jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatMath.java
changeset 34419 14108cfd0823
parent 34417 57a3863abbb4
child 34781 479b1724ab80
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/jdk/src/java.desktop/share/classes/sun/java2d/marlin/FloatMath.java	Mon Nov 23 15:02:19 2015 -0800
@@ -0,0 +1,223 @@
+/*
+ * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License version 2 only, as
+ * published by the Free Software Foundation.  Oracle designates this
+ * particular file as subject to the "Classpath" exception as provided
+ * by Oracle in the LICENSE file that accompanied this code.
+ *
+ * This code is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+ * version 2 for more details (a copy is included in the LICENSE file that
+ * accompanied this code).
+ *
+ * You should have received a copy of the GNU General Public License version
+ * 2 along with this work; if not, write to the Free Software Foundation,
+ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
+ * or visit www.oracle.com if you need additional information or have any
+ * questions.
+ */
+package sun.java2d.marlin;
+
+import sun.misc.DoubleConsts;
+import sun.misc.FloatConsts;
+
+/**
+ * Faster Math ceil / floor routines derived from StrictMath
+ */
+public final class FloatMath implements MarlinConst {
+
+    // overflow / NaN handling enabled:
+    static final boolean CHECK_OVERFLOW = true;
+    static final boolean CHECK_NAN = true;
+
+    private FloatMath() {
+        // utility class
+    }
+
+    // faster inlined min/max functions in the branch prediction is high
+    static float max(final float a, final float b) {
+        // no NaN handling
+        return (a >= b) ? a : b;
+    }
+
+    static int max(final int a, final int b) {
+        return (a >= b) ? a : b;
+    }
+
+    static int min(final int a, final int b) {
+        return (a <= b) ? a : b;
+    }
+
+    /**
+     * Returns the smallest (closest to negative infinity) {@code float} value
+     * that is greater than or equal to the argument and is equal to a
+     * mathematical integer. Special cases:
+     * <ul><li>If the argument value is already equal to a mathematical integer,
+     * then the result is the same as the argument.  <li>If the argument is NaN
+     * or an infinity or positive zero or negative zero, then the result is the
+     * same as the argument.  <li>If the argument value is less than zero but
+     * greater than -1.0, then the result is negative zero.</ul> Note that the
+     * value of {@code StrictMath.ceil(x)} is exactly the value of
+     * {@code -StrictMath.floor(-x)}.
+     *
+     * @param a a value.
+     * @return the smallest (closest to negative infinity) floating-point value
+     * that is greater than or equal to the argument and is equal to a
+     * mathematical integer.
+     */
+    public static float ceil_f(final float a) {
+        // Derived from StrictMath.ceil(double):
+
+        // Inline call to Math.getExponent(a) to
+        // compute only once Float.floatToRawIntBits(a)
+        final int doppel = Float.floatToRawIntBits(a);
+
+        final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
+                >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
+                - FloatConsts.EXP_BIAS;
+
+        if (exponent < 0) {
+            /*
+             * Absolute value of argument is less than 1.
+             * floorOrceil(-0.0) => -0.0
+             * floorOrceil(+0.0) => +0.0
+             */
+            return ((a == 0) ? a :
+                    ( (a < 0f) ? -0f : 1f) );
+        }
+        if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
+            /*
+             * Infinity, NaN, or a value so large it must be integral.
+             */
+            return a;
+        }
+        // Else the argument is either an integral value already XOR it
+        // has to be rounded to one.
+        assert exponent >= 0 && exponent <= 22; // 51 for double
+
+        final int intpart = doppel
+                & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));
+
+        if (intpart == doppel) {
+            return a; // integral value (including 0)
+        }
+
+        // 0 handled above as an integer
+        // sign: 1 for negative, 0 for positive numbers
+        // add : 0 for negative and 1 for positive numbers
+        return Float.intBitsToFloat(intpart) + ((~intpart) >>> 31);
+    }
+
+    /**
+     * Returns the largest (closest to positive infinity) {@code float} value
+     * that is less than or equal to the argument and is equal to a mathematical
+     * integer. Special cases:
+     * <ul><li>If the argument value is already equal to a mathematical integer,
+     * then the result is the same as the argument.  <li>If the argument is NaN
+     * or an infinity or positive zero or negative zero, then the result is the
+     * same as the argument.</ul>
+     *
+     * @param a a value.
+     * @return the largest (closest to positive infinity) floating-point value
+     * that less than or equal to the argument and is equal to a mathematical
+     * integer.
+     */
+    public static float floor_f(final float a) {
+        // Derived from StrictMath.floor(double):
+
+        // Inline call to Math.getExponent(a) to
+        // compute only once Float.floatToRawIntBits(a)
+        final int doppel = Float.floatToRawIntBits(a);
+
+        final int exponent = ((doppel & FloatConsts.EXP_BIT_MASK)
+                >> (FloatConsts.SIGNIFICAND_WIDTH - 1))
+                - FloatConsts.EXP_BIAS;
+
+        if (exponent < 0) {
+            /*
+             * Absolute value of argument is less than 1.
+             * floorOrceil(-0.0) => -0.0
+             * floorOrceil(+0.0) => +0.0
+             */
+            return ((a == 0) ? a :
+                    ( (a < 0f) ? -1f : 0f) );
+        }
+        if (CHECK_OVERFLOW && (exponent >= 23)) { // 52 for double
+            /*
+             * Infinity, NaN, or a value so large it must be integral.
+             */
+            return a;
+        }
+        // Else the argument is either an integral value already XOR it
+        // has to be rounded to one.
+        assert exponent >= 0 && exponent <= 22; // 51 for double
+
+        final int intpart = doppel
+                & (~(FloatConsts.SIGNIF_BIT_MASK >> exponent));
+
+        if (intpart == doppel) {
+            return a; // integral value (including 0)
+        }
+
+        // 0 handled above as an integer
+        // sign: 1 for negative, 0 for positive numbers
+        // add : -1 for negative and 0 for positive numbers
+        return Float.intBitsToFloat(intpart) + (intpart >> 31);
+    }
+
+    /**
+     * Faster alternative to ceil(float) optimized for the integer domain
+     * and supporting NaN and +/-Infinity.
+     *
+     * @param a a value.
+     * @return the largest (closest to positive infinity) integer value
+     * that less than or equal to the argument and is equal to a mathematical
+     * integer.
+     */
+    public static int ceil_int(final float a) {
+        final int intpart = (int) a;
+
+        if (a <= intpart
+                || (CHECK_OVERFLOW && intpart == Integer.MAX_VALUE)
+                || CHECK_NAN && Float.isNaN(a)) {
+            return intpart;
+        }
+        return intpart + 1;
+    }
+
+    /**
+     * Faster alternative to floor(float) optimized for the integer domain
+     * and supporting NaN and +/-Infinity.
+     *
+     * @param a a value.
+     * @return the largest (closest to positive infinity) floating-point value
+     * that less than or equal to the argument and is equal to a mathematical
+     * integer.
+     */
+    public static int floor_int(final float a) {
+        final int intpart = (int) a;
+
+        if (a >= intpart
+                || (CHECK_OVERFLOW && intpart == Integer.MIN_VALUE)
+                || CHECK_NAN && Float.isNaN(a)) {
+            return intpart;
+        }
+        return intpart - 1;
+    }
+
+    /**
+     * Returns a floating-point power of two in the normal range.
+     */
+    static double powerOfTwoD(int n) {
+        assert (n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT);
+        return Double.longBitsToDouble((((long) n + (long) DoubleConsts.EXP_BIAS)
+                << (DoubleConsts.SIGNIFICAND_WIDTH - 1))
+                & DoubleConsts.EXP_BIT_MASK);
+    }
+}