hotspot/src/share/vm/interpreter/interpreterRuntime.cpp
changeset 1 489c9b5090e2
child 2534 08dac9ce0cd7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/interpreter/interpreterRuntime.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1151 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_interpreterRuntime.cpp.incl"
+
+class UnlockFlagSaver {
+  private:
+    JavaThread* _thread;
+    bool _do_not_unlock;
+  public:
+    UnlockFlagSaver(JavaThread* t) {
+      _thread = t;
+      _do_not_unlock = t->do_not_unlock_if_synchronized();
+      t->set_do_not_unlock_if_synchronized(false);
+    }
+    ~UnlockFlagSaver() {
+      _thread->set_do_not_unlock_if_synchronized(_do_not_unlock);
+    }
+};
+
+//------------------------------------------------------------------------------------------------------------------------
+// State accessors
+
+void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread *thread) {
+  last_frame(thread).interpreter_frame_set_bcp(bcp);
+  if (ProfileInterpreter) {
+    // ProfileTraps uses MDOs independently of ProfileInterpreter.
+    // That is why we must check both ProfileInterpreter and mdo != NULL.
+    methodDataOop mdo = last_frame(thread).interpreter_frame_method()->method_data();
+    if (mdo != NULL) {
+      NEEDS_CLEANUP;
+      last_frame(thread).interpreter_frame_set_mdp(mdo->bci_to_dp(last_frame(thread).interpreter_frame_bci()));
+    }
+  }
+}
+
+//------------------------------------------------------------------------------------------------------------------------
+// Constants
+
+
+IRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* thread, bool wide))
+  // access constant pool
+  constantPoolOop pool = method(thread)->constants();
+  int index = wide ? two_byte_index(thread) : one_byte_index(thread);
+  constantTag tag = pool->tag_at(index);
+
+  if (tag.is_unresolved_klass() || tag.is_klass()) {
+    klassOop klass = pool->klass_at(index, CHECK);
+    oop java_class = klass->klass_part()->java_mirror();
+    thread->set_vm_result(java_class);
+  } else {
+#ifdef ASSERT
+    // If we entered this runtime routine, we believed the tag contained
+    // an unresolved string, an unresolved class or a resolved class.
+    // However, another thread could have resolved the unresolved string
+    // or class by the time we go there.
+    assert(tag.is_unresolved_string()|| tag.is_string(), "expected string");
+#endif
+    oop s_oop = pool->string_at(index, CHECK);
+    thread->set_vm_result(s_oop);
+  }
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Allocation
+
+IRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* thread, constantPoolOopDesc* pool, int index))
+  klassOop k_oop = pool->klass_at(index, CHECK);
+  instanceKlassHandle klass (THREAD, k_oop);
+
+  // Make sure we are not instantiating an abstract klass
+  klass->check_valid_for_instantiation(true, CHECK);
+
+  // Make sure klass is initialized
+  klass->initialize(CHECK);
+
+  // At this point the class may not be fully initialized
+  // because of recursive initialization. If it is fully
+  // initialized & has_finalized is not set, we rewrite
+  // it into its fast version (Note: no locking is needed
+  // here since this is an atomic byte write and can be
+  // done more than once).
+  //
+  // Note: In case of classes with has_finalized we don't
+  //       rewrite since that saves us an extra check in
+  //       the fast version which then would call the
+  //       slow version anyway (and do a call back into
+  //       Java).
+  //       If we have a breakpoint, then we don't rewrite
+  //       because the _breakpoint bytecode would be lost.
+  oop obj = klass->allocate_instance(CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* thread, BasicType type, jint size))
+  oop obj = oopFactory::new_typeArray(type, size, CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* thread, constantPoolOopDesc* pool, int index, jint size))
+  // Note: no oopHandle for pool & klass needed since they are not used
+  //       anymore after new_objArray() and no GC can happen before.
+  //       (This may have to change if this code changes!)
+  klassOop  klass = pool->klass_at(index, CHECK);
+  objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* thread, jint* first_size_address))
+  // We may want to pass in more arguments - could make this slightly faster
+  constantPoolOop constants = method(thread)->constants();
+  int          i = two_byte_index(thread);
+  klassOop klass = constants->klass_at(i, CHECK);
+  int   nof_dims = number_of_dimensions(thread);
+  assert(oop(klass)->is_klass(), "not a class");
+  assert(nof_dims >= 1, "multianewarray rank must be nonzero");
+
+  // We must create an array of jints to pass to multi_allocate.
+  ResourceMark rm(thread);
+  const int small_dims = 10;
+  jint dim_array[small_dims];
+  jint *dims = &dim_array[0];
+  if (nof_dims > small_dims) {
+    dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims);
+  }
+  for (int index = 0; index < nof_dims; index++) {
+    // offset from first_size_address is addressed as local[index]
+    int n = Interpreter::local_offset_in_bytes(index)/jintSize;
+    dims[index] = first_size_address[n];
+  }
+  oop obj = arrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK);
+  thread->set_vm_result(obj);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
+  assert(obj->is_oop(), "must be a valid oop");
+  assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
+  instanceKlass::register_finalizer(instanceOop(obj), CHECK);
+IRT_END
+
+
+// Quicken instance-of and check-cast bytecodes
+IRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* thread))
+  // Force resolving; quicken the bytecode
+  int which = two_byte_index(thread);
+  constantPoolOop cpool = method(thread)->constants();
+  // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded
+  // program we might have seen an unquick'd bytecode in the interpreter but have another
+  // thread quicken the bytecode before we get here.
+  // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" );
+  klassOop klass = cpool->klass_at(which, CHECK);
+  thread->set_vm_result(klass);
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Exceptions
+
+// Assume the compiler is (or will be) interested in this event.
+// If necessary, create an MDO to hold the information, and record it.
+void InterpreterRuntime::note_trap(JavaThread* thread, int reason, TRAPS) {
+  assert(ProfileTraps, "call me only if profiling");
+  methodHandle trap_method(thread, method(thread));
+  if (trap_method.not_null()) {
+    methodDataHandle trap_mdo(thread, trap_method->method_data());
+    if (trap_mdo.is_null()) {
+      methodOopDesc::build_interpreter_method_data(trap_method, THREAD);
+      if (HAS_PENDING_EXCEPTION) {
+        assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
+        CLEAR_PENDING_EXCEPTION;
+      }
+      trap_mdo = methodDataHandle(thread, trap_method->method_data());
+      // and fall through...
+    }
+    if (trap_mdo.not_null()) {
+      // Update per-method count of trap events.  The interpreter
+      // is updating the MDO to simulate the effect of compiler traps.
+      int trap_bci = trap_method->bci_from(bcp(thread));
+      Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason);
+    }
+  }
+}
+
+static Handle get_preinitialized_exception(klassOop k, TRAPS) {
+  // get klass
+  instanceKlass* klass = instanceKlass::cast(k);
+  assert(klass->is_initialized(),
+         "this klass should have been initialized during VM initialization");
+  // create instance - do not call constructor since we may have no
+  // (java) stack space left (should assert constructor is empty)
+  Handle exception;
+  oop exception_oop = klass->allocate_instance(CHECK_(exception));
+  exception = Handle(THREAD, exception_oop);
+  if (StackTraceInThrowable) {
+    java_lang_Throwable::fill_in_stack_trace(exception);
+  }
+  return exception;
+}
+
+// Special handling for stack overflow: since we don't have any (java) stack
+// space left we use the pre-allocated & pre-initialized StackOverflowError
+// klass to create an stack overflow error instance.  We do not call its
+// constructor for the same reason (it is empty, anyway).
+IRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* thread))
+  Handle exception = get_preinitialized_exception(
+                                 SystemDictionary::StackOverflowError_klass(),
+                                 CHECK);
+  THROW_HANDLE(exception);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* thread, char* name, char* message))
+  // lookup exception klass
+  symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
+  if (ProfileTraps) {
+    if (s == vmSymbols::java_lang_ArithmeticException()) {
+      note_trap(thread, Deoptimization::Reason_div0_check, CHECK);
+    } else if (s == vmSymbols::java_lang_NullPointerException()) {
+      note_trap(thread, Deoptimization::Reason_null_check, CHECK);
+    }
+  }
+  // create exception
+  Handle exception = Exceptions::new_exception(thread, s(), message);
+  thread->set_vm_result(exception());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* thread, char* name, oopDesc* obj))
+  ResourceMark rm(thread);
+  const char* klass_name = Klass::cast(obj->klass())->external_name();
+  // lookup exception klass
+  symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
+  if (ProfileTraps) {
+    note_trap(thread, Deoptimization::Reason_class_check, CHECK);
+  }
+  // create exception, with klass name as detail message
+  Handle exception = Exceptions::new_exception(thread, s(), klass_name);
+  thread->set_vm_result(exception());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* thread, char* name, jint index))
+  char message[jintAsStringSize];
+  // lookup exception klass
+  symbolHandle s = oopFactory::new_symbol_handle(name, CHECK);
+  if (ProfileTraps) {
+    note_trap(thread, Deoptimization::Reason_range_check, CHECK);
+  }
+  // create exception
+  sprintf(message, "%d", index);
+  THROW_MSG(s(), message);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException(
+  JavaThread* thread, oopDesc* obj))
+
+  ResourceMark rm(thread);
+  char* message = SharedRuntime::generate_class_cast_message(
+    thread, Klass::cast(obj->klass())->external_name());
+
+  if (ProfileTraps) {
+    note_trap(thread, Deoptimization::Reason_class_check, CHECK);
+  }
+
+  // create exception
+  THROW_MSG(vmSymbols::java_lang_ClassCastException(), message);
+IRT_END
+
+
+// exception_handler_for_exception(...) returns the continuation address,
+// the exception oop (via TLS) and sets the bci/bcp for the continuation.
+// The exception oop is returned to make sure it is preserved over GC (it
+// is only on the stack if the exception was thrown explicitly via athrow).
+// During this operation, the expression stack contains the values for the
+// bci where the exception happened. If the exception was propagated back
+// from a call, the expression stack contains the values for the bci at the
+// invoke w/o arguments (i.e., as if one were inside the call).
+IRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* thread, oopDesc* exception))
+
+  Handle             h_exception(thread, exception);
+  methodHandle       h_method   (thread, method(thread));
+  constantPoolHandle h_constants(thread, h_method->constants());
+  typeArrayHandle    h_extable  (thread, h_method->exception_table());
+  bool               should_repeat;
+  int                handler_bci;
+  int                current_bci = bcp(thread) - h_method->code_base();
+
+  // Need to do this check first since when _do_not_unlock_if_synchronized
+  // is set, we don't want to trigger any classloading which may make calls
+  // into java, or surprisingly find a matching exception handler for bci 0
+  // since at this moment the method hasn't been "officially" entered yet.
+  if (thread->do_not_unlock_if_synchronized()) {
+    ResourceMark rm;
+    assert(current_bci == 0,  "bci isn't zero for do_not_unlock_if_synchronized");
+    thread->set_vm_result(exception);
+#ifdef CC_INTERP
+    return (address) -1;
+#else
+    return Interpreter::remove_activation_entry();
+#endif
+  }
+
+  do {
+    should_repeat = false;
+
+    // assertions
+#ifdef ASSERT
+    assert(h_exception.not_null(), "NULL exceptions should be handled by athrow");
+    assert(h_exception->is_oop(), "just checking");
+    // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
+    if (!(h_exception->is_a(SystemDictionary::throwable_klass()))) {
+      if (ExitVMOnVerifyError) vm_exit(-1);
+      ShouldNotReachHere();
+    }
+#endif
+
+    // tracing
+    if (TraceExceptions) {
+      ttyLocker ttyl;
+      ResourceMark rm(thread);
+      tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", h_exception->print_value_string(), (address)h_exception());
+      tty->print_cr(" thrown in interpreter method <%s>", h_method->print_value_string());
+      tty->print_cr(" at bci %d for thread " INTPTR_FORMAT, current_bci, thread);
+    }
+// Don't go paging in something which won't be used.
+//     else if (h_extable->length() == 0) {
+//       // disabled for now - interpreter is not using shortcut yet
+//       // (shortcut is not to call runtime if we have no exception handlers)
+//       // warning("performance bug: should not call runtime if method has no exception handlers");
+//     }
+    // for AbortVMOnException flag
+    NOT_PRODUCT(Exceptions::debug_check_abort(h_exception));
+
+    // exception handler lookup
+    KlassHandle h_klass(THREAD, h_exception->klass());
+    handler_bci = h_method->fast_exception_handler_bci_for(h_klass, current_bci, THREAD);
+    if (HAS_PENDING_EXCEPTION) {
+      // We threw an exception while trying to find the exception handler.
+      // Transfer the new exception to the exception handle which will
+      // be set into thread local storage, and do another lookup for an
+      // exception handler for this exception, this time starting at the
+      // BCI of the exception handler which caused the exception to be
+      // thrown (bug 4307310).
+      h_exception = Handle(THREAD, PENDING_EXCEPTION);
+      CLEAR_PENDING_EXCEPTION;
+      if (handler_bci >= 0) {
+        current_bci = handler_bci;
+        should_repeat = true;
+      }
+    }
+  } while (should_repeat == true);
+
+  // notify JVMTI of an exception throw; JVMTI will detect if this is a first
+  // time throw or a stack unwinding throw and accordingly notify the debugger
+  if (JvmtiExport::can_post_exceptions()) {
+    JvmtiExport::post_exception_throw(thread, h_method(), bcp(thread), h_exception());
+  }
+
+#ifdef CC_INTERP
+  address continuation = (address)(intptr_t) handler_bci;
+#else
+  address continuation = NULL;
+#endif
+  address handler_pc = NULL;
+  if (handler_bci < 0 || !thread->reguard_stack((address) &continuation)) {
+    // Forward exception to callee (leaving bci/bcp untouched) because (a) no
+    // handler in this method, or (b) after a stack overflow there is not yet
+    // enough stack space available to reprotect the stack.
+#ifndef CC_INTERP
+    continuation = Interpreter::remove_activation_entry();
+#endif
+    // Count this for compilation purposes
+    h_method->interpreter_throwout_increment();
+  } else {
+    // handler in this method => change bci/bcp to handler bci/bcp and continue there
+    handler_pc = h_method->code_base() + handler_bci;
+#ifndef CC_INTERP
+    set_bcp_and_mdp(handler_pc, thread);
+    continuation = Interpreter::dispatch_table(vtos)[*handler_pc];
+#endif
+  }
+  // notify debugger of an exception catch
+  // (this is good for exceptions caught in native methods as well)
+  if (JvmtiExport::can_post_exceptions()) {
+    JvmtiExport::notice_unwind_due_to_exception(thread, h_method(), handler_pc, h_exception(), (handler_pc != NULL));
+  }
+
+  thread->set_vm_result(h_exception());
+  return continuation;
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* thread))
+  assert(thread->has_pending_exception(), "must only ne called if there's an exception pending");
+  // nothing to do - eventually we should remove this code entirely (see comments @ call sites)
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* thread))
+  THROW(vmSymbols::java_lang_AbstractMethodError());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
+  THROW(vmSymbols::java_lang_IncompatibleClassChangeError());
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Fields
+//
+
+IRT_ENTRY(void, InterpreterRuntime::resolve_get_put(JavaThread* thread, Bytecodes::Code bytecode))
+  // resolve field
+  FieldAccessInfo info;
+  constantPoolHandle pool(thread, method(thread)->constants());
+  bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic);
+
+  {
+    JvmtiHideSingleStepping jhss(thread);
+    LinkResolver::resolve_field(info, pool, two_byte_index(thread),
+                                bytecode, false, CHECK);
+  } // end JvmtiHideSingleStepping
+
+  // check if link resolution caused cpCache to be updated
+  if (already_resolved(thread)) return;
+
+  // compute auxiliary field attributes
+  TosState state  = as_TosState(info.field_type());
+
+  // We need to delay resolving put instructions on final fields
+  // until we actually invoke one. This is required so we throw
+  // exceptions at the correct place. If we do not resolve completely
+  // in the current pass, leaving the put_code set to zero will
+  // cause the next put instruction to reresolve.
+  bool is_put = (bytecode == Bytecodes::_putfield ||
+                 bytecode == Bytecodes::_putstatic);
+  Bytecodes::Code put_code = (Bytecodes::Code)0;
+
+  // We also need to delay resolving getstatic instructions until the
+  // class is intitialized.  This is required so that access to the static
+  // field will call the initialization function every time until the class
+  // is completely initialized ala. in 2.17.5 in JVM Specification.
+  instanceKlass *klass = instanceKlass::cast(info.klass()->as_klassOop());
+  bool uninitialized_static = ((bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic) &&
+                               !klass->is_initialized());
+  Bytecodes::Code get_code = (Bytecodes::Code)0;
+
+
+  if (!uninitialized_static) {
+    get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield);
+    if (is_put || !info.access_flags().is_final()) {
+      put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield);
+    }
+  }
+
+  cache_entry(thread)->set_field(
+    get_code,
+    put_code,
+    info.klass(),
+    info.field_index(),
+    info.field_offset(),
+    state,
+    info.access_flags().is_final(),
+    info.access_flags().is_volatile()
+  );
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Synchronization
+//
+// The interpreter's synchronization code is factored out so that it can
+// be shared by method invocation and synchronized blocks.
+//%note synchronization_3
+
+static void trace_locking(Handle& h_locking_obj, bool is_locking) {
+  ObjectSynchronizer::trace_locking(h_locking_obj, false, true, is_locking);
+}
+
+
+//%note monitor_1
+IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* thread, BasicObjectLock* elem))
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+  if (PrintBiasedLockingStatistics) {
+    Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
+  }
+  Handle h_obj(thread, elem->obj());
+  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
+         "must be NULL or an object");
+  if (UseBiasedLocking) {
+    // Retry fast entry if bias is revoked to avoid unnecessary inflation
+    ObjectSynchronizer::fast_enter(h_obj, elem->lock(), true, CHECK);
+  } else {
+    ObjectSynchronizer::slow_enter(h_obj, elem->lock(), CHECK);
+  }
+  assert(Universe::heap()->is_in_reserved_or_null(elem->obj()),
+         "must be NULL or an object");
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+IRT_END
+
+
+//%note monitor_1
+IRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorexit(JavaThread* thread, BasicObjectLock* elem))
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+  Handle h_obj(thread, elem->obj());
+  assert(Universe::heap()->is_in_reserved_or_null(h_obj()),
+         "must be NULL or an object");
+  if (elem == NULL || h_obj()->is_unlocked()) {
+    THROW(vmSymbols::java_lang_IllegalMonitorStateException());
+  }
+  ObjectSynchronizer::slow_exit(h_obj(), elem->lock(), thread);
+  // Free entry. This must be done here, since a pending exception might be installed on
+  // exit. If it is not cleared, the exception handling code will try to unlock the monitor again.
+  elem->set_obj(NULL);
+#ifdef ASSERT
+  thread->last_frame().interpreter_frame_verify_monitor(elem);
+#endif
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* thread))
+  THROW(vmSymbols::java_lang_IllegalMonitorStateException());
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* thread))
+  // Returns an illegal exception to install into the current thread. The
+  // pending_exception flag is cleared so normal exception handling does not
+  // trigger. Any current installed exception will be overwritten. This
+  // method will be called during an exception unwind.
+
+  assert(!HAS_PENDING_EXCEPTION, "no pending exception");
+  Handle exception(thread, thread->vm_result());
+  assert(exception() != NULL, "vm result should be set");
+  thread->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures)
+  if (!exception->is_a(SystemDictionary::threaddeath_klass())) {
+    exception = get_preinitialized_exception(
+                       SystemDictionary::IllegalMonitorStateException_klass(),
+                       CATCH);
+  }
+  thread->set_vm_result(exception());
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Invokes
+
+IRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp))
+  return method->orig_bytecode_at(method->bci_from(bcp));
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* thread, methodOopDesc* method, address bcp, Bytecodes::Code new_code))
+  method->set_orig_bytecode_at(method->bci_from(bcp), new_code);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* thread, methodOopDesc* method, address bcp))
+  JvmtiExport::post_raw_breakpoint(thread, method, bcp);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::resolve_invoke(JavaThread* thread, Bytecodes::Code bytecode))
+  // extract receiver from the outgoing argument list if necessary
+  Handle receiver(thread, NULL);
+  if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface) {
+    ResourceMark rm(thread);
+    methodHandle m (thread, method(thread));
+    int bci = m->bci_from(bcp(thread));
+    Bytecode_invoke* call = Bytecode_invoke_at(m, bci);
+    symbolHandle signature (thread, call->signature());
+    receiver = Handle(thread,
+                  thread->last_frame().interpreter_callee_receiver(signature));
+    assert(Universe::heap()->is_in_reserved_or_null(receiver()),
+           "sanity check");
+    assert(receiver.is_null() ||
+           Universe::heap()->is_in_reserved(receiver->klass()),
+           "sanity check");
+  }
+
+  // resolve method
+  CallInfo info;
+  constantPoolHandle pool(thread, method(thread)->constants());
+
+  {
+    JvmtiHideSingleStepping jhss(thread);
+    LinkResolver::resolve_invoke(info, receiver, pool,
+                                 two_byte_index(thread), bytecode, CHECK);
+    if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
+      int retry_count = 0;
+      while (info.resolved_method()->is_old()) {
+        // It is very unlikely that method is redefined more than 100 times
+        // in the middle of resolve. If it is looping here more than 100 times
+        // means then there could be a bug here.
+        guarantee((retry_count++ < 100),
+                  "Could not resolve to latest version of redefined method");
+        // method is redefined in the middle of resolve so re-try.
+        LinkResolver::resolve_invoke(info, receiver, pool,
+                                     two_byte_index(thread), bytecode, CHECK);
+      }
+    }
+  } // end JvmtiHideSingleStepping
+
+  // check if link resolution caused cpCache to be updated
+  if (already_resolved(thread)) return;
+
+  if (bytecode == Bytecodes::_invokeinterface) {
+
+    if (TraceItables && Verbose) {
+      ResourceMark rm(thread);
+      tty->print_cr("Resolving: klass: %s to method: %s", info.resolved_klass()->name()->as_C_string(), info.resolved_method()->name()->as_C_string());
+    }
+    if (info.resolved_method()->method_holder() ==
+                                            SystemDictionary::object_klass()) {
+      // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec
+      // (see also cpCacheOop.cpp for details)
+      methodHandle rm = info.resolved_method();
+      assert(rm->is_final() || info.has_vtable_index(),
+             "should have been set already");
+      cache_entry(thread)->set_method(bytecode, rm, info.vtable_index());
+    } else {
+      // Setup itable entry
+      int index = klassItable::compute_itable_index(info.resolved_method()());
+      cache_entry(thread)->set_interface_call(info.resolved_method(), index);
+    }
+  } else {
+    cache_entry(thread)->set_method(
+      bytecode,
+      info.resolved_method(),
+      info.vtable_index());
+  }
+IRT_END
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Miscellaneous
+
+
+#ifndef PRODUCT
+static void trace_frequency_counter_overflow(methodHandle m, int branch_bci, int bci, address branch_bcp) {
+  if (TraceInvocationCounterOverflow) {
+    InvocationCounter* ic = m->invocation_counter();
+    InvocationCounter* bc = m->backedge_counter();
+    ResourceMark rm;
+    const char* msg =
+      branch_bcp == NULL
+      ? "comp-policy cntr ovfl @ %d in entry of "
+      : "comp-policy cntr ovfl @ %d in loop of ";
+    tty->print(msg, bci);
+    m->print_value();
+    tty->cr();
+    ic->print();
+    bc->print();
+    if (ProfileInterpreter) {
+      if (branch_bcp != NULL) {
+        methodDataOop mdo = m->method_data();
+        if (mdo != NULL) {
+          int count = mdo->bci_to_data(branch_bci)->as_JumpData()->taken();
+          tty->print_cr("back branch count = %d", count);
+        }
+      }
+    }
+  }
+}
+
+static void trace_osr_request(methodHandle method, nmethod* osr, int bci) {
+  if (TraceOnStackReplacement) {
+    ResourceMark rm;
+    tty->print(osr != NULL ? "Reused OSR entry for " : "Requesting OSR entry for ");
+    method->print_short_name(tty);
+    tty->print_cr(" at bci %d", bci);
+  }
+}
+#endif // !PRODUCT
+
+IRT_ENTRY(nmethod*,
+          InterpreterRuntime::frequency_counter_overflow(JavaThread* thread, address branch_bcp))
+  // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
+  // flag, in case this method triggers classloading which will call into Java.
+  UnlockFlagSaver fs(thread);
+
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "must come from interpreter");
+  methodHandle method(thread, fr.interpreter_frame_method());
+  const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : 0;
+  const int bci = method->bci_from(fr.interpreter_frame_bcp());
+  NOT_PRODUCT(trace_frequency_counter_overflow(method, branch_bci, bci, branch_bcp);)
+
+  if (JvmtiExport::can_post_interpreter_events()) {
+    if (thread->is_interp_only_mode()) {
+      // If certain JVMTI events (e.g. frame pop event) are requested then the
+      // thread is forced to remain in interpreted code. This is
+      // implemented partly by a check in the run_compiled_code
+      // section of the interpreter whether we should skip running
+      // compiled code, and partly by skipping OSR compiles for
+      // interpreted-only threads.
+      if (branch_bcp != NULL) {
+        CompilationPolicy::policy()->reset_counter_for_back_branch_event(method);
+        return NULL;
+      }
+    }
+  }
+
+  if (branch_bcp == NULL) {
+    // when code cache is full, compilation gets switched off, UseCompiler
+    // is set to false
+    if (!method->has_compiled_code() && UseCompiler) {
+      CompilationPolicy::policy()->method_invocation_event(method, CHECK_NULL);
+    } else {
+      // Force counter overflow on method entry, even if no compilation
+      // happened.  (The method_invocation_event call does this also.)
+      CompilationPolicy::policy()->reset_counter_for_invocation_event(method);
+    }
+    // compilation at an invocation overflow no longer goes and retries test for
+    // compiled method. We always run the loser of the race as interpreted.
+    // so return NULL
+    return NULL;
+  } else {
+    // counter overflow in a loop => try to do on-stack-replacement
+    nmethod* osr_nm = method->lookup_osr_nmethod_for(bci);
+    NOT_PRODUCT(trace_osr_request(method, osr_nm, bci);)
+    // when code cache is full, we should not compile any more...
+    if (osr_nm == NULL && UseCompiler) {
+      const int branch_bci = method->bci_from(branch_bcp);
+      CompilationPolicy::policy()->method_back_branch_event(method, branch_bci, bci, CHECK_NULL);
+      osr_nm = method->lookup_osr_nmethod_for(bci);
+    }
+    if (osr_nm == NULL) {
+      CompilationPolicy::policy()->reset_counter_for_back_branch_event(method);
+      return NULL;
+    } else {
+      // We may need to do on-stack replacement which requires that no
+      // monitors in the activation are biased because their
+      // BasicObjectLocks will need to migrate during OSR. Force
+      // unbiasing of all monitors in the activation now (even though
+      // the OSR nmethod might be invalidated) because we don't have a
+      // safepoint opportunity later once the migration begins.
+      if (UseBiasedLocking) {
+        ResourceMark rm;
+        GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
+        for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
+             kptr < fr.interpreter_frame_monitor_begin();
+             kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
+          if( kptr->obj() != NULL ) {
+            objects_to_revoke->append(Handle(THREAD, kptr->obj()));
+          }
+        }
+        BiasedLocking::revoke(objects_to_revoke);
+      }
+
+      return osr_nm;
+    }
+  }
+IRT_END
+
+IRT_LEAF(jint, InterpreterRuntime::bcp_to_di(methodOopDesc* method, address cur_bcp))
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  int bci = method->bci_from(cur_bcp);
+  methodDataOop mdo = method->method_data();
+  if (mdo == NULL)  return 0;
+  return mdo->bci_to_di(bci);
+IRT_END
+
+IRT_ENTRY(jint, InterpreterRuntime::profile_method(JavaThread* thread, address cur_bcp))
+  // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized
+  // flag, in case this method triggers classloading which will call into Java.
+  UnlockFlagSaver fs(thread);
+
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "must come from interpreter");
+  methodHandle method(thread, fr.interpreter_frame_method());
+  int bci = method->bci_from(cur_bcp);
+  methodOopDesc::build_interpreter_method_data(method, THREAD);
+  if (HAS_PENDING_EXCEPTION) {
+    assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
+    CLEAR_PENDING_EXCEPTION;
+    // and fall through...
+  }
+  methodDataOop mdo = method->method_data();
+  if (mdo == NULL)  return 0;
+  return mdo->bci_to_di(bci);
+IRT_END
+
+
+#ifdef ASSERT
+IRT_LEAF(void, InterpreterRuntime::verify_mdp(methodOopDesc* method, address bcp, address mdp))
+  assert(ProfileInterpreter, "must be profiling interpreter");
+
+  methodDataOop mdo = method->method_data();
+  assert(mdo != NULL, "must not be null");
+
+  int bci = method->bci_from(bcp);
+
+  address mdp2 = mdo->bci_to_dp(bci);
+  if (mdp != mdp2) {
+    ResourceMark rm;
+    ResetNoHandleMark rnm; // In a LEAF entry.
+    HandleMark hm;
+    tty->print_cr("FAILED verify : actual mdp %p   expected mdp %p @ bci %d", mdp, mdp2, bci);
+    int current_di = mdo->dp_to_di(mdp);
+    int expected_di  = mdo->dp_to_di(mdp2);
+    tty->print_cr("  actual di %d   expected di %d", current_di, expected_di);
+    int expected_approx_bci = mdo->data_at(expected_di)->bci();
+    int approx_bci = -1;
+    if (current_di >= 0) {
+      approx_bci = mdo->data_at(current_di)->bci();
+    }
+    tty->print_cr("  actual bci is %d  expected bci %d", approx_bci, expected_approx_bci);
+    mdo->print_on(tty);
+    method->print_codes();
+  }
+  assert(mdp == mdp2, "wrong mdp");
+IRT_END
+#endif // ASSERT
+
+IRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* thread, int return_bci))
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  ResourceMark rm(thread);
+  HandleMark hm(thread);
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "must come from interpreter");
+  methodDataHandle h_mdo(thread, fr.interpreter_frame_method()->method_data());
+
+  // Grab a lock to ensure atomic access to setting the return bci and
+  // the displacement.  This can block and GC, invalidating all naked oops.
+  MutexLocker ml(RetData_lock);
+
+  // ProfileData is essentially a wrapper around a derived oop, so we
+  // need to take the lock before making any ProfileData structures.
+  ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(fr.interpreter_frame_mdp()));
+  RetData* rdata = data->as_RetData();
+  address new_mdp = rdata->fixup_ret(return_bci, h_mdo);
+  fr.interpreter_frame_set_mdp(new_mdp);
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* thread))
+  // We used to need an explict preserve_arguments here for invoke bytecodes. However,
+  // stack traversal automatically takes care of preserving arguments for invoke, so
+  // this is no longer needed.
+
+  // IRT_END does an implicit safepoint check, hence we are guaranteed to block
+  // if this is called during a safepoint
+
+  if (JvmtiExport::should_post_single_step()) {
+    // We are called during regular safepoints and when the VM is
+    // single stepping. If any thread is marked for single stepping,
+    // then we may have JVMTI work to do.
+    JvmtiExport::at_single_stepping_point(thread, method(thread), bcp(thread));
+  }
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread *thread, oopDesc* obj,
+ConstantPoolCacheEntry *cp_entry))
+
+  // check the access_flags for the field in the klass
+  instanceKlass* ik = instanceKlass::cast((klassOop)cp_entry->f1());
+  typeArrayOop fields = ik->fields();
+  int index = cp_entry->field_index();
+  assert(index < fields->length(), "holders field index is out of range");
+  // bail out if field accesses are not watched
+  if ((fields->ushort_at(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return;
+
+  switch(cp_entry->flag_state()) {
+    case btos:    // fall through
+    case ctos:    // fall through
+    case stos:    // fall through
+    case itos:    // fall through
+    case ftos:    // fall through
+    case ltos:    // fall through
+    case dtos:    // fall through
+    case atos: break;
+    default: ShouldNotReachHere(); return;
+  }
+  bool is_static = (obj == NULL);
+  HandleMark hm(thread);
+
+  Handle h_obj;
+  if (!is_static) {
+    // non-static field accessors have an object, but we need a handle
+    h_obj = Handle(thread, obj);
+  }
+  instanceKlassHandle h_cp_entry_f1(thread, (klassOop)cp_entry->f1());
+  jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_cp_entry_f1, cp_entry->f2(), is_static);
+  JvmtiExport::post_field_access(thread, method(thread), bcp(thread), h_cp_entry_f1, h_obj, fid);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread *thread,
+  oopDesc* obj, ConstantPoolCacheEntry *cp_entry, jvalue *value))
+
+  klassOop k = (klassOop)cp_entry->f1();
+
+  // check the access_flags for the field in the klass
+  instanceKlass* ik = instanceKlass::cast(k);
+  typeArrayOop fields = ik->fields();
+  int index = cp_entry->field_index();
+  assert(index < fields->length(), "holders field index is out of range");
+  // bail out if field modifications are not watched
+  if ((fields->ushort_at(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return;
+
+  char sig_type = '\0';
+
+  switch(cp_entry->flag_state()) {
+    case btos: sig_type = 'Z'; break;
+    case ctos: sig_type = 'C'; break;
+    case stos: sig_type = 'S'; break;
+    case itos: sig_type = 'I'; break;
+    case ftos: sig_type = 'F'; break;
+    case atos: sig_type = 'L'; break;
+    case ltos: sig_type = 'J'; break;
+    case dtos: sig_type = 'D'; break;
+    default:  ShouldNotReachHere(); return;
+  }
+  bool is_static = (obj == NULL);
+
+  HandleMark hm(thread);
+  instanceKlassHandle h_klass(thread, k);
+  jfieldID fid = jfieldIDWorkaround::to_jfieldID(h_klass, cp_entry->f2(), is_static);
+  jvalue fvalue;
+#ifdef _LP64
+  fvalue = *value;
+#else
+  // Long/double values are stored unaligned and also noncontiguously with
+  // tagged stacks.  We can't just do a simple assignment even in the non-
+  // J/D cases because a C++ compiler is allowed to assume that a jvalue is
+  // 8-byte aligned, and interpreter stack slots are only 4-byte aligned.
+  // We assume that the two halves of longs/doubles are stored in interpreter
+  // stack slots in platform-endian order.
+  jlong_accessor u;
+  jint* newval = (jint*)value;
+  u.words[0] = newval[0];
+  u.words[1] = newval[Interpreter::stackElementWords()]; // skip if tag
+  fvalue.j = u.long_value;
+#endif // _LP64
+
+  Handle h_obj;
+  if (!is_static) {
+    // non-static field accessors have an object, but we need a handle
+    h_obj = Handle(thread, obj);
+  }
+
+  JvmtiExport::post_raw_field_modification(thread, method(thread), bcp(thread), h_klass, h_obj,
+                                           fid, sig_type, &fvalue);
+IRT_END
+
+IRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread *thread))
+  JvmtiExport::post_method_entry(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
+IRT_END
+
+
+IRT_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread *thread))
+  JvmtiExport::post_method_exit(thread, InterpreterRuntime::method(thread), InterpreterRuntime::last_frame(thread));
+IRT_END
+
+IRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc))
+{
+  return (Interpreter::contains(pc) ? 1 : 0);
+}
+IRT_END
+
+
+// Implementation of SignatureHandlerLibrary
+
+address SignatureHandlerLibrary::set_handler_blob() {
+  BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size);
+  if (handler_blob == NULL) {
+    return NULL;
+  }
+  address handler = handler_blob->instructions_begin();
+  _handler_blob = handler_blob;
+  _handler = handler;
+  return handler;
+}
+
+void SignatureHandlerLibrary::initialize() {
+  if (_fingerprints != NULL) {
+    return;
+  }
+  if (set_handler_blob() == NULL) {
+    vm_exit_out_of_memory(blob_size, "native signature handlers");
+  }
+
+  BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer",
+                                      SignatureHandlerLibrary::buffer_size);
+  _buffer = bb->instructions_begin();
+
+  _fingerprints = new(ResourceObj::C_HEAP)GrowableArray<uint64_t>(32, true);
+  _handlers     = new(ResourceObj::C_HEAP)GrowableArray<address>(32, true);
+}
+
+address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) {
+  address handler   = _handler;
+  int     code_size = buffer->pure_code_size();
+  if (handler + code_size > _handler_blob->instructions_end()) {
+    // get a new handler blob
+    handler = set_handler_blob();
+  }
+  if (handler != NULL) {
+    memcpy(handler, buffer->code_begin(), code_size);
+    pd_set_handler(handler);
+    ICache::invalidate_range(handler, code_size);
+    _handler = handler + code_size;
+  }
+  return handler;
+}
+
+void SignatureHandlerLibrary::add(methodHandle method) {
+  if (method->signature_handler() == NULL) {
+    // use slow signature handler if we can't do better
+    int handler_index = -1;
+    // check if we can use customized (fast) signature handler
+    if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::max_size_of_parameters) {
+      // use customized signature handler
+      MutexLocker mu(SignatureHandlerLibrary_lock);
+      // make sure data structure is initialized
+      initialize();
+      // lookup method signature's fingerprint
+      uint64_t fingerprint = Fingerprinter(method).fingerprint();
+      handler_index = _fingerprints->find(fingerprint);
+      // create handler if necessary
+      if (handler_index < 0) {
+        ResourceMark rm;
+        ptrdiff_t align_offset = (address)
+          round_to((intptr_t)_buffer, CodeEntryAlignment) - (address)_buffer;
+        CodeBuffer buffer((address)(_buffer + align_offset),
+                          SignatureHandlerLibrary::buffer_size - align_offset);
+        InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint);
+        // copy into code heap
+        address handler = set_handler(&buffer);
+        if (handler == NULL) {
+          // use slow signature handler
+        } else {
+          // debugging suppport
+          if (PrintSignatureHandlers) {
+            tty->cr();
+            tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)",
+                          _handlers->length(),
+                          (method->is_static() ? "static" : "receiver"),
+                          method->name_and_sig_as_C_string(),
+                          fingerprint,
+                          buffer.code_size());
+            Disassembler::decode(handler, handler + buffer.code_size());
+#ifndef PRODUCT
+            tty->print_cr(" --- associated result handler ---");
+            address rh_begin = Interpreter::result_handler(method()->result_type());
+            address rh_end = rh_begin;
+            while (*(int*)rh_end != 0) {
+              rh_end += sizeof(int);
+            }
+            Disassembler::decode(rh_begin, rh_end);
+#endif
+          }
+          // add handler to library
+          _fingerprints->append(fingerprint);
+          _handlers->append(handler);
+          // set handler index
+          assert(_fingerprints->length() == _handlers->length(), "sanity check");
+          handler_index = _fingerprints->length() - 1;
+        }
+      }
+    } else {
+      CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
+    }
+    if (handler_index < 0) {
+      // use generic signature handler
+      method->set_signature_handler(Interpreter::slow_signature_handler());
+    } else {
+      // set handler
+      method->set_signature_handler(_handlers->at(handler_index));
+    }
+  }
+  assert(method->signature_handler() == Interpreter::slow_signature_handler() ||
+         _handlers->find(method->signature_handler()) == _fingerprints->find(Fingerprinter(method).fingerprint()),
+         "sanity check");
+}
+
+
+BufferBlob*              SignatureHandlerLibrary::_handler_blob = NULL;
+address                  SignatureHandlerLibrary::_handler      = NULL;
+GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL;
+GrowableArray<address>*  SignatureHandlerLibrary::_handlers     = NULL;
+address                  SignatureHandlerLibrary::_buffer       = NULL;
+
+
+IRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* thread, methodOopDesc* method))
+  methodHandle m(thread, method);
+  assert(m->is_native(), "sanity check");
+  // lookup native function entry point if it doesn't exist
+  bool in_base_library;
+  if (!m->has_native_function()) {
+    NativeLookup::lookup(m, in_base_library, CHECK);
+  }
+  // make sure signature handler is installed
+  SignatureHandlerLibrary::add(m);
+  // The interpreter entry point checks the signature handler first,
+  // before trying to fetch the native entry point and klass mirror.
+  // We must set the signature handler last, so that multiple processors
+  // preparing the same method will be sure to see non-null entry & mirror.
+IRT_END
+
+#if defined(IA32) || defined(AMD64)
+IRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* thread, void* src_address, void* dest_address))
+  if (src_address == dest_address) {
+    return;
+  }
+  ResetNoHandleMark rnm; // In a LEAF entry.
+  HandleMark hm;
+  ResourceMark rm;
+  frame fr = thread->last_frame();
+  assert(fr.is_interpreted_frame(), "");
+  jint bci = fr.interpreter_frame_bci();
+  methodHandle mh(thread, fr.interpreter_frame_method());
+  Bytecode_invoke* invoke = Bytecode_invoke_at(mh, bci);
+  ArgumentSizeComputer asc(invoke->signature());
+  int size_of_arguments = (asc.size() + (invoke->is_invokestatic() ? 0 : 1)); // receiver
+  Copy::conjoint_bytes(src_address, dest_address,
+                       size_of_arguments * Interpreter::stackElementSize());
+IRT_END
+#endif