|
1 //package com.polytechnik.utils; |
|
2 /* |
|
3 * (C) Vladislav Malyshkin 2010 |
|
4 * This file is under GPL version 3. |
|
5 * |
|
6 */ |
|
7 |
|
8 /** Polynomial root. |
|
9 * @version $Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $ |
|
10 * @author Vladislav Malyshkin mal@gromco.com |
|
11 */ |
|
12 |
|
13 /** |
|
14 * @test |
|
15 * @bug 8005956 |
|
16 * @summary C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block |
|
17 * |
|
18 * @run main PolynomialRoot |
|
19 */ |
|
20 |
|
21 public class PolynomialRoot { |
|
22 |
|
23 |
|
24 public static int findPolynomialRoots(final int n, |
|
25 final double [] p, |
|
26 final double [] re_root, |
|
27 final double [] im_root) |
|
28 { |
|
29 if(n==4) |
|
30 { |
|
31 return root4(p,re_root,im_root); |
|
32 } |
|
33 else if(n==3) |
|
34 { |
|
35 return root3(p,re_root,im_root); |
|
36 } |
|
37 else if(n==2) |
|
38 { |
|
39 return root2(p,re_root,im_root); |
|
40 } |
|
41 else if(n==1) |
|
42 { |
|
43 return root1(p,re_root,im_root); |
|
44 } |
|
45 else |
|
46 { |
|
47 throw new RuntimeException("n="+n+" is not supported yet"); |
|
48 } |
|
49 } |
|
50 |
|
51 |
|
52 |
|
53 static final double SQRT3=Math.sqrt(3.0),SQRT2=Math.sqrt(2.0); |
|
54 |
|
55 |
|
56 private static final boolean PRINT_DEBUG=false; |
|
57 |
|
58 public static int root4(final double [] p,final double [] re_root,final double [] im_root) |
|
59 { |
|
60 if(PRINT_DEBUG) System.err.println("=====================root4:p="+java.util.Arrays.toString(p)); |
|
61 final double vs=p[4]; |
|
62 if(PRINT_DEBUG) System.err.println("p[4]="+p[4]); |
|
63 if(!(Math.abs(vs)>EPS)) |
|
64 { |
|
65 re_root[0]=re_root[1]=re_root[2]=re_root[3]= |
|
66 im_root[0]=im_root[1]=im_root[2]=im_root[3]=Double.NaN; |
|
67 return -1; |
|
68 } |
|
69 |
|
70 /* zsolve_quartic.c - finds the complex roots of |
|
71 * x^4 + a x^3 + b x^2 + c x + d = 0 |
|
72 */ |
|
73 final double a=p[3]/vs,b=p[2]/vs,c=p[1]/vs,d=p[0]/vs; |
|
74 if(PRINT_DEBUG) System.err.println("input a="+a+" b="+b+" c="+c+" d="+d); |
|
75 |
|
76 |
|
77 final double r4 = 1.0 / 4.0; |
|
78 final double q2 = 1.0 / 2.0, q4 = 1.0 / 4.0, q8 = 1.0 / 8.0; |
|
79 final double q1 = 3.0 / 8.0, q3 = 3.0 / 16.0; |
|
80 final int mt; |
|
81 |
|
82 /* Deal easily with the cases where the quartic is degenerate. The |
|
83 * ordering of solutions is done explicitly. */ |
|
84 if (0 == b && 0 == c) |
|
85 { |
|
86 if (0 == d) |
|
87 { |
|
88 re_root[0]=-a; |
|
89 im_root[0]=im_root[1]=im_root[2]=im_root[3]=0; |
|
90 re_root[1]=re_root[2]=re_root[3]=0; |
|
91 return 4; |
|
92 } |
|
93 else if (0 == a) |
|
94 { |
|
95 if (d > 0) |
|
96 { |
|
97 final double sq4 = Math.sqrt(Math.sqrt(d)); |
|
98 re_root[0]=sq4*SQRT2/2; |
|
99 im_root[0]=re_root[0]; |
|
100 re_root[1]=-re_root[0]; |
|
101 im_root[1]=re_root[0]; |
|
102 re_root[2]=-re_root[0]; |
|
103 im_root[2]=-re_root[0]; |
|
104 re_root[3]=re_root[0]; |
|
105 im_root[3]=-re_root[0]; |
|
106 if(PRINT_DEBUG) System.err.println("Path a=0 d>0"); |
|
107 } |
|
108 else |
|
109 { |
|
110 final double sq4 = Math.sqrt(Math.sqrt(-d)); |
|
111 re_root[0]=sq4; |
|
112 im_root[0]=0; |
|
113 re_root[1]=0; |
|
114 im_root[1]=sq4; |
|
115 re_root[2]=0; |
|
116 im_root[2]=-sq4; |
|
117 re_root[3]=-sq4; |
|
118 im_root[3]=0; |
|
119 if(PRINT_DEBUG) System.err.println("Path a=0 d<0"); |
|
120 } |
|
121 return 4; |
|
122 } |
|
123 } |
|
124 |
|
125 if (0.0 == c && 0.0 == d) |
|
126 { |
|
127 root2(new double []{p[2],p[3],p[4]},re_root,im_root); |
|
128 re_root[2]=im_root[2]=re_root[3]=im_root[3]=0; |
|
129 return 4; |
|
130 } |
|
131 |
|
132 if(PRINT_DEBUG) System.err.println("G Path c="+c+" d="+d); |
|
133 final double [] u=new double[3]; |
|
134 |
|
135 if(PRINT_DEBUG) System.err.println("Generic Path"); |
|
136 /* For non-degenerate solutions, proceed by constructing and |
|
137 * solving the resolvent cubic */ |
|
138 final double aa = a * a; |
|
139 final double pp = b - q1 * aa; |
|
140 final double qq = c - q2 * a * (b - q4 * aa); |
|
141 final double rr = d - q4 * a * (c - q4 * a * (b - q3 * aa)); |
|
142 final double rc = q2 * pp , rc3 = rc / 3; |
|
143 final double sc = q4 * (q4 * pp * pp - rr); |
|
144 final double tc = -(q8 * qq * q8 * qq); |
|
145 if(PRINT_DEBUG) System.err.println("aa="+aa+" pp="+pp+" qq="+qq+" rr="+rr+" rc="+rc+" sc="+sc+" tc="+tc); |
|
146 final boolean flag_realroots; |
|
147 |
|
148 /* This code solves the resolvent cubic in a convenient fashion |
|
149 * for this implementation of the quartic. If there are three real |
|
150 * roots, then they are placed directly into u[]. If two are |
|
151 * complex, then the real root is put into u[0] and the real |
|
152 * and imaginary part of the complex roots are placed into |
|
153 * u[1] and u[2], respectively. */ |
|
154 { |
|
155 final double qcub = (rc * rc - 3 * sc); |
|
156 final double rcub = (rc*(2 * rc * rc - 9 * sc) + 27 * tc); |
|
157 |
|
158 final double Q = qcub / 9; |
|
159 final double R = rcub / 54; |
|
160 |
|
161 final double Q3 = Q * Q * Q; |
|
162 final double R2 = R * R; |
|
163 |
|
164 final double CR2 = 729 * rcub * rcub; |
|
165 final double CQ3 = 2916 * qcub * qcub * qcub; |
|
166 |
|
167 if(PRINT_DEBUG) System.err.println("CR2="+CR2+" CQ3="+CQ3+" R="+R+" Q="+Q); |
|
168 |
|
169 if (0 == R && 0 == Q) |
|
170 { |
|
171 flag_realroots=true; |
|
172 u[0] = -rc3; |
|
173 u[1] = -rc3; |
|
174 u[2] = -rc3; |
|
175 } |
|
176 else if (CR2 == CQ3) |
|
177 { |
|
178 flag_realroots=true; |
|
179 final double sqrtQ = Math.sqrt (Q); |
|
180 if (R > 0) |
|
181 { |
|
182 u[0] = -2 * sqrtQ - rc3; |
|
183 u[1] = sqrtQ - rc3; |
|
184 u[2] = sqrtQ - rc3; |
|
185 } |
|
186 else |
|
187 { |
|
188 u[0] = -sqrtQ - rc3; |
|
189 u[1] = -sqrtQ - rc3; |
|
190 u[2] = 2 * sqrtQ - rc3; |
|
191 } |
|
192 } |
|
193 else if (R2 < Q3) |
|
194 { |
|
195 flag_realroots=true; |
|
196 final double ratio = (R >= 0?1:-1) * Math.sqrt (R2 / Q3); |
|
197 final double theta = Math.acos (ratio); |
|
198 final double norm = -2 * Math.sqrt (Q); |
|
199 |
|
200 u[0] = norm * Math.cos (theta / 3) - rc3; |
|
201 u[1] = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - rc3; |
|
202 u[2] = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - rc3; |
|
203 } |
|
204 else |
|
205 { |
|
206 flag_realroots=false; |
|
207 final double A = -(R >= 0?1:-1)*Math.pow(Math.abs(R)+Math.sqrt(R2-Q3),1.0/3.0); |
|
208 final double B = Q / A; |
|
209 |
|
210 u[0] = A + B - rc3; |
|
211 u[1] = -0.5 * (A + B) - rc3; |
|
212 u[2] = -(SQRT3*0.5) * Math.abs (A - B); |
|
213 } |
|
214 if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+" u[1]="+u[1]+" u[2]="+u[2]+" qq="+qq+" disc="+((CR2 - CQ3) / 2125764.0)); |
|
215 } |
|
216 /* End of solution to resolvent cubic */ |
|
217 |
|
218 /* Combine the square roots of the roots of the cubic |
|
219 * resolvent appropriately. Also, calculate 'mt' which |
|
220 * designates the nature of the roots: |
|
221 * mt=1 : 4 real roots |
|
222 * mt=2 : 0 real roots |
|
223 * mt=3 : 2 real roots |
|
224 */ |
|
225 |
|
226 |
|
227 final double w1_re,w1_im,w2_re,w2_im,w3_re,w3_im,mod_w1w2,mod_w1w2_squared; |
|
228 if (flag_realroots) |
|
229 { |
|
230 mod_w1w2=-1; |
|
231 mt = 2; |
|
232 int jmin=0; |
|
233 double vmin=Math.abs(u[jmin]); |
|
234 for(int j=1;j<3;j++) |
|
235 { |
|
236 final double vx=Math.abs(u[j]); |
|
237 if(vx<vmin) |
|
238 { |
|
239 vmin=vx; |
|
240 jmin=j; |
|
241 } |
|
242 } |
|
243 final double u1=u[(jmin+1)%3],u2=u[(jmin+2)%3]; |
|
244 mod_w1w2_squared=Math.abs(u1*u2); |
|
245 if(u1>=0) |
|
246 { |
|
247 w1_re=Math.sqrt(u1); |
|
248 w1_im=0; |
|
249 } |
|
250 else |
|
251 { |
|
252 w1_re=0; |
|
253 w1_im=Math.sqrt(-u1); |
|
254 } |
|
255 if(u2>=0) |
|
256 { |
|
257 w2_re=Math.sqrt(u2); |
|
258 w2_im=0; |
|
259 } |
|
260 else |
|
261 { |
|
262 w2_re=0; |
|
263 w2_im=Math.sqrt(-u2); |
|
264 } |
|
265 if(PRINT_DEBUG) System.err.println("u1="+u1+" u2="+u2+" jmin="+jmin); |
|
266 } |
|
267 else |
|
268 { |
|
269 mt = 3; |
|
270 final double w_mod2_sq=u[1]*u[1]+u[2]*u[2],w_mod2=Math.sqrt(w_mod2_sq),w_mod=Math.sqrt(w_mod2); |
|
271 if(w_mod2_sq<=0) |
|
272 { |
|
273 w1_re=w1_im=0; |
|
274 } |
|
275 else |
|
276 { |
|
277 // calculate square root of a complex number (u[1],u[2]) |
|
278 // the result is in the (w1_re,w1_im) |
|
279 final double absu1=Math.abs(u[1]),absu2=Math.abs(u[2]),w; |
|
280 if(absu1>=absu2) |
|
281 { |
|
282 final double t=absu2/absu1; |
|
283 w=Math.sqrt(absu1*0.5 * (1.0 + Math.sqrt(1.0 + t * t))); |
|
284 if(PRINT_DEBUG) System.err.println(" Path1 "); |
|
285 } |
|
286 else |
|
287 { |
|
288 final double t=absu1/absu2; |
|
289 w=Math.sqrt(absu2*0.5 * (t + Math.sqrt(1.0 + t * t))); |
|
290 if(PRINT_DEBUG) System.err.println(" Path1a "); |
|
291 } |
|
292 if(u[1]>=0) |
|
293 { |
|
294 w1_re=w; |
|
295 w1_im=u[2]/(2*w); |
|
296 if(PRINT_DEBUG) System.err.println(" Path2 "); |
|
297 } |
|
298 else |
|
299 { |
|
300 final double vi = (u[2] >= 0) ? w : -w; |
|
301 w1_re=u[2]/(2*vi); |
|
302 w1_im=vi; |
|
303 if(PRINT_DEBUG) System.err.println(" Path2a "); |
|
304 } |
|
305 } |
|
306 final double absu0=Math.abs(u[0]); |
|
307 if(w_mod2>=absu0) |
|
308 { |
|
309 mod_w1w2=w_mod2; |
|
310 mod_w1w2_squared=w_mod2_sq; |
|
311 w2_re=w1_re; |
|
312 w2_im=-w1_im; |
|
313 } |
|
314 else |
|
315 { |
|
316 mod_w1w2=-1; |
|
317 mod_w1w2_squared=w_mod2*absu0; |
|
318 if(u[0]>=0) |
|
319 { |
|
320 w2_re=Math.sqrt(absu0); |
|
321 w2_im=0; |
|
322 } |
|
323 else |
|
324 { |
|
325 w2_re=0; |
|
326 w2_im=Math.sqrt(absu0); |
|
327 } |
|
328 } |
|
329 if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+"u[1]="+u[1]+" u[2]="+u[2]+" absu0="+absu0+" w_mod="+w_mod+" w_mod2="+w_mod2); |
|
330 } |
|
331 |
|
332 /* Solve the quadratic in order to obtain the roots |
|
333 * to the quartic */ |
|
334 if(mod_w1w2>0) |
|
335 { |
|
336 // a shorcut to reduce rounding error |
|
337 w3_re=qq/(-8)/mod_w1w2; |
|
338 w3_im=0; |
|
339 } |
|
340 else if(mod_w1w2_squared>0) |
|
341 { |
|
342 // regular path |
|
343 final double mqq8n=qq/(-8)/mod_w1w2_squared; |
|
344 w3_re=mqq8n*(w1_re*w2_re-w1_im*w2_im); |
|
345 w3_im=-mqq8n*(w1_re*w2_im+w2_re*w1_im); |
|
346 } |
|
347 else |
|
348 { |
|
349 // typically occur when qq==0 |
|
350 w3_re=w3_im=0; |
|
351 } |
|
352 |
|
353 final double h = r4 * a; |
|
354 if(PRINT_DEBUG) System.err.println("w1_re="+w1_re+" w1_im="+w1_im+" w2_re="+w2_re+" w2_im="+w2_im+" w3_re="+w3_re+" w3_im="+w3_im+" h="+h); |
|
355 |
|
356 re_root[0]=w1_re+w2_re+w3_re-h; |
|
357 im_root[0]=w1_im+w2_im+w3_im; |
|
358 re_root[1]=-(w1_re+w2_re)+w3_re-h; |
|
359 im_root[1]=-(w1_im+w2_im)+w3_im; |
|
360 re_root[2]=w2_re-w1_re-w3_re-h; |
|
361 im_root[2]=w2_im-w1_im-w3_im; |
|
362 re_root[3]=w1_re-w2_re-w3_re-h; |
|
363 im_root[3]=w1_im-w2_im-w3_im; |
|
364 |
|
365 return 4; |
|
366 } |
|
367 |
|
368 |
|
369 |
|
370 static void setRandomP(final double [] p,final int n,java.util.Random r) |
|
371 { |
|
372 if(r.nextDouble()<0.1) |
|
373 { |
|
374 // integer coefficiens |
|
375 for(int j=0;j<p.length;j++) |
|
376 { |
|
377 if(j<=n) |
|
378 { |
|
379 p[j]=(r.nextInt(2)<=0?-1:1)*r.nextInt(10); |
|
380 } |
|
381 else |
|
382 { |
|
383 p[j]=0; |
|
384 } |
|
385 } |
|
386 } |
|
387 else |
|
388 { |
|
389 // real coefficiens |
|
390 for(int j=0;j<p.length;j++) |
|
391 { |
|
392 if(j<=n) |
|
393 { |
|
394 p[j]=-1+2*r.nextDouble(); |
|
395 } |
|
396 else |
|
397 { |
|
398 p[j]=0; |
|
399 } |
|
400 } |
|
401 } |
|
402 if(Math.abs(p[n])<1e-2) |
|
403 { |
|
404 p[n]=(r.nextInt(2)<=0?-1:1)*(0.1+r.nextDouble()); |
|
405 } |
|
406 } |
|
407 |
|
408 |
|
409 static void checkValues(final double [] p, |
|
410 final int n, |
|
411 final double rex, |
|
412 final double imx, |
|
413 final double eps, |
|
414 final String txt) |
|
415 { |
|
416 double res=0,ims=0,sabs=0; |
|
417 final double xabs=Math.abs(rex)+Math.abs(imx); |
|
418 for(int k=n;k>=0;k--) |
|
419 { |
|
420 final double res1=(res*rex-ims*imx)+p[k]; |
|
421 final double ims1=(ims*rex+res*imx); |
|
422 res=res1; |
|
423 ims=ims1; |
|
424 sabs+=xabs*sabs+p[k]; |
|
425 } |
|
426 sabs=Math.abs(sabs); |
|
427 if(false && sabs>1/eps? |
|
428 (!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps)) |
|
429 : |
|
430 (!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))) |
|
431 { |
|
432 throw new RuntimeException( |
|
433 getPolinomTXT(p)+"\n"+ |
|
434 "\t x.r="+rex+" x.i="+imx+"\n"+ |
|
435 "res/sabs="+(res/sabs)+" ims/sabs="+(ims/sabs)+ |
|
436 " sabs="+sabs+ |
|
437 "\nres="+res+" ims="+ims+" n="+n+" eps="+eps+" "+ |
|
438 " sabs>1/eps="+(sabs>1/eps)+ |
|
439 " f1="+(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))+ |
|
440 " f2="+(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))+ |
|
441 " "+txt); |
|
442 } |
|
443 } |
|
444 |
|
445 static String getPolinomTXT(final double [] p) |
|
446 { |
|
447 final StringBuilder buf=new StringBuilder(); |
|
448 buf.append("order="+(p.length-1)+"\t"); |
|
449 for(int k=0;k<p.length;k++) |
|
450 { |
|
451 buf.append("p["+k+"]="+p[k]+";"); |
|
452 } |
|
453 return buf.toString(); |
|
454 } |
|
455 |
|
456 static String getRootsTXT(int nr,final double [] re,final double [] im) |
|
457 { |
|
458 final StringBuilder buf=new StringBuilder(); |
|
459 for(int k=0;k<nr;k++) |
|
460 { |
|
461 buf.append("x."+k+"("+re[k]+","+im[k]+")\n"); |
|
462 } |
|
463 return buf.toString(); |
|
464 } |
|
465 |
|
466 static void testRoots(final int n, |
|
467 final int n_tests, |
|
468 final java.util.Random rn, |
|
469 final double eps) |
|
470 { |
|
471 final double [] p=new double [n+1]; |
|
472 final double [] rex=new double [n],imx=new double [n]; |
|
473 for(int i=0;i<n_tests;i++) |
|
474 { |
|
475 for(int dg=n;dg-->-1;) |
|
476 { |
|
477 for(int dr=3;dr-->0;) |
|
478 { |
|
479 setRandomP(p,n,rn); |
|
480 for(int j=0;j<=dg;j++) |
|
481 { |
|
482 p[j]=0; |
|
483 } |
|
484 if(dr==0) |
|
485 { |
|
486 p[0]=-1+2.0*rn.nextDouble(); |
|
487 } |
|
488 else if(dr==1) |
|
489 { |
|
490 p[0]=p[1]=0; |
|
491 } |
|
492 |
|
493 findPolynomialRoots(n,p,rex,imx); |
|
494 |
|
495 for(int j=0;j<n;j++) |
|
496 { |
|
497 //System.err.println("j="+j); |
|
498 checkValues(p,n,rex[j],imx[j],eps," t="+i); |
|
499 } |
|
500 } |
|
501 } |
|
502 } |
|
503 System.err.println("testRoots(): n_tests="+n_tests+" OK, dim="+n); |
|
504 } |
|
505 |
|
506 |
|
507 |
|
508 |
|
509 static final double EPS=0; |
|
510 |
|
511 public static int root1(final double [] p,final double [] re_root,final double [] im_root) |
|
512 { |
|
513 if(!(Math.abs(p[1])>EPS)) |
|
514 { |
|
515 re_root[0]=im_root[0]=Double.NaN; |
|
516 return -1; |
|
517 } |
|
518 re_root[0]=-p[0]/p[1]; |
|
519 im_root[0]=0; |
|
520 return 1; |
|
521 } |
|
522 |
|
523 public static int root2(final double [] p,final double [] re_root,final double [] im_root) |
|
524 { |
|
525 if(!(Math.abs(p[2])>EPS)) |
|
526 { |
|
527 re_root[0]=re_root[1]=im_root[0]=im_root[1]=Double.NaN; |
|
528 return -1; |
|
529 } |
|
530 final double b2=0.5*(p[1]/p[2]),c=p[0]/p[2],d=b2*b2-c; |
|
531 if(d>=0) |
|
532 { |
|
533 final double sq=Math.sqrt(d); |
|
534 if(b2<0) |
|
535 { |
|
536 re_root[1]=-b2+sq; |
|
537 re_root[0]=c/re_root[1]; |
|
538 } |
|
539 else if(b2>0) |
|
540 { |
|
541 re_root[0]=-b2-sq; |
|
542 re_root[1]=c/re_root[0]; |
|
543 } |
|
544 else |
|
545 { |
|
546 re_root[0]=-b2-sq; |
|
547 re_root[1]=-b2+sq; |
|
548 } |
|
549 im_root[0]=im_root[1]=0; |
|
550 } |
|
551 else |
|
552 { |
|
553 final double sq=Math.sqrt(-d); |
|
554 re_root[0]=re_root[1]=-b2; |
|
555 im_root[0]=sq; |
|
556 im_root[1]=-sq; |
|
557 } |
|
558 return 2; |
|
559 } |
|
560 |
|
561 public static int root3(final double [] p,final double [] re_root,final double [] im_root) |
|
562 { |
|
563 final double vs=p[3]; |
|
564 if(!(Math.abs(vs)>EPS)) |
|
565 { |
|
566 re_root[0]=re_root[1]=re_root[2]= |
|
567 im_root[0]=im_root[1]=im_root[2]=Double.NaN; |
|
568 return -1; |
|
569 } |
|
570 final double a=p[2]/vs,b=p[1]/vs,c=p[0]/vs; |
|
571 /* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0 |
|
572 */ |
|
573 final double q = (a * a - 3 * b); |
|
574 final double r = (a*(2 * a * a - 9 * b) + 27 * c); |
|
575 |
|
576 final double Q = q / 9; |
|
577 final double R = r / 54; |
|
578 |
|
579 final double Q3 = Q * Q * Q; |
|
580 final double R2 = R * R; |
|
581 |
|
582 final double CR2 = 729 * r * r; |
|
583 final double CQ3 = 2916 * q * q * q; |
|
584 final double a3=a/3; |
|
585 |
|
586 if (R == 0 && Q == 0) |
|
587 { |
|
588 re_root[0]=re_root[1]=re_root[2]=-a3; |
|
589 im_root[0]=im_root[1]=im_root[2]=0; |
|
590 return 3; |
|
591 } |
|
592 else if (CR2 == CQ3) |
|
593 { |
|
594 /* this test is actually R2 == Q3, written in a form suitable |
|
595 for exact computation with integers */ |
|
596 |
|
597 /* Due to finite precision some double roots may be missed, and |
|
598 will be considered to be a pair of complex roots z = x +/- |
|
599 epsilon i close to the real axis. */ |
|
600 |
|
601 final double sqrtQ = Math.sqrt (Q); |
|
602 |
|
603 if (R > 0) |
|
604 { |
|
605 re_root[0] = -2 * sqrtQ - a3; |
|
606 re_root[1]=re_root[2]=sqrtQ - a3; |
|
607 im_root[0]=im_root[1]=im_root[2]=0; |
|
608 } |
|
609 else |
|
610 { |
|
611 re_root[0]=re_root[1] = -sqrtQ - a3; |
|
612 re_root[2]=2 * sqrtQ - a3; |
|
613 im_root[0]=im_root[1]=im_root[2]=0; |
|
614 } |
|
615 return 3; |
|
616 } |
|
617 else if (R2 < Q3) |
|
618 { |
|
619 final double sgnR = (R >= 0 ? 1 : -1); |
|
620 final double ratio = sgnR * Math.sqrt (R2 / Q3); |
|
621 final double theta = Math.acos (ratio); |
|
622 final double norm = -2 * Math.sqrt (Q); |
|
623 final double r0 = norm * Math.cos (theta/3) - a3; |
|
624 final double r1 = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - a3; |
|
625 final double r2 = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - a3; |
|
626 |
|
627 re_root[0]=r0; |
|
628 re_root[1]=r1; |
|
629 re_root[2]=r2; |
|
630 im_root[0]=im_root[1]=im_root[2]=0; |
|
631 return 3; |
|
632 } |
|
633 else |
|
634 { |
|
635 final double sgnR = (R >= 0 ? 1 : -1); |
|
636 final double A = -sgnR * Math.pow (Math.abs (R) + Math.sqrt (R2 - Q3), 1.0 / 3.0); |
|
637 final double B = Q / A; |
|
638 |
|
639 re_root[0]=A + B - a3; |
|
640 im_root[0]=0; |
|
641 re_root[1]=-0.5 * (A + B) - a3; |
|
642 im_root[1]=-(SQRT3*0.5) * Math.abs(A - B); |
|
643 re_root[2]=re_root[1]; |
|
644 im_root[2]=-im_root[1]; |
|
645 return 3; |
|
646 } |
|
647 |
|
648 } |
|
649 |
|
650 |
|
651 static void root3a(final double [] p,final double [] re_root,final double [] im_root) |
|
652 { |
|
653 if(Math.abs(p[3])>EPS) |
|
654 { |
|
655 final double v=p[3], |
|
656 a=p[2]/v,b=p[1]/v,c=p[0]/v, |
|
657 a3=a/3,a3a=a3*a, |
|
658 pd3=(b-a3a)/3, |
|
659 qd2=a3*(a3a/3-0.5*b)+0.5*c, |
|
660 Q=pd3*pd3*pd3+qd2*qd2; |
|
661 if(Q<0) |
|
662 { |
|
663 // three real roots |
|
664 final double SQ=Math.sqrt(-Q); |
|
665 final double th=Math.atan2(SQ,-qd2); |
|
666 im_root[0]=im_root[1]=im_root[2]=0; |
|
667 final double f=2*Math.sqrt(-pd3); |
|
668 re_root[0]=f*Math.cos(th/3)-a3; |
|
669 re_root[1]=f*Math.cos((th+2*Math.PI)/3)-a3; |
|
670 re_root[2]=f*Math.cos((th+4*Math.PI)/3)-a3; |
|
671 //System.err.println("3r"); |
|
672 } |
|
673 else |
|
674 { |
|
675 // one real & two complex roots |
|
676 final double SQ=Math.sqrt(Q); |
|
677 final double r1=-qd2+SQ,r2=-qd2-SQ; |
|
678 final double v1=Math.signum(r1)*Math.pow(Math.abs(r1),1.0/3), |
|
679 v2=Math.signum(r2)*Math.pow(Math.abs(r2),1.0/3), |
|
680 sv=v1+v2; |
|
681 // real root |
|
682 re_root[0]=sv-a3; |
|
683 im_root[0]=0; |
|
684 // complex roots |
|
685 re_root[1]=re_root[2]=-0.5*sv-a3; |
|
686 im_root[1]=(v1-v2)*(SQRT3*0.5); |
|
687 im_root[2]=-im_root[1]; |
|
688 //System.err.println("1r2c"); |
|
689 } |
|
690 } |
|
691 else |
|
692 { |
|
693 re_root[0]=re_root[1]=re_root[2]=im_root[0]=im_root[1]=im_root[2]=Double.NaN; |
|
694 } |
|
695 } |
|
696 |
|
697 |
|
698 static void printSpecialValues() |
|
699 { |
|
700 for(int st=0;st<6;st++) |
|
701 { |
|
702 //final double [] p=new double []{8,1,3,3.6,1}; |
|
703 final double [] re_root=new double [4],im_root=new double [4]; |
|
704 final double [] p; |
|
705 final int n; |
|
706 if(st<=3) |
|
707 { |
|
708 if(st<=0) |
|
709 { |
|
710 p=new double []{2,-4,6,-4,1}; |
|
711 //p=new double []{-6,6,-6,8,-2}; |
|
712 } |
|
713 else if(st==1) |
|
714 { |
|
715 p=new double []{0,-4,8,3,-9}; |
|
716 } |
|
717 else if(st==2) |
|
718 { |
|
719 p=new double []{-1,0,2,0,-1}; |
|
720 } |
|
721 else |
|
722 { |
|
723 p=new double []{-5,2,8,-2,-3}; |
|
724 } |
|
725 root4(p,re_root,im_root); |
|
726 n=4; |
|
727 } |
|
728 else |
|
729 { |
|
730 p=new double []{0,2,0,1}; |
|
731 if(st==4) |
|
732 { |
|
733 p[1]=-p[1]; |
|
734 } |
|
735 root3(p,re_root,im_root); |
|
736 n=3; |
|
737 } |
|
738 System.err.println("======== n="+n); |
|
739 for(int i=0;i<=n;i++) |
|
740 { |
|
741 if(i<n) |
|
742 { |
|
743 System.err.println(String.valueOf(i)+"\t"+ |
|
744 p[i]+"\t"+ |
|
745 re_root[i]+"\t"+ |
|
746 im_root[i]); |
|
747 } |
|
748 else |
|
749 { |
|
750 System.err.println(String.valueOf(i)+"\t"+p[i]+"\t"); |
|
751 } |
|
752 } |
|
753 } |
|
754 } |
|
755 |
|
756 |
|
757 |
|
758 public static void main(final String [] args) |
|
759 { |
|
760 final long t0=System.currentTimeMillis(); |
|
761 final double eps=1e-6; |
|
762 //checkRoots(); |
|
763 final java.util.Random r=new java.util.Random(-1381923); |
|
764 printSpecialValues(); |
|
765 |
|
766 final int n_tests=10000000; |
|
767 //testRoots(2,n_tests,r,eps); |
|
768 //testRoots(3,n_tests,r,eps); |
|
769 testRoots(4,n_tests,r,eps); |
|
770 final long t1=System.currentTimeMillis(); |
|
771 System.err.println("PolynomialRoot.main: "+n_tests+" tests OK done in "+(t1-t0)+" milliseconds. ver=$Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $"); |
|
772 } |
|
773 |
|
774 |
|
775 |
|
776 } |