1 /* |
|
2 * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 * or visit www.oracle.com if you need additional information or have any |
|
21 * questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 #include "precompiled.hpp" |
|
26 #include "interp_masm_x86.hpp" |
|
27 #include "interpreter/interpreter.hpp" |
|
28 #include "interpreter/interpreterRuntime.hpp" |
|
29 #include "oops/arrayOop.hpp" |
|
30 #include "oops/markOop.hpp" |
|
31 #include "oops/methodData.hpp" |
|
32 #include "oops/method.hpp" |
|
33 #include "prims/jvmtiExport.hpp" |
|
34 #include "prims/jvmtiRedefineClassesTrace.hpp" |
|
35 #include "prims/jvmtiThreadState.hpp" |
|
36 #include "runtime/basicLock.hpp" |
|
37 #include "runtime/biasedLocking.hpp" |
|
38 #include "runtime/sharedRuntime.hpp" |
|
39 #include "runtime/thread.inline.hpp" |
|
40 |
|
41 |
|
42 // Implementation of InterpreterMacroAssembler |
|
43 |
|
44 #ifdef CC_INTERP |
|
45 void InterpreterMacroAssembler::get_method(Register reg) { |
|
46 movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize))); |
|
47 movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method))); |
|
48 } |
|
49 #endif // CC_INTERP |
|
50 |
|
51 #ifndef CC_INTERP |
|
52 |
|
53 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, |
|
54 int number_of_arguments) { |
|
55 // interpreter specific |
|
56 // |
|
57 // Note: No need to save/restore bcp & locals (r13 & r14) pointer |
|
58 // since these are callee saved registers and no blocking/ |
|
59 // GC can happen in leaf calls. |
|
60 // Further Note: DO NOT save/restore bcp/locals. If a caller has |
|
61 // already saved them so that it can use esi/edi as temporaries |
|
62 // then a save/restore here will DESTROY the copy the caller |
|
63 // saved! There used to be a save_bcp() that only happened in |
|
64 // the ASSERT path (no restore_bcp). Which caused bizarre failures |
|
65 // when jvm built with ASSERTs. |
|
66 #ifdef ASSERT |
|
67 { |
|
68 Label L; |
|
69 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); |
|
70 jcc(Assembler::equal, L); |
|
71 stop("InterpreterMacroAssembler::call_VM_leaf_base:" |
|
72 " last_sp != NULL"); |
|
73 bind(L); |
|
74 } |
|
75 #endif |
|
76 // super call |
|
77 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); |
|
78 // interpreter specific |
|
79 // Used to ASSERT that r13/r14 were equal to frame's bcp/locals |
|
80 // but since they may not have been saved (and we don't want to |
|
81 // save thme here (see note above) the assert is invalid. |
|
82 } |
|
83 |
|
84 void InterpreterMacroAssembler::call_VM_base(Register oop_result, |
|
85 Register java_thread, |
|
86 Register last_java_sp, |
|
87 address entry_point, |
|
88 int number_of_arguments, |
|
89 bool check_exceptions) { |
|
90 // interpreter specific |
|
91 // |
|
92 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't |
|
93 // really make a difference for these runtime calls, since they are |
|
94 // slow anyway. Btw., bcp must be saved/restored since it may change |
|
95 // due to GC. |
|
96 // assert(java_thread == noreg , "not expecting a precomputed java thread"); |
|
97 save_bcp(); |
|
98 #ifdef ASSERT |
|
99 { |
|
100 Label L; |
|
101 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD); |
|
102 jcc(Assembler::equal, L); |
|
103 stop("InterpreterMacroAssembler::call_VM_leaf_base:" |
|
104 " last_sp != NULL"); |
|
105 bind(L); |
|
106 } |
|
107 #endif /* ASSERT */ |
|
108 // super call |
|
109 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, |
|
110 entry_point, number_of_arguments, |
|
111 check_exceptions); |
|
112 // interpreter specific |
|
113 restore_bcp(); |
|
114 restore_locals(); |
|
115 } |
|
116 |
|
117 |
|
118 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { |
|
119 if (JvmtiExport::can_pop_frame()) { |
|
120 Label L; |
|
121 // Initiate popframe handling only if it is not already being |
|
122 // processed. If the flag has the popframe_processing bit set, it |
|
123 // means that this code is called *during* popframe handling - we |
|
124 // don't want to reenter. |
|
125 // This method is only called just after the call into the vm in |
|
126 // call_VM_base, so the arg registers are available. |
|
127 movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset())); |
|
128 testl(c_rarg0, JavaThread::popframe_pending_bit); |
|
129 jcc(Assembler::zero, L); |
|
130 testl(c_rarg0, JavaThread::popframe_processing_bit); |
|
131 jcc(Assembler::notZero, L); |
|
132 // Call Interpreter::remove_activation_preserving_args_entry() to get the |
|
133 // address of the same-named entrypoint in the generated interpreter code. |
|
134 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); |
|
135 jmp(rax); |
|
136 bind(L); |
|
137 } |
|
138 } |
|
139 |
|
140 |
|
141 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { |
|
142 movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); |
|
143 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); |
|
144 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); |
|
145 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); |
|
146 switch (state) { |
|
147 case atos: movptr(rax, oop_addr); |
|
148 movptr(oop_addr, (int32_t)NULL_WORD); |
|
149 verify_oop(rax, state); break; |
|
150 case ltos: movptr(rax, val_addr); break; |
|
151 case btos: // fall through |
|
152 case ctos: // fall through |
|
153 case stos: // fall through |
|
154 case itos: movl(rax, val_addr); break; |
|
155 case ftos: movflt(xmm0, val_addr); break; |
|
156 case dtos: movdbl(xmm0, val_addr); break; |
|
157 case vtos: /* nothing to do */ break; |
|
158 default : ShouldNotReachHere(); |
|
159 } |
|
160 // Clean up tos value in the thread object |
|
161 movl(tos_addr, (int) ilgl); |
|
162 movl(val_addr, (int32_t) NULL_WORD); |
|
163 } |
|
164 |
|
165 |
|
166 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { |
|
167 if (JvmtiExport::can_force_early_return()) { |
|
168 Label L; |
|
169 movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); |
|
170 testptr(c_rarg0, c_rarg0); |
|
171 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit; |
|
172 |
|
173 // Initiate earlyret handling only if it is not already being processed. |
|
174 // If the flag has the earlyret_processing bit set, it means that this code |
|
175 // is called *during* earlyret handling - we don't want to reenter. |
|
176 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset())); |
|
177 cmpl(c_rarg0, JvmtiThreadState::earlyret_pending); |
|
178 jcc(Assembler::notEqual, L); |
|
179 |
|
180 // Call Interpreter::remove_activation_early_entry() to get the address of the |
|
181 // same-named entrypoint in the generated interpreter code. |
|
182 movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset())); |
|
183 movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset())); |
|
184 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0); |
|
185 jmp(rax); |
|
186 bind(L); |
|
187 } |
|
188 } |
|
189 |
|
190 |
|
191 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( |
|
192 Register reg, |
|
193 int bcp_offset) { |
|
194 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); |
|
195 load_unsigned_short(reg, Address(r13, bcp_offset)); |
|
196 bswapl(reg); |
|
197 shrl(reg, 16); |
|
198 } |
|
199 |
|
200 |
|
201 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, |
|
202 int bcp_offset, |
|
203 size_t index_size) { |
|
204 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); |
|
205 if (index_size == sizeof(u2)) { |
|
206 load_unsigned_short(index, Address(r13, bcp_offset)); |
|
207 } else if (index_size == sizeof(u4)) { |
|
208 movl(index, Address(r13, bcp_offset)); |
|
209 // Check if the secondary index definition is still ~x, otherwise |
|
210 // we have to change the following assembler code to calculate the |
|
211 // plain index. |
|
212 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); |
|
213 notl(index); // convert to plain index |
|
214 } else if (index_size == sizeof(u1)) { |
|
215 load_unsigned_byte(index, Address(r13, bcp_offset)); |
|
216 } else { |
|
217 ShouldNotReachHere(); |
|
218 } |
|
219 } |
|
220 |
|
221 |
|
222 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, |
|
223 Register index, |
|
224 int bcp_offset, |
|
225 size_t index_size) { |
|
226 assert_different_registers(cache, index); |
|
227 get_cache_index_at_bcp(index, bcp_offset, index_size); |
|
228 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); |
|
229 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); |
|
230 // convert from field index to ConstantPoolCacheEntry index |
|
231 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); |
|
232 shll(index, 2); |
|
233 } |
|
234 |
|
235 |
|
236 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, |
|
237 Register index, |
|
238 Register bytecode, |
|
239 int byte_no, |
|
240 int bcp_offset, |
|
241 size_t index_size) { |
|
242 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); |
|
243 // We use a 32-bit load here since the layout of 64-bit words on |
|
244 // little-endian machines allow us that. |
|
245 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); |
|
246 const int shift_count = (1 + byte_no) * BitsPerByte; |
|
247 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || |
|
248 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), |
|
249 "correct shift count"); |
|
250 shrl(bytecode, shift_count); |
|
251 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); |
|
252 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); |
|
253 } |
|
254 |
|
255 |
|
256 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, |
|
257 Register tmp, |
|
258 int bcp_offset, |
|
259 size_t index_size) { |
|
260 assert(cache != tmp, "must use different register"); |
|
261 get_cache_index_at_bcp(tmp, bcp_offset, index_size); |
|
262 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); |
|
263 // convert from field index to ConstantPoolCacheEntry index |
|
264 // and from word offset to byte offset |
|
265 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); |
|
266 shll(tmp, 2 + LogBytesPerWord); |
|
267 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); |
|
268 // skip past the header |
|
269 addptr(cache, in_bytes(ConstantPoolCache::base_offset())); |
|
270 addptr(cache, tmp); // construct pointer to cache entry |
|
271 } |
|
272 |
|
273 // Load object from cpool->resolved_references(index) |
|
274 void InterpreterMacroAssembler::load_resolved_reference_at_index( |
|
275 Register result, Register index) { |
|
276 assert_different_registers(result, index); |
|
277 // convert from field index to resolved_references() index and from |
|
278 // word index to byte offset. Since this is a java object, it can be compressed |
|
279 Register tmp = index; // reuse |
|
280 shll(tmp, LogBytesPerHeapOop); |
|
281 |
|
282 get_constant_pool(result); |
|
283 // load pointer for resolved_references[] objArray |
|
284 movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes())); |
|
285 // JNIHandles::resolve(obj); |
|
286 movptr(result, Address(result, 0)); |
|
287 // Add in the index |
|
288 addptr(result, tmp); |
|
289 load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); |
|
290 } |
|
291 |
|
292 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a |
|
293 // subtype of super_klass. |
|
294 // |
|
295 // Args: |
|
296 // rax: superklass |
|
297 // Rsub_klass: subklass |
|
298 // |
|
299 // Kills: |
|
300 // rcx, rdi |
|
301 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, |
|
302 Label& ok_is_subtype) { |
|
303 assert(Rsub_klass != rax, "rax holds superklass"); |
|
304 assert(Rsub_klass != r14, "r14 holds locals"); |
|
305 assert(Rsub_klass != r13, "r13 holds bcp"); |
|
306 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); |
|
307 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); |
|
308 |
|
309 // Profile the not-null value's klass. |
|
310 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi |
|
311 |
|
312 // Do the check. |
|
313 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx |
|
314 |
|
315 // Profile the failure of the check. |
|
316 profile_typecheck_failed(rcx); // blows rcx |
|
317 } |
|
318 |
|
319 |
|
320 |
|
321 // Java Expression Stack |
|
322 |
|
323 void InterpreterMacroAssembler::pop_ptr(Register r) { |
|
324 pop(r); |
|
325 } |
|
326 |
|
327 void InterpreterMacroAssembler::pop_i(Register r) { |
|
328 // XXX can't use pop currently, upper half non clean |
|
329 movl(r, Address(rsp, 0)); |
|
330 addptr(rsp, wordSize); |
|
331 } |
|
332 |
|
333 void InterpreterMacroAssembler::pop_l(Register r) { |
|
334 movq(r, Address(rsp, 0)); |
|
335 addptr(rsp, 2 * Interpreter::stackElementSize); |
|
336 } |
|
337 |
|
338 void InterpreterMacroAssembler::pop_f(XMMRegister r) { |
|
339 movflt(r, Address(rsp, 0)); |
|
340 addptr(rsp, wordSize); |
|
341 } |
|
342 |
|
343 void InterpreterMacroAssembler::pop_d(XMMRegister r) { |
|
344 movdbl(r, Address(rsp, 0)); |
|
345 addptr(rsp, 2 * Interpreter::stackElementSize); |
|
346 } |
|
347 |
|
348 void InterpreterMacroAssembler::push_ptr(Register r) { |
|
349 push(r); |
|
350 } |
|
351 |
|
352 void InterpreterMacroAssembler::push_i(Register r) { |
|
353 push(r); |
|
354 } |
|
355 |
|
356 void InterpreterMacroAssembler::push_l(Register r) { |
|
357 subptr(rsp, 2 * wordSize); |
|
358 movq(Address(rsp, 0), r); |
|
359 } |
|
360 |
|
361 void InterpreterMacroAssembler::push_f(XMMRegister r) { |
|
362 subptr(rsp, wordSize); |
|
363 movflt(Address(rsp, 0), r); |
|
364 } |
|
365 |
|
366 void InterpreterMacroAssembler::push_d(XMMRegister r) { |
|
367 subptr(rsp, 2 * wordSize); |
|
368 movdbl(Address(rsp, 0), r); |
|
369 } |
|
370 |
|
371 void InterpreterMacroAssembler::pop(TosState state) { |
|
372 switch (state) { |
|
373 case atos: pop_ptr(); break; |
|
374 case btos: |
|
375 case ctos: |
|
376 case stos: |
|
377 case itos: pop_i(); break; |
|
378 case ltos: pop_l(); break; |
|
379 case ftos: pop_f(); break; |
|
380 case dtos: pop_d(); break; |
|
381 case vtos: /* nothing to do */ break; |
|
382 default: ShouldNotReachHere(); |
|
383 } |
|
384 verify_oop(rax, state); |
|
385 } |
|
386 |
|
387 void InterpreterMacroAssembler::push(TosState state) { |
|
388 verify_oop(rax, state); |
|
389 switch (state) { |
|
390 case atos: push_ptr(); break; |
|
391 case btos: |
|
392 case ctos: |
|
393 case stos: |
|
394 case itos: push_i(); break; |
|
395 case ltos: push_l(); break; |
|
396 case ftos: push_f(); break; |
|
397 case dtos: push_d(); break; |
|
398 case vtos: /* nothing to do */ break; |
|
399 default : ShouldNotReachHere(); |
|
400 } |
|
401 } |
|
402 |
|
403 |
|
404 // Helpers for swap and dup |
|
405 void InterpreterMacroAssembler::load_ptr(int n, Register val) { |
|
406 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); |
|
407 } |
|
408 |
|
409 void InterpreterMacroAssembler::store_ptr(int n, Register val) { |
|
410 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); |
|
411 } |
|
412 |
|
413 |
|
414 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { |
|
415 // set sender sp |
|
416 lea(r13, Address(rsp, wordSize)); |
|
417 // record last_sp |
|
418 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13); |
|
419 } |
|
420 |
|
421 |
|
422 // Jump to from_interpreted entry of a call unless single stepping is possible |
|
423 // in this thread in which case we must call the i2i entry |
|
424 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { |
|
425 prepare_to_jump_from_interpreted(); |
|
426 |
|
427 if (JvmtiExport::can_post_interpreter_events()) { |
|
428 Label run_compiled_code; |
|
429 // JVMTI events, such as single-stepping, are implemented partly by avoiding running |
|
430 // compiled code in threads for which the event is enabled. Check here for |
|
431 // interp_only_mode if these events CAN be enabled. |
|
432 // interp_only is an int, on little endian it is sufficient to test the byte only |
|
433 // Is a cmpl faster? |
|
434 cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0); |
|
435 jccb(Assembler::zero, run_compiled_code); |
|
436 jmp(Address(method, Method::interpreter_entry_offset())); |
|
437 bind(run_compiled_code); |
|
438 } |
|
439 |
|
440 jmp(Address(method, Method::from_interpreted_offset())); |
|
441 |
|
442 } |
|
443 |
|
444 |
|
445 // The following two routines provide a hook so that an implementation |
|
446 // can schedule the dispatch in two parts. amd64 does not do this. |
|
447 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { |
|
448 // Nothing amd64 specific to be done here |
|
449 } |
|
450 |
|
451 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { |
|
452 dispatch_next(state, step); |
|
453 } |
|
454 |
|
455 void InterpreterMacroAssembler::dispatch_base(TosState state, |
|
456 address* table, |
|
457 bool verifyoop) { |
|
458 verify_FPU(1, state); |
|
459 if (VerifyActivationFrameSize) { |
|
460 Label L; |
|
461 mov(rcx, rbp); |
|
462 subptr(rcx, rsp); |
|
463 int32_t min_frame_size = |
|
464 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * |
|
465 wordSize; |
|
466 cmpptr(rcx, (int32_t)min_frame_size); |
|
467 jcc(Assembler::greaterEqual, L); |
|
468 stop("broken stack frame"); |
|
469 bind(L); |
|
470 } |
|
471 if (verifyoop) { |
|
472 verify_oop(rax, state); |
|
473 } |
|
474 lea(rscratch1, ExternalAddress((address)table)); |
|
475 jmp(Address(rscratch1, rbx, Address::times_8)); |
|
476 } |
|
477 |
|
478 void InterpreterMacroAssembler::dispatch_only(TosState state) { |
|
479 dispatch_base(state, Interpreter::dispatch_table(state)); |
|
480 } |
|
481 |
|
482 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { |
|
483 dispatch_base(state, Interpreter::normal_table(state)); |
|
484 } |
|
485 |
|
486 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { |
|
487 dispatch_base(state, Interpreter::normal_table(state), false); |
|
488 } |
|
489 |
|
490 |
|
491 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) { |
|
492 // load next bytecode (load before advancing r13 to prevent AGI) |
|
493 load_unsigned_byte(rbx, Address(r13, step)); |
|
494 // advance r13 |
|
495 increment(r13, step); |
|
496 dispatch_base(state, Interpreter::dispatch_table(state)); |
|
497 } |
|
498 |
|
499 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { |
|
500 // load current bytecode |
|
501 load_unsigned_byte(rbx, Address(r13, 0)); |
|
502 dispatch_base(state, table); |
|
503 } |
|
504 |
|
505 // remove activation |
|
506 // |
|
507 // Unlock the receiver if this is a synchronized method. |
|
508 // Unlock any Java monitors from syncronized blocks. |
|
509 // Remove the activation from the stack. |
|
510 // |
|
511 // If there are locked Java monitors |
|
512 // If throw_monitor_exception |
|
513 // throws IllegalMonitorStateException |
|
514 // Else if install_monitor_exception |
|
515 // installs IllegalMonitorStateException |
|
516 // Else |
|
517 // no error processing |
|
518 void InterpreterMacroAssembler::remove_activation( |
|
519 TosState state, |
|
520 Register ret_addr, |
|
521 bool throw_monitor_exception, |
|
522 bool install_monitor_exception, |
|
523 bool notify_jvmdi) { |
|
524 // Note: Registers rdx xmm0 may be in use for the |
|
525 // result check if synchronized method |
|
526 Label unlocked, unlock, no_unlock; |
|
527 |
|
528 // get the value of _do_not_unlock_if_synchronized into rdx |
|
529 const Address do_not_unlock_if_synchronized(r15_thread, |
|
530 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); |
|
531 movbool(rdx, do_not_unlock_if_synchronized); |
|
532 movbool(do_not_unlock_if_synchronized, false); // reset the flag |
|
533 |
|
534 // get method access flags |
|
535 movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); |
|
536 movl(rcx, Address(rbx, Method::access_flags_offset())); |
|
537 testl(rcx, JVM_ACC_SYNCHRONIZED); |
|
538 jcc(Assembler::zero, unlocked); |
|
539 |
|
540 // Don't unlock anything if the _do_not_unlock_if_synchronized flag |
|
541 // is set. |
|
542 testbool(rdx); |
|
543 jcc(Assembler::notZero, no_unlock); |
|
544 |
|
545 // unlock monitor |
|
546 push(state); // save result |
|
547 |
|
548 // BasicObjectLock will be first in list, since this is a |
|
549 // synchronized method. However, need to check that the object has |
|
550 // not been unlocked by an explicit monitorexit bytecode. |
|
551 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * |
|
552 wordSize - (int) sizeof(BasicObjectLock)); |
|
553 // We use c_rarg1 so that if we go slow path it will be the correct |
|
554 // register for unlock_object to pass to VM directly |
|
555 lea(c_rarg1, monitor); // address of first monitor |
|
556 |
|
557 movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes())); |
|
558 testptr(rax, rax); |
|
559 jcc(Assembler::notZero, unlock); |
|
560 |
|
561 pop(state); |
|
562 if (throw_monitor_exception) { |
|
563 // Entry already unlocked, need to throw exception |
|
564 call_VM(noreg, CAST_FROM_FN_PTR(address, |
|
565 InterpreterRuntime::throw_illegal_monitor_state_exception)); |
|
566 should_not_reach_here(); |
|
567 } else { |
|
568 // Monitor already unlocked during a stack unroll. If requested, |
|
569 // install an illegal_monitor_state_exception. Continue with |
|
570 // stack unrolling. |
|
571 if (install_monitor_exception) { |
|
572 call_VM(noreg, CAST_FROM_FN_PTR(address, |
|
573 InterpreterRuntime::new_illegal_monitor_state_exception)); |
|
574 } |
|
575 jmp(unlocked); |
|
576 } |
|
577 |
|
578 bind(unlock); |
|
579 unlock_object(c_rarg1); |
|
580 pop(state); |
|
581 |
|
582 // Check that for block-structured locking (i.e., that all locked |
|
583 // objects has been unlocked) |
|
584 bind(unlocked); |
|
585 |
|
586 // rax: Might contain return value |
|
587 |
|
588 // Check that all monitors are unlocked |
|
589 { |
|
590 Label loop, exception, entry, restart; |
|
591 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; |
|
592 const Address monitor_block_top( |
|
593 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); |
|
594 const Address monitor_block_bot( |
|
595 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); |
|
596 |
|
597 bind(restart); |
|
598 // We use c_rarg1 so that if we go slow path it will be the correct |
|
599 // register for unlock_object to pass to VM directly |
|
600 movptr(c_rarg1, monitor_block_top); // points to current entry, starting |
|
601 // with top-most entry |
|
602 lea(rbx, monitor_block_bot); // points to word before bottom of |
|
603 // monitor block |
|
604 jmp(entry); |
|
605 |
|
606 // Entry already locked, need to throw exception |
|
607 bind(exception); |
|
608 |
|
609 if (throw_monitor_exception) { |
|
610 // Throw exception |
|
611 MacroAssembler::call_VM(noreg, |
|
612 CAST_FROM_FN_PTR(address, InterpreterRuntime:: |
|
613 throw_illegal_monitor_state_exception)); |
|
614 should_not_reach_here(); |
|
615 } else { |
|
616 // Stack unrolling. Unlock object and install illegal_monitor_exception. |
|
617 // Unlock does not block, so don't have to worry about the frame. |
|
618 // We don't have to preserve c_rarg1 since we are going to throw an exception. |
|
619 |
|
620 push(state); |
|
621 unlock_object(c_rarg1); |
|
622 pop(state); |
|
623 |
|
624 if (install_monitor_exception) { |
|
625 call_VM(noreg, CAST_FROM_FN_PTR(address, |
|
626 InterpreterRuntime:: |
|
627 new_illegal_monitor_state_exception)); |
|
628 } |
|
629 |
|
630 jmp(restart); |
|
631 } |
|
632 |
|
633 bind(loop); |
|
634 // check if current entry is used |
|
635 cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL); |
|
636 jcc(Assembler::notEqual, exception); |
|
637 |
|
638 addptr(c_rarg1, entry_size); // otherwise advance to next entry |
|
639 bind(entry); |
|
640 cmpptr(c_rarg1, rbx); // check if bottom reached |
|
641 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry |
|
642 } |
|
643 |
|
644 bind(no_unlock); |
|
645 |
|
646 // jvmti support |
|
647 if (notify_jvmdi) { |
|
648 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA |
|
649 } else { |
|
650 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA |
|
651 } |
|
652 |
|
653 // remove activation |
|
654 // get sender sp |
|
655 movptr(rbx, |
|
656 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); |
|
657 leave(); // remove frame anchor |
|
658 pop(ret_addr); // get return address |
|
659 mov(rsp, rbx); // set sp to sender sp |
|
660 } |
|
661 |
|
662 #endif // C_INTERP |
|
663 |
|
664 void InterpreterMacroAssembler::get_method_counters(Register method, |
|
665 Register mcs, Label& skip) { |
|
666 Label has_counters; |
|
667 movptr(mcs, Address(method, Method::method_counters_offset())); |
|
668 testptr(mcs, mcs); |
|
669 jcc(Assembler::notZero, has_counters); |
|
670 call_VM(noreg, CAST_FROM_FN_PTR(address, |
|
671 InterpreterRuntime::build_method_counters), method); |
|
672 movptr(mcs, Address(method,Method::method_counters_offset())); |
|
673 testptr(mcs, mcs); |
|
674 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory |
|
675 bind(has_counters); |
|
676 } |
|
677 |
|
678 |
|
679 // Lock object |
|
680 // |
|
681 // Args: |
|
682 // c_rarg1: BasicObjectLock to be used for locking |
|
683 // |
|
684 // Kills: |
|
685 // rax |
|
686 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs) |
|
687 // rscratch1, rscratch2 (scratch regs) |
|
688 void InterpreterMacroAssembler::lock_object(Register lock_reg) { |
|
689 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); |
|
690 |
|
691 if (UseHeavyMonitors) { |
|
692 call_VM(noreg, |
|
693 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), |
|
694 lock_reg); |
|
695 } else { |
|
696 Label done; |
|
697 |
|
698 const Register swap_reg = rax; // Must use rax for cmpxchg instruction |
|
699 const Register obj_reg = c_rarg3; // Will contain the oop |
|
700 |
|
701 const int obj_offset = BasicObjectLock::obj_offset_in_bytes(); |
|
702 const int lock_offset = BasicObjectLock::lock_offset_in_bytes (); |
|
703 const int mark_offset = lock_offset + |
|
704 BasicLock::displaced_header_offset_in_bytes(); |
|
705 |
|
706 Label slow_case; |
|
707 |
|
708 // Load object pointer into obj_reg %c_rarg3 |
|
709 movptr(obj_reg, Address(lock_reg, obj_offset)); |
|
710 |
|
711 if (UseBiasedLocking) { |
|
712 biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case); |
|
713 } |
|
714 |
|
715 // Load immediate 1 into swap_reg %rax |
|
716 movl(swap_reg, 1); |
|
717 |
|
718 // Load (object->mark() | 1) into swap_reg %rax |
|
719 orptr(swap_reg, Address(obj_reg, 0)); |
|
720 |
|
721 // Save (object->mark() | 1) into BasicLock's displaced header |
|
722 movptr(Address(lock_reg, mark_offset), swap_reg); |
|
723 |
|
724 assert(lock_offset == 0, |
|
725 "displached header must be first word in BasicObjectLock"); |
|
726 |
|
727 if (os::is_MP()) lock(); |
|
728 cmpxchgptr(lock_reg, Address(obj_reg, 0)); |
|
729 if (PrintBiasedLockingStatistics) { |
|
730 cond_inc32(Assembler::zero, |
|
731 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); |
|
732 } |
|
733 jcc(Assembler::zero, done); |
|
734 |
|
735 // Test if the oopMark is an obvious stack pointer, i.e., |
|
736 // 1) (mark & 7) == 0, and |
|
737 // 2) rsp <= mark < mark + os::pagesize() |
|
738 // |
|
739 // These 3 tests can be done by evaluating the following |
|
740 // expression: ((mark - rsp) & (7 - os::vm_page_size())), |
|
741 // assuming both stack pointer and pagesize have their |
|
742 // least significant 3 bits clear. |
|
743 // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg |
|
744 subptr(swap_reg, rsp); |
|
745 andptr(swap_reg, 7 - os::vm_page_size()); |
|
746 |
|
747 // Save the test result, for recursive case, the result is zero |
|
748 movptr(Address(lock_reg, mark_offset), swap_reg); |
|
749 |
|
750 if (PrintBiasedLockingStatistics) { |
|
751 cond_inc32(Assembler::zero, |
|
752 ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr())); |
|
753 } |
|
754 jcc(Assembler::zero, done); |
|
755 |
|
756 bind(slow_case); |
|
757 |
|
758 // Call the runtime routine for slow case |
|
759 call_VM(noreg, |
|
760 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), |
|
761 lock_reg); |
|
762 |
|
763 bind(done); |
|
764 } |
|
765 } |
|
766 |
|
767 |
|
768 // Unlocks an object. Used in monitorexit bytecode and |
|
769 // remove_activation. Throws an IllegalMonitorException if object is |
|
770 // not locked by current thread. |
|
771 // |
|
772 // Args: |
|
773 // c_rarg1: BasicObjectLock for lock |
|
774 // |
|
775 // Kills: |
|
776 // rax |
|
777 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) |
|
778 // rscratch1, rscratch2 (scratch regs) |
|
779 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { |
|
780 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); |
|
781 |
|
782 if (UseHeavyMonitors) { |
|
783 call_VM(noreg, |
|
784 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), |
|
785 lock_reg); |
|
786 } else { |
|
787 Label done; |
|
788 |
|
789 const Register swap_reg = rax; // Must use rax for cmpxchg instruction |
|
790 const Register header_reg = c_rarg2; // Will contain the old oopMark |
|
791 const Register obj_reg = c_rarg3; // Will contain the oop |
|
792 |
|
793 save_bcp(); // Save in case of exception |
|
794 |
|
795 // Convert from BasicObjectLock structure to object and BasicLock |
|
796 // structure Store the BasicLock address into %rax |
|
797 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes())); |
|
798 |
|
799 // Load oop into obj_reg(%c_rarg3) |
|
800 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); |
|
801 |
|
802 // Free entry |
|
803 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD); |
|
804 |
|
805 if (UseBiasedLocking) { |
|
806 biased_locking_exit(obj_reg, header_reg, done); |
|
807 } |
|
808 |
|
809 // Load the old header from BasicLock structure |
|
810 movptr(header_reg, Address(swap_reg, |
|
811 BasicLock::displaced_header_offset_in_bytes())); |
|
812 |
|
813 // Test for recursion |
|
814 testptr(header_reg, header_reg); |
|
815 |
|
816 // zero for recursive case |
|
817 jcc(Assembler::zero, done); |
|
818 |
|
819 // Atomic swap back the old header |
|
820 if (os::is_MP()) lock(); |
|
821 cmpxchgptr(header_reg, Address(obj_reg, 0)); |
|
822 |
|
823 // zero for recursive case |
|
824 jcc(Assembler::zero, done); |
|
825 |
|
826 // Call the runtime routine for slow case. |
|
827 movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), |
|
828 obj_reg); // restore obj |
|
829 call_VM(noreg, |
|
830 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), |
|
831 lock_reg); |
|
832 |
|
833 bind(done); |
|
834 |
|
835 restore_bcp(); |
|
836 } |
|
837 } |
|
838 |
|
839 #ifndef CC_INTERP |
|
840 |
|
841 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, |
|
842 Label& zero_continue) { |
|
843 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
844 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); |
|
845 testptr(mdp, mdp); |
|
846 jcc(Assembler::zero, zero_continue); |
|
847 } |
|
848 |
|
849 |
|
850 // Set the method data pointer for the current bcp. |
|
851 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { |
|
852 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
853 Label set_mdp; |
|
854 push(rax); |
|
855 push(rbx); |
|
856 |
|
857 get_method(rbx); |
|
858 // Test MDO to avoid the call if it is NULL. |
|
859 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); |
|
860 testptr(rax, rax); |
|
861 jcc(Assembler::zero, set_mdp); |
|
862 // rbx: method |
|
863 // r13: bcp |
|
864 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13); |
|
865 // rax: mdi |
|
866 // mdo is guaranteed to be non-zero here, we checked for it before the call. |
|
867 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); |
|
868 addptr(rbx, in_bytes(MethodData::data_offset())); |
|
869 addptr(rax, rbx); |
|
870 bind(set_mdp); |
|
871 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); |
|
872 pop(rbx); |
|
873 pop(rax); |
|
874 } |
|
875 |
|
876 void InterpreterMacroAssembler::verify_method_data_pointer() { |
|
877 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
878 #ifdef ASSERT |
|
879 Label verify_continue; |
|
880 push(rax); |
|
881 push(rbx); |
|
882 push(c_rarg3); |
|
883 push(c_rarg2); |
|
884 test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue |
|
885 get_method(rbx); |
|
886 |
|
887 // If the mdp is valid, it will point to a DataLayout header which is |
|
888 // consistent with the bcp. The converse is highly probable also. |
|
889 load_unsigned_short(c_rarg2, |
|
890 Address(c_rarg3, in_bytes(DataLayout::bci_offset()))); |
|
891 addptr(c_rarg2, Address(rbx, Method::const_offset())); |
|
892 lea(c_rarg2, Address(c_rarg2, ConstMethod::codes_offset())); |
|
893 cmpptr(c_rarg2, r13); |
|
894 jcc(Assembler::equal, verify_continue); |
|
895 // rbx: method |
|
896 // r13: bcp |
|
897 // c_rarg3: mdp |
|
898 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), |
|
899 rbx, r13, c_rarg3); |
|
900 bind(verify_continue); |
|
901 pop(c_rarg2); |
|
902 pop(c_rarg3); |
|
903 pop(rbx); |
|
904 pop(rax); |
|
905 #endif // ASSERT |
|
906 } |
|
907 |
|
908 |
|
909 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, |
|
910 int constant, |
|
911 Register value) { |
|
912 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
913 Address data(mdp_in, constant); |
|
914 movptr(data, value); |
|
915 } |
|
916 |
|
917 |
|
918 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, |
|
919 int constant, |
|
920 bool decrement) { |
|
921 // Counter address |
|
922 Address data(mdp_in, constant); |
|
923 |
|
924 increment_mdp_data_at(data, decrement); |
|
925 } |
|
926 |
|
927 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, |
|
928 bool decrement) { |
|
929 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
930 // %%% this does 64bit counters at best it is wasting space |
|
931 // at worst it is a rare bug when counters overflow |
|
932 |
|
933 if (decrement) { |
|
934 // Decrement the register. Set condition codes. |
|
935 addptr(data, (int32_t) -DataLayout::counter_increment); |
|
936 // If the decrement causes the counter to overflow, stay negative |
|
937 Label L; |
|
938 jcc(Assembler::negative, L); |
|
939 addptr(data, (int32_t) DataLayout::counter_increment); |
|
940 bind(L); |
|
941 } else { |
|
942 assert(DataLayout::counter_increment == 1, |
|
943 "flow-free idiom only works with 1"); |
|
944 // Increment the register. Set carry flag. |
|
945 addptr(data, DataLayout::counter_increment); |
|
946 // If the increment causes the counter to overflow, pull back by 1. |
|
947 sbbptr(data, (int32_t)0); |
|
948 } |
|
949 } |
|
950 |
|
951 |
|
952 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, |
|
953 Register reg, |
|
954 int constant, |
|
955 bool decrement) { |
|
956 Address data(mdp_in, reg, Address::times_1, constant); |
|
957 |
|
958 increment_mdp_data_at(data, decrement); |
|
959 } |
|
960 |
|
961 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, |
|
962 int flag_byte_constant) { |
|
963 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
964 int header_offset = in_bytes(DataLayout::header_offset()); |
|
965 int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant); |
|
966 // Set the flag |
|
967 orl(Address(mdp_in, header_offset), header_bits); |
|
968 } |
|
969 |
|
970 |
|
971 |
|
972 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, |
|
973 int offset, |
|
974 Register value, |
|
975 Register test_value_out, |
|
976 Label& not_equal_continue) { |
|
977 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
978 if (test_value_out == noreg) { |
|
979 cmpptr(value, Address(mdp_in, offset)); |
|
980 } else { |
|
981 // Put the test value into a register, so caller can use it: |
|
982 movptr(test_value_out, Address(mdp_in, offset)); |
|
983 cmpptr(test_value_out, value); |
|
984 } |
|
985 jcc(Assembler::notEqual, not_equal_continue); |
|
986 } |
|
987 |
|
988 |
|
989 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, |
|
990 int offset_of_disp) { |
|
991 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
992 Address disp_address(mdp_in, offset_of_disp); |
|
993 addptr(mdp_in, disp_address); |
|
994 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); |
|
995 } |
|
996 |
|
997 |
|
998 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, |
|
999 Register reg, |
|
1000 int offset_of_disp) { |
|
1001 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1002 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); |
|
1003 addptr(mdp_in, disp_address); |
|
1004 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); |
|
1005 } |
|
1006 |
|
1007 |
|
1008 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, |
|
1009 int constant) { |
|
1010 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1011 addptr(mdp_in, constant); |
|
1012 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); |
|
1013 } |
|
1014 |
|
1015 |
|
1016 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { |
|
1017 assert(ProfileInterpreter, "must be profiling interpreter"); |
|
1018 push(return_bci); // save/restore across call_VM |
|
1019 call_VM(noreg, |
|
1020 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), |
|
1021 return_bci); |
|
1022 pop(return_bci); |
|
1023 } |
|
1024 |
|
1025 |
|
1026 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, |
|
1027 Register bumped_count) { |
|
1028 if (ProfileInterpreter) { |
|
1029 Label profile_continue; |
|
1030 |
|
1031 // If no method data exists, go to profile_continue. |
|
1032 // Otherwise, assign to mdp |
|
1033 test_method_data_pointer(mdp, profile_continue); |
|
1034 |
|
1035 // We are taking a branch. Increment the taken count. |
|
1036 // We inline increment_mdp_data_at to return bumped_count in a register |
|
1037 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); |
|
1038 Address data(mdp, in_bytes(JumpData::taken_offset())); |
|
1039 movptr(bumped_count, data); |
|
1040 assert(DataLayout::counter_increment == 1, |
|
1041 "flow-free idiom only works with 1"); |
|
1042 addptr(bumped_count, DataLayout::counter_increment); |
|
1043 sbbptr(bumped_count, 0); |
|
1044 movptr(data, bumped_count); // Store back out |
|
1045 |
|
1046 // The method data pointer needs to be updated to reflect the new target. |
|
1047 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); |
|
1048 bind(profile_continue); |
|
1049 } |
|
1050 } |
|
1051 |
|
1052 |
|
1053 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { |
|
1054 if (ProfileInterpreter) { |
|
1055 Label profile_continue; |
|
1056 |
|
1057 // If no method data exists, go to profile_continue. |
|
1058 test_method_data_pointer(mdp, profile_continue); |
|
1059 |
|
1060 // We are taking a branch. Increment the not taken count. |
|
1061 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); |
|
1062 |
|
1063 // The method data pointer needs to be updated to correspond to |
|
1064 // the next bytecode |
|
1065 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); |
|
1066 bind(profile_continue); |
|
1067 } |
|
1068 } |
|
1069 |
|
1070 void InterpreterMacroAssembler::profile_call(Register mdp) { |
|
1071 if (ProfileInterpreter) { |
|
1072 Label profile_continue; |
|
1073 |
|
1074 // If no method data exists, go to profile_continue. |
|
1075 test_method_data_pointer(mdp, profile_continue); |
|
1076 |
|
1077 // We are making a call. Increment the count. |
|
1078 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1079 |
|
1080 // The method data pointer needs to be updated to reflect the new target. |
|
1081 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); |
|
1082 bind(profile_continue); |
|
1083 } |
|
1084 } |
|
1085 |
|
1086 |
|
1087 void InterpreterMacroAssembler::profile_final_call(Register mdp) { |
|
1088 if (ProfileInterpreter) { |
|
1089 Label profile_continue; |
|
1090 |
|
1091 // If no method data exists, go to profile_continue. |
|
1092 test_method_data_pointer(mdp, profile_continue); |
|
1093 |
|
1094 // We are making a call. Increment the count. |
|
1095 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1096 |
|
1097 // The method data pointer needs to be updated to reflect the new target. |
|
1098 update_mdp_by_constant(mdp, |
|
1099 in_bytes(VirtualCallData:: |
|
1100 virtual_call_data_size())); |
|
1101 bind(profile_continue); |
|
1102 } |
|
1103 } |
|
1104 |
|
1105 |
|
1106 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, |
|
1107 Register mdp, |
|
1108 Register reg2, |
|
1109 bool receiver_can_be_null) { |
|
1110 if (ProfileInterpreter) { |
|
1111 Label profile_continue; |
|
1112 |
|
1113 // If no method data exists, go to profile_continue. |
|
1114 test_method_data_pointer(mdp, profile_continue); |
|
1115 |
|
1116 Label skip_receiver_profile; |
|
1117 if (receiver_can_be_null) { |
|
1118 Label not_null; |
|
1119 testptr(receiver, receiver); |
|
1120 jccb(Assembler::notZero, not_null); |
|
1121 // We are making a call. Increment the count for null receiver. |
|
1122 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1123 jmp(skip_receiver_profile); |
|
1124 bind(not_null); |
|
1125 } |
|
1126 |
|
1127 // Record the receiver type. |
|
1128 record_klass_in_profile(receiver, mdp, reg2, true); |
|
1129 bind(skip_receiver_profile); |
|
1130 |
|
1131 // The method data pointer needs to be updated to reflect the new target. |
|
1132 update_mdp_by_constant(mdp, |
|
1133 in_bytes(VirtualCallData:: |
|
1134 virtual_call_data_size())); |
|
1135 bind(profile_continue); |
|
1136 } |
|
1137 } |
|
1138 |
|
1139 // This routine creates a state machine for updating the multi-row |
|
1140 // type profile at a virtual call site (or other type-sensitive bytecode). |
|
1141 // The machine visits each row (of receiver/count) until the receiver type |
|
1142 // is found, or until it runs out of rows. At the same time, it remembers |
|
1143 // the location of the first empty row. (An empty row records null for its |
|
1144 // receiver, and can be allocated for a newly-observed receiver type.) |
|
1145 // Because there are two degrees of freedom in the state, a simple linear |
|
1146 // search will not work; it must be a decision tree. Hence this helper |
|
1147 // function is recursive, to generate the required tree structured code. |
|
1148 // It's the interpreter, so we are trading off code space for speed. |
|
1149 // See below for example code. |
|
1150 void InterpreterMacroAssembler::record_klass_in_profile_helper( |
|
1151 Register receiver, Register mdp, |
|
1152 Register reg2, int start_row, |
|
1153 Label& done, bool is_virtual_call) { |
|
1154 if (TypeProfileWidth == 0) { |
|
1155 if (is_virtual_call) { |
|
1156 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1157 } |
|
1158 return; |
|
1159 } |
|
1160 |
|
1161 int last_row = VirtualCallData::row_limit() - 1; |
|
1162 assert(start_row <= last_row, "must be work left to do"); |
|
1163 // Test this row for both the receiver and for null. |
|
1164 // Take any of three different outcomes: |
|
1165 // 1. found receiver => increment count and goto done |
|
1166 // 2. found null => keep looking for case 1, maybe allocate this cell |
|
1167 // 3. found something else => keep looking for cases 1 and 2 |
|
1168 // Case 3 is handled by a recursive call. |
|
1169 for (int row = start_row; row <= last_row; row++) { |
|
1170 Label next_test; |
|
1171 bool test_for_null_also = (row == start_row); |
|
1172 |
|
1173 // See if the receiver is receiver[n]. |
|
1174 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); |
|
1175 test_mdp_data_at(mdp, recvr_offset, receiver, |
|
1176 (test_for_null_also ? reg2 : noreg), |
|
1177 next_test); |
|
1178 // (Reg2 now contains the receiver from the CallData.) |
|
1179 |
|
1180 // The receiver is receiver[n]. Increment count[n]. |
|
1181 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); |
|
1182 increment_mdp_data_at(mdp, count_offset); |
|
1183 jmp(done); |
|
1184 bind(next_test); |
|
1185 |
|
1186 if (test_for_null_also) { |
|
1187 Label found_null; |
|
1188 // Failed the equality check on receiver[n]... Test for null. |
|
1189 testptr(reg2, reg2); |
|
1190 if (start_row == last_row) { |
|
1191 // The only thing left to do is handle the null case. |
|
1192 if (is_virtual_call) { |
|
1193 jccb(Assembler::zero, found_null); |
|
1194 // Receiver did not match any saved receiver and there is no empty row for it. |
|
1195 // Increment total counter to indicate polymorphic case. |
|
1196 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1197 jmp(done); |
|
1198 bind(found_null); |
|
1199 } else { |
|
1200 jcc(Assembler::notZero, done); |
|
1201 } |
|
1202 break; |
|
1203 } |
|
1204 // Since null is rare, make it be the branch-taken case. |
|
1205 jcc(Assembler::zero, found_null); |
|
1206 |
|
1207 // Put all the "Case 3" tests here. |
|
1208 record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call); |
|
1209 |
|
1210 // Found a null. Keep searching for a matching receiver, |
|
1211 // but remember that this is an empty (unused) slot. |
|
1212 bind(found_null); |
|
1213 } |
|
1214 } |
|
1215 |
|
1216 // In the fall-through case, we found no matching receiver, but we |
|
1217 // observed the receiver[start_row] is NULL. |
|
1218 |
|
1219 // Fill in the receiver field and increment the count. |
|
1220 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); |
|
1221 set_mdp_data_at(mdp, recvr_offset, receiver); |
|
1222 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); |
|
1223 movl(reg2, DataLayout::counter_increment); |
|
1224 set_mdp_data_at(mdp, count_offset, reg2); |
|
1225 if (start_row > 0) { |
|
1226 jmp(done); |
|
1227 } |
|
1228 } |
|
1229 |
|
1230 // Example state machine code for three profile rows: |
|
1231 // // main copy of decision tree, rooted at row[1] |
|
1232 // if (row[0].rec == rec) { row[0].incr(); goto done; } |
|
1233 // if (row[0].rec != NULL) { |
|
1234 // // inner copy of decision tree, rooted at row[1] |
|
1235 // if (row[1].rec == rec) { row[1].incr(); goto done; } |
|
1236 // if (row[1].rec != NULL) { |
|
1237 // // degenerate decision tree, rooted at row[2] |
|
1238 // if (row[2].rec == rec) { row[2].incr(); goto done; } |
|
1239 // if (row[2].rec != NULL) { count.incr(); goto done; } // overflow |
|
1240 // row[2].init(rec); goto done; |
|
1241 // } else { |
|
1242 // // remember row[1] is empty |
|
1243 // if (row[2].rec == rec) { row[2].incr(); goto done; } |
|
1244 // row[1].init(rec); goto done; |
|
1245 // } |
|
1246 // } else { |
|
1247 // // remember row[0] is empty |
|
1248 // if (row[1].rec == rec) { row[1].incr(); goto done; } |
|
1249 // if (row[2].rec == rec) { row[2].incr(); goto done; } |
|
1250 // row[0].init(rec); goto done; |
|
1251 // } |
|
1252 // done: |
|
1253 |
|
1254 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, |
|
1255 Register mdp, Register reg2, |
|
1256 bool is_virtual_call) { |
|
1257 assert(ProfileInterpreter, "must be profiling"); |
|
1258 Label done; |
|
1259 |
|
1260 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); |
|
1261 |
|
1262 bind (done); |
|
1263 } |
|
1264 |
|
1265 void InterpreterMacroAssembler::profile_ret(Register return_bci, |
|
1266 Register mdp) { |
|
1267 if (ProfileInterpreter) { |
|
1268 Label profile_continue; |
|
1269 uint row; |
|
1270 |
|
1271 // If no method data exists, go to profile_continue. |
|
1272 test_method_data_pointer(mdp, profile_continue); |
|
1273 |
|
1274 // Update the total ret count. |
|
1275 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); |
|
1276 |
|
1277 for (row = 0; row < RetData::row_limit(); row++) { |
|
1278 Label next_test; |
|
1279 |
|
1280 // See if return_bci is equal to bci[n]: |
|
1281 test_mdp_data_at(mdp, |
|
1282 in_bytes(RetData::bci_offset(row)), |
|
1283 return_bci, noreg, |
|
1284 next_test); |
|
1285 |
|
1286 // return_bci is equal to bci[n]. Increment the count. |
|
1287 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); |
|
1288 |
|
1289 // The method data pointer needs to be updated to reflect the new target. |
|
1290 update_mdp_by_offset(mdp, |
|
1291 in_bytes(RetData::bci_displacement_offset(row))); |
|
1292 jmp(profile_continue); |
|
1293 bind(next_test); |
|
1294 } |
|
1295 |
|
1296 update_mdp_for_ret(return_bci); |
|
1297 |
|
1298 bind(profile_continue); |
|
1299 } |
|
1300 } |
|
1301 |
|
1302 |
|
1303 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { |
|
1304 if (ProfileInterpreter) { |
|
1305 Label profile_continue; |
|
1306 |
|
1307 // If no method data exists, go to profile_continue. |
|
1308 test_method_data_pointer(mdp, profile_continue); |
|
1309 |
|
1310 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); |
|
1311 |
|
1312 // The method data pointer needs to be updated. |
|
1313 int mdp_delta = in_bytes(BitData::bit_data_size()); |
|
1314 if (TypeProfileCasts) { |
|
1315 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); |
|
1316 } |
|
1317 update_mdp_by_constant(mdp, mdp_delta); |
|
1318 |
|
1319 bind(profile_continue); |
|
1320 } |
|
1321 } |
|
1322 |
|
1323 |
|
1324 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { |
|
1325 if (ProfileInterpreter && TypeProfileCasts) { |
|
1326 Label profile_continue; |
|
1327 |
|
1328 // If no method data exists, go to profile_continue. |
|
1329 test_method_data_pointer(mdp, profile_continue); |
|
1330 |
|
1331 int count_offset = in_bytes(CounterData::count_offset()); |
|
1332 // Back up the address, since we have already bumped the mdp. |
|
1333 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); |
|
1334 |
|
1335 // *Decrement* the counter. We expect to see zero or small negatives. |
|
1336 increment_mdp_data_at(mdp, count_offset, true); |
|
1337 |
|
1338 bind (profile_continue); |
|
1339 } |
|
1340 } |
|
1341 |
|
1342 |
|
1343 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { |
|
1344 if (ProfileInterpreter) { |
|
1345 Label profile_continue; |
|
1346 |
|
1347 // If no method data exists, go to profile_continue. |
|
1348 test_method_data_pointer(mdp, profile_continue); |
|
1349 |
|
1350 // The method data pointer needs to be updated. |
|
1351 int mdp_delta = in_bytes(BitData::bit_data_size()); |
|
1352 if (TypeProfileCasts) { |
|
1353 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); |
|
1354 |
|
1355 // Record the object type. |
|
1356 record_klass_in_profile(klass, mdp, reg2, false); |
|
1357 } |
|
1358 update_mdp_by_constant(mdp, mdp_delta); |
|
1359 |
|
1360 bind(profile_continue); |
|
1361 } |
|
1362 } |
|
1363 |
|
1364 |
|
1365 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { |
|
1366 if (ProfileInterpreter) { |
|
1367 Label profile_continue; |
|
1368 |
|
1369 // If no method data exists, go to profile_continue. |
|
1370 test_method_data_pointer(mdp, profile_continue); |
|
1371 |
|
1372 // Update the default case count |
|
1373 increment_mdp_data_at(mdp, |
|
1374 in_bytes(MultiBranchData::default_count_offset())); |
|
1375 |
|
1376 // The method data pointer needs to be updated. |
|
1377 update_mdp_by_offset(mdp, |
|
1378 in_bytes(MultiBranchData:: |
|
1379 default_displacement_offset())); |
|
1380 |
|
1381 bind(profile_continue); |
|
1382 } |
|
1383 } |
|
1384 |
|
1385 |
|
1386 void InterpreterMacroAssembler::profile_switch_case(Register index, |
|
1387 Register mdp, |
|
1388 Register reg2) { |
|
1389 if (ProfileInterpreter) { |
|
1390 Label profile_continue; |
|
1391 |
|
1392 // If no method data exists, go to profile_continue. |
|
1393 test_method_data_pointer(mdp, profile_continue); |
|
1394 |
|
1395 // Build the base (index * per_case_size_in_bytes()) + |
|
1396 // case_array_offset_in_bytes() |
|
1397 movl(reg2, in_bytes(MultiBranchData::per_case_size())); |
|
1398 imulptr(index, reg2); // XXX l ? |
|
1399 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? |
|
1400 |
|
1401 // Update the case count |
|
1402 increment_mdp_data_at(mdp, |
|
1403 index, |
|
1404 in_bytes(MultiBranchData::relative_count_offset())); |
|
1405 |
|
1406 // The method data pointer needs to be updated. |
|
1407 update_mdp_by_offset(mdp, |
|
1408 index, |
|
1409 in_bytes(MultiBranchData:: |
|
1410 relative_displacement_offset())); |
|
1411 |
|
1412 bind(profile_continue); |
|
1413 } |
|
1414 } |
|
1415 |
|
1416 |
|
1417 |
|
1418 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { |
|
1419 if (state == atos) { |
|
1420 MacroAssembler::verify_oop(reg); |
|
1421 } |
|
1422 } |
|
1423 |
|
1424 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { |
|
1425 } |
|
1426 |
|
1427 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. |
|
1428 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, |
|
1429 int increment, Address mask, |
|
1430 Register scratch, bool preloaded, |
|
1431 Condition cond, Label* where) { |
|
1432 if (!preloaded) { |
|
1433 movl(scratch, counter_addr); |
|
1434 } |
|
1435 incrementl(scratch, increment); |
|
1436 movl(counter_addr, scratch); |
|
1437 andl(scratch, mask); |
|
1438 jcc(cond, *where); |
|
1439 } |
|
1440 #endif // !CC_INTERP |
|
1441 |
|
1442 |
|
1443 void InterpreterMacroAssembler::notify_method_entry() { |
|
1444 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to |
|
1445 // track stack depth. If it is possible to enter interp_only_mode we add |
|
1446 // the code to check if the event should be sent. |
|
1447 if (JvmtiExport::can_post_interpreter_events()) { |
|
1448 Label L; |
|
1449 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset())); |
|
1450 testl(rdx, rdx); |
|
1451 jcc(Assembler::zero, L); |
|
1452 call_VM(noreg, CAST_FROM_FN_PTR(address, |
|
1453 InterpreterRuntime::post_method_entry)); |
|
1454 bind(L); |
|
1455 } |
|
1456 |
|
1457 { |
|
1458 SkipIfEqual skip(this, &DTraceMethodProbes, false); |
|
1459 get_method(c_rarg1); |
|
1460 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), |
|
1461 r15_thread, c_rarg1); |
|
1462 } |
|
1463 |
|
1464 // RedefineClasses() tracing support for obsolete method entry |
|
1465 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) { |
|
1466 get_method(c_rarg1); |
|
1467 call_VM_leaf( |
|
1468 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), |
|
1469 r15_thread, c_rarg1); |
|
1470 } |
|
1471 } |
|
1472 |
|
1473 |
|
1474 void InterpreterMacroAssembler::notify_method_exit( |
|
1475 TosState state, NotifyMethodExitMode mode) { |
|
1476 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to |
|
1477 // track stack depth. If it is possible to enter interp_only_mode we add |
|
1478 // the code to check if the event should be sent. |
|
1479 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { |
|
1480 Label L; |
|
1481 // Note: frame::interpreter_frame_result has a dependency on how the |
|
1482 // method result is saved across the call to post_method_exit. If this |
|
1483 // is changed then the interpreter_frame_result implementation will |
|
1484 // need to be updated too. |
|
1485 |
|
1486 // For c++ interpreter the result is always stored at a known location in the frame |
|
1487 // template interpreter will leave it on the top of the stack. |
|
1488 NOT_CC_INTERP(push(state);) |
|
1489 movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset())); |
|
1490 testl(rdx, rdx); |
|
1491 jcc(Assembler::zero, L); |
|
1492 call_VM(noreg, |
|
1493 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); |
|
1494 bind(L); |
|
1495 NOT_CC_INTERP(pop(state)); |
|
1496 } |
|
1497 |
|
1498 { |
|
1499 SkipIfEqual skip(this, &DTraceMethodProbes, false); |
|
1500 NOT_CC_INTERP(push(state)); |
|
1501 get_method(c_rarg1); |
|
1502 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), |
|
1503 r15_thread, c_rarg1); |
|
1504 NOT_CC_INTERP(pop(state)); |
|
1505 } |
|
1506 } |
|
1507 |
|