hotspot/src/cpu/sparc/vm/interp_masm_sparc.cpp
changeset 1 489c9b5090e2
child 360 21d113ecbf6a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/hotspot/src/cpu/sparc/vm/interp_masm_sparc.cpp	Sat Dec 01 00:00:00 2007 +0000
@@ -0,0 +1,2595 @@
+/*
+ * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
+ * CA 95054 USA or visit www.sun.com if you need additional information or
+ * have any questions.
+ *
+ */
+
+#include "incls/_precompiled.incl"
+#include "incls/_interp_masm_sparc.cpp.incl"
+
+#ifndef CC_INTERP
+#ifndef FAST_DISPATCH
+#define FAST_DISPATCH 1
+#endif
+#undef FAST_DISPATCH
+
+// Implementation of InterpreterMacroAssembler
+
+// This file specializes the assember with interpreter-specific macros
+
+const Address InterpreterMacroAssembler::l_tmp( FP, 0,  (frame::interpreter_frame_l_scratch_fp_offset    * wordSize ) + STACK_BIAS);
+const Address InterpreterMacroAssembler::d_tmp( FP, 0,  (frame::interpreter_frame_d_scratch_fp_offset    * wordSize) + STACK_BIAS);
+
+#else // CC_INTERP
+#ifndef STATE
+#define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
+#endif // STATE
+
+#endif // CC_INTERP
+
+void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
+  // Note: this algorithm is also used by C1's OSR entry sequence.
+  // Any changes should also be applied to CodeEmitter::emit_osr_entry().
+  assert_different_registers(args_size, locals_size);
+  // max_locals*2 for TAGS.  Assumes that args_size has already been adjusted.
+  if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
+  subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
+  // Use br/mov combination because it works on both V8 and V9 and is
+  // faster.
+  Label skip_move;
+  br(Assembler::negative, true, Assembler::pt, skip_move);
+  delayed()->mov(G0, delta);
+  bind(skip_move);
+  round_to(delta, WordsPerLong);       // make multiple of 2 (SP must be 2-word aligned)
+  sll(delta, LogBytesPerWord, delta);  // extra space for locals in bytes
+}
+
+#ifndef CC_INTERP
+
+// Dispatch code executed in the prolog of a bytecode which does not do it's
+// own dispatch. The dispatch address is computed and placed in IdispatchAddress
+void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
+  assert_not_delayed();
+#ifdef FAST_DISPATCH
+  // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
+  // they both use I2.
+  assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
+  ldub(Lbcp, bcp_incr, Lbyte_code);                     // load next bytecode
+  add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
+                                                        // add offset to correct dispatch table
+  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);         // multiply by wordSize
+  ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
+#else
+  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
+  // dispatch table to use
+  Address tbl(G3_scratch, (address)Interpreter::dispatch_table(state));
+
+  sethi(tbl);
+  sll(Lbyte_code, LogBytesPerWord, Lbyte_code);    // multiply by wordSize
+  add(tbl, tbl.base(), 0);
+  ld_ptr( G3_scratch, Lbyte_code, IdispatchAddress);     // get entry addr
+#endif
+}
+
+
+// Dispatch code executed in the epilog of a bytecode which does not do it's
+// own dispatch. The dispatch address in IdispatchAddress is used for the
+// dispatch.
+void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
+  assert_not_delayed();
+  verify_FPU(1, state);
+  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+  jmp( IdispatchAddress, 0 );
+  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
+  else                delayed()->nop();
+}
+
+
+void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
+  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
+  assert_not_delayed();
+  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
+  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
+}
+
+
+void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
+  // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
+  assert_not_delayed();
+  ldub( Lbcp, bcp_incr, Lbyte_code);               // load next bytecode
+  dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
+}
+
+
+void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
+  // load current bytecode
+  assert_not_delayed();
+  ldub( Lbcp, 0, Lbyte_code);               // load next bytecode
+  dispatch_base(state, table);
+}
+
+
+void InterpreterMacroAssembler::call_VM_leaf_base(
+  Register java_thread,
+  address  entry_point,
+  int      number_of_arguments
+) {
+  if (!java_thread->is_valid())
+    java_thread = L7_thread_cache;
+  // super call
+  MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
+}
+
+
+void InterpreterMacroAssembler::call_VM_base(
+  Register        oop_result,
+  Register        java_thread,
+  Register        last_java_sp,
+  address         entry_point,
+  int             number_of_arguments,
+  bool            check_exception
+) {
+  if (!java_thread->is_valid())
+    java_thread = L7_thread_cache;
+  // See class ThreadInVMfromInterpreter, which assumes that the interpreter
+  // takes responsibility for setting its own thread-state on call-out.
+  // However, ThreadInVMfromInterpreter resets the state to "in_Java".
+
+  //save_bcp();                                  // save bcp
+  MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
+  //restore_bcp();                               // restore bcp
+  //restore_locals();                            // restore locals pointer
+}
+
+
+void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
+  if (JvmtiExport::can_pop_frame()) {
+    Label L;
+
+    // Check the "pending popframe condition" flag in the current thread
+    Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
+    ld(popframe_condition_addr, scratch_reg);
+
+    // Initiate popframe handling only if it is not already being processed.  If the flag
+    // has the popframe_processing bit set, it means that this code is called *during* popframe
+    // handling - we don't want to reenter.
+    btst(JavaThread::popframe_pending_bit, scratch_reg);
+    br(zero, false, pt, L);
+    delayed()->nop();
+    btst(JavaThread::popframe_processing_bit, scratch_reg);
+    br(notZero, false, pt, L);
+    delayed()->nop();
+
+    // Call Interpreter::remove_activation_preserving_args_entry() to get the
+    // address of the same-named entrypoint in the generated interpreter code.
+    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
+
+    // Jump to Interpreter::_remove_activation_preserving_args_entry
+    jmpl(O0, G0, G0);
+    delayed()->nop();
+    bind(L);
+  }
+}
+
+
+void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
+  Register thr_state = G4_scratch;
+  ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
+         thr_state);
+  const Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
+  const Address oop_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_oop_offset()));
+  const Address val_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_value_offset()));
+  switch (state) {
+  case ltos: ld_long(val_addr, Otos_l);                   break;
+  case atos: ld_ptr(oop_addr, Otos_l);
+             st_ptr(G0, oop_addr);                        break;
+  case btos:                                           // fall through
+  case ctos:                                           // fall through
+  case stos:                                           // fall through
+  case itos: ld(val_addr, Otos_l1);                       break;
+  case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
+  case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
+  case vtos: /* nothing to do */                          break;
+  default  : ShouldNotReachHere();
+  }
+  // Clean up tos value in the jvmti thread state
+  or3(G0, ilgl, G3_scratch);
+  stw(G3_scratch, tos_addr);
+  st_long(G0, val_addr);
+  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+}
+
+
+void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
+  if (JvmtiExport::can_force_early_return()) {
+    Label L;
+    Register thr_state = G3_scratch;
+    ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
+           thr_state);
+    tst(thr_state);
+    br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
+    delayed()->nop();
+
+    // Initiate earlyret handling only if it is not already being processed.
+    // If the flag has the earlyret_processing bit set, it means that this code
+    // is called *during* earlyret handling - we don't want to reenter.
+    ld(Address(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_state_offset())),
+       G4_scratch);
+    cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
+    br(Assembler::notEqual, false, pt, L);
+    delayed()->nop();
+
+    // Call Interpreter::remove_activation_early_entry() to get the address of the
+    // same-named entrypoint in the generated interpreter code
+    Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
+    ld(tos_addr, Otos_l1);
+    call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
+
+    // Jump to Interpreter::_remove_activation_early_entry
+    jmpl(O0, G0, G0);
+    delayed()->nop();
+    bind(L);
+  }
+}
+
+
+void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
+  mov(arg_1, O0);
+  MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
+}
+#endif /* CC_INTERP */
+
+
+#ifndef CC_INTERP
+
+void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
+  assert_not_delayed();
+  dispatch_Lbyte_code(state, table);
+}
+
+
+void InterpreterMacroAssembler::dispatch_normal(TosState state) {
+  dispatch_base(state, Interpreter::normal_table(state));
+}
+
+
+void InterpreterMacroAssembler::dispatch_only(TosState state) {
+  dispatch_base(state, Interpreter::dispatch_table(state));
+}
+
+
+// common code to dispatch and dispatch_only
+// dispatch value in Lbyte_code and increment Lbcp
+
+void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
+  verify_FPU(1, state);
+  // %%%%% maybe implement +VerifyActivationFrameSize here
+  //verify_thread(); //too slow; we will just verify on method entry & exit
+  if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+#ifdef FAST_DISPATCH
+  if (table == Interpreter::dispatch_table(state)) {
+    // use IdispatchTables
+    add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
+                                                        // add offset to correct dispatch table
+    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
+    ld_ptr(IdispatchTables, Lbyte_code, G3_scratch);    // get entry addr
+  } else {
+#endif
+    // dispatch table to use
+    Address tbl(G3_scratch, (address)table);
+
+    sll(Lbyte_code, LogBytesPerWord, Lbyte_code);       // multiply by wordSize
+    load_address(tbl);                                  // compute addr of table
+    ld_ptr(G3_scratch, Lbyte_code, G3_scratch);         // get entry addr
+#ifdef FAST_DISPATCH
+  }
+#endif
+  jmp( G3_scratch, 0 );
+  if (bcp_incr != 0)  delayed()->inc(Lbcp, bcp_incr);
+  else                delayed()->nop();
+}
+
+
+// Helpers for expression stack
+
+// Longs and doubles are Category 2 computational types in the
+// JVM specification (section 3.11.1) and take 2 expression stack or
+// local slots.
+// Aligning them on 32 bit with tagged stacks is hard because the code generated
+// for the dup* bytecodes depends on what types are already on the stack.
+// If the types are split into the two stack/local slots, that is much easier
+// (and we can use 0 for non-reference tags).
+
+// Known good alignment in _LP64 but unknown otherwise
+void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
+  assert_not_delayed();
+
+#ifdef _LP64
+  ldf(FloatRegisterImpl::D, r1, offset, d);
+#else
+  ldf(FloatRegisterImpl::S, r1, offset, d);
+  ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
+#endif
+}
+
+// Known good alignment in _LP64 but unknown otherwise
+void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
+  assert_not_delayed();
+
+#ifdef _LP64
+  stf(FloatRegisterImpl::D, d, r1, offset);
+  // store something more useful here
+  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
+#else
+  stf(FloatRegisterImpl::S, d, r1, offset);
+  stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
+#endif
+}
+
+
+// Known good alignment in _LP64 but unknown otherwise
+void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
+  assert_not_delayed();
+#ifdef _LP64
+  ldx(r1, offset, rd);
+#else
+  ld(r1, offset, rd);
+  ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
+#endif
+}
+
+// Known good alignment in _LP64 but unknown otherwise
+void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
+  assert_not_delayed();
+
+#ifdef _LP64
+  stx(l, r1, offset);
+  // store something more useful here
+  debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
+#else
+  st(l, r1, offset);
+  st(l->successor(), r1, offset + Interpreter::stackElementSize());
+#endif
+}
+
+#ifdef ASSERT
+void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
+                                                 Register r,
+                                                 Register scratch) {
+  if (TaggedStackInterpreter) {
+    Label ok, long_ok;
+    ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
+    if (t == frame::TagCategory2) {
+      cmp(r, G0);
+      brx(Assembler::equal, false, Assembler::pt, long_ok);
+      delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
+      stop("stack long/double tag value bad");
+      bind(long_ok);
+      cmp(r, G0);
+    } else if (t == frame::TagValue) {
+      cmp(r, G0);
+    } else {
+      assert_different_registers(r, scratch);
+      mov(t, scratch);
+      cmp(r, scratch);
+    }
+    brx(Assembler::equal, false, Assembler::pt, ok);
+    delayed()->nop();
+    // Also compare if the stack value is zero, then the tag might
+    // not have been set coming from deopt.
+    ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
+    cmp(r, G0);
+    brx(Assembler::equal, false, Assembler::pt, ok);
+    delayed()->nop();
+    stop("Stack tag value is bad");
+    bind(ok);
+  }
+}
+#endif // ASSERT
+
+void InterpreterMacroAssembler::pop_i(Register r) {
+  assert_not_delayed();
+  // Uses destination register r for scratch
+  debug_only(verify_stack_tag(frame::TagValue, r));
+  ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
+  inc(Lesp, Interpreter::stackElementSize());
+  debug_only(verify_esp(Lesp));
+}
+
+void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
+  assert_not_delayed();
+  // Uses destination register r for scratch
+  debug_only(verify_stack_tag(frame::TagReference, r, scratch));
+  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
+  inc(Lesp, Interpreter::stackElementSize());
+  debug_only(verify_esp(Lesp));
+}
+
+void InterpreterMacroAssembler::pop_l(Register r) {
+  assert_not_delayed();
+  // Uses destination register r for scratch
+  debug_only(verify_stack_tag(frame::TagCategory2, r));
+  load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
+  inc(Lesp, 2*Interpreter::stackElementSize());
+  debug_only(verify_esp(Lesp));
+}
+
+
+void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
+  assert_not_delayed();
+  debug_only(verify_stack_tag(frame::TagValue, scratch));
+  ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
+  inc(Lesp, Interpreter::stackElementSize());
+  debug_only(verify_esp(Lesp));
+}
+
+
+void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
+  assert_not_delayed();
+  debug_only(verify_stack_tag(frame::TagCategory2, scratch));
+  load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
+  inc(Lesp, 2*Interpreter::stackElementSize());
+  debug_only(verify_esp(Lesp));
+}
+
+
+// (Note use register first, then decrement so dec can be done during store stall)
+void InterpreterMacroAssembler::tag_stack(Register r) {
+  if (TaggedStackInterpreter) {
+    st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
+  }
+}
+
+void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
+  if (TaggedStackInterpreter) {
+    assert (frame::TagValue == 0, "TagValue must be zero");
+    if (t == frame::TagValue) {
+      st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
+    } else if (t == frame::TagCategory2) {
+      st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
+      // Tag next slot down too
+      st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
+    } else {
+      assert_different_registers(r, O3);
+      mov(t, O3);
+      st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
+    }
+  }
+}
+
+void InterpreterMacroAssembler::push_i(Register r) {
+  assert_not_delayed();
+  debug_only(verify_esp(Lesp));
+  tag_stack(frame::TagValue, r);
+  st(  r,    Lesp, Interpreter::value_offset_in_bytes());
+  dec( Lesp, Interpreter::stackElementSize());
+}
+
+void InterpreterMacroAssembler::push_ptr(Register r) {
+  assert_not_delayed();
+  tag_stack(frame::TagReference, r);
+  st_ptr(  r,    Lesp, Interpreter::value_offset_in_bytes());
+  dec( Lesp, Interpreter::stackElementSize());
+}
+
+void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
+  assert_not_delayed();
+  tag_stack(tag);
+  st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
+  dec( Lesp, Interpreter::stackElementSize());
+}
+
+// remember: our convention for longs in SPARC is:
+// O0 (Otos_l1) has high-order part in first word,
+// O1 (Otos_l2) has low-order part in second word
+
+void InterpreterMacroAssembler::push_l(Register r) {
+  assert_not_delayed();
+  debug_only(verify_esp(Lesp));
+  tag_stack(frame::TagCategory2, r);
+  // Longs are in stored in memory-correct order, even if unaligned.
+  // and may be separated by stack tags.
+  int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
+  store_unaligned_long(r, Lesp, offset);
+  dec(Lesp, 2 * Interpreter::stackElementSize());
+}
+
+
+void InterpreterMacroAssembler::push_f(FloatRegister f) {
+  assert_not_delayed();
+  debug_only(verify_esp(Lesp));
+  tag_stack(frame::TagValue, Otos_i);
+  stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
+  dec(Lesp, Interpreter::stackElementSize());
+}
+
+
+void InterpreterMacroAssembler::push_d(FloatRegister d)   {
+  assert_not_delayed();
+  debug_only(verify_esp(Lesp));
+  tag_stack(frame::TagCategory2, Otos_i);
+  // Longs are in stored in memory-correct order, even if unaligned.
+  // and may be separated by stack tags.
+  int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
+  store_unaligned_double(d, Lesp, offset);
+  dec(Lesp, 2 * Interpreter::stackElementSize());
+}
+
+
+void InterpreterMacroAssembler::push(TosState state) {
+  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+  switch (state) {
+    case atos: push_ptr();            break;
+    case btos: push_i();              break;
+    case ctos:
+    case stos: push_i();              break;
+    case itos: push_i();              break;
+    case ltos: push_l();              break;
+    case ftos: push_f();              break;
+    case dtos: push_d();              break;
+    case vtos: /* nothing to do */    break;
+    default  : ShouldNotReachHere();
+  }
+}
+
+
+void InterpreterMacroAssembler::pop(TosState state) {
+  switch (state) {
+    case atos: pop_ptr();            break;
+    case btos: pop_i();              break;
+    case ctos:
+    case stos: pop_i();              break;
+    case itos: pop_i();              break;
+    case ltos: pop_l();              break;
+    case ftos: pop_f();              break;
+    case dtos: pop_d();              break;
+    case vtos: /* nothing to do */   break;
+    default  : ShouldNotReachHere();
+  }
+  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+}
+
+
+// Tagged stack helpers for swap and dup
+void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
+                                                 Register tag) {
+  ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
+  if (TaggedStackInterpreter) {
+    ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
+  }
+}
+void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
+                                                  Register tag) {
+  st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
+  if (TaggedStackInterpreter) {
+    st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
+  }
+}
+
+
+void InterpreterMacroAssembler::load_receiver(Register param_count,
+                                              Register recv) {
+
+  sll(param_count, Interpreter::logStackElementSize(), param_count);
+  if (TaggedStackInterpreter) {
+    add(param_count, Interpreter::value_offset_in_bytes(), param_count);  // get obj address
+  }
+  ld_ptr(Lesp, param_count, recv);                      // gets receiver Oop
+}
+
+void InterpreterMacroAssembler::empty_expression_stack() {
+  // Reset Lesp.
+  sub( Lmonitors, wordSize, Lesp );
+
+  // Reset SP by subtracting more space from Lesp.
+  Label done;
+
+  const Address max_stack   (Lmethod, 0, in_bytes(methodOopDesc::max_stack_offset()));
+  const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
+
+  verify_oop(Lmethod);
+
+
+  assert( G4_scratch    != Gframe_size,
+          "Only you can prevent register aliasing!");
+
+  // A native does not need to do this, since its callee does not change SP.
+  ld(access_flags, Gframe_size);
+  btst(JVM_ACC_NATIVE, Gframe_size);
+  br(Assembler::notZero, false, Assembler::pt, done);
+  delayed()->nop();
+
+  //
+  // Compute max expression stack+register save area
+  //
+  lduh( max_stack, Gframe_size );
+  if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size);  // max_stack * 2 for TAGS
+  add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
+
+  //
+  // now set up a stack frame with the size computed above
+  //
+  //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
+  sll( Gframe_size, LogBytesPerWord, Gframe_size );
+  sub( Lesp, Gframe_size, Gframe_size );
+  and3( Gframe_size, -(2 * wordSize), Gframe_size );          // align SP (downwards) to an 8/16-byte boundary
+  debug_only(verify_sp(Gframe_size, G4_scratch));
+#ifdef _LP64
+  sub(Gframe_size, STACK_BIAS, Gframe_size );
+#endif
+  mov(Gframe_size, SP);
+
+  bind(done);
+}
+
+
+#ifdef ASSERT
+void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
+  Label Bad, OK;
+
+  // Saved SP must be aligned.
+#ifdef _LP64
+  btst(2*BytesPerWord-1, Rsp);
+#else
+  btst(LongAlignmentMask, Rsp);
+#endif
+  br(Assembler::notZero, false, Assembler::pn, Bad);
+  delayed()->nop();
+
+  // Saved SP, plus register window size, must not be above FP.
+  add(Rsp, frame::register_save_words * wordSize, Rtemp);
+#ifdef _LP64
+  sub(Rtemp, STACK_BIAS, Rtemp);  // Bias Rtemp before cmp to FP
+#endif
+  cmp(Rtemp, FP);
+  brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
+  delayed()->nop();
+
+  // Saved SP must not be ridiculously below current SP.
+  size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
+  set(maxstack, Rtemp);
+  sub(SP, Rtemp, Rtemp);
+#ifdef _LP64
+  add(Rtemp, STACK_BIAS, Rtemp);  // Unbias Rtemp before cmp to Rsp
+#endif
+  cmp(Rsp, Rtemp);
+  brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
+  delayed()->nop();
+
+  br(Assembler::always, false, Assembler::pn, OK);
+  delayed()->nop();
+
+  bind(Bad);
+  stop("on return to interpreted call, restored SP is corrupted");
+
+  bind(OK);
+}
+
+
+void InterpreterMacroAssembler::verify_esp(Register Resp) {
+  // about to read or write Resp[0]
+  // make sure it is not in the monitors or the register save area
+  Label OK1, OK2;
+
+  cmp(Resp, Lmonitors);
+  brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
+  delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
+  stop("too many pops:  Lesp points into monitor area");
+  bind(OK1);
+#ifdef _LP64
+  sub(Resp, STACK_BIAS, Resp);
+#endif
+  cmp(Resp, SP);
+  brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
+  delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
+  stop("too many pushes:  Lesp points into register window");
+  bind(OK2);
+}
+#endif // ASSERT
+
+// Load compiled (i2c) or interpreter entry when calling from interpreted and
+// do the call. Centralized so that all interpreter calls will do the same actions.
+// If jvmti single stepping is on for a thread we must not call compiled code.
+void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
+
+  // Assume we want to go compiled if available
+
+  ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
+
+  if (JvmtiExport::can_post_interpreter_events()) {
+    // JVMTI events, such as single-stepping, are implemented partly by avoiding running
+    // compiled code in threads for which the event is enabled.  Check here for
+    // interp_only_mode if these events CAN be enabled.
+    verify_thread();
+    Label skip_compiled_code;
+
+    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
+
+    ld(interp_only, scratch);
+    tst(scratch);
+    br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
+    delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
+    bind(skip_compiled_code);
+  }
+
+  // the i2c_adapters need methodOop in G5_method (right? %%%)
+  // do the call
+#ifdef ASSERT
+  {
+    Label ok;
+    br_notnull(target, false, Assembler::pt, ok);
+    delayed()->nop();
+    stop("null entry point");
+    bind(ok);
+  }
+#endif // ASSERT
+
+  // Adjust Rret first so Llast_SP can be same as Rret
+  add(Rret, -frame::pc_return_offset, O7);
+  add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
+  // Record SP so we can remove any stack space allocated by adapter transition
+  jmp(target, 0);
+  delayed()->mov(SP, Llast_SP);
+}
+
+void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
+  assert_not_delayed();
+
+  Label not_taken;
+  if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
+  else             br (cc, false, Assembler::pn, not_taken);
+  delayed()->nop();
+
+  TemplateTable::branch(false,false);
+
+  bind(not_taken);
+
+  profile_not_taken_branch(G3_scratch);
+}
+
+
+void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
+                                  int         bcp_offset,
+                                  Register    Rtmp,
+                                  Register    Rdst,
+                                  signedOrNot is_signed,
+                                  setCCOrNot  should_set_CC ) {
+  assert(Rtmp != Rdst, "need separate temp register");
+  assert_not_delayed();
+  switch (is_signed) {
+   default: ShouldNotReachHere();
+
+   case   Signed:  ldsb( Lbcp, bcp_offset, Rdst  );  break; // high byte
+   case Unsigned:  ldub( Lbcp, bcp_offset, Rdst  );  break; // high byte
+  }
+  ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
+  sll( Rdst, BitsPerByte, Rdst);
+  switch (should_set_CC ) {
+   default: ShouldNotReachHere();
+
+   case      set_CC:  orcc( Rdst, Rtmp, Rdst ); break;
+   case dont_set_CC:  or3(  Rdst, Rtmp, Rdst ); break;
+  }
+}
+
+
+void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
+                                  int        bcp_offset,
+                                  Register   Rtmp,
+                                  Register   Rdst,
+                                  setCCOrNot should_set_CC ) {
+  assert(Rtmp != Rdst, "need separate temp register");
+  assert_not_delayed();
+  add( Lbcp, bcp_offset, Rtmp);
+  andcc( Rtmp, 3, G0);
+  Label aligned;
+  switch (should_set_CC ) {
+   default: ShouldNotReachHere();
+
+   case      set_CC: break;
+   case dont_set_CC: break;
+  }
+
+  br(Assembler::zero, true, Assembler::pn, aligned);
+#ifdef _LP64
+  delayed()->ldsw(Rtmp, 0, Rdst);
+#else
+  delayed()->ld(Rtmp, 0, Rdst);
+#endif
+
+  ldub(Lbcp, bcp_offset + 3, Rdst);
+  ldub(Lbcp, bcp_offset + 2, Rtmp);  sll(Rtmp,  8, Rtmp);  or3(Rtmp, Rdst, Rdst);
+  ldub(Lbcp, bcp_offset + 1, Rtmp);  sll(Rtmp, 16, Rtmp);  or3(Rtmp, Rdst, Rdst);
+#ifdef _LP64
+  ldsb(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
+#else
+  // Unsigned load is faster than signed on some implementations
+  ldub(Lbcp, bcp_offset + 0, Rtmp);  sll(Rtmp, 24, Rtmp);
+#endif
+  or3(Rtmp, Rdst, Rdst );
+
+  bind(aligned);
+  if (should_set_CC == set_CC) tst(Rdst);
+}
+
+
+void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
+  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
+  assert_different_registers(cache, tmp);
+  assert_not_delayed();
+  get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
+              // convert from field index to ConstantPoolCacheEntry index
+              // and from word index to byte offset
+  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
+  add(LcpoolCache, tmp, cache);
+}
+
+
+void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
+  assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
+  assert_different_registers(cache, tmp);
+  assert_not_delayed();
+  get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
+              // convert from field index to ConstantPoolCacheEntry index
+              // and from word index to byte offset
+  sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
+              // skip past the header
+  add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
+              // construct pointer to cache entry
+  add(LcpoolCache, tmp, cache);
+}
+
+
+// Generate a subtype check: branch to ok_is_subtype if sub_klass is
+// a subtype of super_klass.  Blows registers Rsub_klass, tmp1, tmp2.
+void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
+                                                  Register Rsuper_klass,
+                                                  Register Rtmp1,
+                                                  Register Rtmp2,
+                                                  Register Rtmp3,
+                                                  Label &ok_is_subtype ) {
+  Label not_subtype, loop;
+
+  // Profile the not-null value's klass.
+  profile_typecheck(Rsub_klass, Rtmp1);
+
+  // Load the super-klass's check offset into Rtmp1
+  ld( Rsuper_klass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1 );
+  // Load from the sub-klass's super-class display list, or a 1-word cache of
+  // the secondary superclass list, or a failing value with a sentinel offset
+  // if the super-klass is an interface or exceptionally deep in the Java
+  // hierarchy and we have to scan the secondary superclass list the hard way.
+  ld_ptr( Rsub_klass, Rtmp1, Rtmp2 );
+  // See if we get an immediate positive hit
+  cmp( Rtmp2, Rsuper_klass );
+  brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
+  // In the delay slot, check for immediate negative hit
+  delayed()->cmp( Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
+  br( Assembler::notEqual, false, Assembler::pt, not_subtype );
+  // In the delay slot, check for self
+  delayed()->cmp( Rsub_klass, Rsuper_klass );
+  brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
+
+  // Now do a linear scan of the secondary super-klass chain.
+  delayed()->ld_ptr( Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), Rtmp2 );
+
+  // Rtmp2 holds the objArrayOop of secondary supers.
+  ld( Rtmp2, arrayOopDesc::length_offset_in_bytes(), Rtmp1 );// Load the array length
+  // Check for empty secondary super list
+  tst(Rtmp1);
+
+  // Top of search loop
+  bind( loop );
+  br( Assembler::equal, false, Assembler::pn, not_subtype );
+  delayed()->nop();
+  // load next super to check
+  ld_ptr( Rtmp2, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rtmp3 );
+
+  // Bump array pointer forward one oop
+  add( Rtmp2, wordSize, Rtmp2 );
+  // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
+  cmp( Rtmp3, Rsuper_klass );
+  // A miss means we are NOT a subtype and need to keep looping
+  brx( Assembler::notEqual, false, Assembler::pt, loop );
+  delayed()->deccc( Rtmp1 );    // dec trip counter in delay slot
+  // Falling out the bottom means we found a hit; we ARE a subtype
+  br( Assembler::always, false, Assembler::pt, ok_is_subtype );
+  // Update the cache
+  delayed()->st_ptr( Rsuper_klass, Rsub_klass, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
+
+  bind(not_subtype);
+  profile_typecheck_failed(Rtmp1);
+}
+
+// Separate these two to allow for delay slot in middle
+// These are used to do a test and full jump to exception-throwing code.
+
+// %%%%% Could possibly reoptimize this by testing to see if could use
+// a single conditional branch (i.e. if span is small enough.
+// If you go that route, than get rid of the split and give up
+// on the delay-slot hack.
+
+void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
+                                                    Label&    ok ) {
+  assert_not_delayed();
+  br(ok_condition, true, pt, ok);
+  // DELAY SLOT
+}
+
+void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
+                                                    Label&    ok ) {
+  assert_not_delayed();
+  bp( ok_condition, true, Assembler::xcc, pt, ok);
+  // DELAY SLOT
+}
+
+void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
+                                                  Label&    ok ) {
+  assert_not_delayed();
+  brx(ok_condition, true, pt, ok);
+  // DELAY SLOT
+}
+
+void InterpreterMacroAssembler::throw_if_not_2( address  throw_entry_point,
+                                                Register Rscratch,
+                                                Label&   ok ) {
+  assert(throw_entry_point != NULL, "entry point must be generated by now");
+  Address dest(Rscratch, throw_entry_point);
+  jump_to(dest);
+  delayed()->nop();
+  bind(ok);
+}
+
+
+// And if you cannot use the delay slot, here is a shorthand:
+
+void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
+                                                  address   throw_entry_point,
+                                                  Register  Rscratch ) {
+  Label ok;
+  if (ok_condition != never) {
+    throw_if_not_1_icc( ok_condition, ok);
+    delayed()->nop();
+  }
+  throw_if_not_2( throw_entry_point, Rscratch, ok);
+}
+void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
+                                                  address   throw_entry_point,
+                                                  Register  Rscratch ) {
+  Label ok;
+  if (ok_condition != never) {
+    throw_if_not_1_xcc( ok_condition, ok);
+    delayed()->nop();
+  }
+  throw_if_not_2( throw_entry_point, Rscratch, ok);
+}
+void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
+                                                address   throw_entry_point,
+                                                Register  Rscratch ) {
+  Label ok;
+  if (ok_condition != never) {
+    throw_if_not_1_x( ok_condition, ok);
+    delayed()->nop();
+  }
+  throw_if_not_2( throw_entry_point, Rscratch, ok);
+}
+
+// Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
+// Note: res is still shy of address by array offset into object.
+
+void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
+  assert_not_delayed();
+
+  verify_oop(array);
+#ifdef _LP64
+  // sign extend since tos (index) can be a 32bit value
+  sra(index, G0, index);
+#endif // _LP64
+
+  // check array
+  Label ptr_ok;
+  tst(array);
+  throw_if_not_1_x( notZero, ptr_ok );
+  delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
+  throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
+
+  Label index_ok;
+  cmp(index, tmp);
+  throw_if_not_1_icc( lessUnsigned, index_ok );
+  if (index_shift > 0)  delayed()->sll(index, index_shift, index);
+  else                  delayed()->add(array, index, res); // addr - const offset in index
+  // convention: move aberrant index into G3_scratch for exception message
+  mov(index, G3_scratch);
+  throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
+
+  // add offset if didn't do it in delay slot
+  if (index_shift > 0)   add(array, index, res); // addr - const offset in index
+}
+
+
+void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
+  assert_not_delayed();
+
+  // pop array
+  pop_ptr(array);
+
+  // check array
+  index_check_without_pop(array, index, index_shift, tmp, res);
+}
+
+
+void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
+  ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
+}
+
+
+void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
+  get_constant_pool(Rdst);
+  ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
+}
+
+
+void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
+  get_constant_pool(Rcpool);
+  ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
+}
+
+
+// unlock if synchronized method
+//
+// Unlock the receiver if this is a synchronized method.
+// Unlock any Java monitors from syncronized blocks.
+//
+// If there are locked Java monitors
+//    If throw_monitor_exception
+//       throws IllegalMonitorStateException
+//    Else if install_monitor_exception
+//       installs IllegalMonitorStateException
+//    Else
+//       no error processing
+void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
+                                                              bool throw_monitor_exception,
+                                                              bool install_monitor_exception) {
+  Label unlocked, unlock, no_unlock;
+
+  // get the value of _do_not_unlock_if_synchronized into G1_scratch
+  const Address do_not_unlock_if_synchronized(G2_thread, 0,
+    in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
+  ldbool(do_not_unlock_if_synchronized, G1_scratch);
+  stbool(G0, do_not_unlock_if_synchronized); // reset the flag
+
+  // check if synchronized method
+  const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
+  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+  push(state); // save tos
+  ld(access_flags, G3_scratch);
+  btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
+  br( zero, false, pt, unlocked);
+  delayed()->nop();
+
+  // Don't unlock anything if the _do_not_unlock_if_synchronized flag
+  // is set.
+  tstbool(G1_scratch);
+  br(Assembler::notZero, false, pn, no_unlock);
+  delayed()->nop();
+
+  // BasicObjectLock will be first in list, since this is a synchronized method. However, need
+  // to check that the object has not been unlocked by an explicit monitorexit bytecode.
+
+  //Intel: if (throw_monitor_exception) ... else ...
+  // Entry already unlocked, need to throw exception
+  //...
+
+  // pass top-most monitor elem
+  add( top_most_monitor(), O1 );
+
+  ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
+  br_notnull(G3_scratch, false, pt, unlock);
+  delayed()->nop();
+
+  if (throw_monitor_exception) {
+    // Entry already unlocked need to throw an exception
+    MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
+    should_not_reach_here();
+  } else {
+    // Monitor already unlocked during a stack unroll.
+    // If requested, install an illegal_monitor_state_exception.
+    // Continue with stack unrolling.
+    if (install_monitor_exception) {
+      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
+    }
+    ba(false, unlocked);
+    delayed()->nop();
+  }
+
+  bind(unlock);
+
+  unlock_object(O1);
+
+  bind(unlocked);
+
+  // I0, I1: Might contain return value
+
+  // Check that all monitors are unlocked
+  { Label loop, exception, entry, restart;
+
+    Register Rmptr   = O0;
+    Register Rtemp   = O1;
+    Register Rlimit  = Lmonitors;
+    const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
+    assert( (delta & LongAlignmentMask) == 0,
+            "sizeof BasicObjectLock must be even number of doublewords");
+
+    #ifdef ASSERT
+    add(top_most_monitor(), Rmptr, delta);
+    { Label L;
+      // ensure that Rmptr starts out above (or at) Rlimit
+      cmp(Rmptr, Rlimit);
+      brx(Assembler::greaterEqualUnsigned, false, pn, L);
+      delayed()->nop();
+      stop("monitor stack has negative size");
+      bind(L);
+    }
+    #endif
+    bind(restart);
+    ba(false, entry);
+    delayed()->
+    add(top_most_monitor(), Rmptr, delta);      // points to current entry, starting with bottom-most entry
+
+    // Entry is still locked, need to throw exception
+    bind(exception);
+    if (throw_monitor_exception) {
+      MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
+      should_not_reach_here();
+    } else {
+      // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
+      // Unlock does not block, so don't have to worry about the frame
+      unlock_object(Rmptr);
+      if (install_monitor_exception) {
+        MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
+      }
+      ba(false, restart);
+      delayed()->nop();
+    }
+
+    bind(loop);
+    cmp(Rtemp, G0);                             // check if current entry is used
+    brx(Assembler::notEqual, false, pn, exception);
+    delayed()->
+    dec(Rmptr, delta);                          // otherwise advance to next entry
+    #ifdef ASSERT
+    { Label L;
+      // ensure that Rmptr has not somehow stepped below Rlimit
+      cmp(Rmptr, Rlimit);
+      brx(Assembler::greaterEqualUnsigned, false, pn, L);
+      delayed()->nop();
+      stop("ran off the end of the monitor stack");
+      bind(L);
+    }
+    #endif
+    bind(entry);
+    cmp(Rmptr, Rlimit);                         // check if bottom reached
+    brx(Assembler::notEqual, true, pn, loop);   // if not at bottom then check this entry
+    delayed()->
+    ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
+  }
+
+  bind(no_unlock);
+  pop(state);
+  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+}
+
+
+// remove activation
+//
+// Unlock the receiver if this is a synchronized method.
+// Unlock any Java monitors from syncronized blocks.
+// Remove the activation from the stack.
+//
+// If there are locked Java monitors
+//    If throw_monitor_exception
+//       throws IllegalMonitorStateException
+//    Else if install_monitor_exception
+//       installs IllegalMonitorStateException
+//    Else
+//       no error processing
+void InterpreterMacroAssembler::remove_activation(TosState state,
+                                                  bool throw_monitor_exception,
+                                                  bool install_monitor_exception) {
+
+  unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
+
+  // save result (push state before jvmti call and pop it afterwards) and notify jvmti
+  notify_method_exit(false, state, NotifyJVMTI);
+
+  interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
+  verify_oop(Lmethod);
+  verify_thread();
+
+  // return tos
+  assert(Otos_l1 == Otos_i, "adjust code below");
+  switch (state) {
+#ifdef _LP64
+  case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
+#else
+  case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through  // O1 -> I1
+#endif
+  case btos:                                      // fall through
+  case ctos:
+  case stos:                                      // fall through
+  case atos:                                      // fall through
+  case itos: mov(Otos_l1, Otos_l1->after_save());    break;        // O0 -> I0
+  case ftos:                                      // fall through
+  case dtos:                                      // fall through
+  case vtos: /* nothing to do */                     break;
+  default  : ShouldNotReachHere();
+  }
+
+#if defined(COMPILER2) && !defined(_LP64)
+  if (state == ltos) {
+    // C2 expects long results in G1 we can't tell if we're returning to interpreted
+    // or compiled so just be safe use G1 and O0/O1
+
+    // Shift bits into high (msb) of G1
+    sllx(Otos_l1->after_save(), 32, G1);
+    // Zero extend low bits
+    srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
+    or3 (Otos_l2->after_save(), G1, G1);
+  }
+#endif /* COMPILER2 */
+
+}
+#endif /* CC_INTERP */
+
+
+// Lock object
+//
+// Argument - lock_reg points to the BasicObjectLock to be used for locking,
+//            it must be initialized with the object to lock
+void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
+  if (UseHeavyMonitors) {
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
+  }
+  else {
+    Register obj_reg = Object;
+    Register mark_reg = G4_scratch;
+    Register temp_reg = G1_scratch;
+    Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
+    Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
+    Label    done;
+
+    Label slow_case;
+
+    assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
+
+    // load markOop from object into mark_reg
+    ld_ptr(mark_addr, mark_reg);
+
+    if (UseBiasedLocking) {
+      biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
+    }
+
+    // get the address of basicLock on stack that will be stored in the object
+    // we need a temporary register here as we do not want to clobber lock_reg
+    // (cas clobbers the destination register)
+    mov(lock_reg, temp_reg);
+    // set mark reg to be (markOop of object | UNLOCK_VALUE)
+    or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
+    // initialize the box  (Must happen before we update the object mark!)
+    st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
+    // compare and exchange object_addr, markOop | 1, stack address of basicLock
+    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+    casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
+      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+
+    // if the compare and exchange succeeded we are done (we saw an unlocked object)
+    cmp(mark_reg, temp_reg);
+    brx(Assembler::equal, true, Assembler::pt, done);
+    delayed()->nop();
+
+    // We did not see an unlocked object so try the fast recursive case
+
+    // Check if owner is self by comparing the value in the markOop of object
+    // with the stack pointer
+    sub(temp_reg, SP, temp_reg);
+#ifdef _LP64
+    sub(temp_reg, STACK_BIAS, temp_reg);
+#endif
+    assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
+
+    // Composite "andcc" test:
+    // (a) %sp -vs- markword proximity check, and,
+    // (b) verify mark word LSBs == 0 (Stack-locked).
+    //
+    // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
+    // Note that the page size used for %sp proximity testing is arbitrary and is
+    // unrelated to the actual MMU page size.  We use a 'logical' page size of
+    // 4096 bytes.   F..FFF003 is designed to fit conveniently in the SIMM13 immediate
+    // field of the andcc instruction.
+    andcc (temp_reg, 0xFFFFF003, G0) ;
+
+    // if condition is true we are done and hence we can store 0 in the displaced
+    // header indicating it is a recursive lock and be done
+    brx(Assembler::zero, true, Assembler::pt, done);
+    delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
+
+    // none of the above fast optimizations worked so we have to get into the
+    // slow case of monitor enter
+    bind(slow_case);
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
+
+    bind(done);
+  }
+}
+
+// Unlocks an object. Used in monitorexit bytecode and remove_activation.
+//
+// Argument - lock_reg points to the BasicObjectLock for lock
+// Throw IllegalMonitorException if object is not locked by current thread
+void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
+  if (UseHeavyMonitors) {
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
+  } else {
+    Register obj_reg = G3_scratch;
+    Register mark_reg = G4_scratch;
+    Register displaced_header_reg = G1_scratch;
+    Address  lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
+    Address  lockobj_addr = Address(lock_reg, 0, BasicObjectLock::obj_offset_in_bytes());
+    Address  mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
+    Label    done;
+
+    if (UseBiasedLocking) {
+      // load the object out of the BasicObjectLock
+      ld_ptr(lockobj_addr, obj_reg);
+      biased_locking_exit(mark_addr, mark_reg, done, true);
+      st_ptr(G0, lockobj_addr);  // free entry
+    }
+
+    // Test first if we are in the fast recursive case
+    ld_ptr(lock_addr, displaced_header_reg, BasicLock::displaced_header_offset_in_bytes());
+    br_null(displaced_header_reg, true, Assembler::pn, done);
+    delayed()->st_ptr(G0, lockobj_addr);  // free entry
+
+    // See if it is still a light weight lock, if so we just unlock
+    // the object and we are done
+
+    if (!UseBiasedLocking) {
+      // load the object out of the BasicObjectLock
+      ld_ptr(lockobj_addr, obj_reg);
+    }
+
+    // we have the displaced header in displaced_header_reg
+    // we expect to see the stack address of the basicLock in case the
+    // lock is still a light weight lock (lock_reg)
+    assert(mark_addr.disp() == 0, "cas must take a zero displacement");
+    casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
+      (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
+    cmp(lock_reg, displaced_header_reg);
+    brx(Assembler::equal, true, Assembler::pn, done);
+    delayed()->st_ptr(G0, lockobj_addr);  // free entry
+
+    // The lock has been converted into a heavy lock and hence
+    // we need to get into the slow case
+
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
+
+    bind(done);
+  }
+}
+
+#ifndef CC_INTERP
+
+// Get the method data pointer from the methodOop and set the
+// specified register to its value.
+
+void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Label get_continue;
+
+  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
+  test_method_data_pointer(get_continue);
+  add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
+  if (Roff != noreg)
+    // Roff contains a method data index ("mdi").  It defaults to zero.
+    add(ImethodDataPtr, Roff, ImethodDataPtr);
+  bind(get_continue);
+}
+
+// Set the method data pointer for the current bcp.
+
+void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  Label zero_continue;
+
+  // Test MDO to avoid the call if it is NULL.
+  ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
+  test_method_data_pointer(zero_continue);
+  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
+  set_method_data_pointer_offset(O0);
+  bind(zero_continue);
+}
+
+// Test ImethodDataPtr.  If it is null, continue at the specified label
+
+void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+#ifdef _LP64
+  bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
+#else
+  tst(ImethodDataPtr);
+  br(Assembler::zero, false, Assembler::pn, zero_continue);
+#endif
+  delayed()->nop();
+}
+
+void InterpreterMacroAssembler::verify_method_data_pointer() {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+#ifdef ASSERT
+  Label verify_continue;
+  test_method_data_pointer(verify_continue);
+
+  // If the mdp is valid, it will point to a DataLayout header which is
+  // consistent with the bcp.  The converse is highly probable also.
+  lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
+  ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::const_offset())), O5);
+  add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
+  add(G3_scratch, O5, G3_scratch);
+  cmp(Lbcp, G3_scratch);
+  brx(Assembler::equal, false, Assembler::pt, verify_continue);
+
+  Register temp_reg = O5;
+  delayed()->mov(ImethodDataPtr, temp_reg);
+  // %%% should use call_VM_leaf here?
+  //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
+  save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
+  Address d_save(FP, 0, -sizeof(jdouble) + STACK_BIAS);
+  stf(FloatRegisterImpl::D, Ftos_d, d_save);
+  mov(temp_reg->after_save(), O2);
+  save_thread(L7_thread_cache);
+  call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
+  delayed()->nop();
+  restore_thread(L7_thread_cache);
+  ldf(FloatRegisterImpl::D, d_save, Ftos_d);
+  restore();
+  bind(verify_continue);
+#endif // ASSERT
+}
+
+void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
+                                                                Register cur_bcp,
+                                                                Register Rtmp,
+                                                                Label &profile_continue) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  // Control will flow to "profile_continue" if the counter is less than the
+  // limit or if we call profile_method()
+
+  Label done;
+
+  // if no method data exists, and the counter is high enough, make one
+#ifdef _LP64
+  bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
+#else
+  tst(ImethodDataPtr);
+  br(Assembler::notZero, false, Assembler::pn, done);
+#endif
+
+  // Test to see if we should create a method data oop
+  Address profile_limit(Rtmp, (address)&InvocationCounter::InterpreterProfileLimit);
+#ifdef _LP64
+  delayed()->nop();
+  sethi(profile_limit);
+#else
+  delayed()->sethi(profile_limit);
+#endif
+  ld(profile_limit, Rtmp);
+  cmp(invocation_count, Rtmp);
+  br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
+  delayed()->nop();
+
+  // Build it now.
+  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
+  set_method_data_pointer_offset(O0);
+  ba(false, profile_continue);
+  delayed()->nop();
+  bind(done);
+}
+
+// Store a value at some constant offset from the method data pointer.
+
+void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  st_ptr(value, ImethodDataPtr, constant);
+}
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
+                                                      Register bumped_count,
+                                                      bool decrement) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+
+  // Load the counter.
+  ld_ptr(counter, bumped_count);
+
+  if (decrement) {
+    // Decrement the register.  Set condition codes.
+    subcc(bumped_count, DataLayout::counter_increment, bumped_count);
+
+    // If the decrement causes the counter to overflow, stay negative
+    Label L;
+    brx(Assembler::negative, true, Assembler::pn, L);
+
+    // Store the decremented counter, if it is still negative.
+    delayed()->st_ptr(bumped_count, counter);
+    bind(L);
+  } else {
+    // Increment the register.  Set carry flag.
+    addcc(bumped_count, DataLayout::counter_increment, bumped_count);
+
+    // If the increment causes the counter to overflow, pull back by 1.
+    assert(DataLayout::counter_increment == 1, "subc works");
+    subc(bumped_count, G0, bumped_count);
+
+    // Store the incremented counter.
+    st_ptr(bumped_count, counter);
+  }
+}
+
+// Increment the value at some constant offset from the method data pointer.
+
+void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
+                                                      Register bumped_count,
+                                                      bool decrement) {
+  // Locate the counter at a fixed offset from the mdp:
+  Address counter(ImethodDataPtr, 0, constant);
+  increment_mdp_data_at(counter, bumped_count, decrement);
+}
+
+// Increment the value at some non-fixed (reg + constant) offset from
+// the method data pointer.
+
+void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
+                                                      int constant,
+                                                      Register bumped_count,
+                                                      Register scratch2,
+                                                      bool decrement) {
+  // Add the constant to reg to get the offset.
+  add(ImethodDataPtr, reg, scratch2);
+  Address counter(scratch2, 0, constant);
+  increment_mdp_data_at(counter, bumped_count, decrement);
+}
+
+// Set a flag value at the current method data pointer position.
+// Updates a single byte of the header, to avoid races with other header bits.
+
+void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
+                                                Register scratch) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  // Load the data header
+  ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
+
+  // Set the flag
+  or3(scratch, flag_constant, scratch);
+
+  // Store the modified header.
+  stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
+}
+
+// Test the location at some offset from the method data pointer.
+// If it is not equal to value, branch to the not_equal_continue Label.
+// Set condition codes to match the nullness of the loaded value.
+
+void InterpreterMacroAssembler::test_mdp_data_at(int offset,
+                                                 Register value,
+                                                 Label& not_equal_continue,
+                                                 Register scratch) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  ld_ptr(ImethodDataPtr, offset, scratch);
+  cmp(value, scratch);
+  brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
+  delayed()->tst(scratch);
+}
+
+// Update the method data pointer by the displacement located at some fixed
+// offset from the method data pointer.
+
+void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
+                                                     Register scratch) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
+  add(ImethodDataPtr, scratch, ImethodDataPtr);
+}
+
+// Update the method data pointer by the displacement located at the
+// offset (reg + offset_of_disp).
+
+void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
+                                                     int offset_of_disp,
+                                                     Register scratch) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  add(reg, offset_of_disp, scratch);
+  ld_ptr(ImethodDataPtr, scratch, scratch);
+  add(ImethodDataPtr, scratch, ImethodDataPtr);
+}
+
+// Update the method data pointer by a simple constant displacement.
+
+void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  add(ImethodDataPtr, constant, ImethodDataPtr);
+}
+
+// Update the method data pointer for a _ret bytecode whose target
+// was not among our cached targets.
+
+void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
+                                                   Register return_bci) {
+  assert(ProfileInterpreter, "must be profiling interpreter");
+  push(state);
+  st_ptr(return_bci, l_tmp);  // protect return_bci, in case it is volatile
+  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
+  ld_ptr(l_tmp, return_bci);
+  pop(state);
+}
+
+// Count a taken branch in the bytecodes.
+
+void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // We are taking a branch.  Increment the taken count.
+    increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
+    bind (profile_continue);
+  }
+}
+
+
+// Count a not-taken branch in the bytecodes.
+
+void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // We are taking a branch.  Increment the not taken count.
+    increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
+
+    // The method data pointer needs to be updated to correspond to the
+    // next bytecode.
+    update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
+    bind (profile_continue);
+  }
+}
+
+
+// Count a non-virtual call in the bytecodes.
+
+void InterpreterMacroAssembler::profile_call(Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
+    bind (profile_continue);
+  }
+}
+
+
+// Count a final call in the bytecodes.
+
+void InterpreterMacroAssembler::profile_final_call(Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
+    bind (profile_continue);
+  }
+}
+
+
+// Count a virtual call in the bytecodes.
+
+void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
+                                                     Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // We are making a call.  Increment the count.
+    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
+
+    // Record the receiver type.
+    record_klass_in_profile(receiver, scratch);
+
+    // The method data pointer needs to be updated to reflect the new target.
+    update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
+    bind (profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::record_klass_in_profile_helper(
+                                        Register receiver, Register scratch,
+                                        int start_row, Label& done) {
+  int last_row = VirtualCallData::row_limit() - 1;
+  assert(start_row <= last_row, "must be work left to do");
+  // Test this row for both the receiver and for null.
+  // Take any of three different outcomes:
+  //   1. found receiver => increment count and goto done
+  //   2. found null => keep looking for case 1, maybe allocate this cell
+  //   3. found something else => keep looking for cases 1 and 2
+  // Case 3 is handled by a recursive call.
+  for (int row = start_row; row <= last_row; row++) {
+    Label next_test;
+    bool test_for_null_also = (row == start_row);
+
+    // See if the receiver is receiver[n].
+    int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
+    test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
+
+    // The receiver is receiver[n].  Increment count[n].
+    int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
+    increment_mdp_data_at(count_offset, scratch);
+    ba(false, done);
+    delayed()->nop();
+    bind(next_test);
+
+    if (test_for_null_also) {
+      // Failed the equality check on receiver[n]...  Test for null.
+      if (start_row == last_row) {
+        // The only thing left to do is handle the null case.
+        brx(Assembler::notZero, false, Assembler::pt, done);
+        delayed()->nop();
+        break;
+      }
+      // Since null is rare, make it be the branch-taken case.
+      Label found_null;
+      brx(Assembler::zero, false, Assembler::pn, found_null);
+      delayed()->nop();
+
+      // Put all the "Case 3" tests here.
+      record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);
+
+      // Found a null.  Keep searching for a matching receiver,
+      // but remember that this is an empty (unused) slot.
+      bind(found_null);
+    }
+  }
+
+  // In the fall-through case, we found no matching receiver, but we
+  // observed the receiver[start_row] is NULL.
+
+  // Fill in the receiver field and increment the count.
+  int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
+  set_mdp_data_at(recvr_offset, receiver);
+  int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
+  mov(DataLayout::counter_increment, scratch);
+  set_mdp_data_at(count_offset, scratch);
+  ba(false, done);
+  delayed()->nop();
+}
+
+void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
+                                                        Register scratch) {
+  assert(ProfileInterpreter, "must be profiling");
+  Label done;
+
+  record_klass_in_profile_helper(receiver, scratch, 0, done);
+
+  bind (done);
+}
+
+
+// Count a ret in the bytecodes.
+
+void InterpreterMacroAssembler::profile_ret(TosState state,
+                                            Register return_bci,
+                                            Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+    uint row;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // Update the total ret count.
+    increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
+
+    for (row = 0; row < RetData::row_limit(); row++) {
+      Label next_test;
+
+      // See if return_bci is equal to bci[n]:
+      test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
+                       return_bci, next_test, scratch);
+
+      // return_bci is equal to bci[n].  Increment the count.
+      increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
+
+      // The method data pointer needs to be updated to reflect the new target.
+      update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
+      ba(false, profile_continue);
+      delayed()->nop();
+      bind(next_test);
+    }
+
+    update_mdp_for_ret(state, return_bci);
+
+    bind (profile_continue);
+  }
+}
+
+// Profile an unexpected null in the bytecodes.
+void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
+
+    // The method data pointer needs to be updated.
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+    }
+    update_mdp_by_constant(mdp_delta);
+
+    bind (profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_typecheck(Register klass,
+                                                  Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    int mdp_delta = in_bytes(BitData::bit_data_size());
+    if (TypeProfileCasts) {
+      mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
+
+      // Record the object type.
+      record_klass_in_profile(klass, scratch);
+    }
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_constant(mdp_delta);
+
+    bind (profile_continue);
+  }
+}
+
+void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
+  if (ProfileInterpreter && TypeProfileCasts) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    int count_offset = in_bytes(CounterData::count_offset());
+    // Back up the address, since we have already bumped the mdp.
+    count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
+
+    // *Decrement* the counter.  We expect to see zero or small negatives.
+    increment_mdp_data_at(count_offset, scratch, true);
+
+    bind (profile_continue);
+  }
+}
+
+// Count the default case of a switch construct.
+
+void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // Update the default case count
+    increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
+                          scratch);
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(
+                    in_bytes(MultiBranchData::default_displacement_offset()),
+                    scratch);
+
+    bind (profile_continue);
+  }
+}
+
+// Count the index'th case of a switch construct.
+
+void InterpreterMacroAssembler::profile_switch_case(Register index,
+                                                    Register scratch,
+                                                    Register scratch2,
+                                                    Register scratch3) {
+  if (ProfileInterpreter) {
+    Label profile_continue;
+
+    // If no method data exists, go to profile_continue.
+    test_method_data_pointer(profile_continue);
+
+    // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
+    set(in_bytes(MultiBranchData::per_case_size()), scratch);
+    smul(index, scratch, scratch);
+    add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
+
+    // Update the case count
+    increment_mdp_data_at(scratch,
+                          in_bytes(MultiBranchData::relative_count_offset()),
+                          scratch2,
+                          scratch3);
+
+    // The method data pointer needs to be updated.
+    update_mdp_by_offset(scratch,
+                     in_bytes(MultiBranchData::relative_displacement_offset()),
+                     scratch2);
+
+    bind (profile_continue);
+  }
+}
+
+// add a InterpMonitorElem to stack (see frame_sparc.hpp)
+
+void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
+                                                      Register Rtemp,
+                                                      Register Rtemp2 ) {
+
+  Register Rlimit = Lmonitors;
+  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
+  assert( (delta & LongAlignmentMask) == 0,
+          "sizeof BasicObjectLock must be even number of doublewords");
+
+  sub( SP,        delta, SP);
+  sub( Lesp,      delta, Lesp);
+  sub( Lmonitors, delta, Lmonitors);
+
+  if (!stack_is_empty) {
+
+    // must copy stack contents down
+
+    Label start_copying, next;
+
+    // untested("monitor stack expansion");
+    compute_stack_base(Rtemp);
+    ba( false, start_copying );
+    delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
+
+    // note: must copy from low memory upwards
+    // On entry to loop,
+    // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
+    // Loop mutates Rtemp
+
+    bind( next);
+
+    st_ptr(Rtemp2, Rtemp, 0);
+    inc(Rtemp, wordSize);
+    cmp(Rtemp, Rlimit); // are we done? (duplicated above)
+
+    bind( start_copying );
+
+    brx( notEqual, true, pn, next );
+    delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
+
+    // done copying stack
+  }
+}
+
+// Locals
+#ifdef ASSERT
+void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
+                                                 Register base,
+                                                 Register scratch,
+                                                 int n) {
+  if (TaggedStackInterpreter) {
+    Label ok, long_ok;
+    // Use dst for scratch
+    assert_different_registers(base, scratch);
+    ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
+    if (t == frame::TagCategory2) {
+      cmp(scratch, G0);
+      brx(Assembler::equal, false, Assembler::pt, long_ok);
+      delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
+      stop("local long/double tag value bad");
+      bind(long_ok);
+      // compare second half tag
+      cmp(scratch, G0);
+    } else if (t == frame::TagValue) {
+      cmp(scratch, G0);
+    } else {
+      assert_different_registers(O3, base, scratch);
+      mov(t, O3);
+      cmp(scratch, O3);
+    }
+    brx(Assembler::equal, false, Assembler::pt, ok);
+    delayed()->nop();
+    // Also compare if the local value is zero, then the tag might
+    // not have been set coming from deopt.
+    ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
+    cmp(scratch, G0);
+    brx(Assembler::equal, false, Assembler::pt, ok);
+    delayed()->nop();
+    stop("Local tag value is bad");
+    bind(ok);
+  }
+}
+#endif // ASSERT
+
+void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  debug_only(verify_local_tag(frame::TagReference, index, dst));
+  ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
+  // Note:  index must hold the effective address--the iinc template uses it
+}
+
+// Just like access_local_ptr but the tag is a returnAddress
+void InterpreterMacroAssembler::access_local_returnAddress(Register index,
+                                                           Register dst ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  debug_only(verify_local_tag(frame::TagValue, index, dst));
+  ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
+}
+
+void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  debug_only(verify_local_tag(frame::TagValue, index, dst));
+  ld(index, Interpreter::value_offset_in_bytes(), dst);
+  // Note:  index must hold the effective address--the iinc template uses it
+}
+
+
+void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  debug_only(verify_local_tag(frame::TagCategory2, index, dst));
+  // First half stored at index n+1 (which grows down from Llocals[n])
+  load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
+}
+
+
+void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
+  ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
+}
+
+
+void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
+  load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
+}
+
+
+#ifdef ASSERT
+void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
+  Label L;
+
+  assert(Rindex != Rscratch, "Registers cannot be same");
+  assert(Rindex != Rscratch1, "Registers cannot be same");
+  assert(Rlimit != Rscratch, "Registers cannot be same");
+  assert(Rlimit != Rscratch1, "Registers cannot be same");
+  assert(Rscratch1 != Rscratch, "Registers cannot be same");
+
+  // untested("reg area corruption");
+  add(Rindex, offset, Rscratch);
+  add(Rlimit, 64 + STACK_BIAS, Rscratch1);
+  cmp(Rscratch, Rscratch1);
+  brx(Assembler::greaterEqualUnsigned, false, pn, L);
+  delayed()->nop();
+  stop("regsave area is being clobbered");
+  bind(L);
+}
+#endif // ASSERT
+
+void InterpreterMacroAssembler::tag_local(frame::Tag t,
+                                          Register base,
+                                          Register src,
+                                          int n) {
+  if (TaggedStackInterpreter) {
+    // have to store zero because local slots can be reused (rats!)
+    if (t == frame::TagValue) {
+      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
+    } else if (t == frame::TagCategory2) {
+      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
+      st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
+    } else {
+      // assert that we don't stomp the value in 'src'
+      // O3 is arbitrary because it's not used.
+      assert_different_registers(src, base, O3);
+      mov( t, O3);
+      st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
+    }
+  }
+}
+
+
+void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
+  tag_local(frame::TagValue, index, src);
+  st(src, index, Interpreter::value_offset_in_bytes());
+}
+
+void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
+                                                 Register tag ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  #ifdef ASSERT
+  check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
+  #endif
+  st_ptr(src, index, Interpreter::value_offset_in_bytes());
+  // Store tag register directly
+  if (TaggedStackInterpreter) {
+    st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
+  }
+}
+
+
+
+void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
+                                                 Register tag ) {
+  st_ptr(src,  Llocals, Interpreter::local_offset_in_bytes(n));
+  if (TaggedStackInterpreter) {
+    st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
+  }
+}
+
+void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  #ifdef ASSERT
+  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
+  #endif
+  tag_local(frame::TagCategory2, index, src);
+  store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
+}
+
+
+void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  #ifdef ASSERT
+  check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
+  #endif
+  tag_local(frame::TagValue, index, G1_scratch);
+  stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
+}
+
+
+void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
+  assert_not_delayed();
+  sll(index, Interpreter::logStackElementSize(), index);
+  sub(Llocals, index, index);
+  #ifdef ASSERT
+  check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
+  #endif
+  tag_local(frame::TagCategory2, index, G1_scratch);
+  store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
+}
+
+
+int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
+  const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
+  int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
+  return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
+}
+
+
+Address InterpreterMacroAssembler::top_most_monitor() {
+  return Address(FP, 0, top_most_monitor_byte_offset());
+}
+
+
+void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
+  add( Lesp,      wordSize,                                    Rdest );
+}
+
+#endif /* CC_INTERP */
+
+void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
+  assert(UseCompiler, "incrementing must be useful");
+#ifdef CC_INTERP
+  Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
+                            + InvocationCounter::counter_offset()));
+  Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
+                            + InvocationCounter::counter_offset()));
+#else
+  Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
+                            + InvocationCounter::counter_offset()));
+  Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
+                            + InvocationCounter::counter_offset()));
+#endif /* CC_INTERP */
+  int delta = InvocationCounter::count_increment;
+
+  // Load each counter in a register
+  ld( inv_counter, Rtmp );
+  ld( be_counter, Rtmp2 );
+
+  assert( is_simm13( delta ), " delta too large.");
+
+  // Add the delta to the invocation counter and store the result
+  add( Rtmp, delta, Rtmp );
+
+  // Mask the backedge counter
+  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
+
+  // Store value
+  st( Rtmp, inv_counter);
+
+  // Add invocation counter + backedge counter
+  add( Rtmp, Rtmp2, Rtmp);
+
+  // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
+}
+
+void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
+  assert(UseCompiler, "incrementing must be useful");
+#ifdef CC_INTERP
+  Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
+                            + InvocationCounter::counter_offset()));
+  Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
+                            +  InvocationCounter::counter_offset()));
+#else
+  Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
+                            + InvocationCounter::counter_offset()));
+  Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
+                            + InvocationCounter::counter_offset()));
+#endif /* CC_INTERP */
+  int delta = InvocationCounter::count_increment;
+  // Load each counter in a register
+  ld( be_counter, Rtmp );
+  ld( inv_counter, Rtmp2 );
+
+  // Add the delta to the backedge counter
+  add( Rtmp, delta, Rtmp );
+
+  // Mask the invocation counter, add to backedge counter
+  and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
+
+  // and store the result to memory
+  st( Rtmp, be_counter );
+
+  // Add backedge + invocation counter
+  add( Rtmp, Rtmp2, Rtmp );
+
+  // Note that this macro must leave backedge_count + invocation_count in Rtmp!
+}
+
+#ifndef CC_INTERP
+void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
+                                                             Register branch_bcp,
+                                                             Register Rtmp ) {
+  Label did_not_overflow;
+  Label overflow_with_error;
+  assert_different_registers(backedge_count, Rtmp, branch_bcp);
+  assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
+
+  Address limit(Rtmp, address(&InvocationCounter::InterpreterBackwardBranchLimit));
+  load_contents(limit, Rtmp);
+  cmp(backedge_count, Rtmp);
+  br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
+  delayed()->nop();
+
+  // When ProfileInterpreter is on, the backedge_count comes from the
+  // methodDataOop, which value does not get reset on the call to
+  // frequency_counter_overflow().  To avoid excessive calls to the overflow
+  // routine while the method is being compiled, add a second test to make sure
+  // the overflow function is called only once every overflow_frequency.
+  if (ProfileInterpreter) {
+    const int overflow_frequency = 1024;
+    andcc(backedge_count, overflow_frequency-1, Rtmp);
+    brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
+    delayed()->nop();
+  }
+
+  // overflow in loop, pass branch bytecode
+  set(6,Rtmp);
+  call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
+
+  // Was an OSR adapter generated?
+  // O0 = osr nmethod
+  tst(O0);
+  brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
+  delayed()->nop();
+
+  // Has the nmethod been invalidated already?
+  ld(O0, nmethod::entry_bci_offset(), O2);
+  cmp(O2, InvalidOSREntryBci);
+  br(Assembler::equal, false, Assembler::pn, overflow_with_error);
+  delayed()->nop();
+
+  // migrate the interpreter frame off of the stack
+
+  mov(G2_thread, L7);
+  // save nmethod
+  mov(O0, L6);
+  set_last_Java_frame(SP, noreg);
+  call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
+  reset_last_Java_frame();
+  mov(L7, G2_thread);
+
+  // move OSR nmethod to I1
+  mov(L6, I1);
+
+  // OSR buffer to I0
+  mov(O0, I0);
+
+  // remove the interpreter frame
+  restore(I5_savedSP, 0, SP);
+
+  // Jump to the osr code.
+  ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
+  jmp(O2, G0);
+  delayed()->nop();
+
+  bind(overflow_with_error);
+
+  bind(did_not_overflow);
+}
+
+
+
+void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
+  if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
+}
+
+
+// local helper function for the verify_oop_or_return_address macro
+static bool verify_return_address(methodOopDesc* m, int bci) {
+#ifndef PRODUCT
+  address pc = (address)(m->constMethod())
+             + in_bytes(constMethodOopDesc::codes_offset()) + bci;
+  // assume it is a valid return address if it is inside m and is preceded by a jsr
+  if (!m->contains(pc))                                          return false;
+  address jsr_pc;
+  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
+  if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
+  jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
+  if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
+#endif // PRODUCT
+  return false;
+}
+
+
+void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
+  if (!VerifyOops)  return;
+  // the VM documentation for the astore[_wide] bytecode allows
+  // the TOS to be not only an oop but also a return address
+  Label test;
+  Label skip;
+  // See if it is an address (in the current method):
+
+  mov(reg, Rtmp);
+  const int log2_bytecode_size_limit = 16;
+  srl(Rtmp, log2_bytecode_size_limit, Rtmp);
+  br_notnull( Rtmp, false, pt, test );
+  delayed()->nop();
+
+  // %%% should use call_VM_leaf here?
+  save_frame_and_mov(0, Lmethod, O0, reg, O1);
+  save_thread(L7_thread_cache);
+  call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
+  delayed()->nop();
+  restore_thread(L7_thread_cache);
+  br_notnull( O0, false, pt, skip );
+  delayed()->restore();
+
+  // Perform a more elaborate out-of-line call
+  // Not an address; verify it:
+  bind(test);
+  verify_oop(reg);
+  bind(skip);
+}
+
+
+void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
+  if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
+}
+#endif /* CC_INTERP */
+
+// Inline assembly for:
+//
+// if (thread is in interp_only_mode) {
+//   InterpreterRuntime::post_method_entry();
+// }
+// if (DTraceMethodProbes) {
+//   SharedRuntime::dtrace_method_entry(method, reciever);
+// }
+
+void InterpreterMacroAssembler::notify_method_entry() {
+
+  // C++ interpreter only uses this for native methods.
+
+  // Whenever JVMTI puts a thread in interp_only_mode, method
+  // entry/exit events are sent for that thread to track stack
+  // depth.  If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (JvmtiExport::can_post_interpreter_events()) {
+    Label L;
+    Register temp_reg = O5;
+
+    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
+
+    ld(interp_only, temp_reg);
+    tst(temp_reg);
+    br(zero, false, pt, L);
+    delayed()->nop();
+    call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
+    bind(L);
+  }
+
+  {
+    Register temp_reg = O5;
+    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
+    call_VM_leaf(noreg,
+      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
+      G2_thread, Lmethod);
+  }
+}
+
+
+// Inline assembly for:
+//
+// if (thread is in interp_only_mode) {
+//   // save result
+//   InterpreterRuntime::post_method_exit();
+//   // restore result
+// }
+// if (DTraceMethodProbes) {
+//   SharedRuntime::dtrace_method_exit(thread, method);
+// }
+//
+// Native methods have their result stored in d_tmp and l_tmp
+// Java methods have their result stored in the expression stack
+
+void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
+                                                   TosState state,
+                                                   NotifyMethodExitMode mode) {
+  // C++ interpreter only uses this for native methods.
+
+  // Whenever JVMTI puts a thread in interp_only_mode, method
+  // entry/exit events are sent for that thread to track stack
+  // depth.  If it is possible to enter interp_only_mode we add
+  // the code to check if the event should be sent.
+  if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
+    Label L;
+    Register temp_reg = O5;
+
+    const Address interp_only       (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
+
+    ld(interp_only, temp_reg);
+    tst(temp_reg);
+    br(zero, false, pt, L);
+    delayed()->nop();
+
+    // Note: frame::interpreter_frame_result has a dependency on how the
+    // method result is saved across the call to post_method_exit. For
+    // native methods it assumes the result registers are saved to
+    // l_scratch and d_scratch. If this changes then the interpreter_frame_result
+    // implementation will need to be updated too.
+
+    save_return_value(state, is_native_method);
+    call_VM(noreg,
+            CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
+    restore_return_value(state, is_native_method);
+    bind(L);
+  }
+
+  {
+    Register temp_reg = O5;
+    // Dtrace notification
+    SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
+    save_return_value(state, is_native_method);
+    call_VM_leaf(
+      noreg,
+      CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
+      G2_thread, Lmethod);
+    restore_return_value(state, is_native_method);
+  }
+}
+
+void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
+#ifdef CC_INTERP
+  // result potentially in O0/O1: save it across calls
+  stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
+#ifdef _LP64
+  stx(O0, STATE(_native_lresult));
+#else
+  std(O0, STATE(_native_lresult));
+#endif
+#else // CC_INTERP
+  if (is_native_call) {
+    stf(FloatRegisterImpl::D, F0, d_tmp);
+#ifdef _LP64
+    stx(O0, l_tmp);
+#else
+    std(O0, l_tmp);
+#endif
+  } else {
+    push(state);
+  }
+#endif // CC_INTERP
+}
+
+void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
+#ifdef CC_INTERP
+  ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
+#ifdef _LP64
+  ldx(STATE(_native_lresult), O0);
+#else
+  ldd(STATE(_native_lresult), O0);
+#endif
+#else // CC_INTERP
+  if (is_native_call) {
+    ldf(FloatRegisterImpl::D, d_tmp, F0);
+#ifdef _LP64
+    ldx(l_tmp, O0);
+#else
+    ldd(l_tmp, O0);
+#endif
+  } else {
+    pop(state);
+  }
+#endif // CC_INTERP
+}