jdk/src/java.base/share/classes/java/util/stream/DoublePipeline.java
changeset 25859 3317bb8137f4
parent 25526 d3cbdae6e9f9
child 29489 fe7624d92790
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.base/share/classes/java/util/stream/DoublePipeline.java	Sun Aug 17 15:54:13 2014 +0100
@@ -0,0 +1,641 @@
+/*
+ * Copyright (c) 2013, 2014, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package java.util.stream;
+
+import java.util.DoubleSummaryStatistics;
+import java.util.Objects;
+import java.util.OptionalDouble;
+import java.util.PrimitiveIterator;
+import java.util.Spliterator;
+import java.util.Spliterators;
+import java.util.function.BiConsumer;
+import java.util.function.BinaryOperator;
+import java.util.function.DoubleBinaryOperator;
+import java.util.function.DoubleConsumer;
+import java.util.function.DoubleFunction;
+import java.util.function.DoublePredicate;
+import java.util.function.DoubleToIntFunction;
+import java.util.function.DoubleToLongFunction;
+import java.util.function.DoubleUnaryOperator;
+import java.util.function.IntFunction;
+import java.util.function.ObjDoubleConsumer;
+import java.util.function.Supplier;
+
+/**
+ * Abstract base class for an intermediate pipeline stage or pipeline source
+ * stage implementing whose elements are of type {@code double}.
+ *
+ * @param <E_IN> type of elements in the upstream source
+ *
+ * @since 1.8
+ */
+abstract class DoublePipeline<E_IN>
+        extends AbstractPipeline<E_IN, Double, DoubleStream>
+        implements DoubleStream {
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Supplier<Spliterator>} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     * {@link StreamOpFlag}
+     */
+    DoublePipeline(Supplier<? extends Spliterator<Double>> source,
+                   int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for the head of a stream pipeline.
+     *
+     * @param source {@code Spliterator} describing the stream source
+     * @param sourceFlags the source flags for the stream source, described in
+     * {@link StreamOpFlag}
+     */
+    DoublePipeline(Spliterator<Double> source,
+                   int sourceFlags, boolean parallel) {
+        super(source, sourceFlags, parallel);
+    }
+
+    /**
+     * Constructor for appending an intermediate operation onto an existing
+     * pipeline.
+     *
+     * @param upstream the upstream element source.
+     * @param opFlags the operation flags
+     */
+    DoublePipeline(AbstractPipeline<?, E_IN, ?> upstream, int opFlags) {
+        super(upstream, opFlags);
+    }
+
+    /**
+     * Adapt a {@code Sink<Double> to a {@code DoubleConsumer}, ideally simply
+     * by casting.
+     */
+    private static DoubleConsumer adapt(Sink<Double> sink) {
+        if (sink instanceof DoubleConsumer) {
+            return (DoubleConsumer) sink;
+        } else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using DoubleStream.adapt(Sink<Double> s)");
+            return sink::accept;
+        }
+    }
+
+    /**
+     * Adapt a {@code Spliterator<Double>} to a {@code Spliterator.OfDouble}.
+     *
+     * @implNote
+     * The implementation attempts to cast to a Spliterator.OfDouble, and throws
+     * an exception if this cast is not possible.
+     */
+    private static Spliterator.OfDouble adapt(Spliterator<Double> s) {
+        if (s instanceof Spliterator.OfDouble) {
+            return (Spliterator.OfDouble) s;
+        } else {
+            if (Tripwire.ENABLED)
+                Tripwire.trip(AbstractPipeline.class,
+                              "using DoubleStream.adapt(Spliterator<Double> s)");
+            throw new UnsupportedOperationException("DoubleStream.adapt(Spliterator<Double> s)");
+        }
+    }
+
+
+    // Shape-specific methods
+
+    @Override
+    final StreamShape getOutputShape() {
+        return StreamShape.DOUBLE_VALUE;
+    }
+
+    @Override
+    final <P_IN> Node<Double> evaluateToNode(PipelineHelper<Double> helper,
+                                             Spliterator<P_IN> spliterator,
+                                             boolean flattenTree,
+                                             IntFunction<Double[]> generator) {
+        return Nodes.collectDouble(helper, spliterator, flattenTree);
+    }
+
+    @Override
+    final <P_IN> Spliterator<Double> wrap(PipelineHelper<Double> ph,
+                                          Supplier<Spliterator<P_IN>> supplier,
+                                          boolean isParallel) {
+        return new StreamSpliterators.DoubleWrappingSpliterator<>(ph, supplier, isParallel);
+    }
+
+    @Override
+    @SuppressWarnings("unchecked")
+    final Spliterator.OfDouble lazySpliterator(Supplier<? extends Spliterator<Double>> supplier) {
+        return new StreamSpliterators.DelegatingSpliterator.OfDouble((Supplier<Spliterator.OfDouble>) supplier);
+    }
+
+    @Override
+    final void forEachWithCancel(Spliterator<Double> spliterator, Sink<Double> sink) {
+        Spliterator.OfDouble spl = adapt(spliterator);
+        DoubleConsumer adaptedSink = adapt(sink);
+        do { } while (!sink.cancellationRequested() && spl.tryAdvance(adaptedSink));
+    }
+
+    @Override
+    final  Node.Builder<Double> makeNodeBuilder(long exactSizeIfKnown, IntFunction<Double[]> generator) {
+        return Nodes.doubleBuilder(exactSizeIfKnown);
+    }
+
+
+    // DoubleStream
+
+    @Override
+    public final PrimitiveIterator.OfDouble iterator() {
+        return Spliterators.iterator(spliterator());
+    }
+
+    @Override
+    public final Spliterator.OfDouble spliterator() {
+        return adapt(super.spliterator());
+    }
+
+    // Stateless intermediate ops from DoubleStream
+
+    @Override
+    public final Stream<Double> boxed() {
+        return mapToObj(Double::valueOf);
+    }
+
+    @Override
+    public final DoubleStream map(DoubleUnaryOperator mapper) {
+        Objects.requireNonNull(mapper);
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                       StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble<Double>(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.applyAsDouble(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final <U> Stream<U> mapToObj(DoubleFunction<? extends U> mapper) {
+        Objects.requireNonNull(mapper);
+        return new ReferencePipeline.StatelessOp<Double, U>(this, StreamShape.DOUBLE_VALUE,
+                                                            StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<U> sink) {
+                return new Sink.ChainedDouble<U>(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.apply(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final IntStream mapToInt(DoubleToIntFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new IntPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                                   StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Integer> sink) {
+                return new Sink.ChainedDouble<Integer>(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.applyAsInt(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final LongStream mapToLong(DoubleToLongFunction mapper) {
+        Objects.requireNonNull(mapper);
+        return new LongPipeline.StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                                    StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Long> sink) {
+                return new Sink.ChainedDouble<Long>(sink) {
+                    @Override
+                    public void accept(double t) {
+                        downstream.accept(mapper.applyAsLong(t));
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream flatMap(DoubleFunction<? extends DoubleStream> mapper) {
+        Objects.requireNonNull(mapper);
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                        StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble<Double>(sink) {
+                    @Override
+                    public void begin(long size) {
+                        downstream.begin(-1);
+                    }
+
+                    @Override
+                    public void accept(double t) {
+                        try (DoubleStream result = mapper.apply(t)) {
+                            // We can do better that this too; optimize for depth=0 case and just grab spliterator and forEach it
+                            if (result != null)
+                                result.sequential().forEach(i -> downstream.accept(i));
+                        }
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public DoubleStream unordered() {
+        if (!isOrdered())
+            return this;
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE, StreamOpFlag.NOT_ORDERED) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return sink;
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream filter(DoublePredicate predicate) {
+        Objects.requireNonNull(predicate);
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                       StreamOpFlag.NOT_SIZED) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble<Double>(sink) {
+                    @Override
+                    public void begin(long size) {
+                        downstream.begin(-1);
+                    }
+
+                    @Override
+                    public void accept(double t) {
+                        if (predicate.test(t))
+                            downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    @Override
+    public final DoubleStream peek(DoubleConsumer action) {
+        Objects.requireNonNull(action);
+        return new StatelessOp<Double>(this, StreamShape.DOUBLE_VALUE,
+                                       0) {
+            @Override
+            Sink<Double> opWrapSink(int flags, Sink<Double> sink) {
+                return new Sink.ChainedDouble<Double>(sink) {
+                    @Override
+                    public void accept(double t) {
+                        action.accept(t);
+                        downstream.accept(t);
+                    }
+                };
+            }
+        };
+    }
+
+    // Stateful intermediate ops from DoubleStream
+
+    @Override
+    public final DoubleStream limit(long maxSize) {
+        if (maxSize < 0)
+            throw new IllegalArgumentException(Long.toString(maxSize));
+        return SliceOps.makeDouble(this, (long) 0, maxSize);
+    }
+
+    @Override
+    public final DoubleStream skip(long n) {
+        if (n < 0)
+            throw new IllegalArgumentException(Long.toString(n));
+        if (n == 0)
+            return this;
+        else {
+            long limit = -1;
+            return SliceOps.makeDouble(this, n, limit);
+        }
+    }
+
+    @Override
+    public final DoubleStream sorted() {
+        return SortedOps.makeDouble(this);
+    }
+
+    @Override
+    public final DoubleStream distinct() {
+        // While functional and quick to implement, this approach is not very efficient.
+        // An efficient version requires a double-specific map/set implementation.
+        return boxed().distinct().mapToDouble(i -> (double) i);
+    }
+
+    // Terminal ops from DoubleStream
+
+    @Override
+    public void forEach(DoubleConsumer consumer) {
+        evaluate(ForEachOps.makeDouble(consumer, false));
+    }
+
+    @Override
+    public void forEachOrdered(DoubleConsumer consumer) {
+        evaluate(ForEachOps.makeDouble(consumer, true));
+    }
+
+    @Override
+    public final double sum() {
+        /*
+         * In the arrays allocated for the collect operation, index 0
+         * holds the high-order bits of the running sum, index 1 holds
+         * the low-order bits of the sum computed via compensated
+         * summation, and index 2 holds the simple sum used to compute
+         * the proper result if the stream contains infinite values of
+         * the same sign.
+         */
+        double[] summation = collect(() -> new double[3],
+                               (ll, d) -> {
+                                   Collectors.sumWithCompensation(ll, d);
+                                   ll[2] += d;
+                               },
+                               (ll, rr) -> {
+                                   Collectors.sumWithCompensation(ll, rr[0]);
+                                   Collectors.sumWithCompensation(ll, rr[1]);
+                                   ll[2] += rr[2];
+                               });
+
+        return Collectors.computeFinalSum(summation);
+    }
+
+    @Override
+    public final OptionalDouble min() {
+        return reduce(Math::min);
+    }
+
+    @Override
+    public final OptionalDouble max() {
+        return reduce(Math::max);
+    }
+
+    /**
+     * {@inheritDoc}
+     *
+     * @implNote The {@code double} format can represent all
+     * consecutive integers in the range -2<sup>53</sup> to
+     * 2<sup>53</sup>. If the pipeline has more than 2<sup>53</sup>
+     * values, the divisor in the average computation will saturate at
+     * 2<sup>53</sup>, leading to additional numerical errors.
+     */
+    @Override
+    public final OptionalDouble average() {
+        /*
+         * In the arrays allocated for the collect operation, index 0
+         * holds the high-order bits of the running sum, index 1 holds
+         * the low-order bits of the sum computed via compensated
+         * summation, index 2 holds the number of values seen, index 3
+         * holds the simple sum.
+         */
+        double[] avg = collect(() -> new double[4],
+                               (ll, d) -> {
+                                   ll[2]++;
+                                   Collectors.sumWithCompensation(ll, d);
+                                   ll[3] += d;
+                               },
+                               (ll, rr) -> {
+                                   Collectors.sumWithCompensation(ll, rr[0]);
+                                   Collectors.sumWithCompensation(ll, rr[1]);
+                                   ll[2] += rr[2];
+                                   ll[3] += rr[3];
+                               });
+        return avg[2] > 0
+            ? OptionalDouble.of(Collectors.computeFinalSum(avg) / avg[2])
+            : OptionalDouble.empty();
+    }
+
+    @Override
+    public final long count() {
+        return mapToLong(e -> 1L).sum();
+    }
+
+    @Override
+    public final DoubleSummaryStatistics summaryStatistics() {
+        return collect(DoubleSummaryStatistics::new, DoubleSummaryStatistics::accept,
+                       DoubleSummaryStatistics::combine);
+    }
+
+    @Override
+    public final double reduce(double identity, DoubleBinaryOperator op) {
+        return evaluate(ReduceOps.makeDouble(identity, op));
+    }
+
+    @Override
+    public final OptionalDouble reduce(DoubleBinaryOperator op) {
+        return evaluate(ReduceOps.makeDouble(op));
+    }
+
+    @Override
+    public final <R> R collect(Supplier<R> supplier,
+                               ObjDoubleConsumer<R> accumulator,
+                               BiConsumer<R, R> combiner) {
+        Objects.requireNonNull(combiner);
+        BinaryOperator<R> operator = (left, right) -> {
+            combiner.accept(left, right);
+            return left;
+        };
+        return evaluate(ReduceOps.makeDouble(supplier, accumulator, operator));
+    }
+
+    @Override
+    public final boolean anyMatch(DoublePredicate predicate) {
+        return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ANY));
+    }
+
+    @Override
+    public final boolean allMatch(DoublePredicate predicate) {
+        return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.ALL));
+    }
+
+    @Override
+    public final boolean noneMatch(DoublePredicate predicate) {
+        return evaluate(MatchOps.makeDouble(predicate, MatchOps.MatchKind.NONE));
+    }
+
+    @Override
+    public final OptionalDouble findFirst() {
+        return evaluate(FindOps.makeDouble(true));
+    }
+
+    @Override
+    public final OptionalDouble findAny() {
+        return evaluate(FindOps.makeDouble(false));
+    }
+
+    @Override
+    public final double[] toArray() {
+        return Nodes.flattenDouble((Node.OfDouble) evaluateToArrayNode(Double[]::new))
+                        .asPrimitiveArray();
+    }
+
+    //
+
+    /**
+     * Source stage of a DoubleStream
+     *
+     * @param <E_IN> type of elements in the upstream source
+     */
+    static class Head<E_IN> extends DoublePipeline<E_IN> {
+        /**
+         * Constructor for the source stage of a DoubleStream.
+         *
+         * @param source {@code Supplier<Spliterator>} describing the stream
+         *               source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Supplier<? extends Spliterator<Double>> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        /**
+         * Constructor for the source stage of a DoubleStream.
+         *
+         * @param source {@code Spliterator} describing the stream source
+         * @param sourceFlags the source flags for the stream source, described
+         *                    in {@link StreamOpFlag}
+         * @param parallel {@code true} if the pipeline is parallel
+         */
+        Head(Spliterator<Double> source,
+             int sourceFlags, boolean parallel) {
+            super(source, sourceFlags, parallel);
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            throw new UnsupportedOperationException();
+        }
+
+        @Override
+        final Sink<E_IN> opWrapSink(int flags, Sink<Double> sink) {
+            throw new UnsupportedOperationException();
+        }
+
+        // Optimized sequential terminal operations for the head of the pipeline
+
+        @Override
+        public void forEach(DoubleConsumer consumer) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(consumer);
+            }
+            else {
+                super.forEach(consumer);
+            }
+        }
+
+        @Override
+        public void forEachOrdered(DoubleConsumer consumer) {
+            if (!isParallel()) {
+                adapt(sourceStageSpliterator()).forEachRemaining(consumer);
+            }
+            else {
+                super.forEachOrdered(consumer);
+            }
+        }
+
+    }
+
+    /**
+     * Base class for a stateless intermediate stage of a DoubleStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatelessOp<E_IN> extends DoublePipeline<E_IN> {
+        /**
+         * Construct a new DoubleStream by appending a stateless intermediate
+         * operation to an existing stream.
+         *
+         * @param upstream the upstream pipeline stage
+         * @param inputShape the stream shape for the upstream pipeline stage
+         * @param opFlags operation flags for the new stage
+         */
+        StatelessOp(AbstractPipeline<?, E_IN, ?> upstream,
+                    StreamShape inputShape,
+                    int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return false;
+        }
+    }
+
+    /**
+     * Base class for a stateful intermediate stage of a DoubleStream.
+     *
+     * @param <E_IN> type of elements in the upstream source
+     * @since 1.8
+     */
+    abstract static class StatefulOp<E_IN> extends DoublePipeline<E_IN> {
+        /**
+         * Construct a new DoubleStream by appending a stateful intermediate
+         * operation to an existing stream.
+         *
+         * @param upstream the upstream pipeline stage
+         * @param inputShape the stream shape for the upstream pipeline stage
+         * @param opFlags operation flags for the new stage
+         */
+        StatefulOp(AbstractPipeline<?, E_IN, ?> upstream,
+                   StreamShape inputShape,
+                   int opFlags) {
+            super(upstream, opFlags);
+            assert upstream.getOutputShape() == inputShape;
+        }
+
+        @Override
+        final boolean opIsStateful() {
+            return true;
+        }
+
+        @Override
+        abstract <P_IN> Node<Double> opEvaluateParallel(PipelineHelper<Double> helper,
+                                                        Spliterator<P_IN> spliterator,
+                                                        IntFunction<Double[]> generator);
+    }
+}