--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/memory/allocationStats.hpp Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,136 @@
+/*
+ * Copyright 2001-2005 Sun Microsystems, Inc. All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+class AllocationStats VALUE_OBJ_CLASS_SPEC {
+ // A duration threshold (in ms) used to filter
+ // possibly unreliable samples.
+ static float _threshold;
+
+ // We measure the demand between the end of the previous sweep and
+ // beginning of this sweep:
+ // Count(end_last_sweep) - Count(start_this_sweep)
+ // + splitBirths(between) - splitDeaths(between)
+ // The above number divided by the time since the start [END???] of the
+ // previous sweep gives us a time rate of demand for blocks
+ // of this size. We compute a padded average of this rate as
+ // our current estimate for the time rate of demand for blocks
+ // of this size. Similarly, we keep a padded average for the time
+ // between sweeps. Our current estimate for demand for blocks of
+ // this size is then simply computed as the product of these two
+ // estimates.
+ AdaptivePaddedAverage _demand_rate_estimate;
+
+ ssize_t _desired; // Estimate computed as described above
+ ssize_t _coalDesired; // desired +/- small-percent for tuning coalescing
+
+ ssize_t _surplus; // count - (desired +/- small-percent),
+ // used to tune splitting in best fit
+ ssize_t _bfrSurp; // surplus at start of current sweep
+ ssize_t _prevSweep; // count from end of previous sweep
+ ssize_t _beforeSweep; // count from before current sweep
+ ssize_t _coalBirths; // additional chunks from coalescing
+ ssize_t _coalDeaths; // loss from coalescing
+ ssize_t _splitBirths; // additional chunks from splitting
+ ssize_t _splitDeaths; // loss from splitting
+ size_t _returnedBytes; // number of bytes returned to list.
+ public:
+ void initialize() {
+ AdaptivePaddedAverage* dummy =
+ new (&_demand_rate_estimate) AdaptivePaddedAverage(CMS_FLSWeight,
+ CMS_FLSPadding);
+ _desired = 0;
+ _coalDesired = 0;
+ _surplus = 0;
+ _bfrSurp = 0;
+ _prevSweep = 0;
+ _beforeSweep = 0;
+ _coalBirths = 0;
+ _coalDeaths = 0;
+ _splitBirths = 0;
+ _splitDeaths = 0;
+ _returnedBytes = 0;
+ }
+
+ AllocationStats() {
+ initialize();
+ }
+ // The rate estimate is in blocks per second.
+ void compute_desired(size_t count,
+ float inter_sweep_current,
+ float inter_sweep_estimate) {
+ // If the latest inter-sweep time is below our granularity
+ // of measurement, we may call in here with
+ // inter_sweep_current == 0. However, even for suitably small
+ // but non-zero inter-sweep durations, we may not trust the accuracy
+ // of accumulated data, since it has not been "integrated"
+ // (read "low-pass-filtered") long enough, and would be
+ // vulnerable to noisy glitches. In such cases, we
+ // ignore the current sample and use currently available
+ // historical estimates.
+ if (inter_sweep_current > _threshold) {
+ ssize_t demand = prevSweep() - count + splitBirths() - splitDeaths();
+ float rate = ((float)demand)/inter_sweep_current;
+ _demand_rate_estimate.sample(rate);
+ _desired = (ssize_t)(_demand_rate_estimate.padded_average()
+ *inter_sweep_estimate);
+ }
+ }
+
+ ssize_t desired() const { return _desired; }
+ ssize_t coalDesired() const { return _coalDesired; }
+ void set_coalDesired(ssize_t v) { _coalDesired = v; }
+
+ ssize_t surplus() const { return _surplus; }
+ void set_surplus(ssize_t v) { _surplus = v; }
+ void increment_surplus() { _surplus++; }
+ void decrement_surplus() { _surplus--; }
+
+ ssize_t bfrSurp() const { return _bfrSurp; }
+ void set_bfrSurp(ssize_t v) { _bfrSurp = v; }
+ ssize_t prevSweep() const { return _prevSweep; }
+ void set_prevSweep(ssize_t v) { _prevSweep = v; }
+ ssize_t beforeSweep() const { return _beforeSweep; }
+ void set_beforeSweep(ssize_t v) { _beforeSweep = v; }
+
+ ssize_t coalBirths() const { return _coalBirths; }
+ void set_coalBirths(ssize_t v) { _coalBirths = v; }
+ void increment_coalBirths() { _coalBirths++; }
+
+ ssize_t coalDeaths() const { return _coalDeaths; }
+ void set_coalDeaths(ssize_t v) { _coalDeaths = v; }
+ void increment_coalDeaths() { _coalDeaths++; }
+
+ ssize_t splitBirths() const { return _splitBirths; }
+ void set_splitBirths(ssize_t v) { _splitBirths = v; }
+ void increment_splitBirths() { _splitBirths++; }
+
+ ssize_t splitDeaths() const { return _splitDeaths; }
+ void set_splitDeaths(ssize_t v) { _splitDeaths = v; }
+ void increment_splitDeaths() { _splitDeaths++; }
+
+ NOT_PRODUCT(
+ size_t returnedBytes() const { return _returnedBytes; }
+ void set_returnedBytes(size_t v) { _returnedBytes = v; }
+ )
+};