hotspot/src/cpu/sparc/vm/templateInterpreter_sparc.cpp
changeset 1 489c9b5090e2
child 360 21d113ecbf6a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/templateInterpreter_sparc.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,1965 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_templateInterpreter_sparc.cpp.incl"
+
+#ifndef CC_INTERP
+#ifndef FAST_DISPATCH
+#define FAST_DISPATCH 1
+#endif
+#undef FAST_DISPATCH
+
+
+// Generation of Interpreter
+//
+// The InterpreterGenerator generates the interpreter into Interpreter::_code.
+
+
+#define __ _masm->
+
+
+//----------------------------------------------------------------------------------------------------
+
+
+void InterpreterGenerator::save_native_result(void) {
+  // result potentially in O0/O1: save it across calls
+  const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
+
+  // result potentially in F0/F1: save it across calls
+  const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
+
+  // save and restore any potential method result value around the unlocking operation
+  __ stf(FloatRegisterImpl::D, F0, d_tmp);
+#ifdef _LP64
+  __ stx(O0, l_tmp);
+#else
+  __ std(O0, l_tmp);
+#endif
+}
+
+void InterpreterGenerator::restore_native_result(void) {
+  const Address& l_tmp = InterpreterMacroAssembler::l_tmp;
+  const Address& d_tmp = InterpreterMacroAssembler::d_tmp;
+
+  // Restore any method result value
+  __ ldf(FloatRegisterImpl::D, d_tmp, F0);
+#ifdef _LP64
+  __ ldx(l_tmp, O0);
+#else
+  __ ldd(l_tmp, O0);
+#endif
+}
+
+address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
+  assert(!pass_oop || message == NULL, "either oop or message but not both");
+  address entry = __ pc();
+  // expression stack must be empty before entering the VM if an exception happened
+  __ empty_expression_stack();
+  // load exception object
+  __ set((intptr_t)name, G3_scratch);
+  if (pass_oop) {
+    __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), G3_scratch, Otos_i);
+  } else {
+    __ set((intptr_t)message, G4_scratch);
+    __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), G3_scratch, G4_scratch);
+  }
+  // throw exception
+  assert(Interpreter::throw_exception_entry() != NULL, "generate it first");
+  Address thrower(G3_scratch, Interpreter::throw_exception_entry());
+  __ jump_to (thrower);
+  __ delayed()->nop();
+  return entry;
+}
+
+address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
+  address entry = __ pc();
+  // expression stack must be empty before entering the VM if an exception
+  // happened
+  __ empty_expression_stack();
+  // load exception object
+  __ call_VM(Oexception,
+             CAST_FROM_FN_PTR(address,
+                              InterpreterRuntime::throw_ClassCastException),
+             Otos_i);
+  __ should_not_reach_here();
+  return entry;
+}
+
+
+address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
+  address entry = __ pc();
+  // expression stack must be empty before entering the VM if an exception happened
+  __ empty_expression_stack();
+  // convention: expect aberrant index in register G3_scratch, then shuffle the
+  // index to G4_scratch for the VM call
+  __ mov(G3_scratch, G4_scratch);
+  __ set((intptr_t)name, G3_scratch);
+  __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), G3_scratch, G4_scratch);
+  __ should_not_reach_here();
+  return entry;
+}
+
+
+address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
+  address entry = __ pc();
+  // expression stack must be empty before entering the VM if an exception happened
+  __ empty_expression_stack();
+  __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
+  __ should_not_reach_here();
+  return entry;
+}
+
+
+address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step) {
+  address compiled_entry = __ pc();
+  Label cont;
+
+  address entry = __ pc();
+#if !defined(_LP64) && defined(COMPILER2)
+  // All return values are where we want them, except for Longs.  C2 returns
+  // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
+  // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
+  // build even if we are returning from interpreted we just do a little
+  // stupid shuffing.
+  // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
+  // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
+  // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
+
+  if( state == ltos ) {
+    __ srl (G1, 0,O1);
+    __ srlx(G1,32,O0);
+  }
+#endif /* !_LP64 && COMPILER2 */
+
+
+  __ bind(cont);
+
+  // The callee returns with the stack possibly adjusted by adapter transition
+  // We remove that possible adjustment here.
+  // All interpreter local registers are untouched. Any result is passed back
+  // in the O0/O1 or float registers. Before continuing, the arguments must be
+  // popped from the java expression stack; i.e., Lesp must be adjusted.
+
+  __ mov(Llast_SP, SP);   // Remove any adapter added stack space.
+
+
+  const Register cache = G3_scratch;
+  const Register size  = G1_scratch;
+  __ get_cache_and_index_at_bcp(cache, G1_scratch, 1);
+  __ ld_ptr(Address(cache, 0, in_bytes(constantPoolCacheOopDesc::base_offset()) +
+                    in_bytes(ConstantPoolCacheEntry::flags_offset())), size);
+  __ and3(size, 0xFF, size);                   // argument size in words
+  __ sll(size, Interpreter::logStackElementSize(), size); // each argument size in bytes
+  __ add(Lesp, size, Lesp);                    // pop arguments
+  __ dispatch_next(state, step);
+
+  return entry;
+}
+
+
+address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
+  address entry = __ pc();
+  __ get_constant_pool_cache(LcpoolCache); // load LcpoolCache
+  { Label L;
+    Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+
+    __ ld_ptr(exception_addr, Gtemp);
+    __ tst(Gtemp);
+    __ brx(Assembler::equal, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
+    __ should_not_reach_here();
+    __ bind(L);
+  }
+  __ dispatch_next(state, step);
+  return entry;
+}
+
+// A result handler converts/unboxes a native call result into
+// a java interpreter/compiler result. The current frame is an
+// interpreter frame. The activation frame unwind code must be
+// consistent with that of TemplateTable::_return(...). In the
+// case of native methods, the caller's SP was not modified.
+address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
+  address entry = __ pc();
+  Register Itos_i  = Otos_i ->after_save();
+  Register Itos_l  = Otos_l ->after_save();
+  Register Itos_l1 = Otos_l1->after_save();
+  Register Itos_l2 = Otos_l2->after_save();
+  switch (type) {
+    case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
+    case T_CHAR   : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i);   break; // cannot use and3, 0xFFFF too big as immediate value!
+    case T_BYTE   : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i);   break;
+    case T_SHORT  : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i);   break;
+    case T_LONG   :
+#ifndef _LP64
+                    __ mov(O1, Itos_l2);  // move other half of long
+#endif              // ifdef or no ifdef, fall through to the T_INT case
+    case T_INT    : __ mov(O0, Itos_i);                         break;
+    case T_VOID   : /* nothing to do */                         break;
+    case T_FLOAT  : assert(F0 == Ftos_f, "fix this code" );     break;
+    case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" );     break;
+    case T_OBJECT :
+      __ ld_ptr(FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS, Itos_i);
+      __ verify_oop(Itos_i);
+      break;
+    default       : ShouldNotReachHere();
+  }
+  __ ret();                           // return from interpreter activation
+  __ delayed()->restore(I5_savedSP, G0, SP);  // remove interpreter frame
+  NOT_PRODUCT(__ emit_long(0);)       // marker for disassembly
+  return entry;
+}
+
+address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
+  address entry = __ pc();
+  __ push(state);
+  __ call_VM(noreg, runtime_entry);
+  __ dispatch_via(vtos, Interpreter::normal_table(vtos));
+  return entry;
+}
+
+
+address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
+  address entry = __ pc();
+  __ dispatch_next(state);
+  return entry;
+}
+
+//
+// Helpers for commoning out cases in the various type of method entries.
+//
+
+// increment invocation count & check for overflow
+//
+// Note: checking for negative value instead of overflow
+//       so we have a 'sticky' overflow test
+//
+// Lmethod: method
+// ??: invocation counter
+//
+void InterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
+  // Update standard invocation counters
+  __ increment_invocation_counter(O0, G3_scratch);
+  if (ProfileInterpreter) {  // %%% Merge this into methodDataOop
+    Address interpreter_invocation_counter(Lmethod, 0, in_bytes(methodOopDesc::interpreter_invocation_counter_offset()));
+    __ ld(interpreter_invocation_counter, G3_scratch);
+    __ inc(G3_scratch);
+    __ st(G3_scratch, interpreter_invocation_counter);
+  }
+
+  if (ProfileInterpreter && profile_method != NULL) {
+    // Test to see if we should create a method data oop
+    Address profile_limit(G3_scratch, (address)&InvocationCounter::InterpreterProfileLimit);
+    __ sethi(profile_limit);
+    __ ld(profile_limit, G3_scratch);
+    __ cmp(O0, G3_scratch);
+    __ br(Assembler::lessUnsigned, false, Assembler::pn, *profile_method_continue);
+    __ delayed()->nop();
+
+    // if no method data exists, go to profile_method
+    __ test_method_data_pointer(*profile_method);
+  }
+
+  Address invocation_limit(G3_scratch, (address)&InvocationCounter::InterpreterInvocationLimit);
+  __ sethi(invocation_limit);
+  __ ld(invocation_limit, G3_scratch);
+  __ cmp(O0, G3_scratch);
+  __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, *overflow);
+  __ delayed()->nop();
+
+}
+
+// Allocate monitor and lock method (asm interpreter)
+// ebx - methodOop
+//
+void InterpreterGenerator::lock_method(void) {
+  const Address access_flags      (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
+  __ ld(access_flags, O0);
+
+#ifdef ASSERT
+ { Label ok;
+   __ btst(JVM_ACC_SYNCHRONIZED, O0);
+   __ br( Assembler::notZero, false, Assembler::pt, ok);
+   __ delayed()->nop();
+   __ stop("method doesn't need synchronization");
+   __ bind(ok);
+  }
+#endif // ASSERT
+
+  // get synchronization object to O0
+  { Label done;
+    const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
+    __ btst(JVM_ACC_STATIC, O0);
+    __ br( Assembler::zero, true, Assembler::pt, done);
+    __ delayed()->ld_ptr(Llocals, Interpreter::local_offset_in_bytes(0), O0); // get receiver for not-static case
+
+    __ ld_ptr( Lmethod, in_bytes(methodOopDesc::constants_offset()), O0);
+    __ ld_ptr( O0, constantPoolOopDesc::pool_holder_offset_in_bytes(), O0);
+
+    // lock the mirror, not the klassOop
+    __ ld_ptr( O0, mirror_offset, O0);
+
+#ifdef ASSERT
+    __ tst(O0);
+    __ breakpoint_trap(Assembler::zero);
+#endif // ASSERT
+
+    __ bind(done);
+  }
+
+  __ add_monitor_to_stack(true, noreg, noreg);  // allocate monitor elem
+  __ st_ptr( O0, Lmonitors, BasicObjectLock::obj_offset_in_bytes());   // store object
+  // __ untested("lock_object from method entry");
+  __ lock_object(Lmonitors, O0);
+}
+
+
+void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rframe_size,
+                                                         Register Rscratch,
+                                                         Register Rscratch2) {
+  const int page_size = os::vm_page_size();
+  Address saved_exception_pc(G2_thread, 0,
+                             in_bytes(JavaThread::saved_exception_pc_offset()));
+  Label after_frame_check;
+
+  assert_different_registers(Rframe_size, Rscratch, Rscratch2);
+
+  __ set( page_size,   Rscratch );
+  __ cmp( Rframe_size, Rscratch );
+
+  __ br( Assembler::lessEqual, false, Assembler::pt, after_frame_check );
+  __ delayed()->nop();
+
+  // get the stack base, and in debug, verify it is non-zero
+  __ ld_ptr( G2_thread, in_bytes(Thread::stack_base_offset()), Rscratch );
+#ifdef ASSERT
+  Label base_not_zero;
+  __ cmp( Rscratch, G0 );
+  __ brx( Assembler::notEqual, false, Assembler::pn, base_not_zero );
+  __ delayed()->nop();
+  __ stop("stack base is zero in generate_stack_overflow_check");
+  __ bind(base_not_zero);
+#endif
+
+  // get the stack size, and in debug, verify it is non-zero
+  assert( sizeof(size_t) == sizeof(intptr_t), "wrong load size" );
+  __ ld_ptr( G2_thread, in_bytes(Thread::stack_size_offset()), Rscratch2 );
+#ifdef ASSERT
+  Label size_not_zero;
+  __ cmp( Rscratch2, G0 );
+  __ brx( Assembler::notEqual, false, Assembler::pn, size_not_zero );
+  __ delayed()->nop();
+  __ stop("stack size is zero in generate_stack_overflow_check");
+  __ bind(size_not_zero);
+#endif
+
+  // compute the beginning of the protected zone minus the requested frame size
+  __ sub( Rscratch, Rscratch2,   Rscratch );
+  __ set( (StackRedPages+StackYellowPages) * page_size, Rscratch2 );
+  __ add( Rscratch, Rscratch2,   Rscratch );
+
+  // Add in the size of the frame (which is the same as subtracting it from the
+  // SP, which would take another register
+  __ add( Rscratch, Rframe_size, Rscratch );
+
+  // the frame is greater than one page in size, so check against
+  // the bottom of the stack
+  __ cmp( SP, Rscratch );
+  __ brx( Assembler::greater, false, Assembler::pt, after_frame_check );
+  __ delayed()->nop();
+
+  // Save the return address as the exception pc
+  __ st_ptr(O7, saved_exception_pc);
+
+  // the stack will overflow, throw an exception
+  __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
+
+  // if you get to here, then there is enough stack space
+  __ bind( after_frame_check );
+}
+
+
+//
+// Generate a fixed interpreter frame. This is identical setup for interpreted
+// methods and for native methods hence the shared code.
+
+void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
+  //
+  //
+  // The entry code sets up a new interpreter frame in 4 steps:
+  //
+  // 1) Increase caller's SP by for the extra local space needed:
+  //    (check for overflow)
+  //    Efficient implementation of xload/xstore bytecodes requires
+  //    that arguments and non-argument locals are in a contigously
+  //    addressable memory block => non-argument locals must be
+  //    allocated in the caller's frame.
+  //
+  // 2) Create a new stack frame and register window:
+  //    The new stack frame must provide space for the standard
+  //    register save area, the maximum java expression stack size,
+  //    the monitor slots (0 slots initially), and some frame local
+  //    scratch locations.
+  //
+  // 3) The following interpreter activation registers must be setup:
+  //    Lesp       : expression stack pointer
+  //    Lbcp       : bytecode pointer
+  //    Lmethod    : method
+  //    Llocals    : locals pointer
+  //    Lmonitors  : monitor pointer
+  //    LcpoolCache: constant pool cache
+  //
+  // 4) Initialize the non-argument locals if necessary:
+  //    Non-argument locals may need to be initialized to NULL
+  //    for GC to work. If the oop-map information is accurate
+  //    (in the absence of the JSR problem), no initialization
+  //    is necessary.
+  //
+  // (gri - 2/25/2000)
+
+
+  const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
+  const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
+  const Address max_stack         (G5_method, 0, in_bytes(methodOopDesc::max_stack_offset()));
+  int rounded_vm_local_words = round_to( frame::interpreter_frame_vm_local_words, WordsPerLong );
+
+  const int extra_space =
+    rounded_vm_local_words +                   // frame local scratch space
+    frame::memory_parameter_word_sp_offset +   // register save area
+    (native_call ? frame::interpreter_frame_extra_outgoing_argument_words : 0);
+
+  const Register Glocals_size = G3;
+  const Register Otmp1 = O3;
+  const Register Otmp2 = O4;
+  // Lscratch can't be used as a temporary because the call_stub uses
+  // it to assert that the stack frame was setup correctly.
+
+  __ lduh( size_of_parameters, Glocals_size);
+
+  // Gargs points to first local + BytesPerWord
+  // Set the saved SP after the register window save
+  //
+  assert_different_registers(Gargs, Glocals_size, Gframe_size, O5_savedSP);
+  __ sll(Glocals_size, Interpreter::logStackElementSize(), Otmp1);
+  __ add(Gargs, Otmp1, Gargs);
+
+  if (native_call) {
+    __ calc_mem_param_words( Glocals_size, Gframe_size );
+    __ add( Gframe_size,  extra_space, Gframe_size);
+    __ round_to( Gframe_size, WordsPerLong );
+    __ sll( Gframe_size, LogBytesPerWord, Gframe_size );
+  } else {
+
+    //
+    // Compute number of locals in method apart from incoming parameters
+    //
+    __ lduh( size_of_locals, Otmp1 );
+    __ sub( Otmp1, Glocals_size, Glocals_size );
+    __ round_to( Glocals_size, WordsPerLong );
+    __ sll( Glocals_size, Interpreter::logStackElementSize(), Glocals_size );
+
+    // see if the frame is greater than one page in size. If so,
+    // then we need to verify there is enough stack space remaining
+    // Frame_size = (max_stack + extra_space) * BytesPerWord;
+    __ lduh( max_stack, Gframe_size );
+    __ add( Gframe_size, extra_space, Gframe_size );
+    __ round_to( Gframe_size, WordsPerLong );
+    __ sll( Gframe_size, Interpreter::logStackElementSize(), Gframe_size);
+
+    // Add in java locals size for stack overflow check only
+    __ add( Gframe_size, Glocals_size, Gframe_size );
+
+    const Register Otmp2 = O4;
+    assert_different_registers(Otmp1, Otmp2, O5_savedSP);
+    generate_stack_overflow_check(Gframe_size, Otmp1, Otmp2);
+
+    __ sub( Gframe_size, Glocals_size, Gframe_size);
+
+    //
+    // bump SP to accomodate the extra locals
+    //
+    __ sub( SP, Glocals_size, SP );
+  }
+
+  //
+  // now set up a stack frame with the size computed above
+  //
+  __ neg( Gframe_size );
+  __ save( SP, Gframe_size, SP );
+
+  //
+  // now set up all the local cache registers
+  //
+  // NOTE: At this point, Lbyte_code/Lscratch has been modified. Note
+  // that all present references to Lbyte_code initialize the register
+  // immediately before use
+  if (native_call) {
+    __ mov(G0, Lbcp);
+  } else {
+    __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), Lbcp );
+    __ add(Address(Lbcp, 0, in_bytes(constMethodOopDesc::codes_offset())), Lbcp );
+  }
+  __ mov( G5_method, Lmethod);                 // set Lmethod
+  __ get_constant_pool_cache( LcpoolCache );   // set LcpoolCache
+  __ sub(FP, rounded_vm_local_words * BytesPerWord, Lmonitors ); // set Lmonitors
+#ifdef _LP64
+  __ add( Lmonitors, STACK_BIAS, Lmonitors );   // Account for 64 bit stack bias
+#endif
+  __ sub(Lmonitors, BytesPerWord, Lesp);       // set Lesp
+
+  // setup interpreter activation registers
+  __ sub(Gargs, BytesPerWord, Llocals);        // set Llocals
+
+  if (ProfileInterpreter) {
+#ifdef FAST_DISPATCH
+    // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
+    // they both use I2.
+    assert(0, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
+#endif // FAST_DISPATCH
+    __ set_method_data_pointer();
+  }
+
+}
+
+// Empty method, generate a very fast return.
+
+address InterpreterGenerator::generate_empty_entry(void) {
+
+  // A method that does nother but return...
+
+  address entry = __ pc();
+  Label slow_path;
+
+  __ verify_oop(G5_method);
+
+  // do nothing for empty methods (do not even increment invocation counter)
+  if ( UseFastEmptyMethods) {
+    // If we need a safepoint check, generate full interpreter entry.
+    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
+    __ load_contents(sync_state, G3_scratch);
+    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
+    __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
+    __ delayed()->nop();
+
+    // Code: _return
+    __ retl();
+    __ delayed()->mov(O5_savedSP, SP);
+
+    __ bind(slow_path);
+    (void) generate_normal_entry(false);
+
+    return entry;
+  }
+  return NULL;
+}
+
+// Call an accessor method (assuming it is resolved, otherwise drop into
+// vanilla (slow path) entry
+
+// Generates code to elide accessor methods
+// Uses G3_scratch and G1_scratch as scratch
+address InterpreterGenerator::generate_accessor_entry(void) {
+
+  // Code: _aload_0, _(i|a)getfield, _(i|a)return or any rewrites thereof;
+  // parameter size = 1
+  // Note: We can only use this code if the getfield has been resolved
+  //       and if we don't have a null-pointer exception => check for
+  //       these conditions first and use slow path if necessary.
+  address entry = __ pc();
+  Label slow_path;
+
+  if ( UseFastAccessorMethods) {
+    // Check if we need to reach a safepoint and generate full interpreter
+    // frame if so.
+    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
+    __ load_contents(sync_state, G3_scratch);
+    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
+    __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
+    __ delayed()->nop();
+
+    // Check if local 0 != NULL
+    __ ld_ptr(Gargs, G0, Otos_i ); // get local 0
+    __ tst(Otos_i);  // check if local 0 == NULL and go the slow path
+    __ brx(Assembler::zero, false, Assembler::pn, slow_path);
+    __ delayed()->nop();
+
+
+    // read first instruction word and extract bytecode @ 1 and index @ 2
+    // get first 4 bytes of the bytecodes (big endian!)
+    __ ld_ptr(Address(G5_method, 0, in_bytes(methodOopDesc::const_offset())), G1_scratch);
+    __ ld(Address(G1_scratch, 0, in_bytes(constMethodOopDesc::codes_offset())), G1_scratch);
+
+    // move index @ 2 far left then to the right most two bytes.
+    __ sll(G1_scratch, 2*BitsPerByte, G1_scratch);
+    __ srl(G1_scratch, 2*BitsPerByte - exact_log2(in_words(
+                      ConstantPoolCacheEntry::size()) * BytesPerWord), G1_scratch);
+
+    // get constant pool cache
+    __ ld_ptr(G5_method, in_bytes(methodOopDesc::constants_offset()), G3_scratch);
+    __ ld_ptr(G3_scratch, constantPoolOopDesc::cache_offset_in_bytes(), G3_scratch);
+
+    // get specific constant pool cache entry
+    __ add(G3_scratch, G1_scratch, G3_scratch);
+
+    // Check the constant Pool cache entry to see if it has been resolved.
+    // If not, need the slow path.
+    ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
+    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::indices_offset()), G1_scratch);
+    __ srl(G1_scratch, 2*BitsPerByte, G1_scratch);
+    __ and3(G1_scratch, 0xFF, G1_scratch);
+    __ cmp(G1_scratch, Bytecodes::_getfield);
+    __ br(Assembler::notEqual, false, Assembler::pn, slow_path);
+    __ delayed()->nop();
+
+    // Get the type and return field offset from the constant pool cache
+    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset()), G1_scratch);
+    __ ld_ptr(G3_scratch, in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset()), G3_scratch);
+
+    Label xreturn_path;
+    // Need to differentiate between igetfield, agetfield, bgetfield etc.
+    // because they are different sizes.
+    // Get the type from the constant pool cache
+    __ srl(G1_scratch, ConstantPoolCacheEntry::tosBits, G1_scratch);
+    // Make sure we don't need to mask G1_scratch for tosBits after the above shift
+    ConstantPoolCacheEntry::verify_tosBits();
+    __ cmp(G1_scratch, atos );
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ld_ptr(Otos_i, G3_scratch, Otos_i);
+    __ cmp(G1_scratch, itos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ld(Otos_i, G3_scratch, Otos_i);
+    __ cmp(G1_scratch, stos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ldsh(Otos_i, G3_scratch, Otos_i);
+    __ cmp(G1_scratch, ctos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->lduh(Otos_i, G3_scratch, Otos_i);
+#ifdef ASSERT
+    __ cmp(G1_scratch, btos);
+    __ br(Assembler::equal, true, Assembler::pt, xreturn_path);
+    __ delayed()->ldsb(Otos_i, G3_scratch, Otos_i);
+    __ should_not_reach_here();
+#endif
+    __ ldsb(Otos_i, G3_scratch, Otos_i);
+    __ bind(xreturn_path);
+
+    // _ireturn/_areturn
+    __ retl();                      // return from leaf routine
+    __ delayed()->mov(O5_savedSP, SP);
+
+    // Generate regular method entry
+    __ bind(slow_path);
+    (void) generate_normal_entry(false);
+    return entry;
+  }
+  return NULL;
+}
+
+//
+// Interpreter stub for calling a native method. (asm interpreter)
+// This sets up a somewhat different looking stack for calling the native method
+// than the typical interpreter frame setup.
+//
+
+address InterpreterGenerator::generate_native_entry(bool synchronized) {
+  address entry = __ pc();
+
+  // the following temporary registers are used during frame creation
+  const Register Gtmp1 = G3_scratch ;
+  const Register Gtmp2 = G1_scratch;
+  bool inc_counter  = UseCompiler || CountCompiledCalls;
+
+  // make sure registers are different!
+  assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
+
+  const Address Laccess_flags     (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
+
+  __ verify_oop(G5_method);
+
+  const Register Glocals_size = G3;
+  assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
+
+  // make sure method is native & not abstract
+  // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
+#ifdef ASSERT
+  __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
+  {
+    Label L;
+    __ btst(JVM_ACC_NATIVE, Gtmp1);
+    __ br(Assembler::notZero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("tried to execute non-native method as native");
+    __ bind(L);
+  }
+  { Label L;
+    __ btst(JVM_ACC_ABSTRACT, Gtmp1);
+    __ br(Assembler::zero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("tried to execute abstract method as non-abstract");
+    __ bind(L);
+  }
+#endif // ASSERT
+
+ // generate the code to allocate the interpreter stack frame
+  generate_fixed_frame(true);
+
+  //
+  // No locals to initialize for native method
+  //
+
+  // this slot will be set later, we initialize it to null here just in
+  // case we get a GC before the actual value is stored later
+  __ st_ptr(G0, Address(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS));
+
+  const Address do_not_unlock_if_synchronized(G2_thread, 0,
+      in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
+  // Since at this point in the method invocation the exception handler
+  // would try to exit the monitor of synchronized methods which hasn't
+  // been entered yet, we set the thread local variable
+  // _do_not_unlock_if_synchronized to true. If any exception was thrown by
+  // runtime, exception handling i.e. unlock_if_synchronized_method will
+  // check this thread local flag.
+  // This flag has two effects, one is to force an unwind in the topmost
+  // interpreter frame and not perform an unlock while doing so.
+
+  __ movbool(true, G3_scratch);
+  __ stbool(G3_scratch, do_not_unlock_if_synchronized);
+
+  // increment invocation counter and check for overflow
+  //
+  // Note: checking for negative value instead of overflow
+  //       so we have a 'sticky' overflow test (may be of
+  //       importance as soon as we have true MT/MP)
+  Label invocation_counter_overflow;
+  Label Lcontinue;
+  if (inc_counter) {
+    generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
+
+  }
+  __ bind(Lcontinue);
+
+  bang_stack_shadow_pages(true);
+
+  // reset the _do_not_unlock_if_synchronized flag
+  __ stbool(G0, do_not_unlock_if_synchronized);
+
+  // check for synchronized methods
+  // Must happen AFTER invocation_counter check and stack overflow check,
+  // so method is not locked if overflows.
+
+  if (synchronized) {
+    lock_method();
+  } else {
+#ifdef ASSERT
+    { Label ok;
+      __ ld(Laccess_flags, O0);
+      __ btst(JVM_ACC_SYNCHRONIZED, O0);
+      __ br( Assembler::zero, false, Assembler::pt, ok);
+      __ delayed()->nop();
+      __ stop("method needs synchronization");
+      __ bind(ok);
+    }
+#endif // ASSERT
+  }
+
+
+  // start execution
+  __ verify_thread();
+
+  // JVMTI support
+  __ notify_method_entry();
+
+  // native call
+
+  // (note that O0 is never an oop--at most it is a handle)
+  // It is important not to smash any handles created by this call,
+  // until any oop handle in O0 is dereferenced.
+
+  // (note that the space for outgoing params is preallocated)
+
+  // get signature handler
+  { Label L;
+    __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
+    __ tst(G3_scratch);
+    __ brx(Assembler::notZero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), Lmethod);
+    __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::signature_handler_offset())), G3_scratch);
+    __ bind(L);
+  }
+
+  // Push a new frame so that the args will really be stored in
+  // Copy a few locals across so the new frame has the variables
+  // we need but these values will be dead at the jni call and
+  // therefore not gc volatile like the values in the current
+  // frame (Lmethod in particular)
+
+  // Flush the method pointer to the register save area
+  __ st_ptr(Lmethod, SP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
+  __ mov(Llocals, O1);
+  // calculate where the mirror handle body is allocated in the interpreter frame:
+
+  Address mirror(FP, 0, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
+  __ add(mirror, O2);
+
+  // Calculate current frame size
+  __ sub(SP, FP, O3);         // Calculate negative of current frame size
+  __ save(SP, O3, SP);        // Allocate an identical sized frame
+
+  // Note I7 has leftover trash. Slow signature handler will fill it in
+  // should we get there. Normal jni call will set reasonable last_Java_pc
+  // below (and fix I7 so the stack trace doesn't have a meaningless frame
+  // in it).
+
+  // Load interpreter frame's Lmethod into same register here
+
+  __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
+
+  __ mov(I1, Llocals);
+  __ mov(I2, Lscratch2);     // save the address of the mirror
+
+
+  // ONLY Lmethod and Llocals are valid here!
+
+  // call signature handler, It will move the arg properly since Llocals in current frame
+  // matches that in outer frame
+
+  __ callr(G3_scratch, 0);
+  __ delayed()->nop();
+
+  // Result handler is in Lscratch
+
+  // Reload interpreter frame's Lmethod since slow signature handler may block
+  __ ld_ptr(FP, (Lmethod->sp_offset_in_saved_window() * wordSize) + STACK_BIAS, Lmethod);
+
+  { Label not_static;
+
+    __ ld(Laccess_flags, O0);
+    __ btst(JVM_ACC_STATIC, O0);
+    __ br( Assembler::zero, false, Assembler::pt, not_static);
+    __ delayed()->
+      // get native function entry point(O0 is a good temp until the very end)
+       ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::native_function_offset())), O0);
+    // for static methods insert the mirror argument
+    const int mirror_offset = klassOopDesc::klass_part_offset_in_bytes() + Klass::java_mirror_offset_in_bytes();
+
+    __ ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc:: constants_offset())), O1);
+    __ ld_ptr(Address(O1, 0, constantPoolOopDesc::pool_holder_offset_in_bytes()), O1);
+    __ ld_ptr(O1, mirror_offset, O1);
+#ifdef ASSERT
+    if (!PrintSignatureHandlers)  // do not dirty the output with this
+    { Label L;
+      __ tst(O1);
+      __ brx(Assembler::notZero, false, Assembler::pt, L);
+      __ delayed()->nop();
+      __ stop("mirror is missing");
+      __ bind(L);
+    }
+#endif // ASSERT
+    __ st_ptr(O1, Lscratch2, 0);
+    __ mov(Lscratch2, O1);
+    __ bind(not_static);
+  }
+
+  // At this point, arguments have been copied off of stack into
+  // their JNI positions, which are O1..O5 and SP[68..].
+  // Oops are boxed in-place on the stack, with handles copied to arguments.
+  // The result handler is in Lscratch.  O0 will shortly hold the JNIEnv*.
+
+#ifdef ASSERT
+  { Label L;
+    __ tst(O0);
+    __ brx(Assembler::notZero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("native entry point is missing");
+    __ bind(L);
+  }
+#endif // ASSERT
+
+  //
+  // setup the frame anchor
+  //
+  // The scavenge function only needs to know that the PC of this frame is
+  // in the interpreter method entry code, it doesn't need to know the exact
+  // PC and hence we can use O7 which points to the return address from the
+  // previous call in the code stream (signature handler function)
+  //
+  // The other trick is we set last_Java_sp to FP instead of the usual SP because
+  // we have pushed the extra frame in order to protect the volatile register(s)
+  // in that frame when we return from the jni call
+  //
+
+  __ set_last_Java_frame(FP, O7);
+  __ mov(O7, I7);  // make dummy interpreter frame look like one above,
+                   // not meaningless information that'll confuse me.
+
+  // flush the windows now. We don't care about the current (protection) frame
+  // only the outer frames
+
+  __ flush_windows();
+
+  // mark windows as flushed
+  Address flags(G2_thread,
+                0,
+                in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
+  __ set(JavaFrameAnchor::flushed, G3_scratch);
+  __ st(G3_scratch, flags);
+
+  // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
+
+  Address thread_state(G2_thread, 0, in_bytes(JavaThread::thread_state_offset()));
+#ifdef ASSERT
+  { Label L;
+    __ ld(thread_state, G3_scratch);
+    __ cmp(G3_scratch, _thread_in_Java);
+    __ br(Assembler::equal, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("Wrong thread state in native stub");
+    __ bind(L);
+  }
+#endif // ASSERT
+  __ set(_thread_in_native, G3_scratch);
+  __ st(G3_scratch, thread_state);
+
+  // Call the jni method, using the delay slot to set the JNIEnv* argument.
+  __ save_thread(L7_thread_cache); // save Gthread
+  __ callr(O0, 0);
+  __ delayed()->
+     add(L7_thread_cache, in_bytes(JavaThread::jni_environment_offset()), O0);
+
+  // Back from jni method Lmethod in this frame is DEAD, DEAD, DEAD
+
+  __ restore_thread(L7_thread_cache); // restore G2_thread
+
+  // must we block?
+
+  // Block, if necessary, before resuming in _thread_in_Java state.
+  // In order for GC to work, don't clear the last_Java_sp until after blocking.
+  { Label no_block;
+    Address sync_state(G3_scratch, SafepointSynchronize::address_of_state());
+
+    // Switch thread to "native transition" state before reading the synchronization state.
+    // This additional state is necessary because reading and testing the synchronization
+    // state is not atomic w.r.t. GC, as this scenario demonstrates:
+    //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
+    //     VM thread changes sync state to synchronizing and suspends threads for GC.
+    //     Thread A is resumed to finish this native method, but doesn't block here since it
+    //     didn't see any synchronization is progress, and escapes.
+    __ set(_thread_in_native_trans, G3_scratch);
+    __ st(G3_scratch, thread_state);
+    if(os::is_MP()) {
+      if (UseMembar) {
+        // Force this write out before the read below
+        __ membar(Assembler::StoreLoad);
+      } else {
+        // Write serialization page so VM thread can do a pseudo remote membar.
+        // We use the current thread pointer to calculate a thread specific
+        // offset to write to within the page. This minimizes bus traffic
+        // due to cache line collision.
+        __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
+      }
+    }
+    __ load_contents(sync_state, G3_scratch);
+    __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
+
+    Label L;
+    Address suspend_state(G2_thread, 0, in_bytes(JavaThread::suspend_flags_offset()));
+    __ br(Assembler::notEqual, false, Assembler::pn, L);
+    __ delayed()->
+      ld(suspend_state, G3_scratch);
+    __ cmp(G3_scratch, 0);
+    __ br(Assembler::equal, false, Assembler::pt, no_block);
+    __ delayed()->nop();
+    __ bind(L);
+
+    // Block.  Save any potential method result value before the operation and
+    // use a leaf call to leave the last_Java_frame setup undisturbed.
+    save_native_result();
+    __ call_VM_leaf(L7_thread_cache,
+                    CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
+                    G2_thread);
+
+    // Restore any method result value
+    restore_native_result();
+    __ bind(no_block);
+  }
+
+  // Clear the frame anchor now
+
+  __ reset_last_Java_frame();
+
+  // Move the result handler address
+  __ mov(Lscratch, G3_scratch);
+  // return possible result to the outer frame
+#ifndef __LP64
+  __ mov(O0, I0);
+  __ restore(O1, G0, O1);
+#else
+  __ restore(O0, G0, O0);
+#endif /* __LP64 */
+
+  // Move result handler to expected register
+  __ mov(G3_scratch, Lscratch);
+
+  // Back in normal (native) interpreter frame. State is thread_in_native_trans
+  // switch to thread_in_Java.
+
+  __ set(_thread_in_Java, G3_scratch);
+  __ st(G3_scratch, thread_state);
+
+  // reset handle block
+  __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
+  __ st_ptr(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
+
+  // If we have an oop result store it where it will be safe for any further gc
+  // until we return now that we've released the handle it might be protected by
+
+  {
+    Label no_oop, store_result;
+
+    __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
+    __ cmp(G3_scratch, Lscratch);
+    __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
+    __ delayed()->nop();
+    __ addcc(G0, O0, O0);
+    __ brx(Assembler::notZero, true, Assembler::pt, store_result);     // if result is not NULL:
+    __ delayed()->ld_ptr(O0, 0, O0);                                   // unbox it
+    __ mov(G0, O0);
+
+    __ bind(store_result);
+    // Store it where gc will look for it and result handler expects it.
+    __ st_ptr(O0, FP, (frame::interpreter_frame_oop_temp_offset*wordSize) + STACK_BIAS);
+
+    __ bind(no_oop);
+
+  }
+
+
+  // handle exceptions (exception handling will handle unlocking!)
+  { Label L;
+    Address exception_addr (G2_thread, 0, in_bytes(Thread::pending_exception_offset()));
+
+    __ ld_ptr(exception_addr, Gtemp);
+    __ tst(Gtemp);
+    __ brx(Assembler::equal, false, Assembler::pt, L);
+    __ delayed()->nop();
+    // Note: This could be handled more efficiently since we know that the native
+    //       method doesn't have an exception handler. We could directly return
+    //       to the exception handler for the caller.
+    __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
+    __ should_not_reach_here();
+    __ bind(L);
+  }
+
+  // JVMTI support (preserves thread register)
+  __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
+
+  if (synchronized) {
+    // save and restore any potential method result value around the unlocking operation
+    save_native_result();
+
+    __ add( __ top_most_monitor(), O1);
+    __ unlock_object(O1);
+
+    restore_native_result();
+  }
+
+#if defined(COMPILER2) && !defined(_LP64)
+
+  // C2 expects long results in G1 we can't tell if we're returning to interpreted
+  // or compiled so just be safe.
+
+  __ sllx(O0, 32, G1);          // Shift bits into high G1
+  __ srl (O1, 0, O1);           // Zero extend O1
+  __ or3 (O1, G1, G1);          // OR 64 bits into G1
+
+#endif /* COMPILER2 && !_LP64 */
+
+  // dispose of return address and remove activation
+#ifdef ASSERT
+  {
+    Label ok;
+    __ cmp(I5_savedSP, FP);
+    __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
+    __ delayed()->nop();
+    __ stop("bad I5_savedSP value");
+    __ should_not_reach_here();
+    __ bind(ok);
+  }
+#endif
+  if (TraceJumps) {
+    // Move target to register that is recordable
+    __ mov(Lscratch, G3_scratch);
+    __ JMP(G3_scratch, 0);
+  } else {
+    __ jmp(Lscratch, 0);
+  }
+  __ delayed()->nop();
+
+
+  if (inc_counter) {
+    // handle invocation counter overflow
+    __ bind(invocation_counter_overflow);
+    generate_counter_overflow(Lcontinue);
+  }
+
+
+
+  return entry;
+}
+
+
+// Generic method entry to (asm) interpreter
+//------------------------------------------------------------------------------------------------------------------------
+//
+address InterpreterGenerator::generate_normal_entry(bool synchronized) {
+  address entry = __ pc();
+
+  bool inc_counter  = UseCompiler || CountCompiledCalls;
+
+  // the following temporary registers are used during frame creation
+  const Register Gtmp1 = G3_scratch ;
+  const Register Gtmp2 = G1_scratch;
+
+  // make sure registers are different!
+  assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
+
+  const Address size_of_parameters(G5_method, 0, in_bytes(methodOopDesc::size_of_parameters_offset()));
+  const Address size_of_locals    (G5_method, 0, in_bytes(methodOopDesc::size_of_locals_offset()));
+  // Seems like G5_method is live at the point this is used. So we could make this look consistent
+  // and use in the asserts.
+  const Address access_flags      (Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
+
+  __ verify_oop(G5_method);
+
+  const Register Glocals_size = G3;
+  assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
+
+  // make sure method is not native & not abstract
+  // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
+#ifdef ASSERT
+  __ ld(G5_method, in_bytes(methodOopDesc::access_flags_offset()), Gtmp1);
+  {
+    Label L;
+    __ btst(JVM_ACC_NATIVE, Gtmp1);
+    __ br(Assembler::zero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("tried to execute native method as non-native");
+    __ bind(L);
+  }
+  { Label L;
+    __ btst(JVM_ACC_ABSTRACT, Gtmp1);
+    __ br(Assembler::zero, false, Assembler::pt, L);
+    __ delayed()->nop();
+    __ stop("tried to execute abstract method as non-abstract");
+    __ bind(L);
+  }
+#endif // ASSERT
+
+  // generate the code to allocate the interpreter stack frame
+
+  generate_fixed_frame(false);
+
+#ifdef FAST_DISPATCH
+  __ set((intptr_t)Interpreter::dispatch_table(), IdispatchTables);
+                                          // set bytecode dispatch table base
+#endif
+
+  //
+  // Code to initialize the extra (i.e. non-parm) locals
+  //
+  Register init_value = noreg;    // will be G0 if we must clear locals
+  // The way the code was setup before zerolocals was always true for vanilla java entries.
+  // It could only be false for the specialized entries like accessor or empty which have
+  // no extra locals so the testing was a waste of time and the extra locals were always
+  // initialized. We removed this extra complication to already over complicated code.
+
+  init_value = G0;
+  Label clear_loop;
+
+  // NOTE: If you change the frame layout, this code will need to
+  // be updated!
+  __ lduh( size_of_locals, O2 );
+  __ lduh( size_of_parameters, O1 );
+  __ sll( O2, Interpreter::logStackElementSize(), O2);
+  __ sll( O1, Interpreter::logStackElementSize(), O1 );
+  __ sub( Llocals, O2, O2 );
+  __ sub( Llocals, O1, O1 );
+
+  __ bind( clear_loop );
+  __ inc( O2, wordSize );
+
+  __ cmp( O2, O1 );
+  __ brx( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
+  __ delayed()->st_ptr( init_value, O2, 0 );
+
+  const Address do_not_unlock_if_synchronized(G2_thread, 0,
+        in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
+  // Since at this point in the method invocation the exception handler
+  // would try to exit the monitor of synchronized methods which hasn't
+  // been entered yet, we set the thread local variable
+  // _do_not_unlock_if_synchronized to true. If any exception was thrown by
+  // runtime, exception handling i.e. unlock_if_synchronized_method will
+  // check this thread local flag.
+  __ movbool(true, G3_scratch);
+  __ stbool(G3_scratch, do_not_unlock_if_synchronized);
+
+  // increment invocation counter and check for overflow
+  //
+  // Note: checking for negative value instead of overflow
+  //       so we have a 'sticky' overflow test (may be of
+  //       importance as soon as we have true MT/MP)
+  Label invocation_counter_overflow;
+  Label profile_method;
+  Label profile_method_continue;
+  Label Lcontinue;
+  if (inc_counter) {
+    generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
+    if (ProfileInterpreter) {
+      __ bind(profile_method_continue);
+    }
+  }
+  __ bind(Lcontinue);
+
+  bang_stack_shadow_pages(false);
+
+  // reset the _do_not_unlock_if_synchronized flag
+  __ stbool(G0, do_not_unlock_if_synchronized);
+
+  // check for synchronized methods
+  // Must happen AFTER invocation_counter check and stack overflow check,
+  // so method is not locked if overflows.
+
+  if (synchronized) {
+    lock_method();
+  } else {
+#ifdef ASSERT
+    { Label ok;
+      __ ld(access_flags, O0);
+      __ btst(JVM_ACC_SYNCHRONIZED, O0);
+      __ br( Assembler::zero, false, Assembler::pt, ok);
+      __ delayed()->nop();
+      __ stop("method needs synchronization");
+      __ bind(ok);
+    }
+#endif // ASSERT
+  }
+
+  // start execution
+
+  __ verify_thread();
+
+  // jvmti support
+  __ notify_method_entry();
+
+  // start executing instructions
+  __ dispatch_next(vtos);
+
+
+  if (inc_counter) {
+    if (ProfileInterpreter) {
+      // We have decided to profile this method in the interpreter
+      __ bind(profile_method);
+
+      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), Lbcp, true);
+
+#ifdef ASSERT
+      __ tst(O0);
+      __ breakpoint_trap(Assembler::notEqual);
+#endif
+
+      __ set_method_data_pointer();
+
+      __ ba(false, profile_method_continue);
+      __ delayed()->nop();
+    }
+
+    // handle invocation counter overflow
+    __ bind(invocation_counter_overflow);
+    generate_counter_overflow(Lcontinue);
+  }
+
+
+  return entry;
+}
+
+
+//----------------------------------------------------------------------------------------------------
+// Entry points & stack frame layout
+//
+// Here we generate the various kind of entries into the interpreter.
+// The two main entry type are generic bytecode methods and native call method.
+// These both come in synchronized and non-synchronized versions but the
+// frame layout they create is very similar. The other method entry
+// types are really just special purpose entries that are really entry
+// and interpretation all in one. These are for trivial methods like
+// accessor, empty, or special math methods.
+//
+// When control flow reaches any of the entry types for the interpreter
+// the following holds ->
+//
+// C2 Calling Conventions:
+//
+// The entry code below assumes that the following registers are set
+// when coming in:
+//    G5_method: holds the methodOop of the method to call
+//    Lesp:    points to the TOS of the callers expression stack
+//             after having pushed all the parameters
+//
+// The entry code does the following to setup an interpreter frame
+//   pop parameters from the callers stack by adjusting Lesp
+//   set O0 to Lesp
+//   compute X = (max_locals - num_parameters)
+//   bump SP up by X to accomadate the extra locals
+//   compute X = max_expression_stack
+//               + vm_local_words
+//               + 16 words of register save area
+//   save frame doing a save sp, -X, sp growing towards lower addresses
+//   set Lbcp, Lmethod, LcpoolCache
+//   set Llocals to i0
+//   set Lmonitors to FP - rounded_vm_local_words
+//   set Lesp to Lmonitors - 4
+//
+//  The frame has now been setup to do the rest of the entry code
+
+// Try this optimization:  Most method entries could live in a
+// "one size fits all" stack frame without all the dynamic size
+// calculations.  It might be profitable to do all this calculation
+// statically and approximately for "small enough" methods.
+
+//-----------------------------------------------------------------------------------------------
+
+// C1 Calling conventions
+//
+// Upon method entry, the following registers are setup:
+//
+// g2 G2_thread: current thread
+// g5 G5_method: method to activate
+// g4 Gargs  : pointer to last argument
+//
+//
+// Stack:
+//
+// +---------------+ <--- sp
+// |               |
+// : reg save area :
+// |               |
+// +---------------+ <--- sp + 0x40
+// |               |
+// : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
+// |               |
+// +---------------+ <--- sp + 0x5c
+// |               |
+// :     free      :
+// |               |
+// +---------------+ <--- Gargs
+// |               |
+// :   arguments   :
+// |               |
+// +---------------+
+// |               |
+//
+//
+//
+// AFTER FRAME HAS BEEN SETUP for method interpretation the stack looks like:
+//
+// +---------------+ <--- sp
+// |               |
+// : reg save area :
+// |               |
+// +---------------+ <--- sp + 0x40
+// |               |
+// : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
+// |               |
+// +---------------+ <--- sp + 0x5c
+// |               |
+// :               :
+// |               | <--- Lesp
+// +---------------+ <--- Lmonitors (fp - 0x18)
+// |   VM locals   |
+// +---------------+ <--- fp
+// |               |
+// : reg save area :
+// |               |
+// +---------------+ <--- fp + 0x40
+// |               |
+// : extra 7 slots :      note: these slots are not really needed for the interpreter (fix later)
+// |               |
+// +---------------+ <--- fp + 0x5c
+// |               |
+// :     free      :
+// |               |
+// +---------------+
+// |               |
+// : nonarg locals :
+// |               |
+// +---------------+
+// |               |
+// :   arguments   :
+// |               | <--- Llocals
+// +---------------+ <--- Gargs
+// |               |
+
+static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
+
+  // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
+  // expression stack, the callee will have callee_extra_locals (so we can account for
+  // frame extension) and monitor_size for monitors. Basically we need to calculate
+  // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
+  //
+  //
+  // The big complicating thing here is that we must ensure that the stack stays properly
+  // aligned. This would be even uglier if monitor size wasn't modulo what the stack
+  // needs to be aligned for). We are given that the sp (fp) is already aligned by
+  // the caller so we must ensure that it is properly aligned for our callee.
+  //
+  const int rounded_vm_local_words =
+       round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
+  // callee_locals and max_stack are counts, not the size in frame.
+  const int locals_size =
+       round_to(callee_extra_locals * Interpreter::stackElementWords(), WordsPerLong);
+  const int max_stack_words = max_stack * Interpreter::stackElementWords();
+  return (round_to((max_stack_words
+                   + rounded_vm_local_words
+                   + frame::memory_parameter_word_sp_offset), WordsPerLong)
+                   // already rounded
+                   + locals_size + monitor_size);
+}
+
+// How much stack a method top interpreter activation needs in words.
+int AbstractInterpreter::size_top_interpreter_activation(methodOop method) {
+
+  // See call_stub code
+  int call_stub_size  = round_to(7 + frame::memory_parameter_word_sp_offset,
+                                 WordsPerLong);    // 7 + register save area
+
+  // Save space for one monitor to get into the interpreted method in case
+  // the method is synchronized
+  int monitor_size    = method->is_synchronized() ?
+                                1*frame::interpreter_frame_monitor_size() : 0;
+  return size_activation_helper(method->max_locals(), method->max_stack(),
+                                 monitor_size) + call_stub_size;
+}
+
+int AbstractInterpreter::layout_activation(methodOop method,
+                                           int tempcount,
+                                           int popframe_extra_args,
+                                           int moncount,
+                                           int callee_param_count,
+                                           int callee_local_count,
+                                           frame* caller,
+                                           frame* interpreter_frame,
+                                           bool is_top_frame) {
+  // Note: This calculation must exactly parallel the frame setup
+  // in InterpreterGenerator::generate_fixed_frame.
+  // If f!=NULL, set up the following variables:
+  //   - Lmethod
+  //   - Llocals
+  //   - Lmonitors (to the indicated number of monitors)
+  //   - Lesp (to the indicated number of temps)
+  // The frame f (if not NULL) on entry is a description of the caller of the frame
+  // we are about to layout. We are guaranteed that we will be able to fill in a
+  // new interpreter frame as its callee (i.e. the stack space is allocated and
+  // the amount was determined by an earlier call to this method with f == NULL).
+  // On return f (if not NULL) while describe the interpreter frame we just layed out.
+
+  int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
+  int rounded_vm_local_words = round_to(frame::interpreter_frame_vm_local_words,WordsPerLong);
+
+  assert(monitor_size == round_to(monitor_size, WordsPerLong), "must align");
+  //
+  // Note: if you look closely this appears to be doing something much different
+  // than generate_fixed_frame. What is happening is this. On sparc we have to do
+  // this dance with interpreter_sp_adjustment because the window save area would
+  // appear just below the bottom (tos) of the caller's java expression stack. Because
+  // the interpreter want to have the locals completely contiguous generate_fixed_frame
+  // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
+  // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
+  // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
+  // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
+  // because the oldest frame would have adjust its callers frame and yet that frame
+  // already exists and isn't part of this array of frames we are unpacking. So at first
+  // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
+  // will after it calculates all of the frame's on_stack_size()'s will then figure out the
+  // amount to adjust the caller of the initial (oldest) frame and the calculation will all
+  // add up. It does seem like it simpler to account for the adjustment here (and remove the
+  // callee... parameters here). However this would mean that this routine would have to take
+  // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
+  // and run the calling loop in the reverse order. This would also would appear to mean making
+  // this code aware of what the interactions are when that initial caller fram was an osr or
+  // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
+  // there is no sense in messing working code.
+  //
+
+  int rounded_cls = round_to((callee_local_count - callee_param_count), WordsPerLong);
+  assert(rounded_cls == round_to(rounded_cls, WordsPerLong), "must align");
+
+  int raw_frame_size = size_activation_helper(rounded_cls, method->max_stack(),
+                                              monitor_size);
+
+  if (interpreter_frame != NULL) {
+    // The skeleton frame must already look like an interpreter frame
+    // even if not fully filled out.
+    assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
+
+    intptr_t* fp = interpreter_frame->fp();
+
+    JavaThread* thread = JavaThread::current();
+    RegisterMap map(thread, false);
+    // More verification that skeleton frame is properly walkable
+    assert(fp == caller->sp(), "fp must match");
+
+    intptr_t* montop     = fp - rounded_vm_local_words;
+
+    // preallocate monitors (cf. __ add_monitor_to_stack)
+    intptr_t* monitors = montop - monitor_size;
+
+    // preallocate stack space
+    intptr_t*  esp = monitors - 1 -
+                     (tempcount * Interpreter::stackElementWords()) -
+                     popframe_extra_args;
+
+    int local_words = method->max_locals() * Interpreter::stackElementWords();
+    int parm_words  = method->size_of_parameters() * Interpreter::stackElementWords();
+    NEEDS_CLEANUP;
+    intptr_t* locals;
+    if (caller->is_interpreted_frame()) {
+      // Can force the locals area to end up properly overlapping the top of the expression stack.
+      intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
+      // Note that this computation means we replace size_of_parameters() values from the caller
+      // interpreter frame's expression stack with our argument locals
+      locals = Lesp_ptr + parm_words;
+      int delta = local_words - parm_words;
+      int computed_sp_adjustment = (delta > 0) ? round_to(delta, WordsPerLong) : 0;
+      *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
+    } else {
+      assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
+      // Don't have Lesp available; lay out locals block in the caller
+      // adjacent to the register window save area.
+      //
+      // Compiled frames do not allocate a varargs area which is why this if
+      // statement is needed.
+      //
+      if (caller->is_compiled_frame()) {
+        locals = fp + frame::register_save_words + local_words - 1;
+      } else {
+        locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
+      }
+      if (!caller->is_entry_frame()) {
+        // Caller wants his own SP back
+        int caller_frame_size = caller->cb()->frame_size();
+        *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
+      }
+    }
+    if (TraceDeoptimization) {
+      if (caller->is_entry_frame()) {
+        // make sure I5_savedSP and the entry frames notion of saved SP
+        // agree.  This assertion duplicate a check in entry frame code
+        // but catches the failure earlier.
+        assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
+               "would change callers SP");
+      }
+      if (caller->is_entry_frame()) {
+        tty->print("entry ");
+      }
+      if (caller->is_compiled_frame()) {
+        tty->print("compiled ");
+        if (caller->is_deoptimized_frame()) {
+          tty->print("(deopt) ");
+        }
+      }
+      if (caller->is_interpreted_frame()) {
+        tty->print("interpreted ");
+      }
+      tty->print_cr("caller fp=0x%x sp=0x%x", caller->fp(), caller->sp());
+      tty->print_cr("save area = 0x%x, 0x%x", caller->sp(), caller->sp() + 16);
+      tty->print_cr("save area = 0x%x, 0x%x", caller->fp(), caller->fp() + 16);
+      tty->print_cr("interpreter fp=0x%x sp=0x%x", interpreter_frame->fp(), interpreter_frame->sp());
+      tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->sp(), interpreter_frame->sp() + 16);
+      tty->print_cr("save area = 0x%x, 0x%x", interpreter_frame->fp(), interpreter_frame->fp() + 16);
+      tty->print_cr("Llocals = 0x%x", locals);
+      tty->print_cr("Lesp = 0x%x", esp);
+      tty->print_cr("Lmonitors = 0x%x", monitors);
+    }
+
+    if (method->max_locals() > 0) {
+      assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
+      assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
+      assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
+      assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
+    }
+#ifdef _LP64
+    assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
+#endif
+
+    *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
+    *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
+    *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
+    *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
+    // Llast_SP will be same as SP as there is no adapter space
+    *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
+    *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
+#ifdef FAST_DISPATCH
+    *interpreter_frame->register_addr(IdispatchTables) = (intptr_t) Interpreter::dispatch_table();
+#endif
+
+
+#ifdef ASSERT
+    BasicObjectLock* mp = (BasicObjectLock*)monitors;
+
+    assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
+    assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize())+Interpreter::value_offset_in_bytes()), "locals match");
+    assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
+    assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
+    assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
+
+    // check bounds
+    intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
+    intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
+    assert(lo < monitors && montop <= hi, "monitors in bounds");
+    assert(lo <= esp && esp < monitors, "esp in bounds");
+#endif // ASSERT
+  }
+
+  return raw_frame_size;
+}
+
+//----------------------------------------------------------------------------------------------------
+// Exceptions
+void TemplateInterpreterGenerator::generate_throw_exception() {
+
+  // Entry point in previous activation (i.e., if the caller was interpreted)
+  Interpreter::_rethrow_exception_entry = __ pc();
+  // O0: exception
+
+  // entry point for exceptions thrown within interpreter code
+  Interpreter::_throw_exception_entry = __ pc();
+  __ verify_thread();
+  // expression stack is undefined here
+  // O0: exception, i.e. Oexception
+  // Lbcp: exception bcx
+  __ verify_oop(Oexception);
+
+
+  // expression stack must be empty before entering the VM in case of an exception
+  __ empty_expression_stack();
+  // find exception handler address and preserve exception oop
+  // call C routine to find handler and jump to it
+  __ call_VM(O1, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Oexception);
+  __ push_ptr(O1); // push exception for exception handler bytecodes
+
+  __ JMP(O0, 0); // jump to exception handler (may be remove activation entry!)
+  __ delayed()->nop();
+
+
+  // if the exception is not handled in the current frame
+  // the frame is removed and the exception is rethrown
+  // (i.e. exception continuation is _rethrow_exception)
+  //
+  // Note: At this point the bci is still the bxi for the instruction which caused
+  //       the exception and the expression stack is empty. Thus, for any VM calls
+  //       at this point, GC will find a legal oop map (with empty expression stack).
+
+  // in current activation
+  // tos: exception
+  // Lbcp: exception bcp
+
+  //
+  // JVMTI PopFrame support
+  //
+
+  Interpreter::_remove_activation_preserving_args_entry = __ pc();
+  Address popframe_condition_addr (G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
+  // Set the popframe_processing bit in popframe_condition indicating that we are
+  // currently handling popframe, so that call_VMs that may happen later do not trigger new
+  // popframe handling cycles.
+
+  __ ld(popframe_condition_addr, G3_scratch);
+  __ or3(G3_scratch, JavaThread::popframe_processing_bit, G3_scratch);
+  __ stw(G3_scratch, popframe_condition_addr);
+
+  // Empty the expression stack, as in normal exception handling
+  __ empty_expression_stack();
+  __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
+
+  {
+    // Check to see whether we are returning to a deoptimized frame.
+    // (The PopFrame call ensures that the caller of the popped frame is
+    // either interpreted or compiled and deoptimizes it if compiled.)
+    // In this case, we can't call dispatch_next() after the frame is
+    // popped, but instead must save the incoming arguments and restore
+    // them after deoptimization has occurred.
+    //
+    // Note that we don't compare the return PC against the
+    // deoptimization blob's unpack entry because of the presence of
+    // adapter frames in C2.
+    Label caller_not_deoptimized;
+    __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), I7);
+    __ tst(O0);
+    __ brx(Assembler::notEqual, false, Assembler::pt, caller_not_deoptimized);
+    __ delayed()->nop();
+
+    const Register Gtmp1 = G3_scratch;
+    const Register Gtmp2 = G1_scratch;
+
+    // Compute size of arguments for saving when returning to deoptimized caller
+    __ lduh(Lmethod, in_bytes(methodOopDesc::size_of_parameters_offset()), Gtmp1);
+    __ sll(Gtmp1, Interpreter::logStackElementSize(), Gtmp1);
+    __ sub(Llocals, Gtmp1, Gtmp2);
+    __ add(Gtmp2, wordSize, Gtmp2);
+    // Save these arguments
+    __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), G2_thread, Gtmp1, Gtmp2);
+    // Inform deoptimization that it is responsible for restoring these arguments
+    __ set(JavaThread::popframe_force_deopt_reexecution_bit, Gtmp1);
+    Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
+    __ st(Gtmp1, popframe_condition_addr);
+
+    // Return from the current method
+    // The caller's SP was adjusted upon method entry to accomodate
+    // the callee's non-argument locals. Undo that adjustment.
+    __ ret();
+    __ delayed()->restore(I5_savedSP, G0, SP);
+
+    __ bind(caller_not_deoptimized);
+  }
+
+  // Clear the popframe condition flag
+  __ stw(G0 /* popframe_inactive */, popframe_condition_addr);
+
+  // Get out of the current method (how this is done depends on the particular compiler calling
+  // convention that the interpreter currently follows)
+  // The caller's SP was adjusted upon method entry to accomodate
+  // the callee's non-argument locals. Undo that adjustment.
+  __ restore(I5_savedSP, G0, SP);
+  // The method data pointer was incremented already during
+  // call profiling. We have to restore the mdp for the current bcp.
+  if (ProfileInterpreter) {
+    __ set_method_data_pointer_for_bcp();
+  }
+  // Resume bytecode interpretation at the current bcp
+  __ dispatch_next(vtos);
+  // end of JVMTI PopFrame support
+
+  Interpreter::_remove_activation_entry = __ pc();
+
+  // preserve exception over this code sequence (remove activation calls the vm, but oopmaps are not correct here)
+  __ pop_ptr(Oexception);                                  // get exception
+
+  // Intel has the following comment:
+  //// remove the activation (without doing throws on illegalMonitorExceptions)
+  // They remove the activation without checking for bad monitor state.
+  // %%% We should make sure this is the right semantics before implementing.
+
+  // %%% changed set_vm_result_2 to set_vm_result and get_vm_result_2 to get_vm_result. Is there a bug here?
+  __ set_vm_result(Oexception);
+  __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false);
+
+  __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI);
+
+  __ get_vm_result(Oexception);
+  __ verify_oop(Oexception);
+
+    const int return_reg_adjustment = frame::pc_return_offset;
+  Address issuing_pc_addr(I7, 0, return_reg_adjustment);
+
+  // We are done with this activation frame; find out where to go next.
+  // The continuation point will be an exception handler, which expects
+  // the following registers set up:
+  //
+  // Oexception: exception
+  // Oissuing_pc: the local call that threw exception
+  // Other On: garbage
+  // In/Ln:  the contents of the caller's register window
+  //
+  // We do the required restore at the last possible moment, because we
+  // need to preserve some state across a runtime call.
+  // (Remember that the caller activation is unknown--it might not be
+  // interpreted, so things like Lscratch are useless in the caller.)
+
+  // Although the Intel version uses call_C, we can use the more
+  // compact call_VM.  (The only real difference on SPARC is a
+  // harmlessly ignored [re]set_last_Java_frame, compared with
+  // the Intel code which lacks this.)
+  __ mov(Oexception,      Oexception ->after_save());  // get exception in I0 so it will be on O0 after restore
+  __ add(issuing_pc_addr, Oissuing_pc->after_save());  // likewise set I1 to a value local to the caller
+  __ super_call_VM_leaf(L7_thread_cache,
+                        CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
+                        Oissuing_pc->after_save());
+
+  // The caller's SP was adjusted upon method entry to accomodate
+  // the callee's non-argument locals. Undo that adjustment.
+  __ JMP(O0, 0);                         // return exception handler in caller
+  __ delayed()->restore(I5_savedSP, G0, SP);
+
+  // (same old exception object is already in Oexception; see above)
+  // Note that an "issuing PC" is actually the next PC after the call
+}
+
+
+//
+// JVMTI ForceEarlyReturn support
+//
+
+address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
+  address entry = __ pc();
+
+  __ empty_expression_stack();
+  __ load_earlyret_value(state);
+
+  __ ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())), G3_scratch);
+  Address cond_addr(G3_scratch, 0, in_bytes(JvmtiThreadState::earlyret_state_offset()));
+
+  // Clear the earlyret state
+  __ stw(G0 /* JvmtiThreadState::earlyret_inactive */, cond_addr);
+
+  __ remove_activation(state,
+                       /* throw_monitor_exception */ false,
+                       /* install_monitor_exception */ false);
+
+  // The caller's SP was adjusted upon method entry to accomodate
+  // the callee's non-argument locals. Undo that adjustment.
+  __ ret();                             // return to caller
+  __ delayed()->restore(I5_savedSP, G0, SP);
+
+  return entry;
+} // end of JVMTI ForceEarlyReturn support
+
+
+//------------------------------------------------------------------------------------------------------------------------
+// Helper for vtos entry point generation
+
+void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
+  assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
+  Label L;
+  aep = __ pc(); __ push_ptr(); __ ba(false, L); __ delayed()->nop();
+  fep = __ pc(); __ push_f();   __ ba(false, L); __ delayed()->nop();
+  dep = __ pc(); __ push_d();   __ ba(false, L); __ delayed()->nop();
+  lep = __ pc(); __ push_l();   __ ba(false, L); __ delayed()->nop();
+  iep = __ pc(); __ push_i();
+  bep = cep = sep = iep;                        // there aren't any
+  vep = __ pc(); __ bind(L);                    // fall through
+  generate_and_dispatch(t);
+}
+
+// --------------------------------------------------------------------------------
+
+
+InterpreterGenerator::InterpreterGenerator(StubQueue* code)
+ : TemplateInterpreterGenerator(code) {
+   generate_all(); // down here so it can be "virtual"
+}
+
+// --------------------------------------------------------------------------------
+
+// Non-product code
+#ifndef PRODUCT
+address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
+  address entry = __ pc();
+
+  __ push(state);
+  __ mov(O7, Lscratch); // protect return address within interpreter
+
+  // Pass a 0 (not used in sparc) and the top of stack to the bytecode tracer
+  __ mov( Otos_l2, G3_scratch );
+  __ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::trace_bytecode), G0, Otos_l1, G3_scratch);
+  __ mov(Lscratch, O7); // restore return address
+  __ pop(state);
+  __ retl();
+  __ delayed()->nop();
+
+  return entry;
+}
+
+
+// helpers for generate_and_dispatch
+
+void TemplateInterpreterGenerator::count_bytecode() {
+  Address c(G3_scratch, (address)&BytecodeCounter::_counter_value);
+  __ load_contents(c, G4_scratch);
+  __ inc(G4_scratch);
+  __ st(G4_scratch, c);
+}
+
+
+void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
+  Address bucket( G3_scratch, (address) &BytecodeHistogram::_counters[t->bytecode()] );
+  __ load_contents(bucket, G4_scratch);
+  __ inc(G4_scratch);
+  __ st(G4_scratch, bucket);
+}
+
+
+void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
+  address index_addr      = (address)&BytecodePairHistogram::_index;
+  Address index(G3_scratch, index_addr);
+
+  address counters_addr   = (address)&BytecodePairHistogram::_counters;
+  Address counters(G3_scratch, counters_addr);
+
+  // get index, shift out old bytecode, bring in new bytecode, and store it
+  // _index = (_index >> log2_number_of_codes) |
+  //          (bytecode << log2_number_of_codes);
+
+
+  __ load_contents( index,      G4_scratch );
+  __ srl( G4_scratch, BytecodePairHistogram::log2_number_of_codes, G4_scratch );
+  __ set( ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes,  G3_scratch );
+  __ or3( G3_scratch,  G4_scratch, G4_scratch );
+  __ store_contents( G4_scratch, index );
+
+  // bump bucket contents
+  // _counters[_index] ++;
+
+  __ load_address( counters );  // loads into G3_scratch
+  __ sll( G4_scratch, LogBytesPerWord, G4_scratch );  // Index is word address
+  __ add (G3_scratch, G4_scratch, G3_scratch);        // Add in index
+  __ ld (G3_scratch, 0, G4_scratch);
+  __ inc (G4_scratch);
+  __ st (G4_scratch, 0, G3_scratch);
+}
+
+
+void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
+  // Call a little run-time stub to avoid blow-up for each bytecode.
+  // The run-time runtime saves the right registers, depending on
+  // the tosca in-state for the given template.
+  address entry = Interpreter::trace_code(t->tos_in());
+  guarantee(entry != NULL, "entry must have been generated");
+  __ call(entry, relocInfo::none);
+  __ delayed()->nop();
+}
+
+
+void TemplateInterpreterGenerator::stop_interpreter_at() {
+  Address counter(G3_scratch , (address)&BytecodeCounter::_counter_value);
+  __ load_contents    (counter, G3_scratch );
+  Address stop_at(G4_scratch, (address)&StopInterpreterAt);
+  __ load_ptr_contents(stop_at, G4_scratch);
+  __ cmp(G3_scratch, G4_scratch);
+  __ breakpoint_trap(Assembler::equal);
+}
+#endif // not PRODUCT
+#endif // !CC_INTERP