jdk/src/java.base/share/classes/java/util/IdentityHashMap.java
changeset 25859 3317bb8137f4
parent 25413 bb827716b9b9
child 32108 aa5490a167ee
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.base/share/classes/java/util/IdentityHashMap.java	Sun Aug 17 15:54:13 2014 +0100
@@ -0,0 +1,1595 @@
+/*
+ * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+
+package java.util;
+
+import java.lang.reflect.Array;
+import java.util.function.BiConsumer;
+import java.util.function.BiFunction;
+import java.util.function.Consumer;
+
+/**
+ * This class implements the <tt>Map</tt> interface with a hash table, using
+ * reference-equality in place of object-equality when comparing keys (and
+ * values).  In other words, in an <tt>IdentityHashMap</tt>, two keys
+ * <tt>k1</tt> and <tt>k2</tt> are considered equal if and only if
+ * <tt>(k1==k2)</tt>.  (In normal <tt>Map</tt> implementations (like
+ * <tt>HashMap</tt>) two keys <tt>k1</tt> and <tt>k2</tt> are considered equal
+ * if and only if <tt>(k1==null ? k2==null : k1.equals(k2))</tt>.)
+ *
+ * <p><b>This class is <i>not</i> a general-purpose <tt>Map</tt>
+ * implementation!  While this class implements the <tt>Map</tt> interface, it
+ * intentionally violates <tt>Map's</tt> general contract, which mandates the
+ * use of the <tt>equals</tt> method when comparing objects.  This class is
+ * designed for use only in the rare cases wherein reference-equality
+ * semantics are required.</b>
+ *
+ * <p>A typical use of this class is <i>topology-preserving object graph
+ * transformations</i>, such as serialization or deep-copying.  To perform such
+ * a transformation, a program must maintain a "node table" that keeps track
+ * of all the object references that have already been processed.  The node
+ * table must not equate distinct objects even if they happen to be equal.
+ * Another typical use of this class is to maintain <i>proxy objects</i>.  For
+ * example, a debugging facility might wish to maintain a proxy object for
+ * each object in the program being debugged.
+ *
+ * <p>This class provides all of the optional map operations, and permits
+ * <tt>null</tt> values and the <tt>null</tt> key.  This class makes no
+ * guarantees as to the order of the map; in particular, it does not guarantee
+ * that the order will remain constant over time.
+ *
+ * <p>This class provides constant-time performance for the basic
+ * operations (<tt>get</tt> and <tt>put</tt>), assuming the system
+ * identity hash function ({@link System#identityHashCode(Object)})
+ * disperses elements properly among the buckets.
+ *
+ * <p>This class has one tuning parameter (which affects performance but not
+ * semantics): <i>expected maximum size</i>.  This parameter is the maximum
+ * number of key-value mappings that the map is expected to hold.  Internally,
+ * this parameter is used to determine the number of buckets initially
+ * comprising the hash table.  The precise relationship between the expected
+ * maximum size and the number of buckets is unspecified.
+ *
+ * <p>If the size of the map (the number of key-value mappings) sufficiently
+ * exceeds the expected maximum size, the number of buckets is increased.
+ * Increasing the number of buckets ("rehashing") may be fairly expensive, so
+ * it pays to create identity hash maps with a sufficiently large expected
+ * maximum size.  On the other hand, iteration over collection views requires
+ * time proportional to the number of buckets in the hash table, so it
+ * pays not to set the expected maximum size too high if you are especially
+ * concerned with iteration performance or memory usage.
+ *
+ * <p><strong>Note that this implementation is not synchronized.</strong>
+ * If multiple threads access an identity hash map concurrently, and at
+ * least one of the threads modifies the map structurally, it <i>must</i>
+ * be synchronized externally.  (A structural modification is any operation
+ * that adds or deletes one or more mappings; merely changing the value
+ * associated with a key that an instance already contains is not a
+ * structural modification.)  This is typically accomplished by
+ * synchronizing on some object that naturally encapsulates the map.
+ *
+ * If no such object exists, the map should be "wrapped" using the
+ * {@link Collections#synchronizedMap Collections.synchronizedMap}
+ * method.  This is best done at creation time, to prevent accidental
+ * unsynchronized access to the map:<pre>
+ *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
+ *
+ * <p>The iterators returned by the <tt>iterator</tt> method of the
+ * collections returned by all of this class's "collection view
+ * methods" are <i>fail-fast</i>: if the map is structurally modified
+ * at any time after the iterator is created, in any way except
+ * through the iterator's own <tt>remove</tt> method, the iterator
+ * will throw a {@link ConcurrentModificationException}.  Thus, in the
+ * face of concurrent modification, the iterator fails quickly and
+ * cleanly, rather than risking arbitrary, non-deterministic behavior
+ * at an undetermined time in the future.
+ *
+ * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
+ * as it is, generally speaking, impossible to make any hard guarantees in the
+ * presence of unsynchronized concurrent modification.  Fail-fast iterators
+ * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
+ * Therefore, it would be wrong to write a program that depended on this
+ * exception for its correctness: <i>fail-fast iterators should be used only
+ * to detect bugs.</i>
+ *
+ * <p>Implementation note: This is a simple <i>linear-probe</i> hash table,
+ * as described for example in texts by Sedgewick and Knuth.  The array
+ * alternates holding keys and values.  (This has better locality for large
+ * tables than does using separate arrays.)  For many JRE implementations
+ * and operation mixes, this class will yield better performance than
+ * {@link HashMap} (which uses <i>chaining</i> rather than linear-probing).
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @see     System#identityHashCode(Object)
+ * @see     Object#hashCode()
+ * @see     Collection
+ * @see     Map
+ * @see     HashMap
+ * @see     TreeMap
+ * @author  Doug Lea and Josh Bloch
+ * @since   1.4
+ */
+
+public class IdentityHashMap<K,V>
+    extends AbstractMap<K,V>
+    implements Map<K,V>, java.io.Serializable, Cloneable
+{
+    /**
+     * The initial capacity used by the no-args constructor.
+     * MUST be a power of two.  The value 32 corresponds to the
+     * (specified) expected maximum size of 21, given a load factor
+     * of 2/3.
+     */
+    private static final int DEFAULT_CAPACITY = 32;
+
+    /**
+     * The minimum capacity, used if a lower value is implicitly specified
+     * by either of the constructors with arguments.  The value 4 corresponds
+     * to an expected maximum size of 2, given a load factor of 2/3.
+     * MUST be a power of two.
+     */
+    private static final int MINIMUM_CAPACITY = 4;
+
+    /**
+     * The maximum capacity, used if a higher value is implicitly specified
+     * by either of the constructors with arguments.
+     * MUST be a power of two <= 1<<29.
+     *
+     * In fact, the map can hold no more than MAXIMUM_CAPACITY-1 items
+     * because it has to have at least one slot with the key == null
+     * in order to avoid infinite loops in get(), put(), remove()
+     */
+    private static final int MAXIMUM_CAPACITY = 1 << 29;
+
+    /**
+     * The table, resized as necessary. Length MUST always be a power of two.
+     */
+    transient Object[] table; // non-private to simplify nested class access
+
+    /**
+     * The number of key-value mappings contained in this identity hash map.
+     *
+     * @serial
+     */
+    int size;
+
+    /**
+     * The number of modifications, to support fast-fail iterators
+     */
+    transient int modCount;
+
+    /**
+     * Value representing null keys inside tables.
+     */
+    static final Object NULL_KEY = new Object();
+
+    /**
+     * Use NULL_KEY for key if it is null.
+     */
+    private static Object maskNull(Object key) {
+        return (key == null ? NULL_KEY : key);
+    }
+
+    /**
+     * Returns internal representation of null key back to caller as null.
+     */
+    static final Object unmaskNull(Object key) {
+        return (key == NULL_KEY ? null : key);
+    }
+
+    /**
+     * Constructs a new, empty identity hash map with a default expected
+     * maximum size (21).
+     */
+    public IdentityHashMap() {
+        init(DEFAULT_CAPACITY);
+    }
+
+    /**
+     * Constructs a new, empty map with the specified expected maximum size.
+     * Putting more than the expected number of key-value mappings into
+     * the map may cause the internal data structure to grow, which may be
+     * somewhat time-consuming.
+     *
+     * @param expectedMaxSize the expected maximum size of the map
+     * @throws IllegalArgumentException if <tt>expectedMaxSize</tt> is negative
+     */
+    public IdentityHashMap(int expectedMaxSize) {
+        if (expectedMaxSize < 0)
+            throw new IllegalArgumentException("expectedMaxSize is negative: "
+                                               + expectedMaxSize);
+        init(capacity(expectedMaxSize));
+    }
+
+    /**
+     * Returns the appropriate capacity for the given expected maximum size.
+     * Returns the smallest power of two between MINIMUM_CAPACITY and
+     * MAXIMUM_CAPACITY, inclusive, that is greater than (3 *
+     * expectedMaxSize)/2, if such a number exists.  Otherwise returns
+     * MAXIMUM_CAPACITY.
+     */
+    private static int capacity(int expectedMaxSize) {
+        // assert expectedMaxSize >= 0;
+        return
+            (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY :
+            (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY :
+            Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1));
+    }
+
+    /**
+     * Initializes object to be an empty map with the specified initial
+     * capacity, which is assumed to be a power of two between
+     * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
+     */
+    private void init(int initCapacity) {
+        // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
+        // assert initCapacity >= MINIMUM_CAPACITY;
+        // assert initCapacity <= MAXIMUM_CAPACITY;
+
+        table = new Object[2 * initCapacity];
+    }
+
+    /**
+     * Constructs a new identity hash map containing the keys-value mappings
+     * in the specified map.
+     *
+     * @param m the map whose mappings are to be placed into this map
+     * @throws NullPointerException if the specified map is null
+     */
+    public IdentityHashMap(Map<? extends K, ? extends V> m) {
+        // Allow for a bit of growth
+        this((int) ((1 + m.size()) * 1.1));
+        putAll(m);
+    }
+
+    /**
+     * Returns the number of key-value mappings in this identity hash map.
+     *
+     * @return the number of key-value mappings in this map
+     */
+    public int size() {
+        return size;
+    }
+
+    /**
+     * Returns <tt>true</tt> if this identity hash map contains no key-value
+     * mappings.
+     *
+     * @return <tt>true</tt> if this identity hash map contains no key-value
+     *         mappings
+     */
+    public boolean isEmpty() {
+        return size == 0;
+    }
+
+    /**
+     * Returns index for Object x.
+     */
+    private static int hash(Object x, int length) {
+        int h = System.identityHashCode(x);
+        // Multiply by -127, and left-shift to use least bit as part of hash
+        return ((h << 1) - (h << 8)) & (length - 1);
+    }
+
+    /**
+     * Circularly traverses table of size len.
+     */
+    private static int nextKeyIndex(int i, int len) {
+        return (i + 2 < len ? i + 2 : 0);
+    }
+
+    /**
+     * Returns the value to which the specified key is mapped,
+     * or {@code null} if this map contains no mapping for the key.
+     *
+     * <p>More formally, if this map contains a mapping from a key
+     * {@code k} to a value {@code v} such that {@code (key == k)},
+     * then this method returns {@code v}; otherwise it returns
+     * {@code null}.  (There can be at most one such mapping.)
+     *
+     * <p>A return value of {@code null} does not <i>necessarily</i>
+     * indicate that the map contains no mapping for the key; it's also
+     * possible that the map explicitly maps the key to {@code null}.
+     * The {@link #containsKey containsKey} operation may be used to
+     * distinguish these two cases.
+     *
+     * @see #put(Object, Object)
+     */
+    @SuppressWarnings("unchecked")
+    public V get(Object key) {
+        Object k = maskNull(key);
+        Object[] tab = table;
+        int len = tab.length;
+        int i = hash(k, len);
+        while (true) {
+            Object item = tab[i];
+            if (item == k)
+                return (V) tab[i + 1];
+            if (item == null)
+                return null;
+            i = nextKeyIndex(i, len);
+        }
+    }
+
+    /**
+     * Tests whether the specified object reference is a key in this identity
+     * hash map.
+     *
+     * @param   key   possible key
+     * @return  <code>true</code> if the specified object reference is a key
+     *          in this map
+     * @see     #containsValue(Object)
+     */
+    public boolean containsKey(Object key) {
+        Object k = maskNull(key);
+        Object[] tab = table;
+        int len = tab.length;
+        int i = hash(k, len);
+        while (true) {
+            Object item = tab[i];
+            if (item == k)
+                return true;
+            if (item == null)
+                return false;
+            i = nextKeyIndex(i, len);
+        }
+    }
+
+    /**
+     * Tests whether the specified object reference is a value in this identity
+     * hash map.
+     *
+     * @param value value whose presence in this map is to be tested
+     * @return <tt>true</tt> if this map maps one or more keys to the
+     *         specified object reference
+     * @see     #containsKey(Object)
+     */
+    public boolean containsValue(Object value) {
+        Object[] tab = table;
+        for (int i = 1; i < tab.length; i += 2)
+            if (tab[i] == value && tab[i - 1] != null)
+                return true;
+
+        return false;
+    }
+
+    /**
+     * Tests if the specified key-value mapping is in the map.
+     *
+     * @param   key   possible key
+     * @param   value possible value
+     * @return  <code>true</code> if and only if the specified key-value
+     *          mapping is in the map
+     */
+    private boolean containsMapping(Object key, Object value) {
+        Object k = maskNull(key);
+        Object[] tab = table;
+        int len = tab.length;
+        int i = hash(k, len);
+        while (true) {
+            Object item = tab[i];
+            if (item == k)
+                return tab[i + 1] == value;
+            if (item == null)
+                return false;
+            i = nextKeyIndex(i, len);
+        }
+    }
+
+    /**
+     * Associates the specified value with the specified key in this identity
+     * hash map.  If the map previously contained a mapping for the key, the
+     * old value is replaced.
+     *
+     * @param key the key with which the specified value is to be associated
+     * @param value the value to be associated with the specified key
+     * @return the previous value associated with <tt>key</tt>, or
+     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
+     *         (A <tt>null</tt> return can also indicate that the map
+     *         previously associated <tt>null</tt> with <tt>key</tt>.)
+     * @see     Object#equals(Object)
+     * @see     #get(Object)
+     * @see     #containsKey(Object)
+     */
+    public V put(K key, V value) {
+        final Object k = maskNull(key);
+
+        retryAfterResize: for (;;) {
+            final Object[] tab = table;
+            final int len = tab.length;
+            int i = hash(k, len);
+
+            for (Object item; (item = tab[i]) != null;
+                 i = nextKeyIndex(i, len)) {
+                if (item == k) {
+                    @SuppressWarnings("unchecked")
+                        V oldValue = (V) tab[i + 1];
+                    tab[i + 1] = value;
+                    return oldValue;
+                }
+            }
+
+            final int s = size + 1;
+            // Use optimized form of 3 * s.
+            // Next capacity is len, 2 * current capacity.
+            if (s + (s << 1) > len && resize(len))
+                continue retryAfterResize;
+
+            modCount++;
+            tab[i] = k;
+            tab[i + 1] = value;
+            size = s;
+            return null;
+        }
+    }
+
+    /**
+     * Resizes the table if necessary to hold given capacity.
+     *
+     * @param newCapacity the new capacity, must be a power of two.
+     * @return whether a resize did in fact take place
+     */
+    private boolean resize(int newCapacity) {
+        // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
+        int newLength = newCapacity * 2;
+
+        Object[] oldTable = table;
+        int oldLength = oldTable.length;
+        if (oldLength == 2 * MAXIMUM_CAPACITY) { // can't expand any further
+            if (size == MAXIMUM_CAPACITY - 1)
+                throw new IllegalStateException("Capacity exhausted.");
+            return false;
+        }
+        if (oldLength >= newLength)
+            return false;
+
+        Object[] newTable = new Object[newLength];
+
+        for (int j = 0; j < oldLength; j += 2) {
+            Object key = oldTable[j];
+            if (key != null) {
+                Object value = oldTable[j+1];
+                oldTable[j] = null;
+                oldTable[j+1] = null;
+                int i = hash(key, newLength);
+                while (newTable[i] != null)
+                    i = nextKeyIndex(i, newLength);
+                newTable[i] = key;
+                newTable[i + 1] = value;
+            }
+        }
+        table = newTable;
+        return true;
+    }
+
+    /**
+     * Copies all of the mappings from the specified map to this map.
+     * These mappings will replace any mappings that this map had for
+     * any of the keys currently in the specified map.
+     *
+     * @param m mappings to be stored in this map
+     * @throws NullPointerException if the specified map is null
+     */
+    public void putAll(Map<? extends K, ? extends V> m) {
+        int n = m.size();
+        if (n == 0)
+            return;
+        if (n > size)
+            resize(capacity(n)); // conservatively pre-expand
+
+        for (Entry<? extends K, ? extends V> e : m.entrySet())
+            put(e.getKey(), e.getValue());
+    }
+
+    /**
+     * Removes the mapping for this key from this map if present.
+     *
+     * @param key key whose mapping is to be removed from the map
+     * @return the previous value associated with <tt>key</tt>, or
+     *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
+     *         (A <tt>null</tt> return can also indicate that the map
+     *         previously associated <tt>null</tt> with <tt>key</tt>.)
+     */
+    public V remove(Object key) {
+        Object k = maskNull(key);
+        Object[] tab = table;
+        int len = tab.length;
+        int i = hash(k, len);
+
+        while (true) {
+            Object item = tab[i];
+            if (item == k) {
+                modCount++;
+                size--;
+                @SuppressWarnings("unchecked")
+                    V oldValue = (V) tab[i + 1];
+                tab[i + 1] = null;
+                tab[i] = null;
+                closeDeletion(i);
+                return oldValue;
+            }
+            if (item == null)
+                return null;
+            i = nextKeyIndex(i, len);
+        }
+    }
+
+    /**
+     * Removes the specified key-value mapping from the map if it is present.
+     *
+     * @param   key   possible key
+     * @param   value possible value
+     * @return  <code>true</code> if and only if the specified key-value
+     *          mapping was in the map
+     */
+    private boolean removeMapping(Object key, Object value) {
+        Object k = maskNull(key);
+        Object[] tab = table;
+        int len = tab.length;
+        int i = hash(k, len);
+
+        while (true) {
+            Object item = tab[i];
+            if (item == k) {
+                if (tab[i + 1] != value)
+                    return false;
+                modCount++;
+                size--;
+                tab[i] = null;
+                tab[i + 1] = null;
+                closeDeletion(i);
+                return true;
+            }
+            if (item == null)
+                return false;
+            i = nextKeyIndex(i, len);
+        }
+    }
+
+    /**
+     * Rehash all possibly-colliding entries following a
+     * deletion. This preserves the linear-probe
+     * collision properties required by get, put, etc.
+     *
+     * @param d the index of a newly empty deleted slot
+     */
+    private void closeDeletion(int d) {
+        // Adapted from Knuth Section 6.4 Algorithm R
+        Object[] tab = table;
+        int len = tab.length;
+
+        // Look for items to swap into newly vacated slot
+        // starting at index immediately following deletion,
+        // and continuing until a null slot is seen, indicating
+        // the end of a run of possibly-colliding keys.
+        Object item;
+        for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
+             i = nextKeyIndex(i, len) ) {
+            // The following test triggers if the item at slot i (which
+            // hashes to be at slot r) should take the spot vacated by d.
+            // If so, we swap it in, and then continue with d now at the
+            // newly vacated i.  This process will terminate when we hit
+            // the null slot at the end of this run.
+            // The test is messy because we are using a circular table.
+            int r = hash(item, len);
+            if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
+                tab[d] = item;
+                tab[d + 1] = tab[i + 1];
+                tab[i] = null;
+                tab[i + 1] = null;
+                d = i;
+            }
+        }
+    }
+
+    /**
+     * Removes all of the mappings from this map.
+     * The map will be empty after this call returns.
+     */
+    public void clear() {
+        modCount++;
+        Object[] tab = table;
+        for (int i = 0; i < tab.length; i++)
+            tab[i] = null;
+        size = 0;
+    }
+
+    /**
+     * Compares the specified object with this map for equality.  Returns
+     * <tt>true</tt> if the given object is also a map and the two maps
+     * represent identical object-reference mappings.  More formally, this
+     * map is equal to another map <tt>m</tt> if and only if
+     * <tt>this.entrySet().equals(m.entrySet())</tt>.
+     *
+     * <p><b>Owing to the reference-equality-based semantics of this map it is
+     * possible that the symmetry and transitivity requirements of the
+     * <tt>Object.equals</tt> contract may be violated if this map is compared
+     * to a normal map.  However, the <tt>Object.equals</tt> contract is
+     * guaranteed to hold among <tt>IdentityHashMap</tt> instances.</b>
+     *
+     * @param  o object to be compared for equality with this map
+     * @return <tt>true</tt> if the specified object is equal to this map
+     * @see Object#equals(Object)
+     */
+    public boolean equals(Object o) {
+        if (o == this) {
+            return true;
+        } else if (o instanceof IdentityHashMap) {
+            IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) o;
+            if (m.size() != size)
+                return false;
+
+            Object[] tab = m.table;
+            for (int i = 0; i < tab.length; i+=2) {
+                Object k = tab[i];
+                if (k != null && !containsMapping(k, tab[i + 1]))
+                    return false;
+            }
+            return true;
+        } else if (o instanceof Map) {
+            Map<?,?> m = (Map<?,?>)o;
+            return entrySet().equals(m.entrySet());
+        } else {
+            return false;  // o is not a Map
+        }
+    }
+
+    /**
+     * Returns the hash code value for this map.  The hash code of a map is
+     * defined to be the sum of the hash codes of each entry in the map's
+     * <tt>entrySet()</tt> view.  This ensures that <tt>m1.equals(m2)</tt>
+     * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two
+     * <tt>IdentityHashMap</tt> instances <tt>m1</tt> and <tt>m2</tt>, as
+     * required by the general contract of {@link Object#hashCode}.
+     *
+     * <p><b>Owing to the reference-equality-based semantics of the
+     * <tt>Map.Entry</tt> instances in the set returned by this map's
+     * <tt>entrySet</tt> method, it is possible that the contractual
+     * requirement of <tt>Object.hashCode</tt> mentioned in the previous
+     * paragraph will be violated if one of the two objects being compared is
+     * an <tt>IdentityHashMap</tt> instance and the other is a normal map.</b>
+     *
+     * @return the hash code value for this map
+     * @see Object#equals(Object)
+     * @see #equals(Object)
+     */
+    public int hashCode() {
+        int result = 0;
+        Object[] tab = table;
+        for (int i = 0; i < tab.length; i +=2) {
+            Object key = tab[i];
+            if (key != null) {
+                Object k = unmaskNull(key);
+                result += System.identityHashCode(k) ^
+                          System.identityHashCode(tab[i + 1]);
+            }
+        }
+        return result;
+    }
+
+    /**
+     * Returns a shallow copy of this identity hash map: the keys and values
+     * themselves are not cloned.
+     *
+     * @return a shallow copy of this map
+     */
+    public Object clone() {
+        try {
+            IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) super.clone();
+            m.entrySet = null;
+            m.table = table.clone();
+            return m;
+        } catch (CloneNotSupportedException e) {
+            throw new InternalError(e);
+        }
+    }
+
+    private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
+        int index = (size != 0 ? 0 : table.length); // current slot.
+        int expectedModCount = modCount; // to support fast-fail
+        int lastReturnedIndex = -1;      // to allow remove()
+        boolean indexValid; // To avoid unnecessary next computation
+        Object[] traversalTable = table; // reference to main table or copy
+
+        public boolean hasNext() {
+            Object[] tab = traversalTable;
+            for (int i = index; i < tab.length; i+=2) {
+                Object key = tab[i];
+                if (key != null) {
+                    index = i;
+                    return indexValid = true;
+                }
+            }
+            index = tab.length;
+            return false;
+        }
+
+        protected int nextIndex() {
+            if (modCount != expectedModCount)
+                throw new ConcurrentModificationException();
+            if (!indexValid && !hasNext())
+                throw new NoSuchElementException();
+
+            indexValid = false;
+            lastReturnedIndex = index;
+            index += 2;
+            return lastReturnedIndex;
+        }
+
+        public void remove() {
+            if (lastReturnedIndex == -1)
+                throw new IllegalStateException();
+            if (modCount != expectedModCount)
+                throw new ConcurrentModificationException();
+
+            expectedModCount = ++modCount;
+            int deletedSlot = lastReturnedIndex;
+            lastReturnedIndex = -1;
+            // back up index to revisit new contents after deletion
+            index = deletedSlot;
+            indexValid = false;
+
+            // Removal code proceeds as in closeDeletion except that
+            // it must catch the rare case where an element already
+            // seen is swapped into a vacant slot that will be later
+            // traversed by this iterator. We cannot allow future
+            // next() calls to return it again.  The likelihood of
+            // this occurring under 2/3 load factor is very slim, but
+            // when it does happen, we must make a copy of the rest of
+            // the table to use for the rest of the traversal. Since
+            // this can only happen when we are near the end of the table,
+            // even in these rare cases, this is not very expensive in
+            // time or space.
+
+            Object[] tab = traversalTable;
+            int len = tab.length;
+
+            int d = deletedSlot;
+            Object key = tab[d];
+            tab[d] = null;        // vacate the slot
+            tab[d + 1] = null;
+
+            // If traversing a copy, remove in real table.
+            // We can skip gap-closure on copy.
+            if (tab != IdentityHashMap.this.table) {
+                IdentityHashMap.this.remove(key);
+                expectedModCount = modCount;
+                return;
+            }
+
+            size--;
+
+            Object item;
+            for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
+                 i = nextKeyIndex(i, len)) {
+                int r = hash(item, len);
+                // See closeDeletion for explanation of this conditional
+                if ((i < r && (r <= d || d <= i)) ||
+                    (r <= d && d <= i)) {
+
+                    // If we are about to swap an already-seen element
+                    // into a slot that may later be returned by next(),
+                    // then clone the rest of table for use in future
+                    // next() calls. It is OK that our copy will have
+                    // a gap in the "wrong" place, since it will never
+                    // be used for searching anyway.
+
+                    if (i < deletedSlot && d >= deletedSlot &&
+                        traversalTable == IdentityHashMap.this.table) {
+                        int remaining = len - deletedSlot;
+                        Object[] newTable = new Object[remaining];
+                        System.arraycopy(tab, deletedSlot,
+                                         newTable, 0, remaining);
+                        traversalTable = newTable;
+                        index = 0;
+                    }
+
+                    tab[d] = item;
+                    tab[d + 1] = tab[i + 1];
+                    tab[i] = null;
+                    tab[i + 1] = null;
+                    d = i;
+                }
+            }
+        }
+    }
+
+    private class KeyIterator extends IdentityHashMapIterator<K> {
+        @SuppressWarnings("unchecked")
+        public K next() {
+            return (K) unmaskNull(traversalTable[nextIndex()]);
+        }
+    }
+
+    private class ValueIterator extends IdentityHashMapIterator<V> {
+        @SuppressWarnings("unchecked")
+        public V next() {
+            return (V) traversalTable[nextIndex() + 1];
+        }
+    }
+
+    private class EntryIterator
+        extends IdentityHashMapIterator<Map.Entry<K,V>>
+    {
+        private Entry lastReturnedEntry;
+
+        public Map.Entry<K,V> next() {
+            lastReturnedEntry = new Entry(nextIndex());
+            return lastReturnedEntry;
+        }
+
+        public void remove() {
+            lastReturnedIndex =
+                ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
+            super.remove();
+            lastReturnedEntry.index = lastReturnedIndex;
+            lastReturnedEntry = null;
+        }
+
+        private class Entry implements Map.Entry<K,V> {
+            private int index;
+
+            private Entry(int index) {
+                this.index = index;
+            }
+
+            @SuppressWarnings("unchecked")
+            public K getKey() {
+                checkIndexForEntryUse();
+                return (K) unmaskNull(traversalTable[index]);
+            }
+
+            @SuppressWarnings("unchecked")
+            public V getValue() {
+                checkIndexForEntryUse();
+                return (V) traversalTable[index+1];
+            }
+
+            @SuppressWarnings("unchecked")
+            public V setValue(V value) {
+                checkIndexForEntryUse();
+                V oldValue = (V) traversalTable[index+1];
+                traversalTable[index+1] = value;
+                // if shadowing, force into main table
+                if (traversalTable != IdentityHashMap.this.table)
+                    put((K) traversalTable[index], value);
+                return oldValue;
+            }
+
+            public boolean equals(Object o) {
+                if (index < 0)
+                    return super.equals(o);
+
+                if (!(o instanceof Map.Entry))
+                    return false;
+                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
+                return (e.getKey() == unmaskNull(traversalTable[index]) &&
+                       e.getValue() == traversalTable[index+1]);
+            }
+
+            public int hashCode() {
+                if (lastReturnedIndex < 0)
+                    return super.hashCode();
+
+                return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
+                       System.identityHashCode(traversalTable[index+1]));
+            }
+
+            public String toString() {
+                if (index < 0)
+                    return super.toString();
+
+                return (unmaskNull(traversalTable[index]) + "="
+                        + traversalTable[index+1]);
+            }
+
+            private void checkIndexForEntryUse() {
+                if (index < 0)
+                    throw new IllegalStateException("Entry was removed");
+            }
+        }
+    }
+
+    // Views
+
+    /**
+     * This field is initialized to contain an instance of the entry set
+     * view the first time this view is requested.  The view is stateless,
+     * so there's no reason to create more than one.
+     */
+    private transient Set<Map.Entry<K,V>> entrySet;
+
+    /**
+     * Returns an identity-based set view of the keys contained in this map.
+     * The set is backed by the map, so changes to the map are reflected in
+     * the set, and vice-versa.  If the map is modified while an iteration
+     * over the set is in progress, the results of the iteration are
+     * undefined.  The set supports element removal, which removes the
+     * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
+     * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
+     * <tt>clear</tt> methods.  It does not support the <tt>add</tt> or
+     * <tt>addAll</tt> methods.
+     *
+     * <p><b>While the object returned by this method implements the
+     * <tt>Set</tt> interface, it does <i>not</i> obey <tt>Set's</tt> general
+     * contract.  Like its backing map, the set returned by this method
+     * defines element equality as reference-equality rather than
+     * object-equality.  This affects the behavior of its <tt>contains</tt>,
+     * <tt>remove</tt>, <tt>containsAll</tt>, <tt>equals</tt>, and
+     * <tt>hashCode</tt> methods.</b>
+     *
+     * <p><b>The <tt>equals</tt> method of the returned set returns <tt>true</tt>
+     * only if the specified object is a set containing exactly the same
+     * object references as the returned set.  The symmetry and transitivity
+     * requirements of the <tt>Object.equals</tt> contract may be violated if
+     * the set returned by this method is compared to a normal set.  However,
+     * the <tt>Object.equals</tt> contract is guaranteed to hold among sets
+     * returned by this method.</b>
+     *
+     * <p>The <tt>hashCode</tt> method of the returned set returns the sum of
+     * the <i>identity hashcodes</i> of the elements in the set, rather than
+     * the sum of their hashcodes.  This is mandated by the change in the
+     * semantics of the <tt>equals</tt> method, in order to enforce the
+     * general contract of the <tt>Object.hashCode</tt> method among sets
+     * returned by this method.
+     *
+     * @return an identity-based set view of the keys contained in this map
+     * @see Object#equals(Object)
+     * @see System#identityHashCode(Object)
+     */
+    public Set<K> keySet() {
+        Set<K> ks = keySet;
+        if (ks != null)
+            return ks;
+        else
+            return keySet = new KeySet();
+    }
+
+    private class KeySet extends AbstractSet<K> {
+        public Iterator<K> iterator() {
+            return new KeyIterator();
+        }
+        public int size() {
+            return size;
+        }
+        public boolean contains(Object o) {
+            return containsKey(o);
+        }
+        public boolean remove(Object o) {
+            int oldSize = size;
+            IdentityHashMap.this.remove(o);
+            return size != oldSize;
+        }
+        /*
+         * Must revert from AbstractSet's impl to AbstractCollection's, as
+         * the former contains an optimization that results in incorrect
+         * behavior when c is a smaller "normal" (non-identity-based) Set.
+         */
+        public boolean removeAll(Collection<?> c) {
+            Objects.requireNonNull(c);
+            boolean modified = false;
+            for (Iterator<K> i = iterator(); i.hasNext(); ) {
+                if (c.contains(i.next())) {
+                    i.remove();
+                    modified = true;
+                }
+            }
+            return modified;
+        }
+        public void clear() {
+            IdentityHashMap.this.clear();
+        }
+        public int hashCode() {
+            int result = 0;
+            for (K key : this)
+                result += System.identityHashCode(key);
+            return result;
+        }
+        public Object[] toArray() {
+            return toArray(new Object[0]);
+        }
+        @SuppressWarnings("unchecked")
+        public <T> T[] toArray(T[] a) {
+            int expectedModCount = modCount;
+            int size = size();
+            if (a.length < size)
+                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
+            Object[] tab = table;
+            int ti = 0;
+            for (int si = 0; si < tab.length; si += 2) {
+                Object key;
+                if ((key = tab[si]) != null) { // key present ?
+                    // more elements than expected -> concurrent modification from other thread
+                    if (ti >= size) {
+                        throw new ConcurrentModificationException();
+                    }
+                    a[ti++] = (T) unmaskNull(key); // unmask key
+                }
+            }
+            // fewer elements than expected or concurrent modification from other thread detected
+            if (ti < size || expectedModCount != modCount) {
+                throw new ConcurrentModificationException();
+            }
+            // final null marker as per spec
+            if (ti < a.length) {
+                a[ti] = null;
+            }
+            return a;
+        }
+
+        public Spliterator<K> spliterator() {
+            return new KeySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
+        }
+    }
+
+    /**
+     * Returns a {@link Collection} view of the values contained in this map.
+     * The collection is backed by the map, so changes to the map are
+     * reflected in the collection, and vice-versa.  If the map is
+     * modified while an iteration over the collection is in progress,
+     * the results of the iteration are undefined.  The collection
+     * supports element removal, which removes the corresponding
+     * mapping from the map, via the <tt>Iterator.remove</tt>,
+     * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
+     * <tt>retainAll</tt> and <tt>clear</tt> methods.  It does not
+     * support the <tt>add</tt> or <tt>addAll</tt> methods.
+     *
+     * <p><b>While the object returned by this method implements the
+     * <tt>Collection</tt> interface, it does <i>not</i> obey
+     * <tt>Collection's</tt> general contract.  Like its backing map,
+     * the collection returned by this method defines element equality as
+     * reference-equality rather than object-equality.  This affects the
+     * behavior of its <tt>contains</tt>, <tt>remove</tt> and
+     * <tt>containsAll</tt> methods.</b>
+     */
+    public Collection<V> values() {
+        Collection<V> vs = values;
+        if (vs != null)
+            return vs;
+        else
+            return values = new Values();
+    }
+
+    private class Values extends AbstractCollection<V> {
+        public Iterator<V> iterator() {
+            return new ValueIterator();
+        }
+        public int size() {
+            return size;
+        }
+        public boolean contains(Object o) {
+            return containsValue(o);
+        }
+        public boolean remove(Object o) {
+            for (Iterator<V> i = iterator(); i.hasNext(); ) {
+                if (i.next() == o) {
+                    i.remove();
+                    return true;
+                }
+            }
+            return false;
+        }
+        public void clear() {
+            IdentityHashMap.this.clear();
+        }
+        public Object[] toArray() {
+            return toArray(new Object[0]);
+        }
+        @SuppressWarnings("unchecked")
+        public <T> T[] toArray(T[] a) {
+            int expectedModCount = modCount;
+            int size = size();
+            if (a.length < size)
+                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
+            Object[] tab = table;
+            int ti = 0;
+            for (int si = 0; si < tab.length; si += 2) {
+                if (tab[si] != null) { // key present ?
+                    // more elements than expected -> concurrent modification from other thread
+                    if (ti >= size) {
+                        throw new ConcurrentModificationException();
+                    }
+                    a[ti++] = (T) tab[si+1]; // copy value
+                }
+            }
+            // fewer elements than expected or concurrent modification from other thread detected
+            if (ti < size || expectedModCount != modCount) {
+                throw new ConcurrentModificationException();
+            }
+            // final null marker as per spec
+            if (ti < a.length) {
+                a[ti] = null;
+            }
+            return a;
+        }
+
+        public Spliterator<V> spliterator() {
+            return new ValueSpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
+        }
+    }
+
+    /**
+     * Returns a {@link Set} view of the mappings contained in this map.
+     * Each element in the returned set is a reference-equality-based
+     * <tt>Map.Entry</tt>.  The set is backed by the map, so changes
+     * to the map are reflected in the set, and vice-versa.  If the
+     * map is modified while an iteration over the set is in progress,
+     * the results of the iteration are undefined.  The set supports
+     * element removal, which removes the corresponding mapping from
+     * the map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+     * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
+     * methods.  It does not support the <tt>add</tt> or
+     * <tt>addAll</tt> methods.
+     *
+     * <p>Like the backing map, the <tt>Map.Entry</tt> objects in the set
+     * returned by this method define key and value equality as
+     * reference-equality rather than object-equality.  This affects the
+     * behavior of the <tt>equals</tt> and <tt>hashCode</tt> methods of these
+     * <tt>Map.Entry</tt> objects.  A reference-equality based <tt>Map.Entry
+     * e</tt> is equal to an object <tt>o</tt> if and only if <tt>o</tt> is a
+     * <tt>Map.Entry</tt> and <tt>e.getKey()==o.getKey() &amp;&amp;
+     * e.getValue()==o.getValue()</tt>.  To accommodate these equals
+     * semantics, the <tt>hashCode</tt> method returns
+     * <tt>System.identityHashCode(e.getKey()) ^
+     * System.identityHashCode(e.getValue())</tt>.
+     *
+     * <p><b>Owing to the reference-equality-based semantics of the
+     * <tt>Map.Entry</tt> instances in the set returned by this method,
+     * it is possible that the symmetry and transitivity requirements of
+     * the {@link Object#equals(Object)} contract may be violated if any of
+     * the entries in the set is compared to a normal map entry, or if
+     * the set returned by this method is compared to a set of normal map
+     * entries (such as would be returned by a call to this method on a normal
+     * map).  However, the <tt>Object.equals</tt> contract is guaranteed to
+     * hold among identity-based map entries, and among sets of such entries.
+     * </b>
+     *
+     * @return a set view of the identity-mappings contained in this map
+     */
+    public Set<Map.Entry<K,V>> entrySet() {
+        Set<Map.Entry<K,V>> es = entrySet;
+        if (es != null)
+            return es;
+        else
+            return entrySet = new EntrySet();
+    }
+
+    private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
+        public Iterator<Map.Entry<K,V>> iterator() {
+            return new EntryIterator();
+        }
+        public boolean contains(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
+            return containsMapping(entry.getKey(), entry.getValue());
+        }
+        public boolean remove(Object o) {
+            if (!(o instanceof Map.Entry))
+                return false;
+            Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
+            return removeMapping(entry.getKey(), entry.getValue());
+        }
+        public int size() {
+            return size;
+        }
+        public void clear() {
+            IdentityHashMap.this.clear();
+        }
+        /*
+         * Must revert from AbstractSet's impl to AbstractCollection's, as
+         * the former contains an optimization that results in incorrect
+         * behavior when c is a smaller "normal" (non-identity-based) Set.
+         */
+        public boolean removeAll(Collection<?> c) {
+            Objects.requireNonNull(c);
+            boolean modified = false;
+            for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) {
+                if (c.contains(i.next())) {
+                    i.remove();
+                    modified = true;
+                }
+            }
+            return modified;
+        }
+
+        public Object[] toArray() {
+            return toArray(new Object[0]);
+        }
+
+        @SuppressWarnings("unchecked")
+        public <T> T[] toArray(T[] a) {
+            int expectedModCount = modCount;
+            int size = size();
+            if (a.length < size)
+                a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
+            Object[] tab = table;
+            int ti = 0;
+            for (int si = 0; si < tab.length; si += 2) {
+                Object key;
+                if ((key = tab[si]) != null) { // key present ?
+                    // more elements than expected -> concurrent modification from other thread
+                    if (ti >= size) {
+                        throw new ConcurrentModificationException();
+                    }
+                    a[ti++] = (T) new AbstractMap.SimpleEntry<>(unmaskNull(key), tab[si + 1]);
+                }
+            }
+            // fewer elements than expected or concurrent modification from other thread detected
+            if (ti < size || expectedModCount != modCount) {
+                throw new ConcurrentModificationException();
+            }
+            // final null marker as per spec
+            if (ti < a.length) {
+                a[ti] = null;
+            }
+            return a;
+        }
+
+        public Spliterator<Map.Entry<K,V>> spliterator() {
+            return new EntrySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
+        }
+    }
+
+
+    private static final long serialVersionUID = 8188218128353913216L;
+
+    /**
+     * Saves the state of the <tt>IdentityHashMap</tt> instance to a stream
+     * (i.e., serializes it).
+     *
+     * @serialData The <i>size</i> of the HashMap (the number of key-value
+     *          mappings) (<tt>int</tt>), followed by the key (Object) and
+     *          value (Object) for each key-value mapping represented by the
+     *          IdentityHashMap.  The key-value mappings are emitted in no
+     *          particular order.
+     */
+    private void writeObject(java.io.ObjectOutputStream s)
+        throws java.io.IOException  {
+        // Write out and any hidden stuff
+        s.defaultWriteObject();
+
+        // Write out size (number of Mappings)
+        s.writeInt(size);
+
+        // Write out keys and values (alternating)
+        Object[] tab = table;
+        for (int i = 0; i < tab.length; i += 2) {
+            Object key = tab[i];
+            if (key != null) {
+                s.writeObject(unmaskNull(key));
+                s.writeObject(tab[i + 1]);
+            }
+        }
+    }
+
+    /**
+     * Reconstitutes the <tt>IdentityHashMap</tt> instance from a stream (i.e.,
+     * deserializes it).
+     */
+    private void readObject(java.io.ObjectInputStream s)
+        throws java.io.IOException, ClassNotFoundException  {
+        // Read in any hidden stuff
+        s.defaultReadObject();
+
+        // Read in size (number of Mappings)
+        int size = s.readInt();
+        if (size < 0)
+            throw new java.io.StreamCorruptedException
+                ("Illegal mappings count: " + size);
+        init(capacity(size));
+
+        // Read the keys and values, and put the mappings in the table
+        for (int i=0; i<size; i++) {
+            @SuppressWarnings("unchecked")
+                K key = (K) s.readObject();
+            @SuppressWarnings("unchecked")
+                V value = (V) s.readObject();
+            putForCreate(key, value);
+        }
+    }
+
+    /**
+     * The put method for readObject.  It does not resize the table,
+     * update modCount, etc.
+     */
+    private void putForCreate(K key, V value)
+        throws java.io.StreamCorruptedException
+    {
+        Object k = maskNull(key);
+        Object[] tab = table;
+        int len = tab.length;
+        int i = hash(k, len);
+
+        Object item;
+        while ( (item = tab[i]) != null) {
+            if (item == k)
+                throw new java.io.StreamCorruptedException();
+            i = nextKeyIndex(i, len);
+        }
+        tab[i] = k;
+        tab[i + 1] = value;
+    }
+
+    @SuppressWarnings("unchecked")
+    @Override
+    public void forEach(BiConsumer<? super K, ? super V> action) {
+        Objects.requireNonNull(action);
+        int expectedModCount = modCount;
+
+        Object[] t = table;
+        for (int index = 0; index < t.length; index += 2) {
+            Object k = t[index];
+            if (k != null) {
+                action.accept((K) unmaskNull(k), (V) t[index + 1]);
+            }
+
+            if (modCount != expectedModCount) {
+                throw new ConcurrentModificationException();
+            }
+        }
+    }
+
+    @SuppressWarnings("unchecked")
+    @Override
+    public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
+        Objects.requireNonNull(function);
+        int expectedModCount = modCount;
+
+        Object[] t = table;
+        for (int index = 0; index < t.length; index += 2) {
+            Object k = t[index];
+            if (k != null) {
+                t[index + 1] = function.apply((K) unmaskNull(k), (V) t[index + 1]);
+            }
+
+            if (modCount != expectedModCount) {
+                throw new ConcurrentModificationException();
+            }
+        }
+    }
+
+    /**
+     * Similar form as array-based Spliterators, but skips blank elements,
+     * and guestimates size as decreasing by half per split.
+     */
+    static class IdentityHashMapSpliterator<K,V> {
+        final IdentityHashMap<K,V> map;
+        int index;             // current index, modified on advance/split
+        int fence;             // -1 until first use; then one past last index
+        int est;               // size estimate
+        int expectedModCount;  // initialized when fence set
+
+        IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin,
+                                   int fence, int est, int expectedModCount) {
+            this.map = map;
+            this.index = origin;
+            this.fence = fence;
+            this.est = est;
+            this.expectedModCount = expectedModCount;
+        }
+
+        final int getFence() { // initialize fence and size on first use
+            int hi;
+            if ((hi = fence) < 0) {
+                est = map.size;
+                expectedModCount = map.modCount;
+                hi = fence = map.table.length;
+            }
+            return hi;
+        }
+
+        public final long estimateSize() {
+            getFence(); // force init
+            return (long) est;
+        }
+    }
+
+    static final class KeySpliterator<K,V>
+        extends IdentityHashMapSpliterator<K,V>
+        implements Spliterator<K> {
+        KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est,
+                       int expectedModCount) {
+            super(map, origin, fence, est, expectedModCount);
+        }
+
+        public KeySpliterator<K,V> trySplit() {
+            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
+            return (lo >= mid) ? null :
+                new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
+                                     expectedModCount);
+        }
+
+        @SuppressWarnings("unchecked")
+        public void forEachRemaining(Consumer<? super K> action) {
+            if (action == null)
+                throw new NullPointerException();
+            int i, hi, mc; Object key;
+            IdentityHashMap<K,V> m; Object[] a;
+            if ((m = map) != null && (a = m.table) != null &&
+                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
+                for (; i < hi; i += 2) {
+                    if ((key = a[i]) != null)
+                        action.accept((K)unmaskNull(key));
+                }
+                if (m.modCount == expectedModCount)
+                    return;
+            }
+            throw new ConcurrentModificationException();
+        }
+
+        @SuppressWarnings("unchecked")
+        public boolean tryAdvance(Consumer<? super K> action) {
+            if (action == null)
+                throw new NullPointerException();
+            Object[] a = map.table;
+            int hi = getFence();
+            while (index < hi) {
+                Object key = a[index];
+                index += 2;
+                if (key != null) {
+                    action.accept((K)unmaskNull(key));
+                    if (map.modCount != expectedModCount)
+                        throw new ConcurrentModificationException();
+                    return true;
+                }
+            }
+            return false;
+        }
+
+        public int characteristics() {
+            return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
+        }
+    }
+
+    static final class ValueSpliterator<K,V>
+        extends IdentityHashMapSpliterator<K,V>
+        implements Spliterator<V> {
+        ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
+                         int expectedModCount) {
+            super(m, origin, fence, est, expectedModCount);
+        }
+
+        public ValueSpliterator<K,V> trySplit() {
+            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
+            return (lo >= mid) ? null :
+                new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
+                                       expectedModCount);
+        }
+
+        public void forEachRemaining(Consumer<? super V> action) {
+            if (action == null)
+                throw new NullPointerException();
+            int i, hi, mc;
+            IdentityHashMap<K,V> m; Object[] a;
+            if ((m = map) != null && (a = m.table) != null &&
+                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
+                for (; i < hi; i += 2) {
+                    if (a[i] != null) {
+                        @SuppressWarnings("unchecked") V v = (V)a[i+1];
+                        action.accept(v);
+                    }
+                }
+                if (m.modCount == expectedModCount)
+                    return;
+            }
+            throw new ConcurrentModificationException();
+        }
+
+        public boolean tryAdvance(Consumer<? super V> action) {
+            if (action == null)
+                throw new NullPointerException();
+            Object[] a = map.table;
+            int hi = getFence();
+            while (index < hi) {
+                Object key = a[index];
+                @SuppressWarnings("unchecked") V v = (V)a[index+1];
+                index += 2;
+                if (key != null) {
+                    action.accept(v);
+                    if (map.modCount != expectedModCount)
+                        throw new ConcurrentModificationException();
+                    return true;
+                }
+            }
+            return false;
+        }
+
+        public int characteristics() {
+            return (fence < 0 || est == map.size ? SIZED : 0);
+        }
+
+    }
+
+    static final class EntrySpliterator<K,V>
+        extends IdentityHashMapSpliterator<K,V>
+        implements Spliterator<Map.Entry<K,V>> {
+        EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
+                         int expectedModCount) {
+            super(m, origin, fence, est, expectedModCount);
+        }
+
+        public EntrySpliterator<K,V> trySplit() {
+            int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
+            return (lo >= mid) ? null :
+                new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
+                                       expectedModCount);
+        }
+
+        public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
+            if (action == null)
+                throw new NullPointerException();
+            int i, hi, mc;
+            IdentityHashMap<K,V> m; Object[] a;
+            if ((m = map) != null && (a = m.table) != null &&
+                (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
+                for (; i < hi; i += 2) {
+                    Object key = a[i];
+                    if (key != null) {
+                        @SuppressWarnings("unchecked") K k =
+                            (K)unmaskNull(key);
+                        @SuppressWarnings("unchecked") V v = (V)a[i+1];
+                        action.accept
+                            (new AbstractMap.SimpleImmutableEntry<>(k, v));
+
+                    }
+                }
+                if (m.modCount == expectedModCount)
+                    return;
+            }
+            throw new ConcurrentModificationException();
+        }
+
+        public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
+            if (action == null)
+                throw new NullPointerException();
+            Object[] a = map.table;
+            int hi = getFence();
+            while (index < hi) {
+                Object key = a[index];
+                @SuppressWarnings("unchecked") V v = (V)a[index+1];
+                index += 2;
+                if (key != null) {
+                    @SuppressWarnings("unchecked") K k =
+                        (K)unmaskNull(key);
+                    action.accept
+                        (new AbstractMap.SimpleImmutableEntry<>(k, v));
+                    if (map.modCount != expectedModCount)
+                        throw new ConcurrentModificationException();
+                    return true;
+                }
+            }
+            return false;
+        }
+
+        public int characteristics() {
+            return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
+        }
+    }
+
+}