hotspot/src/share/vm/code/dependencies.cpp
changeset 1 489c9b5090e2
child 227 1d53148d4a4c
child 203 2e348cc9121a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/share/vm/code/dependencies.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1549 @@
+/*
+ * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+# include "incls/_precompiled.incl"
+# include "incls/_dependencies.cpp.incl"
+
+
+#ifdef ASSERT
+static bool must_be_in_vm() {
+  Thread* thread = Thread::current();
+  if (thread->is_Java_thread())
+    return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
+  else
+    return true;  //something like this: thread->is_VM_thread();
+}
+#endif //ASSERT
+
+void Dependencies::initialize(ciEnv* env) {
+  Arena* arena = env->arena();
+  _oop_recorder = env->oop_recorder();
+  _log = env->log();
+  _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
+  DEBUG_ONLY(_deps[end_marker] = NULL);
+  for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
+    _deps[i] = new(arena) GrowableArray<ciObject*>(arena, 10, 0, 0);
+  }
+  _content_bytes = NULL;
+  _size_in_bytes = (size_t)-1;
+
+  assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
+}
+
+void Dependencies::assert_evol_method(ciMethod* m) {
+  assert_common_1(evol_method, m);
+}
+
+void Dependencies::assert_leaf_type(ciKlass* ctxk) {
+  if (ctxk->is_array_klass()) {
+    // As a special case, support this assertion on an array type,
+    // which reduces to an assertion on its element type.
+    // Note that this cannot be done with assertions that
+    // relate to concreteness or abstractness.
+    ciType* elemt = ctxk->as_array_klass()->base_element_type();
+    if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
+    ctxk = elemt->as_instance_klass();
+    //if (ctxk->is_final())  return;            // Ex:  String[][]
+  }
+  check_ctxk(ctxk);
+  assert_common_1(leaf_type, ctxk);
+}
+
+void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
+  check_ctxk_abstract(ctxk);
+  assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
+}
+
+void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
+  check_ctxk_abstract(ctxk);
+  assert_common_1(abstract_with_no_concrete_subtype, ctxk);
+}
+
+void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
+  check_ctxk_concrete(ctxk);
+  assert_common_1(concrete_with_no_concrete_subtype, ctxk);
+}
+
+void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
+  check_ctxk(ctxk);
+  assert_common_2(unique_concrete_method, ctxk, uniqm);
+}
+
+void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
+  check_ctxk(ctxk);
+  assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
+}
+
+void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
+  check_ctxk(ctxk);
+  assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
+}
+
+void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
+  check_ctxk(ctxk);
+  assert_common_1(no_finalizable_subclasses, ctxk);
+}
+
+// Helper function.  If we are adding a new dep. under ctxk2,
+// try to find an old dep. under a broader* ctxk1.  If there is
+//
+bool Dependencies::maybe_merge_ctxk(GrowableArray<ciObject*>* deps,
+                                    int ctxk_i, ciKlass* ctxk2) {
+  ciKlass* ctxk1 = deps->at(ctxk_i)->as_klass();
+  if (ctxk2->is_subtype_of(ctxk1)) {
+    return true;  // success, and no need to change
+  } else if (ctxk1->is_subtype_of(ctxk2)) {
+    // new context class fully subsumes previous one
+    deps->at_put(ctxk_i, ctxk2);
+    return true;
+  } else {
+    return false;
+  }
+}
+
+void Dependencies::assert_common_1(Dependencies::DepType dept, ciObject* x) {
+  assert(dep_args(dept) == 1, "sanity");
+  log_dependency(dept, x);
+  GrowableArray<ciObject*>* deps = _deps[dept];
+
+  // see if the same (or a similar) dep is already recorded
+  if (note_dep_seen(dept, x)) {
+    assert(deps->find(x) >= 0, "sanity");
+  } else {
+    deps->append(x);
+  }
+}
+
+void Dependencies::assert_common_2(Dependencies::DepType dept,
+                                   ciKlass* ctxk, ciObject* x) {
+  assert(dep_context_arg(dept) == 0, "sanity");
+  assert(dep_args(dept) == 2, "sanity");
+  log_dependency(dept, ctxk, x);
+  GrowableArray<ciObject*>* deps = _deps[dept];
+
+  // see if the same (or a similar) dep is already recorded
+  if (note_dep_seen(dept, x)) {
+    // look in this bucket for redundant assertions
+    const int stride = 2;
+    for (int i = deps->length(); (i -= stride) >= 0; ) {
+      ciObject* x1 = deps->at(i+1);
+      if (x == x1) {  // same subject; check the context
+        if (maybe_merge_ctxk(deps, i+0, ctxk)) {
+          return;
+        }
+      }
+    }
+  }
+
+  // append the assertion in the correct bucket:
+  deps->append(ctxk);
+  deps->append(x);
+}
+
+void Dependencies::assert_common_3(Dependencies::DepType dept,
+                                   ciKlass* ctxk, ciObject* x, ciObject* x2) {
+  assert(dep_context_arg(dept) == 0, "sanity");
+  assert(dep_args(dept) == 3, "sanity");
+  log_dependency(dept, ctxk, x, x2);
+  GrowableArray<ciObject*>* deps = _deps[dept];
+
+  // try to normalize an unordered pair:
+  bool swap = false;
+  switch (dept) {
+  case abstract_with_exclusive_concrete_subtypes_2:
+    swap = (x->ident() > x2->ident() && x != ctxk);
+    break;
+  case exclusive_concrete_methods_2:
+    swap = (x->ident() > x2->ident() && x->as_method()->holder() != ctxk);
+    break;
+  }
+  if (swap) { ciObject* t = x; x = x2; x2 = t; }
+
+  // see if the same (or a similar) dep is already recorded
+  if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
+    // look in this bucket for redundant assertions
+    const int stride = 3;
+    for (int i = deps->length(); (i -= stride) >= 0; ) {
+      ciObject* y  = deps->at(i+1);
+      ciObject* y2 = deps->at(i+2);
+      if (x == y && x2 == y2) {  // same subjects; check the context
+        if (maybe_merge_ctxk(deps, i+0, ctxk)) {
+          return;
+        }
+      }
+    }
+  }
+  // append the assertion in the correct bucket:
+  deps->append(ctxk);
+  deps->append(x);
+  deps->append(x2);
+}
+
+/// Support for encoding dependencies into an nmethod:
+
+void Dependencies::copy_to(nmethod* nm) {
+  address beg = nm->dependencies_begin();
+  address end = nm->dependencies_end();
+  guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
+  Copy::disjoint_words((HeapWord*) content_bytes(),
+                       (HeapWord*) beg,
+                       size_in_bytes() / sizeof(HeapWord));
+  assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
+}
+
+static int sort_dep(ciObject** p1, ciObject** p2, int narg) {
+  for (int i = 0; i < narg; i++) {
+    int diff = p1[i]->ident() - p2[i]->ident();
+    if (diff != 0)  return diff;
+  }
+  return 0;
+}
+static int sort_dep_arg_1(ciObject** p1, ciObject** p2)
+{ return sort_dep(p1, p2, 1); }
+static int sort_dep_arg_2(ciObject** p1, ciObject** p2)
+{ return sort_dep(p1, p2, 2); }
+static int sort_dep_arg_3(ciObject** p1, ciObject** p2)
+{ return sort_dep(p1, p2, 3); }
+
+void Dependencies::sort_all_deps() {
+  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
+    DepType dept = (DepType)deptv;
+    GrowableArray<ciObject*>* deps = _deps[dept];
+    if (deps->length() <= 1)  continue;
+    switch (dep_args(dept)) {
+    case 1: deps->sort(sort_dep_arg_1, 1); break;
+    case 2: deps->sort(sort_dep_arg_2, 2); break;
+    case 3: deps->sort(sort_dep_arg_3, 3); break;
+    default: ShouldNotReachHere();
+    }
+  }
+}
+
+size_t Dependencies::estimate_size_in_bytes() {
+  size_t est_size = 100;
+  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
+    DepType dept = (DepType)deptv;
+    GrowableArray<ciObject*>* deps = _deps[dept];
+    est_size += deps->length()*2;  // tags and argument(s)
+  }
+  return est_size;
+}
+
+ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciObject* x) {
+  switch (dept) {
+  case abstract_with_exclusive_concrete_subtypes_2:
+    return x->as_klass();
+  case unique_concrete_method:
+  case exclusive_concrete_methods_2:
+    return x->as_method()->holder();
+  }
+  return NULL;  // let NULL be NULL
+}
+
+klassOop Dependencies::ctxk_encoded_as_null(DepType dept, oop x) {
+  assert(must_be_in_vm(), "raw oops here");
+  switch (dept) {
+  case abstract_with_exclusive_concrete_subtypes_2:
+    assert(x->is_klass(), "sanity");
+    return (klassOop) x;
+  case unique_concrete_method:
+  case exclusive_concrete_methods_2:
+    assert(x->is_method(), "sanity");
+    return ((methodOop)x)->method_holder();
+  }
+  return NULL;  // let NULL be NULL
+}
+
+void Dependencies::encode_content_bytes() {
+  sort_all_deps();
+
+  // cast is safe, no deps can overflow INT_MAX
+  CompressedWriteStream bytes((int)estimate_size_in_bytes());
+
+  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
+    DepType dept = (DepType)deptv;
+    GrowableArray<ciObject*>* deps = _deps[dept];
+    if (deps->length() == 0)  continue;
+    int stride = dep_args(dept);
+    int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
+    assert(stride > 0, "sanity");
+    for (int i = 0; i < deps->length(); i += stride) {
+      jbyte code_byte = (jbyte)dept;
+      int skipj = -1;
+      if (ctxkj >= 0 && ctxkj+1 < stride) {
+        ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_klass();
+        ciObject* x    = deps->at(i+ctxkj+1);  // following argument
+        if (ctxk == ctxk_encoded_as_null(dept, x)) {
+          skipj = ctxkj;  // we win:  maybe one less oop to keep track of
+          code_byte |= default_context_type_bit;
+        }
+      }
+      bytes.write_byte(code_byte);
+      for (int j = 0; j < stride; j++) {
+        if (j == skipj)  continue;
+        bytes.write_int(_oop_recorder->find_index(deps->at(i+j)->encoding()));
+      }
+    }
+  }
+
+  // write a sentinel byte to mark the end
+  bytes.write_byte(end_marker);
+
+  // round it out to a word boundary
+  while (bytes.position() % sizeof(HeapWord) != 0) {
+    bytes.write_byte(end_marker);
+  }
+
+  // check whether the dept byte encoding really works
+  assert((jbyte)default_context_type_bit != 0, "byte overflow");
+
+  _content_bytes = bytes.buffer();
+  _size_in_bytes = bytes.position();
+}
+
+
+const char* Dependencies::_dep_name[TYPE_LIMIT] = {
+  "end_marker",
+  "evol_method",
+  "leaf_type",
+  "abstract_with_unique_concrete_subtype",
+  "abstract_with_no_concrete_subtype",
+  "concrete_with_no_concrete_subtype",
+  "unique_concrete_method",
+  "abstract_with_exclusive_concrete_subtypes_2",
+  "exclusive_concrete_methods_2",
+  "no_finalizable_subclasses"
+};
+
+int Dependencies::_dep_args[TYPE_LIMIT] = {
+  -1,// end_marker
+  1, // evol_method m
+  1, // leaf_type ctxk
+  2, // abstract_with_unique_concrete_subtype ctxk, k
+  1, // abstract_with_no_concrete_subtype ctxk
+  1, // concrete_with_no_concrete_subtype ctxk
+  2, // unique_concrete_method ctxk, m
+  3, // unique_concrete_subtypes_2 ctxk, k1, k2
+  3, // unique_concrete_methods_2 ctxk, m1, m2
+  1  // no_finalizable_subclasses ctxk
+};
+
+const char* Dependencies::dep_name(Dependencies::DepType dept) {
+  if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
+  return _dep_name[dept];
+}
+
+int Dependencies::dep_args(Dependencies::DepType dept) {
+  if (!dept_in_mask(dept, all_types))  return -1;
+  return _dep_args[dept];
+}
+
+// for the sake of the compiler log, print out current dependencies:
+void Dependencies::log_all_dependencies() {
+  if (log() == NULL)  return;
+  ciObject* args[max_arg_count];
+  for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
+    DepType dept = (DepType)deptv;
+    GrowableArray<ciObject*>* deps = _deps[dept];
+    if (deps->length() == 0)  continue;
+    int stride = dep_args(dept);
+    for (int i = 0; i < deps->length(); i += stride) {
+      for (int j = 0; j < stride; j++) {
+        // flush out the identities before printing
+        args[j] = deps->at(i+j);
+      }
+      write_dependency_to(log(), dept, stride, args);
+    }
+  }
+}
+
+void Dependencies::write_dependency_to(CompileLog* log,
+                                       DepType dept,
+                                       int nargs, oop args[],
+                                       klassOop witness) {
+  if (log == NULL) {
+    return;
+  }
+  ciEnv* env = ciEnv::current();
+  ciObject* ciargs[max_arg_count];
+  assert(nargs <= max_arg_count, "oob");
+  for (int j = 0; j < nargs; j++) {
+    ciargs[j] = env->get_object(args[j]);
+  }
+  Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
+}
+
+void Dependencies::write_dependency_to(CompileLog* log,
+                                       DepType dept,
+                                       int nargs, ciObject* args[],
+                                       klassOop witness) {
+  if (log == NULL)  return;
+  assert(nargs <= max_arg_count, "oob");
+  int argids[max_arg_count];
+  int ctxkj = dep_context_arg(dept);  // -1 if no context arg
+  int j;
+  for (j = 0; j < nargs; j++) {
+    argids[j] = log->identify(args[j]);
+  }
+  if (witness != NULL) {
+    log->begin_elem("dependency_failed");
+  } else {
+    log->begin_elem("dependency");
+  }
+  log->print(" type='%s'", dep_name(dept));
+  if (ctxkj >= 0) {
+    log->print(" ctxk='%d'", argids[ctxkj]);
+  }
+  // write remaining arguments, if any.
+  for (j = 0; j < nargs; j++) {
+    if (j == ctxkj)  continue;  // already logged
+    if (j == 1) {
+      log->print(  " x='%d'",    argids[j]);
+    } else {
+      log->print(" x%d='%d'", j, argids[j]);
+    }
+  }
+  if (witness != NULL) {
+    log->object("witness", witness);
+    log->stamp();
+  }
+  log->end_elem();
+}
+
+void Dependencies::write_dependency_to(xmlStream* xtty,
+                                       DepType dept,
+                                       int nargs, oop args[],
+                                       klassOop witness) {
+  if (xtty == NULL)  return;
+  ttyLocker ttyl;
+  int ctxkj = dep_context_arg(dept);  // -1 if no context arg
+  if (witness != NULL) {
+    xtty->begin_elem("dependency_failed");
+  } else {
+    xtty->begin_elem("dependency");
+  }
+  xtty->print(" type='%s'", dep_name(dept));
+  if (ctxkj >= 0) {
+    xtty->object("ctxk", args[ctxkj]);
+  }
+  // write remaining arguments, if any.
+  for (int j = 0; j < nargs; j++) {
+    if (j == ctxkj)  continue;  // already logged
+    if (j == 1) {
+      xtty->object("x", args[j]);
+    } else {
+      char xn[10]; sprintf(xn, "x%d", j);
+      xtty->object(xn, args[j]);
+    }
+  }
+  if (witness != NULL) {
+    xtty->object("witness", witness);
+    xtty->stamp();
+  }
+  xtty->end_elem();
+}
+
+void Dependencies::print_dependency(DepType dept, int nargs, oop args[],
+                                    klassOop witness) {
+  ResourceMark rm;
+  ttyLocker ttyl;   // keep the following output all in one block
+  tty->print_cr("%s of type %s",
+                (witness == NULL)? "Dependency": "Failed dependency",
+                dep_name(dept));
+  // print arguments
+  int ctxkj = dep_context_arg(dept);  // -1 if no context arg
+  for (int j = 0; j < nargs; j++) {
+    oop arg = args[j];
+    bool put_star = false;
+    if (arg == NULL)  continue;
+    const char* what;
+    if (j == ctxkj) {
+      what = "context";
+      put_star = !Dependencies::is_concrete_klass((klassOop)arg);
+    } else if (arg->is_method()) {
+      what = "method ";
+      put_star = !Dependencies::is_concrete_method((methodOop)arg);
+    } else if (arg->is_klass()) {
+      what = "class  ";
+    } else {
+      what = "object ";
+    }
+    tty->print("  %s = %s", what, (put_star? "*": ""));
+    if (arg->is_klass())
+      tty->print("%s", Klass::cast((klassOop)arg)->external_name());
+    else
+      arg->print_value();
+    tty->cr();
+  }
+  if (witness != NULL) {
+    bool put_star = !Dependencies::is_concrete_klass(witness);
+    tty->print_cr("  witness = %s%s",
+                  (put_star? "*": ""),
+                  Klass::cast(witness)->external_name());
+  }
+}
+
+void Dependencies::DepStream::log_dependency(klassOop witness) {
+  if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
+  int nargs = argument_count();
+  oop args[max_arg_count];
+  for (int j = 0; j < nargs; j++) {
+    args[j] = argument(j);
+  }
+  if (_deps != NULL && _deps->log() != NULL) {
+    Dependencies::write_dependency_to(_deps->log(),
+                                      type(), nargs, args, witness);
+  } else {
+    Dependencies::write_dependency_to(xtty,
+                                      type(), nargs, args, witness);
+  }
+}
+
+void Dependencies::DepStream::print_dependency(klassOop witness, bool verbose) {
+  int nargs = argument_count();
+  oop args[max_arg_count];
+  for (int j = 0; j < nargs; j++) {
+    args[j] = argument(j);
+  }
+  Dependencies::print_dependency(type(), nargs, args, witness);
+  if (verbose) {
+    if (_code != NULL) {
+      tty->print("  code: ");
+      _code->print_value_on(tty);
+      tty->cr();
+    }
+  }
+}
+
+
+/// Dependency stream support (decodes dependencies from an nmethod):
+
+#ifdef ASSERT
+void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
+  assert(must_be_in_vm(), "raw oops here");
+  _byte_limit = byte_limit;
+  _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
+  assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
+}
+#endif //ASSERT
+
+bool Dependencies::DepStream::next() {
+  assert(_type != end_marker, "already at end");
+  if (_bytes.position() == 0 && _code != NULL
+      && _code->dependencies_size() == 0) {
+    // Method has no dependencies at all.
+    return false;
+  }
+  int code_byte = (_bytes.read_byte() & 0xFF);
+  if (code_byte == end_marker) {
+    DEBUG_ONLY(_type = end_marker);
+    return false;
+  } else {
+    int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
+    code_byte -= ctxk_bit;
+    DepType dept = (DepType)code_byte;
+    _type = dept;
+    guarantee((dept - FIRST_TYPE) < (TYPE_LIMIT - FIRST_TYPE),
+              "bad dependency type tag");
+    int stride = _dep_args[dept];
+    assert(stride == dep_args(dept), "sanity");
+    int skipj = -1;
+    if (ctxk_bit != 0) {
+      skipj = 0;  // currently the only context argument is at zero
+      assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
+    }
+    for (int j = 0; j < stride; j++) {
+      _xi[j] = (j == skipj)? 0: _bytes.read_int();
+    }
+    DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
+    return true;
+  }
+}
+
+inline oop Dependencies::DepStream::recorded_oop_at(int i) {
+  return (_code != NULL)
+         ? _code->oop_at(i)
+         : JNIHandles::resolve(_deps->oop_recorder()->handle_at(i));
+}
+
+oop Dependencies::DepStream::argument(int i) {
+  return recorded_oop_at(argument_index(i));
+}
+
+klassOop Dependencies::DepStream::context_type() {
+  assert(must_be_in_vm(), "raw oops here");
+  int ctxkj = dep_context_arg(_type);  // -1 if no context arg
+  if (ctxkj < 0) {
+    return NULL;           // for example, evol_method
+  } else {
+    oop k = recorded_oop_at(_xi[ctxkj]);
+    if (k != NULL) {       // context type was not compressed away
+      assert(k->is_klass(), "type check");
+      return (klassOop) k;
+    } else {               // recompute "default" context type
+      return ctxk_encoded_as_null(_type, recorded_oop_at(_xi[ctxkj+1]));
+    }
+  }
+}
+
+/// Checking dependencies:
+
+// This hierarchy walker inspects subtypes of a given type,
+// trying to find a "bad" class which breaks a dependency.
+// Such a class is called a "witness" to the broken dependency.
+// While searching around, we ignore "participants", which
+// are already known to the dependency.
+class ClassHierarchyWalker {
+ public:
+  enum { PARTICIPANT_LIMIT = 3 };
+
+ private:
+  // optional method descriptor to check for:
+  symbolOop _name;
+  symbolOop _signature;
+
+  // special classes which are not allowed to be witnesses:
+  klassOop  _participants[PARTICIPANT_LIMIT+1];
+  int       _num_participants;
+
+  // cache of method lookups
+  methodOop _found_methods[PARTICIPANT_LIMIT+1];
+
+  // if non-zero, tells how many witnesses to convert to participants
+  int       _record_witnesses;
+
+  void initialize(klassOop participant) {
+    _record_witnesses = 0;
+    _participants[0]  = participant;
+    _found_methods[0] = NULL;
+    _num_participants = 0;
+    if (participant != NULL) {
+      // Terminating NULL.
+      _participants[1] = NULL;
+      _found_methods[1] = NULL;
+      _num_participants = 1;
+    }
+  }
+
+  void initialize_from_method(methodOop m) {
+    assert(m != NULL && m->is_method(), "sanity");
+    _name      = m->name();
+    _signature = m->signature();
+  }
+
+ public:
+  // The walker is initialized to recognize certain methods and/or types
+  // as friendly participants.
+  ClassHierarchyWalker(klassOop participant, methodOop m) {
+    initialize_from_method(m);
+    initialize(participant);
+  }
+  ClassHierarchyWalker(methodOop m) {
+    initialize_from_method(m);
+    initialize(NULL);
+  }
+  ClassHierarchyWalker(klassOop participant = NULL) {
+    _name      = NULL;
+    _signature = NULL;
+    initialize(participant);
+  }
+
+  // This is common code for two searches:  One for concrete subtypes,
+  // the other for concrete method implementations and overrides.
+  bool doing_subtype_search() {
+    return _name == NULL;
+  }
+
+  int num_participants() { return _num_participants; }
+  klassOop participant(int n) {
+    assert((uint)n <= (uint)_num_participants, "oob");
+    return _participants[n];
+  }
+
+  // Note:  If n==num_participants, returns NULL.
+  methodOop found_method(int n) {
+    assert((uint)n <= (uint)_num_participants, "oob");
+    methodOop fm = _found_methods[n];
+    assert(n == _num_participants || fm != NULL, "proper usage");
+    assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
+    return fm;
+  }
+
+#ifdef ASSERT
+  // Assert that m is inherited into ctxk, without intervening overrides.
+  // (May return true even if this is not true, in corner cases where we punt.)
+  bool check_method_context(klassOop ctxk, methodOop m) {
+    if (m->method_holder() == ctxk)
+      return true;  // Quick win.
+    if (m->is_private())
+      return false; // Quick lose.  Should not happen.
+    if (!(m->is_public() || m->is_protected()))
+      // The override story is complex when packages get involved.
+      return true;  // Must punt the assertion to true.
+    Klass* k = Klass::cast(ctxk);
+    methodOop lm = k->lookup_method(m->name(), m->signature());
+    if (lm == NULL && k->oop_is_instance()) {
+      // It might be an abstract interface method, devoid of mirandas.
+      lm = ((instanceKlass*)k)->lookup_method_in_all_interfaces(m->name(),
+                                                                m->signature());
+    }
+    if (lm == m)
+      // Method m is inherited into ctxk.
+      return true;
+    if (lm != NULL) {
+      if (!(lm->is_public() || lm->is_protected()))
+        // Method is [package-]private, so the override story is complex.
+        return true;  // Must punt the assertion to true.
+      if (   !Dependencies::is_concrete_method(lm)
+          && !Dependencies::is_concrete_method(m)
+          && Klass::cast(lm->method_holder())->is_subtype_of(m->method_holder()))
+        // Method m is overridden by lm, but both are non-concrete.
+        return true;
+    }
+    ResourceMark rm;
+    tty->print_cr("Dependency method not found in the associated context:");
+    tty->print_cr("  context = %s", Klass::cast(ctxk)->external_name());
+    tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
+    if (lm != NULL) {
+      tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
+    }
+    return false;
+  }
+#endif
+
+  void add_participant(klassOop participant) {
+    assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
+    int np = _num_participants++;
+    _participants[np] = participant;
+    _participants[np+1] = NULL;
+    _found_methods[np+1] = NULL;
+  }
+
+  void record_witnesses(int add) {
+    if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
+    assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
+    _record_witnesses = add;
+  }
+
+  bool is_witness(klassOop k) {
+    if (doing_subtype_search()) {
+      return Dependencies::is_concrete_klass(k);
+    } else {
+      methodOop m = instanceKlass::cast(k)->find_method(_name, _signature);
+      if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
+      _found_methods[_num_participants] = m;
+      // Note:  If add_participant(k) is called,
+      // the method m will already be memoized for it.
+      return true;
+    }
+  }
+
+  bool is_participant(klassOop k) {
+    if (k == _participants[0]) {
+      return true;
+    } else if (_num_participants <= 1) {
+      return false;
+    } else {
+      return in_list(k, &_participants[1]);
+    }
+  }
+  bool ignore_witness(klassOop witness) {
+    if (_record_witnesses == 0) {
+      return false;
+    } else {
+      --_record_witnesses;
+      add_participant(witness);
+      return true;
+    }
+  }
+  static bool in_list(klassOop x, klassOop* list) {
+    for (int i = 0; ; i++) {
+      klassOop y = list[i];
+      if (y == NULL)  break;
+      if (y == x)  return true;
+    }
+    return false;  // not in list
+  }
+
+ private:
+  // the actual search method:
+  klassOop find_witness_anywhere(klassOop context_type,
+                                 bool participants_hide_witnesses,
+                                 bool top_level_call = true);
+  // the spot-checking version:
+  klassOop find_witness_in(DepChange& changes,
+                           klassOop context_type,
+                           bool participants_hide_witnesses);
+ public:
+  klassOop find_witness_subtype(klassOop context_type, DepChange* changes = NULL) {
+    assert(doing_subtype_search(), "must set up a subtype search");
+    // When looking for unexpected concrete types,
+    // do not look beneath expected ones.
+    const bool participants_hide_witnesses = true;
+    // CX > CC > C' is OK, even if C' is new.
+    // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
+    if (changes != NULL) {
+      return find_witness_in(*changes, context_type, participants_hide_witnesses);
+    } else {
+      return find_witness_anywhere(context_type, participants_hide_witnesses);
+    }
+  }
+  klassOop find_witness_definer(klassOop context_type, DepChange* changes = NULL) {
+    assert(!doing_subtype_search(), "must set up a method definer search");
+    // When looking for unexpected concrete methods,
+    // look beneath expected ones, to see if there are overrides.
+    const bool participants_hide_witnesses = true;
+    // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
+    if (changes != NULL) {
+      return find_witness_in(*changes, context_type, !participants_hide_witnesses);
+    } else {
+      return find_witness_anywhere(context_type, !participants_hide_witnesses);
+    }
+  }
+};
+
+#ifndef PRODUCT
+static int deps_find_witness_calls = 0;
+static int deps_find_witness_steps = 0;
+static int deps_find_witness_recursions = 0;
+static int deps_find_witness_singles = 0;
+static int deps_find_witness_print = 0; // set to -1 to force a final print
+static bool count_find_witness_calls() {
+  if (TraceDependencies || LogCompilation) {
+    int pcount = deps_find_witness_print + 1;
+    bool final_stats      = (pcount == 0);
+    bool initial_call     = (pcount == 1);
+    bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
+    if (pcount < 0)  pcount = 1; // crude overflow protection
+    deps_find_witness_print = pcount;
+    if (VerifyDependencies && initial_call) {
+      tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
+    }
+    if (occasional_print || final_stats) {
+      // Every now and then dump a little info about dependency searching.
+      if (xtty != NULL) {
+        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
+                   deps_find_witness_calls,
+                   deps_find_witness_steps,
+                   deps_find_witness_recursions,
+                   deps_find_witness_singles);
+      }
+      if (final_stats || (TraceDependencies && WizardMode)) {
+        tty->print_cr("Dependency check (find_witness) "
+                      "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
+                      deps_find_witness_calls,
+                      deps_find_witness_steps,
+                      (double)deps_find_witness_steps / deps_find_witness_calls,
+                      deps_find_witness_recursions,
+                      deps_find_witness_singles);
+      }
+    }
+    return true;
+  }
+  return false;
+}
+#else
+#define count_find_witness_calls() (0)
+#endif //PRODUCT
+
+
+klassOop ClassHierarchyWalker::find_witness_in(DepChange& changes,
+                                               klassOop context_type,
+                                               bool participants_hide_witnesses) {
+  assert(changes.involves_context(context_type), "irrelevant dependency");
+  klassOop new_type = changes.new_type();
+
+  count_find_witness_calls();
+  NOT_PRODUCT(deps_find_witness_singles++);
+
+  // Current thread must be in VM (not native mode, as in CI):
+  assert(must_be_in_vm(), "raw oops here");
+  // Must not move the class hierarchy during this check:
+  assert_locked_or_safepoint(Compile_lock);
+
+  assert(!is_participant(new_type), "only old classes are participants");
+  if (participants_hide_witnesses) {
+    // If the new type is a subtype of a participant, we are done.
+    for (int i = 0; i < num_participants(); i++) {
+      klassOop part = participant(i);
+      if (part == NULL)  continue;
+      assert(changes.involves_context(part) == Klass::cast(new_type)->is_subtype_of(part),
+             "correct marking of participants, b/c new_type is unique");
+      if (changes.involves_context(part)) {
+        // new guy is protected from this check by previous participant
+        return NULL;
+      }
+    }
+  }
+
+  if (is_witness(new_type) &&
+      !ignore_witness(new_type)) {
+    return new_type;
+  }
+
+  return NULL;
+}
+
+
+// Walk hierarchy under a context type, looking for unexpected types.
+// Do not report participant types, and recursively walk beneath
+// them only if participants_hide_witnesses is false.
+// If top_level_call is false, skip testing the context type,
+// because the caller has already considered it.
+klassOop ClassHierarchyWalker::find_witness_anywhere(klassOop context_type,
+                                                     bool participants_hide_witnesses,
+                                                     bool top_level_call) {
+  // Current thread must be in VM (not native mode, as in CI):
+  assert(must_be_in_vm(), "raw oops here");
+  // Must not move the class hierarchy during this check:
+  assert_locked_or_safepoint(Compile_lock);
+
+  bool do_counts = count_find_witness_calls();
+
+  // Check the root of the sub-hierarchy first.
+  if (top_level_call) {
+    if (do_counts) {
+      NOT_PRODUCT(deps_find_witness_calls++);
+      NOT_PRODUCT(deps_find_witness_steps++);
+    }
+    if (is_participant(context_type)) {
+      if (participants_hide_witnesses)  return NULL;
+      // else fall through to search loop...
+    } else if (is_witness(context_type) && !ignore_witness(context_type)) {
+      // The context is an abstract class or interface, to start with.
+      return context_type;
+    }
+  }
+
+  // Now we must check each implementor and each subclass.
+  // Use a short worklist to avoid blowing the stack.
+  // Each worklist entry is a *chain* of subklass siblings to process.
+  const int CHAINMAX = 100;  // >= 1 + instanceKlass::implementors_limit
+  Klass* chains[CHAINMAX];
+  int    chaini = 0;  // index into worklist
+  Klass* chain;       // scratch variable
+#define ADD_SUBCLASS_CHAIN(k)                     {  \
+    assert(chaini < CHAINMAX, "oob");                \
+    chain = instanceKlass::cast(k)->subklass();      \
+    if (chain != NULL)  chains[chaini++] = chain;    }
+
+  // Look for non-abstract subclasses.
+  // (Note:  Interfaces do not have subclasses.)
+  ADD_SUBCLASS_CHAIN(context_type);
+
+  // If it is an interface, search its direct implementors.
+  // (Their subclasses are additional indirect implementors.
+  // See instanceKlass::add_implementor.)
+  // (Note:  nof_implementors is always zero for non-interfaces.)
+  int nof_impls = instanceKlass::cast(context_type)->nof_implementors();
+  if (nof_impls > 1) {
+    // Avoid this case: *I.m > { A.m, C }; B.m > C
+    // Here, I.m has 2 concrete implementations, but m appears unique
+    // as A.m, because the search misses B.m when checking C.
+    // The inherited method B.m was getting missed by the walker
+    // when interface 'I' was the starting point.
+    // %%% Until this is fixed more systematically, bail out.
+    // (Old CHA had the same limitation.)
+    return context_type;
+  }
+  for (int i = 0; i < nof_impls; i++) {
+    klassOop impl = instanceKlass::cast(context_type)->implementor(i);
+    if (impl == NULL) {
+      // implementors array overflowed => no exact info.
+      return context_type;  // report an inexact witness to this sad affair
+    }
+    if (do_counts)
+      { NOT_PRODUCT(deps_find_witness_steps++); }
+    if (is_participant(impl)) {
+      if (participants_hide_witnesses)  continue;
+      // else fall through to process this guy's subclasses
+    } else if (is_witness(impl) && !ignore_witness(impl)) {
+      return impl;
+    }
+    ADD_SUBCLASS_CHAIN(impl);
+  }
+
+  // Recursively process each non-trivial sibling chain.
+  while (chaini > 0) {
+    Klass* chain = chains[--chaini];
+    for (Klass* subk = chain; subk != NULL; subk = subk->next_sibling()) {
+      klassOop sub = subk->as_klassOop();
+      if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
+      if (is_participant(sub)) {
+        if (participants_hide_witnesses)  continue;
+        // else fall through to process this guy's subclasses
+      } else if (is_witness(sub) && !ignore_witness(sub)) {
+        return sub;
+      }
+      if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
+        // Fast path.  (Partially disabled if VerifyDependencies.)
+        ADD_SUBCLASS_CHAIN(sub);
+      } else {
+        // Worklist overflow.  Do a recursive call.  Should be rare.
+        // The recursive call will have its own worklist, of course.
+        // (Note that sub has already been tested, so that there is
+        // no need for the recursive call to re-test.  That's handy,
+        // since the recursive call sees sub as the context_type.)
+        if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
+        klassOop witness = find_witness_anywhere(sub,
+                                                 participants_hide_witnesses,
+                                                 /*top_level_call=*/ false);
+        if (witness != NULL)  return witness;
+      }
+    }
+  }
+
+  // No witness found.  The dependency remains unbroken.
+  return NULL;
+#undef ADD_SUBCLASS_CHAIN
+}
+
+
+bool Dependencies::is_concrete_klass(klassOop k) {
+  if (Klass::cast(k)->is_abstract())  return false;
+  // %%% We could treat classes which are concrete but
+  // have not yet been instantiated as virtually abstract.
+  // This would require a deoptimization barrier on first instantiation.
+  //if (k->is_not_instantiated())  return false;
+  return true;
+}
+
+bool Dependencies::is_concrete_method(methodOop m) {
+  if (m->is_abstract())  return false;
+  // %%% We could treat unexecuted methods as virtually abstract also.
+  // This would require a deoptimization barrier on first execution.
+  return !m->is_abstract();
+}
+
+
+Klass* Dependencies::find_finalizable_subclass(Klass* k) {
+  if (k->is_interface())  return NULL;
+  if (k->has_finalizer()) return k;
+  k = k->subklass();
+  while (k != NULL) {
+    Klass* result = find_finalizable_subclass(k);
+    if (result != NULL) return result;
+    k = k->next_sibling();
+  }
+  return NULL;
+}
+
+
+bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
+  if (k->is_abstract())  return false;
+  // We could return also false if k does not yet appear to be
+  // instantiated, if the VM version supports this distinction also.
+  //if (k->is_not_instantiated())  return false;
+  return true;
+}
+
+bool Dependencies::is_concrete_method(ciMethod* m) {
+  // Statics are irrelevant to virtual call sites.
+  if (m->is_static())  return false;
+
+  // We could return also false if m does not yet appear to be
+  // executed, if the VM version supports this distinction also.
+  return !m->is_abstract();
+}
+
+
+bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
+  return k->has_finalizable_subclass();
+}
+
+
+// Any use of the contents (bytecodes) of a method must be
+// marked by an "evol_method" dependency, if those contents
+// can change.  (Note: A method is always dependent on itself.)
+klassOop Dependencies::check_evol_method(methodOop m) {
+  assert(must_be_in_vm(), "raw oops here");
+  // Did somebody do a JVMTI RedefineClasses while our backs were turned?
+  // Or is there a now a breakpoint?
+  // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
+  if (m->is_old()
+      || m->number_of_breakpoints() > 0) {
+    return m->method_holder();
+  } else {
+    return NULL;
+  }
+}
+
+// This is a strong assertion:  It is that the given type
+// has no subtypes whatever.  It is most useful for
+// optimizing checks on reflected types or on array types.
+// (Checks on types which are derived from real instances
+// can be optimized more strongly than this, because we
+// know that the checked type comes from a concrete type,
+// and therefore we can disregard abstract types.)
+klassOop Dependencies::check_leaf_type(klassOop ctxk) {
+  assert(must_be_in_vm(), "raw oops here");
+  assert_locked_or_safepoint(Compile_lock);
+  instanceKlass* ctx = instanceKlass::cast(ctxk);
+  Klass* sub = ctx->subklass();
+  if (sub != NULL) {
+    return sub->as_klassOop();
+  } else if (ctx->nof_implementors() != 0) {
+    // if it is an interface, it must be unimplemented
+    // (if it is not an interface, nof_implementors is always zero)
+    klassOop impl = ctx->implementor(0);
+    return (impl != NULL)? impl: ctxk;
+  } else {
+    return NULL;
+  }
+}
+
+// Test the assertion that conck is the only concrete subtype* of ctxk.
+// The type conck itself is allowed to have have further concrete subtypes.
+// This allows the compiler to narrow occurrences of ctxk by conck,
+// when dealing with the types of actual instances.
+klassOop Dependencies::check_abstract_with_unique_concrete_subtype(klassOop ctxk,
+                                                                   klassOop conck,
+                                                                   DepChange* changes) {
+  ClassHierarchyWalker wf(conck);
+  return wf.find_witness_subtype(ctxk, changes);
+}
+
+// If a non-concrete class has no concrete subtypes, it is not (yet)
+// instantiatable.  This can allow the compiler to make some paths go
+// dead, if they are gated by a test of the type.
+klassOop Dependencies::check_abstract_with_no_concrete_subtype(klassOop ctxk,
+                                                               DepChange* changes) {
+  // Find any concrete subtype, with no participants:
+  ClassHierarchyWalker wf;
+  return wf.find_witness_subtype(ctxk, changes);
+}
+
+
+// If a concrete class has no concrete subtypes, it can always be
+// exactly typed.  This allows the use of a cheaper type test.
+klassOop Dependencies::check_concrete_with_no_concrete_subtype(klassOop ctxk,
+                                                               DepChange* changes) {
+  // Find any concrete subtype, with only the ctxk as participant:
+  ClassHierarchyWalker wf(ctxk);
+  return wf.find_witness_subtype(ctxk, changes);
+}
+
+
+// Find the unique concrete proper subtype of ctxk, or NULL if there
+// is more than one concrete proper subtype.  If there are no concrete
+// proper subtypes, return ctxk itself, whether it is concrete or not.
+// The returned subtype is allowed to have have further concrete subtypes.
+// That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
+klassOop Dependencies::find_unique_concrete_subtype(klassOop ctxk) {
+  ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
+  wf.record_witnesses(1);          // Record one other witness when walking.
+  klassOop wit = wf.find_witness_subtype(ctxk);
+  if (wit != NULL)  return NULL;   // Too many witnesses.
+  klassOop conck = wf.participant(0);
+  if (conck == NULL) {
+#ifndef PRODUCT
+    // Make sure the dependency mechanism will pass this discovery:
+    if (VerifyDependencies) {
+      // Turn off dependency tracing while actually testing deps.
+      FlagSetting fs(TraceDependencies, false);
+      if (!Dependencies::is_concrete_klass(ctxk)) {
+        guarantee(NULL ==
+                  (void *)check_abstract_with_no_concrete_subtype(ctxk),
+                  "verify dep.");
+      } else {
+        guarantee(NULL ==
+                  (void *)check_concrete_with_no_concrete_subtype(ctxk),
+                  "verify dep.");
+      }
+    }
+#endif //PRODUCT
+    return ctxk;                   // Return ctxk as a flag for "no subtypes".
+  } else {
+#ifndef PRODUCT
+    // Make sure the dependency mechanism will pass this discovery:
+    if (VerifyDependencies) {
+      // Turn off dependency tracing while actually testing deps.
+      FlagSetting fs(TraceDependencies, false);
+      if (!Dependencies::is_concrete_klass(ctxk)) {
+        guarantee(NULL == (void *)
+                  check_abstract_with_unique_concrete_subtype(ctxk, conck),
+                  "verify dep.");
+      }
+    }
+#endif //PRODUCT
+    return conck;
+  }
+}
+
+// Test the assertion that the k[12] are the only concrete subtypes of ctxk,
+// except possibly for further subtypes of k[12] themselves.
+// The context type must be abstract.  The types k1 and k2 are themselves
+// allowed to have further concrete subtypes.
+klassOop Dependencies::check_abstract_with_exclusive_concrete_subtypes(
+                                                klassOop ctxk,
+                                                klassOop k1,
+                                                klassOop k2,
+                                                DepChange* changes) {
+  ClassHierarchyWalker wf;
+  wf.add_participant(k1);
+  wf.add_participant(k2);
+  return wf.find_witness_subtype(ctxk, changes);
+}
+
+// Search ctxk for concrete implementations.  If there are klen or fewer,
+// pack them into the given array and return the number.
+// Otherwise, return -1, meaning the given array would overflow.
+// (Note that a return of 0 means there are exactly no concrete subtypes.)
+// In this search, if ctxk is concrete, it will be reported alone.
+// For any type CC reported, no proper subtypes of CC will be reported.
+int Dependencies::find_exclusive_concrete_subtypes(klassOop ctxk,
+                                                   int klen,
+                                                   klassOop karray[]) {
+  ClassHierarchyWalker wf;
+  wf.record_witnesses(klen);
+  klassOop wit = wf.find_witness_subtype(ctxk);
+  if (wit != NULL)  return -1;  // Too many witnesses.
+  int num = wf.num_participants();
+  assert(num <= klen, "oob");
+  // Pack the result array with the good news.
+  for (int i = 0; i < num; i++)
+    karray[i] = wf.participant(i);
+#ifndef PRODUCT
+  // Make sure the dependency mechanism will pass this discovery:
+  if (VerifyDependencies) {
+    // Turn off dependency tracing while actually testing deps.
+    FlagSetting fs(TraceDependencies, false);
+    switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
+    case -1: // ctxk was itself concrete
+      guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
+      break;
+    case 0:
+      guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
+                "verify dep.");
+      break;
+    case 1:
+      guarantee(NULL == (void *)
+                check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
+                "verify dep.");
+      break;
+    case 2:
+      guarantee(NULL == (void *)
+                check_abstract_with_exclusive_concrete_subtypes(ctxk,
+                                                                karray[0],
+                                                                karray[1]),
+                "verify dep.");
+      break;
+    default:
+      ShouldNotReachHere();  // klen > 2 yet supported
+    }
+  }
+#endif //PRODUCT
+  return num;
+}
+
+// If a class (or interface) has a unique concrete method uniqm, return NULL.
+// Otherwise, return a class that contains an interfering method.
+klassOop Dependencies::check_unique_concrete_method(klassOop ctxk, methodOop uniqm,
+                                                    DepChange* changes) {
+  // Here is a missing optimization:  If uniqm->is_final(),
+  // we don't really need to search beneath it for overrides.
+  // This is probably not important, since we don't use dependencies
+  // to track final methods.  (They can't be "definalized".)
+  ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
+  return wf.find_witness_definer(ctxk, changes);
+}
+
+// Find the set of all non-abstract methods under ctxk that match m.
+// (The method m must be defined or inherited in ctxk.)
+// Include m itself in the set, unless it is abstract.
+// If this set has exactly one element, return that element.
+methodOop Dependencies::find_unique_concrete_method(klassOop ctxk, methodOop m) {
+  ClassHierarchyWalker wf(m);
+  assert(wf.check_method_context(ctxk, m), "proper context");
+  wf.record_witnesses(1);
+  klassOop wit = wf.find_witness_definer(ctxk);
+  if (wit != NULL)  return NULL;  // Too many witnesses.
+  methodOop fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
+  if (Dependencies::is_concrete_method(m)) {
+    if (fm == NULL) {
+      // It turns out that m was always the only implementation.
+      fm = m;
+    } else if (fm != m) {
+      // Two conflicting implementations after all.
+      // (This can happen if m is inherited into ctxk and fm overrides it.)
+      return NULL;
+    }
+  }
+#ifndef PRODUCT
+  // Make sure the dependency mechanism will pass this discovery:
+  if (VerifyDependencies && fm != NULL) {
+    guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
+              "verify dep.");
+  }
+#endif //PRODUCT
+  return fm;
+}
+
+klassOop Dependencies::check_exclusive_concrete_methods(klassOop ctxk,
+                                                        methodOop m1,
+                                                        methodOop m2,
+                                                        DepChange* changes) {
+  ClassHierarchyWalker wf(m1);
+  wf.add_participant(m1->method_holder());
+  wf.add_participant(m2->method_holder());
+  return wf.find_witness_definer(ctxk, changes);
+}
+
+// Find the set of all non-abstract methods under ctxk that match m[0].
+// (The method m[0] must be defined or inherited in ctxk.)
+// Include m itself in the set, unless it is abstract.
+// Fill the given array m[0..(mlen-1)] with this set, and return the length.
+// (The length may be zero if no concrete methods are found anywhere.)
+// If there are too many concrete methods to fit in marray, return -1.
+int Dependencies::find_exclusive_concrete_methods(klassOop ctxk,
+                                                  int mlen,
+                                                  methodOop marray[]) {
+  methodOop m0 = marray[0];
+  ClassHierarchyWalker wf(m0);
+  assert(wf.check_method_context(ctxk, m0), "proper context");
+  wf.record_witnesses(mlen);
+  bool participants_hide_witnesses = true;
+  klassOop wit = wf.find_witness_definer(ctxk);
+  if (wit != NULL)  return -1;  // Too many witnesses.
+  int num = wf.num_participants();
+  assert(num <= mlen, "oob");
+  // Keep track of whether m is also part of the result set.
+  int mfill = 0;
+  assert(marray[mfill] == m0, "sanity");
+  if (Dependencies::is_concrete_method(m0))
+    mfill++;  // keep m0 as marray[0], the first result
+  for (int i = 0; i < num; i++) {
+    methodOop fm = wf.found_method(i);
+    if (fm == m0)  continue;  // Already put this guy in the list.
+    if (mfill == mlen) {
+      return -1;              // Oops.  Too many methods after all!
+    }
+    marray[mfill++] = fm;
+  }
+#ifndef PRODUCT
+  // Make sure the dependency mechanism will pass this discovery:
+  if (VerifyDependencies) {
+    // Turn off dependency tracing while actually testing deps.
+    FlagSetting fs(TraceDependencies, false);
+    switch (mfill) {
+    case 1:
+      guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
+                "verify dep.");
+      break;
+    case 2:
+      guarantee(NULL == (void *)
+                check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
+                "verify dep.");
+      break;
+    default:
+      ShouldNotReachHere();  // mlen > 2 yet supported
+    }
+  }
+#endif //PRODUCT
+  return mfill;
+}
+
+
+klassOop Dependencies::check_has_no_finalizable_subclasses(klassOop ctxk, DepChange* changes) {
+  Klass* search_at = ctxk->klass_part();
+  if (changes != NULL)
+    search_at = changes->new_type()->klass_part(); // just look at the new bit
+  Klass* result = find_finalizable_subclass(search_at);
+  if (result == NULL) {
+    return NULL;
+  }
+  return result->as_klassOop();
+}
+
+
+klassOop Dependencies::DepStream::check_dependency_impl(DepChange* changes) {
+  assert_locked_or_safepoint(Compile_lock);
+
+  klassOop witness = NULL;
+  switch (type()) {
+  case evol_method:
+    witness = check_evol_method(method_argument(0));
+    break;
+  case leaf_type:
+    witness = check_leaf_type(context_type());
+    break;
+  case abstract_with_unique_concrete_subtype:
+    witness = check_abstract_with_unique_concrete_subtype(context_type(),
+                                                          type_argument(1),
+                                                          changes);
+    break;
+  case abstract_with_no_concrete_subtype:
+    witness = check_abstract_with_no_concrete_subtype(context_type(),
+                                                      changes);
+    break;
+  case concrete_with_no_concrete_subtype:
+    witness = check_concrete_with_no_concrete_subtype(context_type(),
+                                                      changes);
+    break;
+  case unique_concrete_method:
+    witness = check_unique_concrete_method(context_type(),
+                                           method_argument(1),
+                                           changes);
+    break;
+  case abstract_with_exclusive_concrete_subtypes_2:
+    witness = check_abstract_with_exclusive_concrete_subtypes(context_type(),
+                                                              type_argument(1),
+                                                              type_argument(2),
+                                                              changes);
+    break;
+  case exclusive_concrete_methods_2:
+    witness = check_exclusive_concrete_methods(context_type(),
+                                               method_argument(1),
+                                               method_argument(2),
+                                               changes);
+    break;
+  case no_finalizable_subclasses:
+    witness = check_has_no_finalizable_subclasses(context_type(),
+                                                  changes);
+    break;
+          default:
+    witness = NULL;
+    ShouldNotReachHere();
+    break;
+  }
+  if (witness != NULL) {
+    if (TraceDependencies) {
+      print_dependency(witness, /*verbose=*/ true);
+    }
+    // The following is a no-op unless logging is enabled:
+    log_dependency(witness);
+  }
+  return witness;
+}
+
+
+klassOop Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
+  if (!changes.involves_context(context_type()))
+    // irrelevant dependency; skip it
+    return NULL;
+
+  return check_dependency_impl(&changes);
+}
+
+
+void DepChange::initialize() {
+  // entire transaction must be under this lock:
+  assert_lock_strong(Compile_lock);
+
+  // Mark all dependee and all its superclasses
+  // Mark transitive interfaces
+  for (ContextStream str(*this); str.next(); ) {
+    klassOop d = str.klass();
+    assert(!instanceKlass::cast(d)->is_marked_dependent(), "checking");
+    instanceKlass::cast(d)->set_is_marked_dependent(true);
+  }
+}
+
+DepChange::~DepChange() {
+  // Unmark all dependee and all its superclasses
+  // Unmark transitive interfaces
+  for (ContextStream str(*this); str.next(); ) {
+    klassOop d = str.klass();
+    instanceKlass::cast(d)->set_is_marked_dependent(false);
+  }
+}
+
+bool DepChange::involves_context(klassOop k) {
+  if (k == NULL || !Klass::cast(k)->oop_is_instance()) {
+    return false;
+  }
+  instanceKlass* ik = instanceKlass::cast(k);
+  bool is_contained = ik->is_marked_dependent();
+  assert(is_contained == Klass::cast(new_type())->is_subtype_of(k),
+         "correct marking of potential context types");
+  return is_contained;
+}
+
+bool DepChange::ContextStream::next() {
+  switch (_change_type) {
+  case Start_Klass:             // initial state; _klass is the new type
+    _ti_base = instanceKlass::cast(_klass)->transitive_interfaces();
+    _ti_index = 0;
+    _change_type = Change_new_type;
+    return true;
+  case Change_new_type:
+    // fall through:
+    _change_type = Change_new_sub;
+  case Change_new_sub:
+    _klass = instanceKlass::cast(_klass)->super();
+    if (_klass != NULL) {
+      return true;
+    }
+    // else set up _ti_limit and fall through:
+    _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
+    _change_type = Change_new_impl;
+  case Change_new_impl:
+    if (_ti_index < _ti_limit) {
+      _klass = klassOop( _ti_base->obj_at(_ti_index++) );
+      return true;
+    }
+    // fall through:
+    _change_type = NO_CHANGE;  // iterator is exhausted
+  case NO_CHANGE:
+    break;
+  default:
+    ShouldNotReachHere();
+  }
+  return false;
+}
+
+void DepChange::print() {
+  int nsup = 0, nint = 0;
+  for (ContextStream str(*this); str.next(); ) {
+    klassOop k = str.klass();
+    switch (str._change_type) {
+    case Change_new_type:
+      tty->print_cr("  dependee = %s", instanceKlass::cast(k)->external_name());
+      break;
+    case Change_new_sub:
+      if (!WizardMode)
+           ++nsup;
+      else tty->print_cr("  context super = %s", instanceKlass::cast(k)->external_name());
+      break;
+    case Change_new_impl:
+      if (!WizardMode)
+           ++nint;
+      else tty->print_cr("  context interface = %s", instanceKlass::cast(k)->external_name());
+      break;
+    }
+  }
+  if (nsup + nint != 0) {
+    tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
+  }
+}
+
+#ifndef PRODUCT
+void Dependencies::print_statistics() {
+  if (deps_find_witness_print != 0) {
+    // Call one final time, to flush out the data.
+    deps_find_witness_print = -1;
+    count_find_witness_calls();
+  }
+}
+#endif