hotspot/src/share/vm/gc_implementation/g1/ptrQueue.hpp
changeset 4481 de92ec484f5e
parent 2154 72a9b7284ccf
child 5082 19e725a3d2eb
equal deleted inserted replaced
4474:faa140ac71cd 4481:de92ec484f5e
    25 // There are various techniques that require threads to be able to log
    25 // There are various techniques that require threads to be able to log
    26 // addresses.  For example, a generational write barrier might log
    26 // addresses.  For example, a generational write barrier might log
    27 // the addresses of modified old-generation objects.  This type supports
    27 // the addresses of modified old-generation objects.  This type supports
    28 // this operation.
    28 // this operation.
    29 
    29 
       
    30 // The definition of placement operator new(size_t, void*) in the <new>.
       
    31 #include <new>
       
    32 
    30 class PtrQueueSet;
    33 class PtrQueueSet;
    31 
       
    32 class PtrQueue VALUE_OBJ_CLASS_SPEC {
    34 class PtrQueue VALUE_OBJ_CLASS_SPEC {
    33 
    35 
    34 protected:
    36 protected:
    35   // The ptr queue set to which this queue belongs.
    37   // The ptr queue set to which this queue belongs.
    36   PtrQueueSet* _qset;
    38   PtrQueueSet* _qset;
    75   void enqueue(void* ptr) {
    77   void enqueue(void* ptr) {
    76     if (!_active) return;
    78     if (!_active) return;
    77     else enqueue_known_active(ptr);
    79     else enqueue_known_active(ptr);
    78   }
    80   }
    79 
    81 
    80   inline void handle_zero_index();
    82   void handle_zero_index();
    81   void locking_enqueue_completed_buffer(void** buf);
    83   void locking_enqueue_completed_buffer(void** buf);
    82 
    84 
    83   void enqueue_known_active(void* ptr);
    85   void enqueue_known_active(void* ptr);
    84 
    86 
    85   size_t size() {
    87   size_t size() {
   124   }
   126   }
   125   static ByteSize byte_width_of_active() { return in_ByteSize(sizeof(bool)); }
   127   static ByteSize byte_width_of_active() { return in_ByteSize(sizeof(bool)); }
   126 
   128 
   127 };
   129 };
   128 
   130 
       
   131 class BufferNode {
       
   132   size_t _index;
       
   133   BufferNode* _next;
       
   134 public:
       
   135   BufferNode() : _index(0), _next(NULL) { }
       
   136   BufferNode* next() const     { return _next;  }
       
   137   void set_next(BufferNode* n) { _next = n;     }
       
   138   size_t index() const         { return _index; }
       
   139   void set_index(size_t i)     { _index = i;    }
       
   140 
       
   141   // Align the size of the structure to the size of the pointer
       
   142   static size_t aligned_size() {
       
   143     static const size_t alignment = round_to(sizeof(BufferNode), sizeof(void*));
       
   144     return alignment;
       
   145   }
       
   146 
       
   147   // BufferNode is allocated before the buffer.
       
   148   // The chunk of memory that holds both of them is a block.
       
   149 
       
   150   // Produce a new BufferNode given a buffer.
       
   151   static BufferNode* new_from_buffer(void** buf) {
       
   152     return new (make_block_from_buffer(buf)) BufferNode;
       
   153   }
       
   154 
       
   155   // The following are the required conversion routines:
       
   156   static BufferNode* make_node_from_buffer(void** buf) {
       
   157     return (BufferNode*)make_block_from_buffer(buf);
       
   158   }
       
   159   static void** make_buffer_from_node(BufferNode *node) {
       
   160     return make_buffer_from_block(node);
       
   161   }
       
   162   static void* make_block_from_node(BufferNode *node) {
       
   163     return (void*)node;
       
   164   }
       
   165   static void** make_buffer_from_block(void* p) {
       
   166     return (void**)((char*)p + aligned_size());
       
   167   }
       
   168   static void* make_block_from_buffer(void** p) {
       
   169     return (void*)((char*)p - aligned_size());
       
   170   }
       
   171 };
       
   172 
   129 // A PtrQueueSet represents resources common to a set of pointer queues.
   173 // A PtrQueueSet represents resources common to a set of pointer queues.
   130 // In particular, the individual queues allocate buffers from this shared
   174 // In particular, the individual queues allocate buffers from this shared
   131 // set, and return completed buffers to the set.
   175 // set, and return completed buffers to the set.
   132 // All these variables are are protected by the TLOQ_CBL_mon. XXX ???
   176 // All these variables are are protected by the TLOQ_CBL_mon. XXX ???
   133 class PtrQueueSet VALUE_OBJ_CLASS_SPEC {
   177 class PtrQueueSet VALUE_OBJ_CLASS_SPEC {
   134 
       
   135 protected:
   178 protected:
   136 
       
   137   class CompletedBufferNode: public CHeapObj {
       
   138   public:
       
   139     void** buf;
       
   140     size_t index;
       
   141     CompletedBufferNode* next;
       
   142     CompletedBufferNode() : buf(NULL),
       
   143       index(0), next(NULL){ }
       
   144   };
       
   145 
       
   146   Monitor* _cbl_mon;  // Protects the fields below.
   179   Monitor* _cbl_mon;  // Protects the fields below.
   147   CompletedBufferNode* _completed_buffers_head;
   180   BufferNode* _completed_buffers_head;
   148   CompletedBufferNode* _completed_buffers_tail;
   181   BufferNode* _completed_buffers_tail;
   149   size_t _n_completed_buffers;
   182   int _n_completed_buffers;
   150   size_t _process_completed_threshold;
   183   int _process_completed_threshold;
   151   volatile bool _process_completed;
   184   volatile bool _process_completed;
   152 
   185 
   153   // This (and the interpretation of the first element as a "next"
   186   // This (and the interpretation of the first element as a "next"
   154   // pointer) are protected by the TLOQ_FL_lock.
   187   // pointer) are protected by the TLOQ_FL_lock.
   155   Mutex* _fl_lock;
   188   Mutex* _fl_lock;
   156   void** _buf_free_list;
   189   BufferNode* _buf_free_list;
   157   size_t _buf_free_list_sz;
   190   size_t _buf_free_list_sz;
   158   // Queue set can share a freelist. The _fl_owner variable
   191   // Queue set can share a freelist. The _fl_owner variable
   159   // specifies the owner. It is set to "this" by default.
   192   // specifies the owner. It is set to "this" by default.
   160   PtrQueueSet* _fl_owner;
   193   PtrQueueSet* _fl_owner;
   161 
   194 
   168   bool _notify_when_complete;
   201   bool _notify_when_complete;
   169 
   202 
   170   // Maximum number of elements allowed on completed queue: after that,
   203   // Maximum number of elements allowed on completed queue: after that,
   171   // enqueuer does the work itself.  Zero indicates no maximum.
   204   // enqueuer does the work itself.  Zero indicates no maximum.
   172   int _max_completed_queue;
   205   int _max_completed_queue;
       
   206   int _completed_queue_padding;
   173 
   207 
   174   int completed_buffers_list_length();
   208   int completed_buffers_list_length();
   175   void assert_completed_buffer_list_len_correct_locked();
   209   void assert_completed_buffer_list_len_correct_locked();
   176   void assert_completed_buffer_list_len_correct();
   210   void assert_completed_buffer_list_len_correct();
   177 
   211 
   189   PtrQueueSet(bool notify_when_complete = false);
   223   PtrQueueSet(bool notify_when_complete = false);
   190 
   224 
   191   // Because of init-order concerns, we can't pass these as constructor
   225   // Because of init-order concerns, we can't pass these as constructor
   192   // arguments.
   226   // arguments.
   193   void initialize(Monitor* cbl_mon, Mutex* fl_lock,
   227   void initialize(Monitor* cbl_mon, Mutex* fl_lock,
   194                   int max_completed_queue = 0,
   228                   int process_completed_threshold,
       
   229                   int max_completed_queue,
   195                   PtrQueueSet *fl_owner = NULL) {
   230                   PtrQueueSet *fl_owner = NULL) {
   196     _max_completed_queue = max_completed_queue;
   231     _max_completed_queue = max_completed_queue;
       
   232     _process_completed_threshold = process_completed_threshold;
       
   233     _completed_queue_padding = 0;
   197     assert(cbl_mon != NULL && fl_lock != NULL, "Init order issue?");
   234     assert(cbl_mon != NULL && fl_lock != NULL, "Init order issue?");
   198     _cbl_mon = cbl_mon;
   235     _cbl_mon = cbl_mon;
   199     _fl_lock = fl_lock;
   236     _fl_lock = fl_lock;
   200     _fl_owner = (fl_owner != NULL) ? fl_owner : this;
   237     _fl_owner = (fl_owner != NULL) ? fl_owner : this;
   201   }
   238   }
   206   // Return an empty buffer to the free list.  The "buf" argument is
   243   // Return an empty buffer to the free list.  The "buf" argument is
   207   // required to be a pointer to the head of an array of length "_sz".
   244   // required to be a pointer to the head of an array of length "_sz".
   208   void deallocate_buffer(void** buf);
   245   void deallocate_buffer(void** buf);
   209 
   246 
   210   // Declares that "buf" is a complete buffer.
   247   // Declares that "buf" is a complete buffer.
   211   void enqueue_complete_buffer(void** buf, size_t index = 0,
   248   void enqueue_complete_buffer(void** buf, size_t index = 0);
   212                                bool ignore_max_completed = false);
   249 
       
   250   // To be invoked by the mutator.
       
   251   bool process_or_enqueue_complete_buffer(void** buf);
   213 
   252 
   214   bool completed_buffers_exist_dirty() {
   253   bool completed_buffers_exist_dirty() {
   215     return _n_completed_buffers > 0;
   254     return _n_completed_buffers > 0;
   216   }
   255   }
   217 
   256 
   218   bool process_completed_buffers() { return _process_completed; }
   257   bool process_completed_buffers() { return _process_completed; }
       
   258   void set_process_completed(bool x) { _process_completed = x; }
   219 
   259 
   220   bool active() { return _all_active; }
   260   bool active() { return _all_active; }
   221 
   261 
   222   // Set the buffer size.  Should be called before any "enqueue" operation
   262   // Set the buffer size.  Should be called before any "enqueue" operation
   223   // can be called.  And should only be called once.
   263   // can be called.  And should only be called once.
   224   void set_buffer_size(size_t sz);
   264   void set_buffer_size(size_t sz);
   225 
   265 
   226   // Get the buffer size.
   266   // Get the buffer size.
   227   size_t buffer_size() { return _sz; }
   267   size_t buffer_size() { return _sz; }
   228 
   268 
   229   // Set the number of completed buffers that triggers log processing.
   269   // Get/Set the number of completed buffers that triggers log processing.
   230   void set_process_completed_threshold(size_t sz);
   270   void set_process_completed_threshold(int sz) { _process_completed_threshold = sz; }
       
   271   int process_completed_threshold() const { return _process_completed_threshold; }
   231 
   272 
   232   // Must only be called at a safe point.  Indicates that the buffer free
   273   // Must only be called at a safe point.  Indicates that the buffer free
   233   // list size may be reduced, if that is deemed desirable.
   274   // list size may be reduced, if that is deemed desirable.
   234   void reduce_free_list();
   275   void reduce_free_list();
   235 
   276 
   236   size_t completed_buffers_num() { return _n_completed_buffers; }
   277   int completed_buffers_num() { return _n_completed_buffers; }
   237 
   278 
   238   void merge_bufferlists(PtrQueueSet* src);
   279   void merge_bufferlists(PtrQueueSet* src);
   239   void merge_freelists(PtrQueueSet* src);
   280 
       
   281   void set_max_completed_queue(int m) { _max_completed_queue = m; }
       
   282   int max_completed_queue() { return _max_completed_queue; }
       
   283 
       
   284   void set_completed_queue_padding(int padding) { _completed_queue_padding = padding; }
       
   285   int completed_queue_padding() { return _completed_queue_padding; }
       
   286 
       
   287   // Notify the consumer if the number of buffers crossed the threshold
       
   288   void notify_if_necessary();
   240 };
   289 };