jdk/src/share/classes/sun/util/locale/provider/BreakDictionary.java
changeset 13583 dc0017b1a452
parent 12848 da701d422d2c
equal deleted inserted replaced
13582:16f0af616ea0 13583:dc0017b1a452
       
     1 /*
       
     2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Oracle designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Oracle in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    22  * or visit www.oracle.com if you need additional information or have any
       
    23  * questions.
       
    24  */
       
    25 
       
    26 /*
       
    27  *
       
    28  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
       
    29  * (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
       
    30  *
       
    31  * The original version of this source code and documentation
       
    32  * is copyrighted and owned by Taligent, Inc., a wholly-owned
       
    33  * subsidiary of IBM. These materials are provided under terms
       
    34  * of a License Agreement between Taligent and Sun. This technology
       
    35  * is protected by multiple US and International patents.
       
    36  *
       
    37  * This notice and attribution to Taligent may not be removed.
       
    38  * Taligent is a registered trademark of Taligent, Inc.
       
    39  */
       
    40 package sun.util.locale.provider;
       
    41 
       
    42 import java.io.BufferedInputStream;
       
    43 import java.io.IOException;
       
    44 import java.security.AccessController;
       
    45 import java.security.PrivilegedActionException;
       
    46 import java.security.PrivilegedExceptionAction;
       
    47 import java.util.MissingResourceException;
       
    48 import sun.text.CompactByteArray;
       
    49 import sun.text.SupplementaryCharacterData;
       
    50 
       
    51 /**
       
    52  * This is the class that represents the list of known words used by
       
    53  * DictionaryBasedBreakIterator.  The conceptual data structure used
       
    54  * here is a trie: there is a node hanging off the root node for every
       
    55  * letter that can start a word.  Each of these nodes has a node hanging
       
    56  * off of it for every letter that can be the second letter of a word
       
    57  * if this node is the first letter, and so on.  The trie is represented
       
    58  * as a two-dimensional array that can be treated as a table of state
       
    59  * transitions.  Indexes are used to compress this array, taking
       
    60  * advantage of the fact that this array will always be very sparse.
       
    61  */
       
    62 class BreakDictionary {
       
    63 
       
    64     //=========================================================================
       
    65     // data members
       
    66     //=========================================================================
       
    67 
       
    68     /**
       
    69       * The version of the dictionary that was read in.
       
    70       */
       
    71     private static int supportedVersion = 1;
       
    72 
       
    73     /**
       
    74      * Maps from characters to column numbers.  The main use of this is to
       
    75      * avoid making room in the array for empty columns.
       
    76      */
       
    77     private CompactByteArray columnMap = null;
       
    78     private SupplementaryCharacterData supplementaryCharColumnMap = null;
       
    79 
       
    80     /**
       
    81      * The number of actual columns in the table
       
    82      */
       
    83     private int numCols;
       
    84 
       
    85     /**
       
    86      * Columns are organized into groups of 32.  This says how many
       
    87      * column groups.  (We could calculate this, but we store the
       
    88      * value to avoid having to repeatedly calculate it.)
       
    89      */
       
    90     private int numColGroups;
       
    91 
       
    92     /**
       
    93      * The actual compressed state table.  Each conceptual row represents
       
    94      * a state, and the cells in it contain the row numbers of the states
       
    95      * to transition to for each possible letter.  0 is used to indicate
       
    96      * an illegal combination of letters (i.e., the error state).  The
       
    97      * table is compressed by eliminating all the unpopulated (i.e., zero)
       
    98      * cells.  Multiple conceptual rows can then be doubled up in a single
       
    99      * physical row by sliding them up and possibly shifting them to one
       
   100      * side or the other so the populated cells don't collide.  Indexes
       
   101      * are used to identify unpopulated cells and to locate populated cells.
       
   102      */
       
   103     private short[] table = null;
       
   104 
       
   105     /**
       
   106      * This index maps logical row numbers to physical row numbers
       
   107      */
       
   108     private short[] rowIndex = null;
       
   109 
       
   110     /**
       
   111      * A bitmap is used to tell which cells in the comceptual table are
       
   112      * populated.  This array contains all the unique bit combinations
       
   113      * in that bitmap.  If the table is more than 32 columns wide,
       
   114      * successive entries in this array are used for a single row.
       
   115      */
       
   116     private int[] rowIndexFlags = null;
       
   117 
       
   118     /**
       
   119      * This index maps from a logical row number into the bitmap table above.
       
   120      * (This keeps us from storing duplicate bitmap combinations.)  Since there
       
   121      * are a lot of rows with only one populated cell, instead of wasting space
       
   122      * in the bitmap table, we just store a negative number in this index for
       
   123      * rows with one populated cell.  The absolute value of that number is
       
   124      * the column number of the populated cell.
       
   125      */
       
   126     private short[] rowIndexFlagsIndex = null;
       
   127 
       
   128     /**
       
   129      * For each logical row, this index contains a constant that is added to
       
   130      * the logical column number to get the physical column number
       
   131      */
       
   132     private byte[] rowIndexShifts = null;
       
   133 
       
   134     //=========================================================================
       
   135     // deserialization
       
   136     //=========================================================================
       
   137 
       
   138     BreakDictionary(String dictionaryName)
       
   139         throws IOException, MissingResourceException {
       
   140 
       
   141         readDictionaryFile(dictionaryName);
       
   142     }
       
   143 
       
   144     private void readDictionaryFile(final String dictionaryName)
       
   145         throws IOException, MissingResourceException {
       
   146 
       
   147         BufferedInputStream in;
       
   148         try {
       
   149             in = AccessController.doPrivileged(
       
   150                 new PrivilegedExceptionAction<BufferedInputStream>() {
       
   151                     @Override
       
   152                     public BufferedInputStream run() throws Exception {
       
   153                         return new BufferedInputStream(getClass().getResourceAsStream("/sun/text/resources/" + dictionaryName));
       
   154                     }
       
   155                 }
       
   156             );
       
   157         }
       
   158         catch (PrivilegedActionException e) {
       
   159             throw new InternalError(e.toString(), e);
       
   160         }
       
   161 
       
   162         byte[] buf = new byte[8];
       
   163         if (in.read(buf) != 8) {
       
   164             throw new MissingResourceException("Wrong data length",
       
   165                                                dictionaryName, "");
       
   166         }
       
   167 
       
   168         // check version
       
   169         int version = RuleBasedBreakIterator.getInt(buf, 0);
       
   170         if (version != supportedVersion) {
       
   171             throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
       
   172                                                            dictionaryName, "");
       
   173         }
       
   174 
       
   175         // get data size
       
   176         int len = RuleBasedBreakIterator.getInt(buf, 4);
       
   177         buf = new byte[len];
       
   178         if (in.read(buf) != len) {
       
   179             throw new MissingResourceException("Wrong data length",
       
   180                                                dictionaryName, "");
       
   181         }
       
   182 
       
   183         // close the stream
       
   184         in.close();
       
   185 
       
   186         int l;
       
   187         int offset = 0;
       
   188 
       
   189         // read in the column map for BMP characteres (this is serialized in
       
   190         // its internal form: an index array followed by a data array)
       
   191         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   192         offset += 4;
       
   193         short[] temp = new short[l];
       
   194         for (int i = 0; i < l; i++, offset+=2) {
       
   195             temp[i] = RuleBasedBreakIterator.getShort(buf, offset);
       
   196         }
       
   197         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   198         offset += 4;
       
   199         byte[] temp2 = new byte[l];
       
   200         for (int i = 0; i < l; i++, offset++) {
       
   201             temp2[i] = buf[offset];
       
   202         }
       
   203         columnMap = new CompactByteArray(temp, temp2);
       
   204 
       
   205         // read in numCols and numColGroups
       
   206         numCols = RuleBasedBreakIterator.getInt(buf, offset);
       
   207         offset += 4;
       
   208         numColGroups = RuleBasedBreakIterator.getInt(buf, offset);
       
   209         offset += 4;
       
   210 
       
   211         // read in the row-number index
       
   212         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   213         offset += 4;
       
   214         rowIndex = new short[l];
       
   215         for (int i = 0; i < l; i++, offset+=2) {
       
   216             rowIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
       
   217         }
       
   218 
       
   219         // load in the populated-cells bitmap: index first, then bitmap list
       
   220         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   221         offset += 4;
       
   222         rowIndexFlagsIndex = new short[l];
       
   223         for (int i = 0; i < l; i++, offset+=2) {
       
   224             rowIndexFlagsIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
       
   225         }
       
   226         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   227         offset += 4;
       
   228         rowIndexFlags = new int[l];
       
   229         for (int i = 0; i < l; i++, offset+=4) {
       
   230             rowIndexFlags[i] = RuleBasedBreakIterator.getInt(buf, offset);
       
   231         }
       
   232 
       
   233         // load in the row-shift index
       
   234         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   235         offset += 4;
       
   236         rowIndexShifts = new byte[l];
       
   237         for (int i = 0; i < l; i++, offset++) {
       
   238             rowIndexShifts[i] = buf[offset];
       
   239         }
       
   240 
       
   241         // load in the actual state table
       
   242         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   243         offset += 4;
       
   244         table = new short[l];
       
   245         for (int i = 0; i < l; i++, offset+=2) {
       
   246             table[i] = RuleBasedBreakIterator.getShort(buf, offset);
       
   247         }
       
   248 
       
   249         // finally, prepare the column map for supplementary characters
       
   250         l = RuleBasedBreakIterator.getInt(buf, offset);
       
   251         offset += 4;
       
   252         int[] temp3 = new int[l];
       
   253         for (int i = 0; i < l; i++, offset+=4) {
       
   254             temp3[i] = RuleBasedBreakIterator.getInt(buf, offset);
       
   255         }
       
   256         supplementaryCharColumnMap = new SupplementaryCharacterData(temp3);
       
   257     }
       
   258 
       
   259     //=========================================================================
       
   260     // access to the words
       
   261     //=========================================================================
       
   262 
       
   263     /**
       
   264      * Uses the column map to map the character to a column number, then
       
   265      * passes the row and column number to getNextState()
       
   266      * @param row The current state
       
   267      * @param ch The character whose column we're interested in
       
   268      * @return The new state to transition to
       
   269      */
       
   270     public final short getNextStateFromCharacter(int row, int ch) {
       
   271         int col;
       
   272         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
       
   273             col = columnMap.elementAt((char)ch);
       
   274         } else {
       
   275             col = supplementaryCharColumnMap.getValue(ch);
       
   276         }
       
   277         return getNextState(row, col);
       
   278     }
       
   279 
       
   280     /**
       
   281      * Returns the value in the cell with the specified (logical) row and
       
   282      * column numbers.  In DictionaryBasedBreakIterator, the row number is
       
   283      * a state number, the column number is an input, and the return value
       
   284      * is the row number of the new state to transition to.  (0 is the
       
   285      * "error" state, and -1 is the "end of word" state in a dictionary)
       
   286      * @param row The row number of the current state
       
   287      * @param col The column number of the input character (0 means "not a
       
   288      * dictionary character")
       
   289      * @return The row number of the new state to transition to
       
   290      */
       
   291     public final short getNextState(int row, int col) {
       
   292         if (cellIsPopulated(row, col)) {
       
   293             // we map from logical to physical row number by looking up the
       
   294             // mapping in rowIndex; we map from logical column number to
       
   295             // physical column number by looking up a shift value for this
       
   296             // logical row and offsetting the logical column number by
       
   297             // the shift amount.  Then we can use internalAt() to actually
       
   298             // get the value out of the table.
       
   299             return internalAt(rowIndex[row], col + rowIndexShifts[row]);
       
   300         }
       
   301         else {
       
   302             return 0;
       
   303         }
       
   304     }
       
   305 
       
   306     /**
       
   307      * Given (logical) row and column numbers, returns true if the
       
   308      * cell in that position is populated
       
   309      */
       
   310     private boolean cellIsPopulated(int row, int col) {
       
   311         // look up the entry in the bitmap index for the specified row.
       
   312         // If it's a negative number, it's the column number of the only
       
   313         // populated cell in the row
       
   314         if (rowIndexFlagsIndex[row] < 0) {
       
   315             return col == -rowIndexFlagsIndex[row];
       
   316         }
       
   317 
       
   318         // if it's a positive number, it's the offset of an entry in the bitmap
       
   319         // list.  If the table is more than 32 columns wide, the bitmap is stored
       
   320         // successive entries in the bitmap list, so we have to divide the column
       
   321         // number by 32 and offset the number we got out of the index by the result.
       
   322         // Once we have the appropriate piece of the bitmap, test the appropriate
       
   323         // bit and return the result.
       
   324         else {
       
   325             int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
       
   326             return (flags & (1 << (col & 0x1f))) != 0;
       
   327         }
       
   328     }
       
   329 
       
   330     /**
       
   331      * Implementation of getNextState() when we know the specified cell is
       
   332      * populated.
       
   333      * @param row The PHYSICAL row number of the cell
       
   334      * @param col The PHYSICAL column number of the cell
       
   335      * @return The value stored in the cell
       
   336      */
       
   337     private short internalAt(int row, int col) {
       
   338         // the table is a one-dimensional array, so this just does the math necessary
       
   339         // to treat it as a two-dimensional array (we don't just use a two-dimensional
       
   340         // array because two-dimensional arrays are inefficient in Java)
       
   341         return table[row * numCols + col];
       
   342     }
       
   343 }