ PRINTCR((5,"signature changed %d => %s", e.inord, e.string()));
+ }
+ nsigs++;
+ }
+ PRINTCR((1,"expanded %d signatures (reused %d utfs)", nsigs, nreused));
+ buf.free();
+
+ // go expunge all references to remaining signatures:
+ for (i = 0; i < (int)nentries; i++) {
+ entry& e = entries[i];
+ for (int j = 0; j < e.nrefs; j++) {
+ entry*& e2 = e.refs[j];
+ if (e2 != null && e2->tag == CONSTANT_Signature)
+ e2 = e2->refs[0];
+ }
+ }
+}
+
+bool isLoadableValue(int tag) {
+ switch(tag) {
+ case CONSTANT_Integer:
+ case CONSTANT_Float:
+ case CONSTANT_Long:
+ case CONSTANT_Double:
+ case CONSTANT_String:
+ case CONSTANT_Class:
+ case CONSTANT_MethodHandle:
+ case CONSTANT_MethodType:
+ return true;
+ default:
+ return false;
+ }
+}
+/*
+ * this method can be used to size an array using null as the parameter,
+ * thereafter can be reused to initialize the array using a valid pointer
+ * as a parameter.
+ */
+int cpool::initLoadableValues(entry** loadable_entries) {
+ int loadable_count = 0;
+ for (int i = 0; i < (int)N_TAGS_IN_ORDER; i++) {
+ int tag = TAGS_IN_ORDER[i];
+ if (!isLoadableValue(tag))
+ continue;
+ if (loadable_entries != NULL) {
+ for (int n = 0 ; n < tag_count[tag] ; n++) {
+ loadable_entries[loadable_count + n] = &entries[tag_base[tag] + n];
+ }
+ }
+ loadable_count += tag_count[tag];
+ }
+ return loadable_count;
+}
+
+// Initialize various views into the constant pool.
+void cpool::initGroupIndexes() {
+ // Initialize All
+ int all_count = 0;
+ for (int tag = CONSTANT_None ; tag < CONSTANT_Limit ; tag++) {
+ all_count += tag_count[tag];
+ }
+ entry* all_entries = &entries[tag_base[CONSTANT_None]];
+ tag_group_count[CONSTANT_All - CONSTANT_All] = all_count;
+ tag_group_index[CONSTANT_All - CONSTANT_All].init(all_count, all_entries, CONSTANT_All);
+
+ // Initialize LoadableValues
+ int loadable_count = initLoadableValues(NULL);
+ entry** loadable_entries = U_NEW(entry*, loadable_count);
+ initLoadableValues(loadable_entries);
+ tag_group_count[CONSTANT_LoadableValue - CONSTANT_All] = loadable_count;
+ tag_group_index[CONSTANT_LoadableValue - CONSTANT_All].init(loadable_count,
+ loadable_entries, CONSTANT_LoadableValue);
+
+// Initialize AnyMembers
+ int any_count = tag_count[CONSTANT_Fieldref] +
+ tag_count[CONSTANT_Methodref] +
+ tag_count[CONSTANT_InterfaceMethodref];
+ entry *any_entries = &entries[tag_base[CONSTANT_Fieldref]];
+ tag_group_count[CONSTANT_AnyMember - CONSTANT_All] = any_count;
+ tag_group_index[CONSTANT_AnyMember - CONSTANT_All].init(any_count,
+ any_entries, CONSTANT_AnyMember);
+}
+
+void cpool::initMemberIndexes() {
+ // This function does NOT refer to any class schema.
+ // It is totally internal to the cpool.
+ int i, j;
+
+ // Get the pre-existing indexes:
+ int nclasses = tag_count[CONSTANT_Class];
+ entry* classes = tag_base[CONSTANT_Class] + entries;
+ int nfields = tag_count[CONSTANT_Fieldref];
+ entry* fields = tag_base[CONSTANT_Fieldref] + entries;
+ int nmethods = tag_count[CONSTANT_Methodref];
+ entry* methods = tag_base[CONSTANT_Methodref] + entries;
+
+ int* field_counts = T_NEW(int, nclasses);
+ int* method_counts = T_NEW(int, nclasses);
+ cpindex* all_indexes = U_NEW(cpindex, nclasses*2);
+ entry** field_ix = U_NEW(entry*, add_size(nfields, nclasses));
+ entry** method_ix = U_NEW(entry*, add_size(nmethods, nclasses));
+
+ for (j = 0; j < nfields; j++) {
+ entry& f = fields[j];
+ i = f.memberClass()->inord;
+ assert(i < nclasses);
+ field_counts[i]++;
+ }
+ for (j = 0; j < nmethods; j++) {
+ entry& m = methods[j];
+ i = m.memberClass()->inord;
+ assert(i < nclasses);
+ method_counts[i]++;
+ }
+
+ int fbase = 0, mbase = 0;
+ for (i = 0; i < nclasses; i++) {
+ int fc = field_counts[i];
+ int mc = method_counts[i];
+ all_indexes[i*2+0].init(fc, field_ix+fbase,
+ CONSTANT_Fieldref + SUBINDEX_BIT);
+ all_indexes[i*2+1].init(mc, method_ix+mbase,
+ CONSTANT_Methodref + SUBINDEX_BIT);
+ // reuse field_counts and member_counts as fill pointers:
+ field_counts[i] = fbase;
+ method_counts[i] = mbase;
+ PRINTCR((3, "class %d fields @%d[%d] methods @%d[%d]",
+ i, fbase, fc, mbase, mc));
+ fbase += fc+1;
+ mbase += mc+1;
+ // (the +1 leaves a space between every subarray)
+ }
+ assert(fbase == nfields+nclasses);
+ assert(mbase == nmethods+nclasses);
+
+ for (j = 0; j < nfields; j++) {
+ entry& f = fields[j];
+ i = f.memberClass()->inord;
+ field_ix[field_counts[i]++] = &f;
+ }
+ for (j = 0; j < nmethods; j++) {
+ entry& m = methods[j];
+ i = m.memberClass()->inord;
+ method_ix[method_counts[i]++] = &m;
+ }
+
+ member_indexes = all_indexes;
+
+#ifndef PRODUCT
+ // Test the result immediately on every class and field.
+ int fvisited = 0, mvisited = 0;
+ int prevord, len;
+ for (i = 0; i < nclasses; i++) {
+ entry* cls = &classes[i];
+ cpindex* fix = getFieldIndex(cls);
+ cpindex* mix = getMethodIndex(cls);
+ PRINTCR((2, "field and method index for %s [%d] [%d]",
+ cls->string(), mix->len, fix->len));
+ prevord = -1;
+ for (j = 0, len = fix->len; j < len; j++) {
+ entry* f = fix->get(j);
+ assert(f != null);
+ PRINTCR((3, "- field %s", f->string()));
+ assert(f->memberClass() == cls);
+ assert(prevord < (int)f->inord);
+ prevord = f->inord;
+ fvisited++;
+ }
+ assert(fix->base2[j] == null);
+ prevord = -1;
+ for (j = 0, len = mix->len; j < len; j++) {
+ entry* m = mix->get(j);
+ assert(m != null);
+ PRINTCR((3, "- method %s", m->string()));
+ assert(m->memberClass() == cls);
+ assert(prevord < (int)m->inord);
+ prevord = m->inord;
+ mvisited++;
+ }
+ assert(mix->base2[j] == null);
+ }
+ assert(fvisited == nfields);
+ assert(mvisited == nmethods);
+#endif
+
+ // Free intermediate buffers.
+ u->free_temps();
+}
+
+void entry::requestOutputIndex(cpool& cp, int req) {
+ assert(outputIndex <= REQUESTED_NONE); // must not have assigned indexes yet
+ if (tag == CONSTANT_Signature) {
+ ref(0)->requestOutputIndex(cp, req);
+ return;
+ }
+ assert(req == REQUESTED || req == REQUESTED_LDC);
+ if (outputIndex != REQUESTED_NONE) {
+ if (req == REQUESTED_LDC)
+ outputIndex = req; // this kind has precedence
+ return;
+ }
+ outputIndex = req;
+ //assert(!cp.outputEntries.contains(this));
+ assert(tag != CONSTANT_Signature);
+ // The BSMs are jetisoned to a side table, however all references
+ // that the BSMs refer to, need to be considered.
+ if (tag == CONSTANT_BootstrapMethod) {
+ // this is a a pseudo-op entry; an attribute will be generated later on
+ cp.requested_bsms.add(this);
+ } else {
+ // all other tag types go into real output file CP:
+ cp.outputEntries.add(this);
+ }
+ for (int j = 0; j < nrefs; j++) {
+ ref(j)->requestOutputIndex(cp);
+ }
+}
+
+void cpool::resetOutputIndexes() {
+ /*
+ * reset those few entries that are being used in the current class
+ * (Caution since this method is called after every class written, a loop
+ * over every global constant pool entry would be a quadratic cost.)
+ */
+
+ int noes = outputEntries.length();
+ entry** oes = (entry**) outputEntries.base();
+ for (int i = 0 ; i < noes ; i++) {
+ entry& e = *oes[i];
+ e.outputIndex = REQUESTED_NONE;
+ }
+
+ // do the same for bsms and reset them if required
+ int nbsms = requested_bsms.length();
+ entry** boes = (entry**) requested_bsms.base();
+ for (int i = 0 ; i < nbsms ; i++) {
+ entry& e = *boes[i];
+ e.outputIndex = REQUESTED_NONE;
+ }
+ outputIndexLimit = 0;
+ outputEntries.empty();
+#ifndef PRODUCT
+ // ensure things are cleared out
+ for (int i = 0; i < (int)maxentries; i++)
+ assert(entries[i].outputIndex == REQUESTED_NONE);
+#endif
+}
+
+static const byte TAG_ORDER[CONSTANT_Limit] = {
+ 0, 1, 0, 2, 3, 4, 5, 7, 6, 10, 11, 12, 9, 8, 0, 13, 14, 15, 16
+};
+
+extern "C"
+int outputEntry_cmp(const void* e1p, const void* e2p) {
+ // Sort entries according to the Pack200 rules for deterministic
+ // constant pool ordering.
+ //
+ // The four sort keys as follows, in order of decreasing importance:
+ // 1. ldc first, then non-ldc guys
+ // 2. normal cp_All entries by input order (i.e., address order)
+ // 3. after that, extra entries by lexical order (as in tag_extras[*])
+ entry& e1 = *(entry*) *(void**) e1p;
+ entry& e2 = *(entry*) *(void**) e2p;
+ int oi1 = e1.outputIndex;
+ int oi2 = e2.outputIndex;
+ assert(oi1 == REQUESTED || oi1 == REQUESTED_LDC);
+ assert(oi2 == REQUESTED || oi2 == REQUESTED_LDC);
+ if (oi1 != oi2) {
+ if (oi1 == REQUESTED_LDC) return 0-1;
+ if (oi2 == REQUESTED_LDC) return 1-0;
+ // Else fall through; neither is an ldc request.
+ }
+ if (e1.inord != NO_INORD || e2.inord != NO_INORD) {
+ // One or both is normal. Use input order.
+ if (&e1 > &e2) return 1-0;
+ if (&e1 < &e2) return 0-1;
+ return 0; // equal pointers
+ }
+ // Both are extras. Sort by tag and then by value.
+ if (e1.tag != e2.tag) {
+ return TAG_ORDER[e1.tag] - TAG_ORDER[e2.tag];
+ }
+ // If the tags are the same, use string comparison.
+ return compare_Utf8_chars(e1.value.b, e2.value.b);
+}
+
+void cpool::computeOutputIndexes() {
+ int i;
+
+#ifndef PRODUCT
+ // outputEntries must be a complete list of those requested:
+ static uint checkStart = 0;
+ int checkStep = 1;
+ if (nentries > 100) checkStep = nentries / 100;
+ for (i = (int)(checkStart++ % checkStep); i < (int)nentries; i += checkStep) {
+ entry& e = entries[i];
+ if (e.tag == CONSTANT_BootstrapMethod) {
+ if (e.outputIndex != REQUESTED_NONE) {
+ assert(requested_bsms.contains(&e));
+ } else {
+ assert(!requested_bsms.contains(&e));
+ }
+ } else {
+ if (e.outputIndex != REQUESTED_NONE) {
+ assert(outputEntries.contains(&e));
+ } else {
+ assert(!outputEntries.contains(&e));
+ }
+ }
+ }
+
+ // check hand-initialization of TAG_ORDER
+ for (i = 0; i < (int)N_TAGS_IN_ORDER; i++) {
+ byte tag = TAGS_IN_ORDER[i];
+ assert(TAG_ORDER[tag] == i+1);
+ }
+#endif
+
+ int noes = outputEntries.length();
+ entry** oes = (entry**) outputEntries.base();
+
+ // Sort the output constant pool into the order required by Pack200.
+ PTRLIST_QSORT(outputEntries, outputEntry_cmp);
+
+ // Allocate a new index for each entry that needs one.
+ // We do this in two passes, one for LDC entries and one for the rest.
+ int nextIndex = 1; // always skip index #0 in output cpool
+ for (i = 0; i < noes; i++) {
+ entry& e = *oes[i];
+ assert(e.outputIndex >= REQUESTED_LDC);
+ e.outputIndex = nextIndex++;
+ if (e.isDoubleWord()) nextIndex++; // do not use the next index
+ }
+ outputIndexLimit = nextIndex;
+ PRINTCR((3,"renumbering CP to %d entries", outputIndexLimit));
+}
+
+#ifndef PRODUCT
+// debugging goo
+
+unpacker* debug_u;
+
+static bytes& getbuf(size_t len) { // for debugging only!
+ static int bn = 0;
+ static bytes bufs[8];
+ bytes& buf = bufs[bn++ & 7];
+ while (buf.len < len + 10) {
+ buf.realloc(buf.len ? buf.len * 2 : 1000);
+ }
+ buf.ptr[0] = 0; // for the sake of strcat
+ return buf;
+}
+
+const char* entry::string() {
+ bytes buf;
+ switch (tag) {
+ case CONSTANT_None:
+ return "<empty>";
+ case CONSTANT_Signature:
+ if (value.b.ptr == null)
+ return ref(0)->string();
+ // else fall through:
+ case CONSTANT_Utf8:
+ buf = value.b;
+ break;
+ case CONSTANT_Integer:
+ case CONSTANT_Float:
+ buf = getbuf(12);
+ sprintf((char*)buf.ptr, "0x%08x", value.i);
+ break;
+ case CONSTANT_Long:
+ case CONSTANT_Double:
+ buf = getbuf(24);
+ sprintf((char*)buf.ptr, "0x" LONG_LONG_HEX_FORMAT, value.l);
+ break;
+ default:
+ if (nrefs == 0) {
+ return TAG_NAME[tag];
+ } else if (nrefs == 1) {
+ return refs[0]->string();
+ } else {
+ const char* s1 = refs[0]->string();
+ const char* s2 = refs[1]->string();
+ buf = getbuf(strlen(s1) + 1 + strlen(s2) + 4 + 1);
+ buf.strcat(s1).strcat(" ").strcat(s2);
+ if (nrefs > 2) buf.strcat(" ...");
+ }
+ }
+ return (const char*)buf.ptr;
+}
+
+void print_cp_entry(int i) {
+ entry& e = debug_u->cp.entries[i];
+
+ if ((uint)e.tag < CONSTANT_Limit) {
+ printf(" %d\t%s %s\n", i, TAG_NAME[e.tag], e.string());
+ } else {
+ printf(" %d\t%d %s\n", i, e.tag, e.string());
+ }
+}
+
+void print_cp_entries(int beg, int end) {
+ for (int i = beg; i < end; i++)
+ print_cp_entry(i);
+}
+
+void print_cp() {
+ print_cp_entries(0, debug_u->cp.nentries);
+}
+
+#endif
+
+// Unpacker Start
+
+const char str_tf[] = "true\0false";
+#undef STR_TRUE
+#undef STR_FALSE
+#define STR_TRUE (&str_tf[0])
+#define STR_FALSE (&str_tf[5])
+
+const char* unpacker::get_option(const char* prop) {
+ if (prop == null ) return null;
+ if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
+ return deflate_hint_or_zero == 0? null : STR_TF(deflate_hint_or_zero > 0);
+#ifdef HAVE_STRIP
+ } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
+ return STR_TF(strip_compile);
+ } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
+ return STR_TF(strip_debug);
+ } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
+ return STR_TF(strip_jcov);
+#endif /*HAVE_STRIP*/
+ } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
+ return STR_TF(remove_packfile);
+ } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
+ return saveIntStr(verbose);
+ } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
+ return (modification_time_or_zero == 0)? null:
+ saveIntStr(modification_time_or_zero);
+ } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
+ return log_file;
+ } else {
+ return NULL; // unknown option ignore
+ }
+}
+
+bool unpacker::set_option(const char* prop, const char* value) {
+ if (prop == NULL) return false;
+ if (strcmp(prop, UNPACK_DEFLATE_HINT) == 0) {
+ deflate_hint_or_zero = ( (value == null || strcmp(value, "keep") == 0)
+ ? 0: BOOL_TF(value) ? +1: -1);
+#ifdef HAVE_STRIP
+ } else if (strcmp(prop, UNPACK_STRIP_COMPILE) == 0) {
+ strip_compile = STR_TF(value);
+ } else if (strcmp(prop, UNPACK_STRIP_DEBUG) == 0) {
+ strip_debug = STR_TF(value);
+ } else if (strcmp(prop, UNPACK_STRIP_JCOV) == 0) {
+ strip_jcov = STR_TF(value);
+#endif /*HAVE_STRIP*/
+ } else if (strcmp(prop, UNPACK_REMOVE_PACKFILE) == 0) {
+ remove_packfile = STR_TF(value);
+ } else if (strcmp(prop, DEBUG_VERBOSE) == 0) {
+ verbose = (value == null)? 0: atoi(value);
+ } else if (strcmp(prop, DEBUG_VERBOSE ".bands") == 0) {
+#ifndef PRODUCT
+ verbose_bands = (value == null)? 0: atoi(value);
+#endif
+ } else if (strcmp(prop, UNPACK_MODIFICATION_TIME) == 0) {
+ if (value == null || (strcmp(value, "keep") == 0)) {
+ modification_time_or_zero = 0;
+ } else if (strcmp(value, "now") == 0) {
+ time_t now;
+ time(&now);
+ modification_time_or_zero = (int) now;
+ } else {
+ modification_time_or_zero = atoi(value);
+ if (modification_time_or_zero == 0)
+ modification_time_or_zero = 1; // make non-zero
+ }
+ } else if (strcmp(prop, UNPACK_LOG_FILE) == 0) {
+ log_file = (value == null)? value: saveStr(value);
+ } else {
+ return false; // unknown option ignore
+ }
+ return true;
+}
+
+// Deallocate all internal storage and reset to a clean state.
+// Do not disturb any input or output connections, including
+// infileptr, infileno, inbytes, read_input_fn, jarout, or errstrm.
+// Do not reset any unpack options.
+void unpacker::reset() {
+ bytes_read_before_reset += bytes_read;
+ bytes_written_before_reset += bytes_written;
+ files_written_before_reset += files_written;
+ classes_written_before_reset += classes_written;
+ segments_read_before_reset += 1;
+ if (verbose >= 2) {
+ fprintf(errstrm,
+ "After segment %d, "
+ LONG_LONG_FORMAT " bytes read and "
+ LONG_LONG_FORMAT " bytes written.\n",
+ segments_read_before_reset-1,
+ bytes_read_before_reset, bytes_written_before_reset);
+ fprintf(errstrm,
+ "After segment %d, %d files (of which %d are classes) written to output.\n",
+ segments_read_before_reset-1,
+ files_written_before_reset, classes_written_before_reset);
+ if (archive_next_count != 0) {
+ fprintf(errstrm,
+ "After segment %d, %d segment%s remaining (estimated).\n",
+ segments_read_before_reset-1,
+ archive_next_count, archive_next_count==1?"":"s");
+ }
+ }
+
+ unpacker save_u = (*this); // save bytewise image
+ infileptr = null; // make asserts happy
+ jniobj = null; // make asserts happy
+ jarout = null; // do not close the output jar
+ gzin = null; // do not close the input gzip stream
+ bytes esn;
+ if (errstrm_name != null) {
+ esn.saveFrom(errstrm_name);
+ } else {
+ esn.set(null, 0);
+ }
+ this->free();
+ mtrace('s', 0, 0); // note the boundary between segments
+ this->init(read_input_fn);
+
+ // restore selected interface state:
+#define SAVE(x) this->x = save_u.x
+ SAVE(jniobj);
+ SAVE(jnienv);
+ SAVE(infileptr); // buffered
+ SAVE(infileno); // unbuffered
+ SAVE(inbytes); // direct
+ SAVE(jarout);
+ SAVE(gzin);
+ //SAVE(read_input_fn);
+ SAVE(errstrm);
+ SAVE(verbose); // verbose level, 0 means no output
+ SAVE(strip_compile);
+ SAVE(strip_debug);
+ SAVE(strip_jcov);
+ SAVE(remove_packfile);
+ SAVE(deflate_hint_or_zero); // ==0 means not set, otherwise -1 or 1
+ SAVE(modification_time_or_zero);
+ SAVE(bytes_read_before_reset);
+ SAVE(bytes_written_before_reset);
+ SAVE(files_written_before_reset);
+ SAVE(classes_written_before_reset);
+ SAVE(segments_read_before_reset);
+#undef SAVE
+ if (esn.len > 0) {
+ errstrm_name = saveStr(esn.strval());
+ esn.free();
+ }
+ log_file = errstrm_name;
+ // Note: If we use strip_names, watch out: They get nuked here.
+}
+
+void unpacker::init(read_input_fn_t input_fn) {
+ int i;
+ NOT_PRODUCT(debug_u = this);
+ BYTES_OF(*this).clear();
+#ifndef PRODUCT
+ free(); // just to make sure freeing is idempotent
+#endif
+ this->u = this; // self-reference for U_NEW macro
+ errstrm = stdout; // default error-output
+ log_file = LOGFILE_STDOUT;
+ read_input_fn = input_fn;
+ all_bands = band::makeBands(this);
+ // Make a default jar buffer; caller may safely overwrite it.
+ jarout = U_NEW(jar, 1);
+ jarout->init(this);
+ for (i = 0; i < ATTR_CONTEXT_LIMIT; i++)
+ attr_defs[i].u = u; // set up outer ptr
+}
+
+const char* unpacker::get_abort_message() {
+ return abort_message;
+}
+
+void unpacker::dump_options() {
+ static const char* opts[] = {
+ UNPACK_LOG_FILE,
+ UNPACK_DEFLATE_HINT,
+#ifdef HAVE_STRIP
+ UNPACK_STRIP_COMPILE,
+ UNPACK_STRIP_DEBUG,
+ UNPACK_STRIP_JCOV,
+#endif /*HAVE_STRIP*/
+ UNPACK_REMOVE_PACKFILE,
+ DEBUG_VERBOSE,
+ UNPACK_MODIFICATION_TIME,
+ null
+ };
+ for (int i = 0; opts[i] != null; i++) {
+ const char* str = get_option(opts[i]);
+ if (str == null) {
+ if (verbose == 0) continue;
+ str = "(not set)";
+ }
+ fprintf(errstrm, "%s=%s\n", opts[i], str);
+ }
+}
+
+
+// Usage: unpack a byte buffer
+// packptr is a reference to byte buffer containing a
+// packed file and len is the length of the buffer.
+// If null, the callback is used to fill an internal buffer.
+void unpacker::start(void* packptr, size_t len) {
+ CHECK;
+ NOT_PRODUCT(debug_u = this);
+ if (packptr != null && len != 0) {
+ inbytes.set((byte*) packptr, len);
+ }
+ CHECK;
+ read_bands();
+}
+
+void unpacker::check_options() {
+ const char* strue = "true";
+ const char* sfalse = "false";
+ if (deflate_hint_or_zero != 0) {
+ bool force_deflate_hint = (deflate_hint_or_zero > 0);
+ if (force_deflate_hint)
+ default_file_options |= FO_DEFLATE_HINT;
+ else
+ default_file_options &= ~FO_DEFLATE_HINT;
+ // Turn off per-file deflate hint by force.
+ suppress_file_options |= FO_DEFLATE_HINT;
+ }
+ if (modification_time_or_zero != 0) {
+ default_file_modtime = modification_time_or_zero;
+ // Turn off per-file modtime by force.
+ archive_options &= ~AO_HAVE_FILE_MODTIME;
+ }
+ // %%% strip_compile, etc...
+}
+
+// classfile writing
+
+void unpacker::reset_cur_classfile() {
+ // set defaults
+ cur_class_minver = default_class_minver;
+ cur_class_majver = default_class_majver;
+
+ // reset constant pool state
+ cp.resetOutputIndexes();
+
+ // reset fixups
+ class_fixup_type.empty();
+ class_fixup_offset.empty();
+ class_fixup_ref.empty();
+ requested_ics.empty();
+ cp.requested_bsms.empty();
+}
+
+cpindex* cpool::getKQIndex() {
+ char ch = '?';
+ if (u->cur_descr != null) {
+ entry* type = u->cur_descr->descrType();
+ ch = type->value.b.ptr[0];
+ }
+ byte tag = CONSTANT_Integer;
+ switch (ch) {
+ case 'L': tag = CONSTANT_String; break;
+ case 'I': tag = CONSTANT_Integer; break;
+ case 'J': tag = CONSTANT_Long; break;
+ case 'F': tag = CONSTANT_Float; break;
+ case 'D': tag = CONSTANT_Double; break;
+ case 'B': case 'S': case 'C':
+ case 'Z': tag = CONSTANT_Integer; break;
+ default: abort("bad KQ reference"); break;
+ }
+ return getIndex(tag);
+}
+
+uint unpacker::to_bci(uint bii) {
+ uint len = bcimap.length();
+ uint* map = (uint*) bcimap.base();
+ assert(len > 0); // must be initialized before using to_bci
+ if (len == 0) {
+ abort("bad bcimap");
+ return 0;
+ }
+ if (bii < len)
+ return map[bii];
+ // Else it's a fractional or out-of-range BCI.
+ uint key = bii-len;
+ for (int i = len; ; i--) {
+ if (map[i-1]-(i-1) <= key)
+ break;
+ else
+ --bii;
+ }
+ return bii;
+}
+
+void unpacker::put_stackmap_type() {
+ int tag = code_StackMapTable_T.getByte();
+ putu1(tag);
+ switch (tag) {
+ case 7: // (7) [RCH]
+ putref(code_StackMapTable_RC.getRef());
+ break;
+ case 8: // (8) [PH]
+ putu2(to_bci(code_StackMapTable_P.getInt()));
+ CHECK;
+ break;
+ }
+}
+
+// Functions for writing code.
+
+maybe_inline
+void unpacker::put_label(int curIP, int size) {
+ code_fixup_type.addByte(size);
+ code_fixup_offset.add((int)put_empty(size));
+ code_fixup_source.add(curIP);
+}
+
+inline // called exactly once => inline
+void unpacker::write_bc_ops() {
+ bcimap.empty();
+ code_fixup_type.empty();
+ code_fixup_offset.empty();
+ code_fixup_source.empty();
+
+ band* bc_which;
+
+ byte* opptr = bc_codes.curRP();
+ // No need for oplimit, since the codes are pre-counted.
+
+ size_t codeBase = wpoffset();
+
+ bool isAload; // copy-out result
+ int origBC;
+
+ entry* thisClass = cur_class;
+ entry* superClass = cur_super;
+ entry* newClass = null; // class of last _new opcode
+
+ // overwrite any prior index on these bands; it changes w/ current class:
+ bc_thisfield.setIndex( cp.getFieldIndex( thisClass));
+ bc_thismethod.setIndex( cp.getMethodIndex(thisClass));
+ if (superClass != null) {
+ bc_superfield.setIndex( cp.getFieldIndex( superClass));
+ bc_supermethod.setIndex(cp.getMethodIndex(superClass));
+ } else {
+ NOT_PRODUCT(bc_superfield.setIndex(null));
+ NOT_PRODUCT(bc_supermethod.setIndex(null));
+ }
+ CHECK;
+
+ for (int curIP = 0; ; curIP++) {
+ CHECK;
+ int curPC = (int)(wpoffset() - codeBase);
+ bcimap.add(curPC);
+ ensure_put_space(10); // covers most instrs w/o further bounds check
+ int bc = *opptr++ & 0xFF;
+
+ putu1_fast(bc);
+ // Note: See '--wp' below for pseudo-bytecodes like bc_end_marker.
+
+ bool isWide = false;
+ if (bc == bc_wide) {
+ bc = *opptr++ & 0xFF;
+ putu1_fast(bc);
+ isWide = true;
+ }
+ switch (bc) {
+ case bc_end_marker:
+ --wp; // not really part of the code
+ assert(opptr <= bc_codes.maxRP());
+ bc_codes.curRP() = opptr; // advance over this in bc_codes
+ goto doneScanningMethod;
+ case bc_tableswitch: // apc: (df, lo, hi, (hi-lo+1)*(label))
+ case bc_lookupswitch: // apc: (df, nc, nc*(case, label))
+ {
+ int caseCount = bc_case_count.getInt();
+ while (((wpoffset() - codeBase) % 4) != 0) putu1_fast(0);
+ ensure_put_space(30 + caseCount*8);
+ put_label(curIP, 4); //int df = bc_label.getInt();
+ if (bc == bc_tableswitch) {
+ int lo = bc_case_value.getInt();
+ int hi = lo + caseCount-1;
+ putu4(lo);
+ putu4(hi);
+ for (int j = 0; j < caseCount; j++) {
+ put_label(curIP, 4); //int lVal = bc_label.getInt();
+ //int cVal = lo + j;
+ }
+ } else {
+ putu4(caseCount);
+ for (int j = 0; j < caseCount; j++) {
+ int cVal = bc_case_value.getInt();
+ putu4(cVal);
+ put_label(curIP, 4); //int lVal = bc_label.getInt();
+ }
+ }
+ assert((int)to_bci(curIP) == curPC);
+ continue;
+ }
+ case bc_iinc:
+ {
+ int local = bc_local.getInt();
+ int delta = (isWide ? bc_short : bc_byte).getInt();
+ if (isWide) {
+ putu2(local);
+ putu2(delta);
+ } else {
+ putu1_fast(local);
+ putu1_fast(delta);
+ }
+ continue;
+ }
+ case bc_sipush:
+ {
+ int val = bc_short.getInt();
+ putu2(val);
+ continue;
+ }
+ case bc_bipush:
+ case bc_newarray:
+ {
+ int val = bc_byte.getByte();
+ putu1_fast(val);
+ continue;
+ }
+ case bc_ref_escape:
+ {
+ // Note that insnMap has one entry for this.
+ --wp; // not really part of the code
+ int size = bc_escrefsize.getInt();
+ entry* ref = bc_escref.getRefN();
+ CHECK;
+ switch (size) {
+ case 1: putu1ref(ref); break;
+ case 2: putref(ref); break;
+ default: assert(false);
+ }
+ continue;
+ }
+ case bc_byte_escape:
+ {
+ // Note that insnMap has one entry for all these bytes.
+ --wp; // not really part of the code
+ int size = bc_escsize.getInt();
+ if (size < 0) { assert(false); continue; }
+ ensure_put_space(size);
+ for (int j = 0; j < size; j++)
+ putu1_fast(bc_escbyte.getByte());
+ continue;
+ }
+ default:
+ if (is_invoke_init_op(bc)) {
+ origBC = bc_invokespecial;
+ entry* classRef;
+ switch (bc - _invokeinit_op) {
+ case _invokeinit_self_option: classRef = thisClass; break;
+ case _invokeinit_super_option: classRef = superClass; break;
+ default: assert(bc == _invokeinit_op+_invokeinit_new_option);
+ case _invokeinit_new_option: classRef = newClass; break;
+ }
+ wp[-1] = origBC; // overwrite with origBC
+ int coding = bc_initref.getInt();
+ // Find the nth overloading of <init> in classRef.
+ entry* ref = null;
+ cpindex* ix = cp.getMethodIndex(classRef);
+ CHECK;
+ for (int j = 0, which_init = 0; ; j++) {
+ ref = (ix == null)? null: ix->get(j);
+ if (ref == null) break; // oops, bad input
+ assert(ref->tag == CONSTANT_Methodref);
+ if (ref->memberDescr()->descrName() == cp.sym[cpool::s_lt_init_gt]) {
+ if (which_init++ == coding) break;
+ }
+ }
+ putref(ref);
+ continue;
+ }
+ bc_which = ref_band_for_self_op(bc, isAload, origBC);
+ if (bc_which != null) {
+ if (!isAload) {
+ wp[-1] = origBC; // overwrite with origBC
+ } else {
+ wp[-1] = bc_aload_0; // overwrite with _aload_0
+ // Note: insnMap keeps the _aload_0 separate.
+ bcimap.add(++curPC);
+ ++curIP;
+ putu1_fast(origBC);
+ }
+ entry* ref = bc_which->getRef();
+ CHECK;
+ putref(ref);
+ continue;
+ }
+ if (is_branch_op(bc)) {
+ //int lVal = bc_label.getInt();
+ if (bc < bc_goto_w) {
+ put_label(curIP, 2); //putu2(lVal & 0xFFFF);
+ } else {
+ assert(bc <= bc_jsr_w);
+ put_label(curIP, 4); //putu4(lVal);
+ }
+ assert((int)to_bci(curIP) == curPC);
+ continue;
+ }
+ bc_which = ref_band_for_op(bc);
+ if (bc_which != null) {
+ entry* ref = bc_which->getRefCommon(bc_which->ix, bc_which->nullOK);
+ CHECK;
+ if (ref == null && bc_which == &bc_classref) {
+ // Shorthand for class self-references.
+ ref = thisClass;
+ }
+ origBC = bc;
+ switch (bc) {
+ case _invokestatic_int:
+ origBC = bc_invokestatic;
+ break;
+ case _invokespecial_int:
+ origBC = bc_invokespecial;
+ break;
+ case bc_ildc:
+ case bc_cldc:
+ case bc_fldc:
+ case bc_sldc:
+ case bc_qldc:
+ origBC = bc_ldc;
+ break;
+ case bc_ildc_w:
+ case bc_cldc_w:
+ case bc_fldc_w:
+ case bc_sldc_w:
+ case bc_qldc_w:
+ origBC = bc_ldc_w;
+ break;
+ case bc_lldc2_w:
+ case bc_dldc2_w:
+ origBC = bc_ldc2_w;
+ break;
+ case bc_new:
+ newClass = ref;
+ break;
+ }
+ wp[-1] = origBC; // overwrite with origBC
+ if (origBC == bc_ldc) {
+ putu1ref(ref);
+ } else {
+ putref(ref);
+ }
+ if (origBC == bc_multianewarray) {
+ // Copy the trailing byte also.
+ int val = bc_byte.getByte();
+ putu1_fast(val);
+ } else if (origBC == bc_invokeinterface) {
+ int argSize = ref->memberDescr()->descrType()->typeSize();
+ putu1_fast(1 + argSize);
+ putu1_fast(0);
+ } else if (origBC == bc_invokedynamic) {
+ // pad the next two byte
+ putu1_fast(0);
+ putu1_fast(0);
+ }
+ continue;
+ }
+ if (is_local_slot_op(bc)) {
+ int local = bc_local.getInt();
+ if (isWide) {
+ putu2(local);
+ if (bc == bc_iinc) {
+ int iVal = bc_short.getInt();
+ putu2(iVal);
+ }
+ } else {
+ putu1_fast(local);
+ if (bc == bc_iinc) {
+ int iVal = bc_byte.getByte();
+ putu1_fast(iVal);
+ }
+ }
+ continue;
+ }
+ // Random bytecode. Just copy it.
+ assert(bc < bc_bytecode_limit);
+ }
+ }
+ doneScanningMethod:{}
+ //bcimap.add(curPC); // PC limit is already also in map, from bc_end_marker
+
+ // Armed with a bcimap, we can now fix up all the labels.
+ for (int i = 0; i < (int)code_fixup_type.size(); i++) {
+ int type = code_fixup_type.getByte(i);
+ byte* bp = wp_at(code_fixup_offset.get(i));
+ int curIP = code_fixup_source.get(i);
+ int destIP = curIP + bc_label.getInt();
+ int span = to_bci(destIP) - to_bci(curIP);
+ CHECK;
+ switch (type) {
+ case 2: putu2_at(bp, (ushort)span); break;
+ case 4: putu4_at(bp, span); break;
+ default: assert(false);
+ }
+ }
+}
+
+inline // called exactly once => inline
+void unpacker::write_code() {
+ int j;
+
+ int max_stack, max_locals, handler_count, cflags;
+ get_code_header(max_stack, max_locals, handler_count, cflags);
+
+ if (max_stack < 0) max_stack = code_max_stack.getInt();
+ if (max_locals < 0) max_locals = code_max_na_locals.getInt();
+ if (handler_count < 0) handler_count = code_handler_count.getInt();
+
+ int siglen = cur_descr->descrType()->typeSize();
+ CHECK;
+ if ((cur_descr_flags & ACC_STATIC) == 0) siglen++;
+ max_locals += siglen;
+
+ putu2(max_stack);
+ putu2(max_locals);
+ size_t bcbase = put_empty(4);
+
+ // Write the bytecodes themselves.
+ write_bc_ops();
+ CHECK;
+
+ byte* bcbasewp = wp_at(bcbase);
+ putu4_at(bcbasewp, (int)(wp - (bcbasewp+4))); // size of code attr
+
+ putu2(handler_count);
+ for (j = 0; j < handler_count; j++) {
+ int bii = code_handler_start_P.getInt();
+ putu2(to_bci(bii));
+ bii += code_handler_end_PO.getInt();
+ putu2(to_bci(bii));
+ bii += code_handler_catch_PO.getInt();
+ putu2(to_bci(bii));
+ putref(code_handler_class_RCN.getRefN());
+ CHECK;
+ }
+
+ julong indexBits = cflags;
+ if (cflags < 0) {
+ bool haveLongFlags = attr_defs[ATTR_CONTEXT_CODE].haveLongFlags();
+ indexBits = code_flags_hi.getLong(code_flags_lo, haveLongFlags);
+ }
+ write_attrs(ATTR_CONTEXT_CODE, indexBits);
+}
+
+int unpacker::write_attrs(int attrc, julong indexBits) {
+ CHECK_0;
+ if (indexBits == 0) {
+ // Quick short-circuit.
+ putu2(0);
+ return 0;
+ }
+
+ attr_definitions& ad = attr_defs[attrc];
+
+ int i, j, j2, idx, count;
+
+ int oiCount = 0;
+ if (ad.isPredefined(X_ATTR_OVERFLOW)
+ && (indexBits & ((julong)1<<X_ATTR_OVERFLOW)) != 0) {
+ indexBits -= ((julong)1<<X_ATTR_OVERFLOW);
+ oiCount = ad.xxx_attr_count().getInt();
+ }
+
+ int bitIndexes[X_ATTR_LIMIT_FLAGS_HI];
+ int biCount = 0;
+
+ // Fill bitIndexes with index bits, in order.
+ for (idx = 0; indexBits != 0; idx++, indexBits >>= 1) {
+ if ((indexBits & 1) != 0)
+ bitIndexes[biCount++] = idx;
+ }
+ assert(biCount <= (int)lengthof(bitIndexes));
+
+ // Write a provisional attribute count, perhaps to be corrected later.
+ int naOffset = (int)wpoffset();
+ int na0 = biCount + oiCount;
+ putu2(na0);
+
+ int na = 0;
+ for (i = 0; i < na0; i++) {
+ if (i < biCount)
+ idx = bitIndexes[i];
+ else
+ idx = ad.xxx_attr_indexes().getInt();
+ assert(ad.isIndex(idx));
+ entry* aname = null;
+ entry* ref; // scratch
+ size_t abase = put_empty(2+4);
+ CHECK_0;
+ if (idx < (int)ad.flag_limit && ad.isPredefined(idx)) {
+ // Switch on the attrc and idx simultaneously.
+ switch (ADH_BYTE(attrc, idx)) {
+
+ case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_OVERFLOW):
+ case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_OVERFLOW):
+ case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_OVERFLOW):
+ case ADH_BYTE(ATTR_CONTEXT_CODE, X_ATTR_OVERFLOW):
+ // no attribute at all, so back up on this one
+ wp = wp_at(abase);
+ continue;
+
+ case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_ClassFile_version):
+ cur_class_minver = class_ClassFile_version_minor_H.getInt();
+ cur_class_majver = class_ClassFile_version_major_H.getInt();
+ // back up; not a real attribute
+ wp = wp_at(abase);
+ continue;
+
+ case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_InnerClasses):
+ // note the existence of this attr, but save for later
+ if (cur_class_has_local_ics)
+ abort("too many InnerClasses attrs");
+ cur_class_has_local_ics = true;
+ wp = wp_at(abase);
+ continue;
+
+ case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_SourceFile):
+ aname = cp.sym[cpool::s_SourceFile];
+ ref = class_SourceFile_RUN.getRefN();
+ CHECK_0;
+ if (ref == null) {
+ bytes& n = cur_class->ref(0)->value.b;
+ // parse n = (<pkg>/)*<outer>?($<id>)*
+ int pkglen = lastIndexOf(SLASH_MIN, SLASH_MAX, n, (int)n.len)+1;
+ bytes prefix = n.slice(pkglen, n.len);
+ for (;;) {
+ // Work backwards, finding all '$', '#', etc.
+ int dollar = lastIndexOf(DOLLAR_MIN, DOLLAR_MAX, prefix, (int)prefix.len);
+ if (dollar < 0) break;
+ prefix = prefix.slice(0, dollar);
+ }
+ const char* suffix = ".java";
+ int len = (int)(prefix.len + strlen(suffix));
+ bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
+ name.strcat(prefix).strcat(suffix);
+ ref = cp.ensureUtf8(name);
+ }
+ putref(ref);
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_CLASS, CLASS_ATTR_EnclosingMethod):
+ aname = cp.sym[cpool::s_EnclosingMethod];
+ putref(class_EnclosingMethod_RC.getRefN());
+ CHECK_0;
+ putref(class_EnclosingMethod_RDN.getRefN());
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_FIELD, FIELD_ATTR_ConstantValue):
+ aname = cp.sym[cpool::s_ConstantValue];
+ putref(field_ConstantValue_KQ.getRefUsing(cp.getKQIndex()));
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Code):
+ aname = cp.sym[cpool::s_Code];
+ write_code();
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_Exceptions):
+ aname = cp.sym[cpool::s_Exceptions];
+ putu2(count = method_Exceptions_N.getInt());
+ for (j = 0; j < count; j++) {
+ putref(method_Exceptions_RC.getRefN());
+ CHECK_0;
+ }
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_METHOD, METHOD_ATTR_MethodParameters):
+ aname = cp.sym[cpool::s_MethodParameters];
+ putu1(count = method_MethodParameters_NB.getByte());
+ for (j = 0; j < count; j++) {
+ putref(method_MethodParameters_name_RUN.getRefN());
+ putu2(method_MethodParameters_flag_FH.getInt());
+ }
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_StackMapTable):
+ aname = cp.sym[cpool::s_StackMapTable];
+ // (keep this code aligned with its brother in unpacker::read_attrs)
+ putu2(count = code_StackMapTable_N.getInt());
+ for (j = 0; j < count; j++) {
+ int tag = code_StackMapTable_frame_T.getByte();
+ putu1(tag);
+ if (tag <= 127) {
+ // (64-127) [(2)]
+ if (tag >= 64) put_stackmap_type();
+ CHECK_0;
+ } else if (tag <= 251) {
+ // (247) [(1)(2)]
+ // (248-251) [(1)]
+ if (tag >= 247) putu2(code_StackMapTable_offset.getInt());
+ if (tag == 247) put_stackmap_type();
+ CHECK_0;
+ } else if (tag <= 254) {
+ // (252) [(1)(2)]
+ // (253) [(1)(2)(2)]
+ // (254) [(1)(2)(2)(2)]
+ putu2(code_StackMapTable_offset.getInt());
+ CHECK_0;
+ for (int k = (tag - 251); k > 0; k--) {
+ put_stackmap_type();
+ CHECK_0;
+ }
+ } else {
+ // (255) [(1)NH[(2)]NH[(2)]]
+ putu2(code_StackMapTable_offset.getInt());
+ putu2(j2 = code_StackMapTable_local_N.getInt());
+ while (j2-- > 0) {put_stackmap_type(); CHECK_0;}
+ putu2(j2 = code_StackMapTable_stack_N.getInt());
+ while (j2-- > 0) {put_stackmap_type(); CHECK_0;}
+ }
+ }
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LineNumberTable):
+ aname = cp.sym[cpool::s_LineNumberTable];
+ putu2(count = code_LineNumberTable_N.getInt());
+ for (j = 0; j < count; j++) {
+ putu2(to_bci(code_LineNumberTable_bci_P.getInt()));
+ CHECK_0;
+ putu2(code_LineNumberTable_line.getInt());
+ }
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTable):
+ aname = cp.sym[cpool::s_LocalVariableTable];
+ putu2(count = code_LocalVariableTable_N.getInt());
+ for (j = 0; j < count; j++) {
+ int bii = code_LocalVariableTable_bci_P.getInt();
+ int bci = to_bci(bii);
+ CHECK_0;
+ putu2(bci);
+ bii += code_LocalVariableTable_span_O.getInt();
+ putu2(to_bci(bii) - bci);
+ CHECK_0;
+ putref(code_LocalVariableTable_name_RU.getRefN());
+ CHECK_0;
+ putref(code_LocalVariableTable_type_RS.getRefN());
+ CHECK_0;
+ putu2(code_LocalVariableTable_slot.getInt());
+ }
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_CODE, CODE_ATTR_LocalVariableTypeTable):
+ aname = cp.sym[cpool::s_LocalVariableTypeTable];
+ putu2(count = code_LocalVariableTypeTable_N.getInt());
+ for (j = 0; j < count; j++) {
+ int bii = code_LocalVariableTypeTable_bci_P.getInt();
+ int bci = to_bci(bii);
+ CHECK_0;
+ putu2(bci);
+ bii += code_LocalVariableTypeTable_span_O.getInt();
+ putu2(to_bci(bii) - bci);
+ CHECK_0;
+ putref(code_LocalVariableTypeTable_name_RU.getRefN());
+ CHECK_0;
+ putref(code_LocalVariableTypeTable_type_RS.getRefN());
+ CHECK_0;
+ putu2(code_LocalVariableTypeTable_slot.getInt());
+ }
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Signature):
+ aname = cp.sym[cpool::s_Signature];
+ putref(class_Signature_RS.getRefN());
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Signature):
+ aname = cp.sym[cpool::s_Signature];
+ putref(field_Signature_RS.getRefN());
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Signature):
+ aname = cp.sym[cpool::s_Signature];
+ putref(method_Signature_RS.getRefN());
+ break;
+
+ case ADH_BYTE(ATTR_CONTEXT_CLASS, X_ATTR_Deprecated):
+ case ADH_BYTE(ATTR_CONTEXT_FIELD, X_ATTR_Deprecated):
+ case ADH_BYTE(ATTR_CONTEXT_METHOD, X_ATTR_Deprecated):
+ aname = cp.sym[cpool::s_Deprecated];
+ // no data
+ break;
+ }
+ }
+ CHECK_0;
+ if (aname == null) {
+ // Unparse a compressor-defined attribute.
+ layout_definition* lo = ad.getLayout(idx);
+ if (lo == null) {
+ abort("bad layout index");
+ break;
+ }
+ assert((int)lo->idx == idx);
+ aname = lo->nameEntry;
+ if (aname == null) {
+ bytes nameb; nameb.set(lo->name);
+ aname = cp.ensureUtf8(nameb);
+ // Cache the name entry for next time.
+ lo->nameEntry = aname;
+ }
+ // Execute all the layout elements.
+ band** bands = lo->bands();
+ if (lo->hasCallables()) {
+ band& cble = *bands[0];
+ assert(cble.le_kind == EK_CBLE);
+ bands = cble.le_body;
+ }
+ putlayout(bands);
+ }
+
+ if (aname == null)
+ abort("bad attribute index");
+ CHECK_0;
+
+ byte* wp1 = wp;
+ wp = wp_at(abase);
+
+ // DTRT if this attr is on the strip-list.
+ // (Note that we emptied the data out of the band first.)
+ if (ad.strip_names.contains(aname)) {
+ continue;
+ }
+
+ // patch the name and length
+ putref(aname);
+ putu4((int)(wp1 - (wp+4))); // put the attr size
+ wp = wp1;
+ na++; // count the attrs actually written
+ }
+
+ if (na != na0)
+ // Refresh changed count.
+ putu2_at(wp_at(naOffset), na);
+ return na;
+}
+
+void unpacker::write_members(int num, int attrc) {
+ CHECK;
+ attr_definitions& ad = attr_defs[attrc];
+ band& member_flags_hi = ad.xxx_flags_hi();
+ band& member_flags_lo = ad.xxx_flags_lo();
+ band& member_descr = (&member_flags_hi)[e_field_descr-e_field_flags_hi];
+ assert(endsWith(member_descr.name, "_descr"));
+ assert(endsWith(member_flags_lo.name, "_flags_lo"));
+ assert(endsWith(member_flags_lo.name, "_flags_lo"));
+ bool haveLongFlags = ad.haveLongFlags();
+
+ putu2(num);
+ julong indexMask = attr_defs[attrc].flagIndexMask();
+ for (int i = 0; i < num; i++) {
+ julong mflags = member_flags_hi.getLong(member_flags_lo, haveLongFlags);
+ entry* mdescr = member_descr.getRef();
+ cur_descr = mdescr;
+ putu2(cur_descr_flags = (ushort)(mflags & ~indexMask));
+ CHECK;
+ putref(mdescr->descrName());
+ putref(mdescr->descrType());
+ write_attrs(attrc, (mflags & indexMask));
+ CHECK;
+ }
+ cur_descr = null;
+}
+
+extern "C"
+int raw_address_cmp(const void* p1p, const void* p2p) {
+ void* p1 = *(void**) p1p;
+ void* p2 = *(void**) p2p;
+ return (p1 > p2)? 1: (p1 < p2)? -1: 0;
+}
+
+/*
+ * writes the InnerClass attributes and returns the updated attribute
+ */
+int unpacker::write_ics(int naOffset, int na) {
+#ifdef ASSERT
+ for (int i = 0; i < ic_count; i++) {
+ assert(!ics[i].requested);
+ }
+#endif
+ // First, consult the global table and the local constant pool,
+ // and decide on the globally implied inner classes.
+ // (Note that we read the cpool's outputIndex fields, but we
+ // do not yet write them, since the local IC attribute might
+ // reverse a global decision to declare an IC.)
+ assert(requested_ics.length() == 0); // must start out empty
+ // Always include all members of the current class.
+ for (inner_class* child = cp.getFirstChildIC(cur_class);
+ child != null;
+ child = cp.getNextChildIC(child)) {
+ child->requested = true;
+ requested_ics.add(child);
+ }
+ // And, for each inner class mentioned in the constant pool,
+ // include it and all its outers.
+ int noes = cp.outputEntries.length();
+ entry** oes = (entry**) cp.outputEntries.base();
+ for (int i = 0; i < noes; i++) {
+ entry& e = *oes[i];
+ if (e.tag != CONSTANT_Class) continue; // wrong sort
+ for (inner_class* ic = cp.getIC(&e);
+ ic != null;
+ ic = cp.getIC(ic->outer)) {
+ if (ic->requested) break; // already processed
+ ic->requested = true;
+ requested_ics.add(ic);
+ }
+ }
+ int local_ics = requested_ics.length();
+ // Second, consult a local attribute (if any) and adjust the global set.
+ inner_class* extra_ics = null;
+ int num_extra_ics = 0;
+ if (cur_class_has_local_ics) {
+ // adjust the set of ICs by symmetric set difference w/ the locals
+ num_extra_ics = class_InnerClasses_N.getInt();
+ if (num_extra_ics == 0) {
+ // Explicit zero count has an irregular meaning: It deletes the attr.
+ local_ics = 0; // (short-circuit all tests of requested bits)
+ } else {
+ extra_ics = T_NEW(inner_class, num_extra_ics);
+ // Note: extra_ics will be freed up by next call to get_next_file().
+ }
+ }
+ for (int i = 0; i < num_extra_ics; i++) {
+ inner_class& extra_ic = extra_ics[i];
+ extra_ic.inner = class_InnerClasses_RC.getRef();
+ CHECK_0;
+ // Find the corresponding equivalent global IC:
+ inner_class* global_ic = cp.getIC(extra_ic.inner);
+ int flags = class_InnerClasses_F.getInt();
+ if (flags == 0) {
+ // The extra IC is simply a copy of a global IC.
+ if (global_ic == null) {
+ abort("bad reference to inner class");
+ break;
+ }
+ extra_ic = (*global_ic); // fill in rest of fields
+ } else {
+ flags &= ~ACC_IC_LONG_FORM; // clear high bit if set to get clean zero
+ extra_ic.flags = flags;
+ extra_ic.outer = class_InnerClasses_outer_RCN.getRefN();
+ CHECK_0;
+ extra_ic.name = class_InnerClasses_name_RUN.getRefN();
+ CHECK_0;
+ // Detect if this is an exact copy of the global tuple.
+ if (global_ic != null) {
+ if (global_ic->flags != extra_ic.flags ||
+ global_ic->outer != extra_ic.outer ||
+ global_ic->name != extra_ic.name) {
+ global_ic = null; // not really the same, so break the link
+ }
+ }
+ }
+ if (global_ic != null && global_ic->requested) {
+ // This local repetition reverses the globally implied request.
+ global_ic->requested = false;
+ extra_ic.requested = false;
+ local_ics -= 1;
+ } else {
+ // The global either does not exist, or is not yet requested.
+ extra_ic.requested = true;
+ local_ics += 1;
+ }
+ }
+ // Finally, if there are any that survived, put them into an attribute.
+ // (Note that a zero-count attribute is always deleted.)
+ // The putref calls below will tell the constant pool to add any
+ // necessary local CP references to support the InnerClasses attribute.
+ // This step must be the last round of additions to the local CP.
+ if (local_ics > 0) {
+ // append the new attribute:
+ putref(cp.sym[cpool::s_InnerClasses]);
+ putu4(2 + 2*4*local_ics);
+ putu2(local_ics);
+ PTRLIST_QSORT(requested_ics, raw_address_cmp);
+ int num_global_ics = requested_ics.length();
+ for (int i = -num_global_ics; i < num_extra_ics; i++) {
+ inner_class* ic;
+ if (i < 0)
+ ic = (inner_class*) requested_ics.get(num_global_ics+i);
+ else
+ ic = &extra_ics[i];
+ if (ic->requested) {
+ putref(ic->inner);
+ putref(ic->outer);
+ putref(ic->name);
+ putu2(ic->flags);
+ NOT_PRODUCT(local_ics--);
+ }
+ }
+ assert(local_ics == 0); // must balance
+ putu2_at(wp_at(naOffset), ++na); // increment class attr count
+ }
+
+ // Tidy up global 'requested' bits:
+ for (int i = requested_ics.length(); --i >= 0; ) {
+ inner_class* ic = (inner_class*) requested_ics.get(i);
+ ic->requested = false;
+ }
+ requested_ics.empty();
+ return na;
+}
+
+/*
+ * Writes the BootstrapMethods attribute and returns the updated attribute count
+ */
+int unpacker::write_bsms(int naOffset, int na) {
+ cur_class_local_bsm_count = cp.requested_bsms.length();
+ if (cur_class_local_bsm_count > 0) {
+ int noes = cp.outputEntries.length();
+ entry** oes = (entry**) cp.outputEntries.base();
+ PTRLIST_QSORT(cp.requested_bsms, outputEntry_cmp);
+ // append the BootstrapMethods attribute (after the InnerClasses attr):
+ putref(cp.sym[cpool::s_BootstrapMethods]);
+ // make a note of the offset, for lazy patching
+ int sizeOffset = (int)wpoffset();
+ putu4(-99); // attr size will be patched
+ putu2(cur_class_local_bsm_count);
+ int written_bsms = 0;
+ for (int i = 0 ; i < cur_class_local_bsm_count ; i++) {
+ entry* e = (entry*)cp.requested_bsms.get(i);
+ assert(e->outputIndex != REQUESTED_NONE);
+ // output index is the index within the array
+ e->outputIndex = i;
+ putref(e->refs[0]); // bsm
+ putu2(e->nrefs-1); // number of args after bsm
+ for (int j = 1; j < e->nrefs; j++) {
+ putref(e->refs[j]);
+ }
+ written_bsms += 1;
+ }
+ assert(written_bsms == cur_class_local_bsm_count); // else insane
+ byte* sizewp = wp_at(sizeOffset);
+ putu4_at(sizewp, (int)(wp - (sizewp+4))); // size of code attr
+ putu2_at(wp_at(naOffset), ++na); // increment class attr count
+ }
+ return na;
+}
+
+void unpacker::write_classfile_tail() {
+
+ cur_classfile_tail.empty();
+ set_output(&cur_classfile_tail);
+
+ int i, num;
+
+ attr_definitions& ad = attr_defs[ATTR_CONTEXT_CLASS];
+
+ bool haveLongFlags = ad.haveLongFlags();
+ julong kflags = class_flags_hi.getLong(class_flags_lo, haveLongFlags);
+ julong indexMask = ad.flagIndexMask();
+
+ cur_class = class_this.getRef();
+ CHECK;
+ cur_super = class_super.getRef();
+ CHECK;
+
+ if (cur_super == cur_class) cur_super = null;
+ // special representation for java/lang/Object
+
+ putu2((ushort)(kflags & ~indexMask));
+ putref(cur_class);
+ putref(cur_super);
+
+ putu2(num = class_interface_count.getInt());
+ for (i = 0; i < num; i++) {
+ putref(class_interface.getRef());
+ CHECK;
+ }
+
+ write_members(class_field_count.getInt(), ATTR_CONTEXT_FIELD);
+ write_members(class_method_count.getInt(), ATTR_CONTEXT_METHOD);
+ CHECK;
+
+ cur_class_has_local_ics = false; // may be set true by write_attrs
+
+ int naOffset = (int)wpoffset(); // note the attr count location
+ int na = write_attrs(ATTR_CONTEXT_CLASS, (kflags & indexMask));
+ CHECK;
+
+ na = write_bsms(naOffset, na);
+ CHECK;
+
+ // choose which inner classes (if any) pertain to k:
+ na = write_ics(naOffset, na);
+ CHECK;
+
+ close_output();
+ cp.computeOutputIndexes();
+
+ // rewrite CP references in the tail
+ int nextref = 0;
+ for (i = 0; i < (int)class_fixup_type.size(); i++) {
+ int type = class_fixup_type.getByte(i);
+ byte* fixp = wp_at(class_fixup_offset.get(i));
+ entry* e = (entry*)class_fixup_ref.get(nextref++);
+ int idx = e->getOutputIndex();
+ switch (type) {
+ case 1: putu1_at(fixp, idx); break;
+ case 2: putu2_at(fixp, idx); break;
+ default: assert(false); // should not reach here
+ }
+ }
+ CHECK;
+}
+
+void unpacker::write_classfile_head() {
+ cur_classfile_head.empty();
+ set_output(&cur_classfile_head);
+
+ putu4(JAVA_MAGIC);
+ putu2(cur_class_minver);
+ putu2(cur_class_majver);
+ putu2(cp.outputIndexLimit);
+
+ int checkIndex = 1;
+ int noes = cp.outputEntries.length();
+ entry** oes = (entry**) cp.outputEntries.base();
+ for (int i = 0; i < noes; i++) {
+ entry& e = *oes[i];
+ assert(e.getOutputIndex() == checkIndex++);
+ byte tag = e.tag;
+ assert(tag != CONSTANT_Signature);
+ putu1(tag);
+ switch (tag) {
+ case CONSTANT_Utf8:
+ putu2((int)e.value.b.len);
+ put_bytes(e.value.b);
+ break;
+ case CONSTANT_Integer:
+ case CONSTANT_Float:
+ putu4(e.value.i);
+ break;
+ case CONSTANT_Long:
+ case CONSTANT_Double:
+ putu8(e.value.l);
+ assert(checkIndex++);
+ break;
+ case CONSTANT_Class:
+ case CONSTANT_String:
+ // just write the ref
+ putu2(e.refs[0]->getOutputIndex());
+ break;
+ case CONSTANT_Fieldref:
+ case CONSTANT_Methodref:
+ case CONSTANT_InterfaceMethodref:
+ case CONSTANT_NameandType:
+ case CONSTANT_InvokeDynamic:
+ putu2(e.refs[0]->getOutputIndex());
+ putu2(e.refs[1]->getOutputIndex());
+ break;
+ case CONSTANT_MethodHandle:
+ putu1(e.value.i);
+ putu2(e.refs[0]->getOutputIndex());
+ break;
+ case CONSTANT_MethodType:
+ putu2(e.refs[0]->getOutputIndex());
+ break;
+ case CONSTANT_BootstrapMethod: // should not happen
+ default:
+ abort(ERROR_INTERNAL);
+ }
+ }
+
+#ifndef PRODUCT
+ total_cp_size[0] += cp.outputIndexLimit;
+ total_cp_size[1] += (int)cur_classfile_head.size();
+#endif
+ close_output();
+}
+
+unpacker::file* unpacker::get_next_file() {
+ CHECK_0;
+ free_temps();
+ if (files_remaining == 0) {
+ // Leave a clue that we're exhausted.
+ cur_file.name = null;
+ cur_file.size = null;
+ if (archive_size != 0) {
+ julong predicted_size = unsized_bytes_read + archive_size;
+ if (predicted_size != bytes_read)
+ abort("archive header had incorrect size");
+ }
+ return null;
+ }
+ files_remaining -= 1;
+ assert(files_written < file_count || classes_written < class_count);
+ cur_file.name = "";
+ cur_file.size = 0;
+ cur_file.modtime = default_file_modtime;
+ cur_file.options = default_file_options;
+ cur_file.data[0].set(null, 0);
+ cur_file.data[1].set(null, 0);
+ if (files_written < file_count) {
+ entry* e = file_name.getRef();
+ CHECK_0;
+ cur_file.name = e->utf8String();
+ CHECK_0;
+ bool haveLongSize = (testBit(archive_options, AO_HAVE_FILE_SIZE_HI));
+ cur_file.size = file_size_hi.getLong(file_size_lo, haveLongSize);
+ if (testBit(archive_options, AO_HAVE_FILE_MODTIME))
+ cur_file.modtime += file_modtime.getInt(); //relative to archive modtime
+ if (testBit(archive_options, AO_HAVE_FILE_OPTIONS))
+ cur_file.options |= file_options.getInt() & ~suppress_file_options;
+ } else if (classes_written < class_count) {
+ // there is a class for a missing file record
+ cur_file.options |= FO_IS_CLASS_STUB;
+ }
+ if ((cur_file.options & FO_IS_CLASS_STUB) != 0) {
+ assert(classes_written < class_count);
+ classes_written += 1;
+ if (cur_file.size != 0) {
+ abort("class file size transmitted");
+ return null;
+ }
+ reset_cur_classfile();
+
+ // write the meat of the classfile:
+ write_classfile_tail();
+ cur_file.data[1] = cur_classfile_tail.b;
+ CHECK_0;
+
+ // write the CP of the classfile, second:
+ write_classfile_head();
+ cur_file.data[0] = cur_classfile_head.b;
+ CHECK_0;
+
+ cur_file.size += cur_file.data[0].len;
+ cur_file.size += cur_file.data[1].len;
+ if (cur_file.name[0] == '\0') {
+ bytes& prefix = cur_class->ref(0)->value.b;
+ const char* suffix = ".class";
+ int len = (int)(prefix.len + strlen(suffix));
+ bytes name; name.set(T_NEW(byte, add_size(len, 1)), len);
+ cur_file.name = name.strcat(prefix).strcat(suffix).strval();
+ }
+ } else {
+ // If there is buffered file data, produce a pointer to it.
+ if (cur_file.size != (size_t) cur_file.size) {
+ // Silly size specified.
+ abort("resource file too large");
+ return null;
+ }
+ size_t rpleft = input_remaining();
+ if (rpleft > 0) {
+ if (rpleft > cur_file.size)
+ rpleft = (size_t) cur_file.size;
+ cur_file.data[0].set(rp, rpleft);
+ rp += rpleft;
+ }
+ if (rpleft < cur_file.size) {
+ // Caller must read the rest.
+ size_t fleft = (size_t)cur_file.size - rpleft;
+ bytes_read += fleft; // Credit it to the overall archive size.
+ }
+ }
+ CHECK_0;
+ bytes_written += cur_file.size;
+ files_written += 1;
+ return &cur_file;
+}
+
+// Write a file to jarout.
+void unpacker::write_file_to_jar(unpacker::file* f) {
+ size_t htsize = f->data[0].len + f->data[1].len;
+ julong fsize = f->size;
+#ifndef PRODUCT
+ if (nowrite NOT_PRODUCT(|| skipfiles-- > 0)) {
+ PRINTCR((2,"would write %d bytes to %s", (int) fsize, f->name));
+ return;
+ }
+#endif
+ if (htsize == fsize) {
+ jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
+ f->data[0], f->data[1]);
+ } else {
+ assert(input_remaining() == 0);
+ bytes part1, part2;
+ part1.len = f->data[0].len;
+ part1.set(T_NEW(byte, part1.len), part1.len);
+ part1.copyFrom(f->data[0]);
+ assert(f->data[1].len == 0);
+ part2.set(null, 0);
+ size_t fleft = (size_t) fsize - part1.len;
+ assert(bytes_read > fleft); // part2 already credited by get_next_file
+ bytes_read -= fleft;
+ if (fleft > 0) {
+ // Must read some more.
+ if (live_input) {
+ // Stop using the input buffer. Make a new one:
+ if (free_input) input.free();
+ input.init(fleft > (1<<12) ? fleft : (1<<12));
+ free_input = true;
+ live_input = false;
+ } else {
+ // Make it large enough.
+ assert(free_input); // must be reallocable
+ input.ensureSize(fleft);
+ }
+ rplimit = rp = input.base();
+ CHECK;
+ input.setLimit(rp + fleft);
+ if (!ensure_input(fleft))
+ abort("EOF reading resource file");
+ part2.ptr = input_scan();
+ part2.len = input_remaining();
+ rplimit = rp = input.base();
+ }
+ jarout->addJarEntry(f->name, f->deflate_hint(), f->modtime,
+ part1, part2);
+ }
+ if (verbose >= 3) {
+ fprintf(errstrm, "Wrote "
+ LONG_LONG_FORMAT " bytes to: %s\n", fsize, f->name);
+ }
+}
+
+// Redirect the stdio to the specified file in the unpack.log.file option
+void unpacker::redirect_stdio() {
+ if (log_file == null) {
+ log_file = LOGFILE_STDOUT;
+ }
+ if (log_file == errstrm_name)
+ // Nothing more to be done.
+ return;
+ errstrm_name = log_file;
+ if (strcmp(log_file, LOGFILE_STDERR) == 0) {
+ errstrm = stderr;
+ return;
+ } else if (strcmp(log_file, LOGFILE_STDOUT) == 0) {
+ errstrm = stdout;
+ return;
+ } else if (log_file[0] != '\0' && (errstrm = fopen(log_file,"a+")) != NULL) {
+ return;
+ } else {
+ fprintf(stderr, "Can not open log file %s\n", log_file);
+ // Last resort
+ // (Do not use stdout, since it might be jarout->jarfp.)
+ errstrm = stderr;
+ log_file = errstrm_name = LOGFILE_STDERR;
+ }
+}
+
+#ifndef PRODUCT
+int unpacker::printcr_if_verbose(int level, const char* fmt ...) {
+ if (verbose < level) return 0;
+ va_list vl;
+ va_start(vl, fmt);
+ char fmtbuf[300];
+ strcpy(fmtbuf+100, fmt);
+ strcat(fmtbuf+100, "\n");
+ char* fmt2 = fmtbuf+100;
+ while (level-- > 0) *--fmt2 = ' ';
+ vfprintf(errstrm, fmt2, vl);
+ return 1; // for ?: usage
+}
+#endif
+
+void unpacker::abort(const char* message) {
+ if (message == null) message = "error unpacking archive";
+#ifdef UNPACK_JNI
+ if (message[0] == '@') { // secret convention for sprintf
+ bytes saved;
+ saved.saveFrom(message+1);
+ mallocs.add(message = saved.strval());
+ }
+ abort_message = message;
+ return;
+#else
+ if (message[0] == '@') ++message;
+ fprintf(errstrm, "%s\n", message);
+#ifndef PRODUCT
+ fflush(errstrm);
+ ::abort();
+#else
+ exit(-1);
+#endif
+#endif // JNI
+}