|
1 /* |
|
2 * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Oracle designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Oracle in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
22 * or visit www.oracle.com if you need additional information or have any |
|
23 * questions. |
|
24 */ |
|
25 |
|
26 /* |
|
27 * |
|
28 * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved |
|
29 * (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved |
|
30 * |
|
31 * The original version of this source code and documentation |
|
32 * is copyrighted and owned by Taligent, Inc., a wholly-owned |
|
33 * subsidiary of IBM. These materials are provided under terms |
|
34 * of a License Agreement between Taligent and Sun. This technology |
|
35 * is protected by multiple US and International patents. |
|
36 * |
|
37 * This notice and attribution to Taligent may not be removed. |
|
38 * Taligent is a registered trademark of Taligent, Inc. |
|
39 */ |
|
40 package sun.util.locale.provider; |
|
41 |
|
42 import java.io.BufferedInputStream; |
|
43 import java.io.IOException; |
|
44 import java.security.AccessController; |
|
45 import java.security.PrivilegedActionException; |
|
46 import java.security.PrivilegedExceptionAction; |
|
47 import java.util.MissingResourceException; |
|
48 import sun.text.CompactByteArray; |
|
49 import sun.text.SupplementaryCharacterData; |
|
50 |
|
51 /** |
|
52 * This is the class that represents the list of known words used by |
|
53 * DictionaryBasedBreakIterator. The conceptual data structure used |
|
54 * here is a trie: there is a node hanging off the root node for every |
|
55 * letter that can start a word. Each of these nodes has a node hanging |
|
56 * off of it for every letter that can be the second letter of a word |
|
57 * if this node is the first letter, and so on. The trie is represented |
|
58 * as a two-dimensional array that can be treated as a table of state |
|
59 * transitions. Indexes are used to compress this array, taking |
|
60 * advantage of the fact that this array will always be very sparse. |
|
61 */ |
|
62 class BreakDictionary { |
|
63 |
|
64 //========================================================================= |
|
65 // data members |
|
66 //========================================================================= |
|
67 |
|
68 /** |
|
69 * The version of the dictionary that was read in. |
|
70 */ |
|
71 private static int supportedVersion = 1; |
|
72 |
|
73 /** |
|
74 * Maps from characters to column numbers. The main use of this is to |
|
75 * avoid making room in the array for empty columns. |
|
76 */ |
|
77 private CompactByteArray columnMap = null; |
|
78 private SupplementaryCharacterData supplementaryCharColumnMap = null; |
|
79 |
|
80 /** |
|
81 * The number of actual columns in the table |
|
82 */ |
|
83 private int numCols; |
|
84 |
|
85 /** |
|
86 * Columns are organized into groups of 32. This says how many |
|
87 * column groups. (We could calculate this, but we store the |
|
88 * value to avoid having to repeatedly calculate it.) |
|
89 */ |
|
90 private int numColGroups; |
|
91 |
|
92 /** |
|
93 * The actual compressed state table. Each conceptual row represents |
|
94 * a state, and the cells in it contain the row numbers of the states |
|
95 * to transition to for each possible letter. 0 is used to indicate |
|
96 * an illegal combination of letters (i.e., the error state). The |
|
97 * table is compressed by eliminating all the unpopulated (i.e., zero) |
|
98 * cells. Multiple conceptual rows can then be doubled up in a single |
|
99 * physical row by sliding them up and possibly shifting them to one |
|
100 * side or the other so the populated cells don't collide. Indexes |
|
101 * are used to identify unpopulated cells and to locate populated cells. |
|
102 */ |
|
103 private short[] table = null; |
|
104 |
|
105 /** |
|
106 * This index maps logical row numbers to physical row numbers |
|
107 */ |
|
108 private short[] rowIndex = null; |
|
109 |
|
110 /** |
|
111 * A bitmap is used to tell which cells in the comceptual table are |
|
112 * populated. This array contains all the unique bit combinations |
|
113 * in that bitmap. If the table is more than 32 columns wide, |
|
114 * successive entries in this array are used for a single row. |
|
115 */ |
|
116 private int[] rowIndexFlags = null; |
|
117 |
|
118 /** |
|
119 * This index maps from a logical row number into the bitmap table above. |
|
120 * (This keeps us from storing duplicate bitmap combinations.) Since there |
|
121 * are a lot of rows with only one populated cell, instead of wasting space |
|
122 * in the bitmap table, we just store a negative number in this index for |
|
123 * rows with one populated cell. The absolute value of that number is |
|
124 * the column number of the populated cell. |
|
125 */ |
|
126 private short[] rowIndexFlagsIndex = null; |
|
127 |
|
128 /** |
|
129 * For each logical row, this index contains a constant that is added to |
|
130 * the logical column number to get the physical column number |
|
131 */ |
|
132 private byte[] rowIndexShifts = null; |
|
133 |
|
134 //========================================================================= |
|
135 // deserialization |
|
136 //========================================================================= |
|
137 |
|
138 BreakDictionary(String dictionaryName) |
|
139 throws IOException, MissingResourceException { |
|
140 |
|
141 readDictionaryFile(dictionaryName); |
|
142 } |
|
143 |
|
144 private void readDictionaryFile(final String dictionaryName) |
|
145 throws IOException, MissingResourceException { |
|
146 |
|
147 BufferedInputStream in; |
|
148 try { |
|
149 in = AccessController.doPrivileged( |
|
150 new PrivilegedExceptionAction<BufferedInputStream>() { |
|
151 @Override |
|
152 public BufferedInputStream run() throws Exception { |
|
153 return new BufferedInputStream(getClass().getResourceAsStream("/sun/text/resources/" + dictionaryName)); |
|
154 } |
|
155 } |
|
156 ); |
|
157 } |
|
158 catch (PrivilegedActionException e) { |
|
159 throw new InternalError(e.toString(), e); |
|
160 } |
|
161 |
|
162 byte[] buf = new byte[8]; |
|
163 if (in.read(buf) != 8) { |
|
164 throw new MissingResourceException("Wrong data length", |
|
165 dictionaryName, ""); |
|
166 } |
|
167 |
|
168 // check version |
|
169 int version = RuleBasedBreakIterator.getInt(buf, 0); |
|
170 if (version != supportedVersion) { |
|
171 throw new MissingResourceException("Dictionary version(" + version + ") is unsupported", |
|
172 dictionaryName, ""); |
|
173 } |
|
174 |
|
175 // get data size |
|
176 int len = RuleBasedBreakIterator.getInt(buf, 4); |
|
177 buf = new byte[len]; |
|
178 if (in.read(buf) != len) { |
|
179 throw new MissingResourceException("Wrong data length", |
|
180 dictionaryName, ""); |
|
181 } |
|
182 |
|
183 // close the stream |
|
184 in.close(); |
|
185 |
|
186 int l; |
|
187 int offset = 0; |
|
188 |
|
189 // read in the column map for BMP characteres (this is serialized in |
|
190 // its internal form: an index array followed by a data array) |
|
191 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
192 offset += 4; |
|
193 short[] temp = new short[l]; |
|
194 for (int i = 0; i < l; i++, offset+=2) { |
|
195 temp[i] = RuleBasedBreakIterator.getShort(buf, offset); |
|
196 } |
|
197 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
198 offset += 4; |
|
199 byte[] temp2 = new byte[l]; |
|
200 for (int i = 0; i < l; i++, offset++) { |
|
201 temp2[i] = buf[offset]; |
|
202 } |
|
203 columnMap = new CompactByteArray(temp, temp2); |
|
204 |
|
205 // read in numCols and numColGroups |
|
206 numCols = RuleBasedBreakIterator.getInt(buf, offset); |
|
207 offset += 4; |
|
208 numColGroups = RuleBasedBreakIterator.getInt(buf, offset); |
|
209 offset += 4; |
|
210 |
|
211 // read in the row-number index |
|
212 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
213 offset += 4; |
|
214 rowIndex = new short[l]; |
|
215 for (int i = 0; i < l; i++, offset+=2) { |
|
216 rowIndex[i] = RuleBasedBreakIterator.getShort(buf, offset); |
|
217 } |
|
218 |
|
219 // load in the populated-cells bitmap: index first, then bitmap list |
|
220 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
221 offset += 4; |
|
222 rowIndexFlagsIndex = new short[l]; |
|
223 for (int i = 0; i < l; i++, offset+=2) { |
|
224 rowIndexFlagsIndex[i] = RuleBasedBreakIterator.getShort(buf, offset); |
|
225 } |
|
226 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
227 offset += 4; |
|
228 rowIndexFlags = new int[l]; |
|
229 for (int i = 0; i < l; i++, offset+=4) { |
|
230 rowIndexFlags[i] = RuleBasedBreakIterator.getInt(buf, offset); |
|
231 } |
|
232 |
|
233 // load in the row-shift index |
|
234 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
235 offset += 4; |
|
236 rowIndexShifts = new byte[l]; |
|
237 for (int i = 0; i < l; i++, offset++) { |
|
238 rowIndexShifts[i] = buf[offset]; |
|
239 } |
|
240 |
|
241 // load in the actual state table |
|
242 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
243 offset += 4; |
|
244 table = new short[l]; |
|
245 for (int i = 0; i < l; i++, offset+=2) { |
|
246 table[i] = RuleBasedBreakIterator.getShort(buf, offset); |
|
247 } |
|
248 |
|
249 // finally, prepare the column map for supplementary characters |
|
250 l = RuleBasedBreakIterator.getInt(buf, offset); |
|
251 offset += 4; |
|
252 int[] temp3 = new int[l]; |
|
253 for (int i = 0; i < l; i++, offset+=4) { |
|
254 temp3[i] = RuleBasedBreakIterator.getInt(buf, offset); |
|
255 } |
|
256 supplementaryCharColumnMap = new SupplementaryCharacterData(temp3); |
|
257 } |
|
258 |
|
259 //========================================================================= |
|
260 // access to the words |
|
261 //========================================================================= |
|
262 |
|
263 /** |
|
264 * Uses the column map to map the character to a column number, then |
|
265 * passes the row and column number to getNextState() |
|
266 * @param row The current state |
|
267 * @param ch The character whose column we're interested in |
|
268 * @return The new state to transition to |
|
269 */ |
|
270 public final short getNextStateFromCharacter(int row, int ch) { |
|
271 int col; |
|
272 if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) { |
|
273 col = columnMap.elementAt((char)ch); |
|
274 } else { |
|
275 col = supplementaryCharColumnMap.getValue(ch); |
|
276 } |
|
277 return getNextState(row, col); |
|
278 } |
|
279 |
|
280 /** |
|
281 * Returns the value in the cell with the specified (logical) row and |
|
282 * column numbers. In DictionaryBasedBreakIterator, the row number is |
|
283 * a state number, the column number is an input, and the return value |
|
284 * is the row number of the new state to transition to. (0 is the |
|
285 * "error" state, and -1 is the "end of word" state in a dictionary) |
|
286 * @param row The row number of the current state |
|
287 * @param col The column number of the input character (0 means "not a |
|
288 * dictionary character") |
|
289 * @return The row number of the new state to transition to |
|
290 */ |
|
291 public final short getNextState(int row, int col) { |
|
292 if (cellIsPopulated(row, col)) { |
|
293 // we map from logical to physical row number by looking up the |
|
294 // mapping in rowIndex; we map from logical column number to |
|
295 // physical column number by looking up a shift value for this |
|
296 // logical row and offsetting the logical column number by |
|
297 // the shift amount. Then we can use internalAt() to actually |
|
298 // get the value out of the table. |
|
299 return internalAt(rowIndex[row], col + rowIndexShifts[row]); |
|
300 } |
|
301 else { |
|
302 return 0; |
|
303 } |
|
304 } |
|
305 |
|
306 /** |
|
307 * Given (logical) row and column numbers, returns true if the |
|
308 * cell in that position is populated |
|
309 */ |
|
310 private boolean cellIsPopulated(int row, int col) { |
|
311 // look up the entry in the bitmap index for the specified row. |
|
312 // If it's a negative number, it's the column number of the only |
|
313 // populated cell in the row |
|
314 if (rowIndexFlagsIndex[row] < 0) { |
|
315 return col == -rowIndexFlagsIndex[row]; |
|
316 } |
|
317 |
|
318 // if it's a positive number, it's the offset of an entry in the bitmap |
|
319 // list. If the table is more than 32 columns wide, the bitmap is stored |
|
320 // successive entries in the bitmap list, so we have to divide the column |
|
321 // number by 32 and offset the number we got out of the index by the result. |
|
322 // Once we have the appropriate piece of the bitmap, test the appropriate |
|
323 // bit and return the result. |
|
324 else { |
|
325 int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)]; |
|
326 return (flags & (1 << (col & 0x1f))) != 0; |
|
327 } |
|
328 } |
|
329 |
|
330 /** |
|
331 * Implementation of getNextState() when we know the specified cell is |
|
332 * populated. |
|
333 * @param row The PHYSICAL row number of the cell |
|
334 * @param col The PHYSICAL column number of the cell |
|
335 * @return The value stored in the cell |
|
336 */ |
|
337 private short internalAt(int row, int col) { |
|
338 // the table is a one-dimensional array, so this just does the math necessary |
|
339 // to treat it as a two-dimensional array (we don't just use a two-dimensional |
|
340 // array because two-dimensional arrays are inefficient in Java) |
|
341 return table[row * numCols + col]; |
|
342 } |
|
343 } |