1 /* |
|
2 * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved. |
|
3 * |
|
4 * Redistribution and use in source and binary forms, with or without |
|
5 * modification, are permitted provided that the following conditions |
|
6 * are met: |
|
7 * |
|
8 * - Redistributions of source code must retain the above copyright |
|
9 * notice, this list of conditions and the following disclaimer. |
|
10 * |
|
11 * - Redistributions in binary form must reproduce the above copyright |
|
12 * notice, this list of conditions and the following disclaimer in the |
|
13 * documentation and/or other materials provided with the distribution. |
|
14 * |
|
15 * - Neither the name of Oracle nor the names of its |
|
16 * contributors may be used to endorse or promote products derived |
|
17 * from this software without specific prior written permission. |
|
18 * |
|
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
|
20 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
|
21 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
|
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
|
23 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
|
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
|
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
|
26 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
|
27 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
|
28 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
29 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
30 */ |
|
31 |
|
32 /* |
|
33 * This source code is provided to illustrate the usage of a given feature |
|
34 * or technique and has been deliberately simplified. Additional steps |
|
35 * required for a production-quality application, such as security checks, |
|
36 * input validation and proper error handling, might not be present in |
|
37 * this sample code. |
|
38 */ |
|
39 |
|
40 |
|
41 /* Lookup Table of generic elements. */ |
|
42 |
|
43 /* |
|
44 * Each table has a unique lock, all accesses are protected. |
|
45 * |
|
46 * Table elements are identified with a 32bit unsigned int. |
|
47 * (Also see HARE trick below, which makes the TableIndex unique per table). |
|
48 * |
|
49 * Each element has a key (N bytes) and possible additional info. |
|
50 * |
|
51 * Two elements with the same key should be the same element. |
|
52 * |
|
53 * The storage for the Key and Info cannot move, the table itself can. |
|
54 * |
|
55 * The hash table will only be allocated if we have keys, and will resize |
|
56 * when the table needs to resize. The hash buckets just provide the |
|
57 * reference to the first TableIndex in the hash bucket, the next |
|
58 * field of the TableElement takes you to the next item in the hash |
|
59 * bucket. Lookups will drift the looked up item to the head of the |
|
60 * list. |
|
61 * |
|
62 * The full 32bit hashcode and key length is saved for comparisons, the |
|
63 * last thing done is the actual comparison of the Key contents with |
|
64 * keys_equal(). |
|
65 * |
|
66 * Freed elements (not many tables actually free items) are managed with |
|
67 * a bit vector and a low index where a freed element might be found. |
|
68 * Bytes are inspected until a non-zero byte indicates a freed bit is |
|
69 * set. A count of freed elements is also kept. |
|
70 * |
|
71 */ |
|
72 |
|
73 #include "hprof.h" |
|
74 |
|
75 /* Macros for bit vectors: unsigned char 2^3==8 OR unsigned int 2^5==32 */ |
|
76 |
|
77 #define BV_CHUNK_POWER_2 3 /* 2 to this power == BV_CHUNK_BITSIZE */ |
|
78 #define BV_CHUNK_TYPE unsigned char |
|
79 |
|
80 #define BV_CHUNK_BITSIZE (((int)sizeof(BV_CHUNK_TYPE))<<3) /* x8 */ |
|
81 #define BV_CHUNK_INDEX_MASK ( (1 << BV_CHUNK_POWER_2) - 1 ) |
|
82 #define BV_ELEMENT_COUNT(nelems) ((((nelems+1)) >> BV_CHUNK_POWER_2) + 1) |
|
83 |
|
84 #define BV_CHUNK_ROUND(i) ((i) & ~(BV_CHUNK_INDEX_MASK)) |
|
85 #define BV_CHUNK(ptr, i) \ |
|
86 (((BV_CHUNK_TYPE*)(ptr))[(i) >> BV_CHUNK_POWER_2]) |
|
87 #define BV_CHUNK_MASK(i) \ |
|
88 (1 << ((i) & BV_CHUNK_INDEX_MASK)) |
|
89 |
|
90 /* Hash code value */ |
|
91 |
|
92 typedef unsigned HashCode; |
|
93 |
|
94 /* Basic key for an element. What makes the element unique. */ |
|
95 |
|
96 typedef struct TableKey { |
|
97 void *ptr; /* Pointer to arbitrary data that forms the key. */ |
|
98 int len; /* Length in bytes of this key. */ |
|
99 } TableKey; |
|
100 |
|
101 /* Basic TableElement (but only allocated if keys are used) */ |
|
102 |
|
103 typedef struct TableElement { |
|
104 TableKey key; /* The element key. */ |
|
105 HashCode hcode; /* The full 32bit hashcode for the key. */ |
|
106 TableIndex next; /* The next TableElement in the hash bucket chain. */ |
|
107 void *info; /* Info pointer */ |
|
108 } TableElement; |
|
109 |
|
110 /* Generic Lookup Table structure */ |
|
111 |
|
112 typedef struct LookupTable { |
|
113 char name[48]; /* Name of table. */ |
|
114 void *table; /* Pointer to array of elements. */ |
|
115 TableIndex *hash_buckets; /* Pointer to hash bucket chains. */ |
|
116 Blocks *info_blocks; /* Blocks space for info */ |
|
117 Blocks *key_blocks; /* Blocks space for keys */ |
|
118 TableIndex next_index; /* Next element available. */ |
|
119 TableIndex table_size; /* Current size of table. */ |
|
120 TableIndex table_incr; /* Suggested increment size. */ |
|
121 TableIndex hash_bucket_count; /* Number of hash buckets. */ |
|
122 int elem_size; /* Size of element. */ |
|
123 int info_size; /* Size of info structure (can be 0). */ |
|
124 void *freed_bv; /* Freed element bit vector */ |
|
125 int freed_count; /* Count of freed'd elements */ |
|
126 TableIndex freed_start; /* First freed in table */ |
|
127 int resizes; /* Count of table resizes done. */ |
|
128 unsigned bucket_walks; /* Count of bucket walks. */ |
|
129 jrawMonitorID lock; /* Lock for table access. */ |
|
130 SerialNumber serial_num; /* Table serial number. */ |
|
131 TableIndex hare; /* Rabbit (HARE) trick. */ |
|
132 } LookupTable; |
|
133 |
|
134 /* To get a pointer to an element, regardless of element size. */ |
|
135 |
|
136 #define ELEMENT_PTR(ltable, i) \ |
|
137 ((void*)(((char*)(ltable)->table) + (ltable)->elem_size * (i))) |
|
138 |
|
139 /* Sanity, check all the time. */ |
|
140 |
|
141 #define SANITY_CHECK(condition) ( (condition) ? (void)0 : \ |
|
142 HPROF_ERROR(JNI_FALSE, "SANITY IN QUESTION: " #condition)) |
|
143 |
|
144 /* To see if an index is valid. */ |
|
145 |
|
146 #define SANITY_CHECK_INDEX(ltable,i) SANITY_CHECK((i) < ltable->next_index) |
|
147 |
|
148 /* Small rabbits (hares) can be hidden in the index value returned. |
|
149 * Only the right rabbits are allowed in certain pens (LookupTables). |
|
150 * When herding rabbits it's important to keep them separate, |
|
151 * there are lots of rabbits, all different kinds and sizes, |
|
152 * keeping them all separate is important to avoid cross breeding. |
|
153 */ |
|
154 |
|
155 #define _SANITY_USE_HARE |
|
156 #ifdef _SANITY_USE_HARE |
|
157 #define SANITY_ADD_HARE(i,hare) (SANITY_REMOVE_HARE(i) | (hare)) |
|
158 #define SANITY_REMOVE_HARE(i) ((i) & 0x0FFFFFFF) |
|
159 #define SANITY_CHECK_HARE(i,hare) SANITY_CHECK(SANITY_ADD_HARE(i,hare)==(i)) |
|
160 #else |
|
161 #define SANITY_ADD_HARE(i,hare) (i) |
|
162 #define SANITY_REMOVE_HARE(i) (i) |
|
163 #define SANITY_CHECK_HARE(i,hare) |
|
164 #endif |
|
165 |
|
166 static jrawMonitorID |
|
167 lock_create(char *name) |
|
168 { |
|
169 jrawMonitorID stanley; |
|
170 |
|
171 stanley = createRawMonitor(name); |
|
172 return stanley; |
|
173 } |
|
174 |
|
175 static void |
|
176 lock_destroy(jrawMonitorID stanley) |
|
177 { |
|
178 if ( stanley != NULL ) { |
|
179 destroyRawMonitor(stanley); |
|
180 } |
|
181 } |
|
182 |
|
183 static void |
|
184 lock_enter(jrawMonitorID stanley) |
|
185 { |
|
186 if ( stanley != NULL ) { |
|
187 rawMonitorEnter(stanley); |
|
188 } |
|
189 } |
|
190 |
|
191 static void |
|
192 lock_exit(jrawMonitorID stanley) |
|
193 { |
|
194 if ( stanley != NULL ) { |
|
195 rawMonitorExit(stanley); |
|
196 } |
|
197 } |
|
198 |
|
199 static void |
|
200 get_key(LookupTable *ltable, TableIndex index, void **pkey_ptr, int *pkey_len) |
|
201 { |
|
202 *pkey_ptr = ((TableElement*)ELEMENT_PTR(ltable,index))->key.ptr; |
|
203 *pkey_len = ((TableElement*)ELEMENT_PTR(ltable,index))->key.len; |
|
204 } |
|
205 |
|
206 static void * |
|
207 get_info(LookupTable *ltable, TableIndex index) |
|
208 { |
|
209 TableElement *element; |
|
210 |
|
211 element = (TableElement*)ELEMENT_PTR(ltable,index); |
|
212 return element->info; |
|
213 } |
|
214 |
|
215 static void |
|
216 hash_out(LookupTable *ltable, TableIndex index) |
|
217 { |
|
218 if ( ltable->hash_bucket_count > 0 ) { |
|
219 TableElement *element; |
|
220 TableElement *prev_e; |
|
221 TableIndex bucket; |
|
222 TableIndex i; |
|
223 |
|
224 element = (TableElement*)ELEMENT_PTR(ltable,index); |
|
225 bucket = (element->hcode % ltable->hash_bucket_count); |
|
226 i = ltable->hash_buckets[bucket]; |
|
227 HPROF_ASSERT(i!=0); |
|
228 prev_e = NULL; |
|
229 while ( i != 0 && i != index ) { |
|
230 prev_e = (TableElement*)ELEMENT_PTR(ltable,i); |
|
231 i = prev_e->next; |
|
232 } |
|
233 HPROF_ASSERT(i==index); |
|
234 if ( prev_e == NULL ) { |
|
235 ltable->hash_buckets[bucket] = element->next; |
|
236 } else { |
|
237 prev_e->next = element->next; |
|
238 } |
|
239 element->next = 0; |
|
240 element->hcode = 0; |
|
241 } |
|
242 } |
|
243 |
|
244 static jboolean |
|
245 is_freed_entry(LookupTable *ltable, TableIndex index) |
|
246 { |
|
247 if ( ltable->freed_bv == NULL ) { |
|
248 return JNI_FALSE; |
|
249 } |
|
250 if ( ( BV_CHUNK(ltable->freed_bv, index) & BV_CHUNK_MASK(index) ) != 0 ) { |
|
251 return JNI_TRUE; |
|
252 } |
|
253 return JNI_FALSE; |
|
254 } |
|
255 |
|
256 static void |
|
257 set_freed_bit(LookupTable *ltable, TableIndex index) |
|
258 { |
|
259 void *p; |
|
260 |
|
261 HPROF_ASSERT(!is_freed_entry(ltable, index)); |
|
262 p = ltable->freed_bv; |
|
263 if ( p == NULL ) { |
|
264 int size; |
|
265 |
|
266 /* First time for a free */ |
|
267 HPROF_ASSERT(ltable->freed_start==0); |
|
268 HPROF_ASSERT(ltable->freed_start==0); |
|
269 size = BV_ELEMENT_COUNT(ltable->table_size); |
|
270 p = HPROF_MALLOC(size*(int)sizeof(BV_CHUNK_TYPE)); |
|
271 ltable->freed_bv = p; |
|
272 (void)memset(p, 0, size*(int)sizeof(BV_CHUNK_TYPE)); |
|
273 } |
|
274 BV_CHUNK(p, index) |= BV_CHUNK_MASK(index); |
|
275 ltable->freed_count++; |
|
276 if ( ltable->freed_count == 1 ) { |
|
277 /* Set freed_start for first time. */ |
|
278 HPROF_ASSERT(ltable->freed_start==0); |
|
279 ltable->freed_start = index; |
|
280 } else if ( index < ltable->freed_start ) { |
|
281 /* Set freed_start to smaller value so we can be smart about search */ |
|
282 HPROF_ASSERT(ltable->freed_start!=0); |
|
283 ltable->freed_start = index; |
|
284 } |
|
285 HPROF_ASSERT(ltable->freed_start!=0); |
|
286 HPROF_ASSERT(ltable->freed_start < ltable->next_index); |
|
287 HPROF_ASSERT(is_freed_entry(ltable, index)); |
|
288 } |
|
289 |
|
290 static TableIndex |
|
291 find_freed_entry(LookupTable *ltable) |
|
292 { |
|
293 if ( ltable->freed_count > 0 ) { |
|
294 TableIndex i; |
|
295 TableIndex istart; |
|
296 void *p; |
|
297 BV_CHUNK_TYPE chunk; |
|
298 |
|
299 HPROF_ASSERT(BV_CHUNK_BITSIZE==(1<<BV_CHUNK_POWER_2)); |
|
300 |
|
301 p = ltable->freed_bv; |
|
302 HPROF_ASSERT(p!=NULL); |
|
303 |
|
304 /* Go to beginning of chunk */ |
|
305 HPROF_ASSERT(ltable->freed_start!=0); |
|
306 HPROF_ASSERT(ltable->freed_start < ltable->next_index); |
|
307 istart = BV_CHUNK_ROUND(ltable->freed_start); |
|
308 |
|
309 /* Find chunk with any bit set */ |
|
310 chunk = 0; |
|
311 for( ; istart < ltable->next_index ; istart += BV_CHUNK_BITSIZE ) { |
|
312 chunk = BV_CHUNK(p, istart); |
|
313 if ( chunk != 0 ) { |
|
314 break; |
|
315 } |
|
316 } |
|
317 HPROF_ASSERT(chunk!=0); |
|
318 HPROF_ASSERT(chunk==BV_CHUNK(p,istart)); |
|
319 HPROF_ASSERT(istart < ltable->next_index); |
|
320 |
|
321 /* Find bit in chunk and return index of freed item */ |
|
322 for( i = istart ; i < (istart+BV_CHUNK_BITSIZE) ; i++) { |
|
323 BV_CHUNK_TYPE mask; |
|
324 |
|
325 mask = BV_CHUNK_MASK(i); |
|
326 if ( (chunk & mask) != 0 ) { |
|
327 HPROF_ASSERT(chunk==BV_CHUNK(p,i)); |
|
328 chunk &= ~mask; |
|
329 BV_CHUNK(p, i) = chunk; |
|
330 ltable->freed_count--; |
|
331 HPROF_ASSERT(i < ltable->next_index); |
|
332 if ( ltable->freed_count > 0 ) { |
|
333 /* Set freed_start so we can be smart about search */ |
|
334 HPROF_ASSERT((i+1) < ltable->next_index); |
|
335 ltable->freed_start = i+1; |
|
336 } else { |
|
337 /* Clear freed_start because there are no freed entries */ |
|
338 ltable->freed_start = 0; |
|
339 } |
|
340 HPROF_ASSERT(!is_freed_entry(ltable, i)); |
|
341 return i; |
|
342 } |
|
343 } |
|
344 HPROF_ASSERT(0); |
|
345 } |
|
346 return 0; |
|
347 } |
|
348 |
|
349 static void |
|
350 free_entry(LookupTable *ltable, TableIndex index) |
|
351 { |
|
352 set_freed_bit(ltable, index); |
|
353 hash_out(ltable, index); |
|
354 } |
|
355 |
|
356 /* Fairly generic hash code generator (not a hash table index) */ |
|
357 static HashCode |
|
358 hashcode(void *key_ptr, int key_len) |
|
359 { |
|
360 unsigned char * p; |
|
361 HashCode hcode; |
|
362 int i; |
|
363 |
|
364 hcode = 0; |
|
365 if ( key_ptr == NULL || key_len == 0 ) { |
|
366 return hcode; |
|
367 } |
|
368 i = 0; |
|
369 p = (unsigned char*)key_ptr; |
|
370 for ( ; i < key_len-3 ; i += 4 ) { |
|
371 /* Do a little loop unrolling */ |
|
372 hcode += ( |
|
373 ( (unsigned)(p[i]) << 24 ) | |
|
374 ( (unsigned)(p[i+1]) << 16 ) | |
|
375 ( (unsigned)(p[i+2]) << 8 ) | |
|
376 ( (unsigned)(p[i+3]) ) |
|
377 ); |
|
378 } |
|
379 for ( ; i < key_len ; i++ ) { |
|
380 hcode += (unsigned)(p[i]); |
|
381 } |
|
382 return hcode; |
|
383 } |
|
384 |
|
385 static void |
|
386 hash_in(LookupTable *ltable, TableIndex index, HashCode hcode) |
|
387 { |
|
388 if ( ltable->hash_bucket_count > 0 ) { |
|
389 TableElement *element; |
|
390 TableIndex bucket; |
|
391 |
|
392 bucket = (hcode % ltable->hash_bucket_count); |
|
393 element = (TableElement*)ELEMENT_PTR(ltable, index); |
|
394 element->hcode = hcode; |
|
395 element->next = ltable->hash_buckets[bucket]; |
|
396 ltable->hash_buckets[bucket] = index; |
|
397 } |
|
398 } |
|
399 |
|
400 static void |
|
401 resize_hash_buckets(LookupTable *ltable) |
|
402 { |
|
403 /* Don't want to do this too often. */ |
|
404 |
|
405 /* Hash table needs resizing when it's smaller than 1/16 the number of |
|
406 * elements used in the table. This is just a guess. |
|
407 */ |
|
408 if ( ( ltable->hash_bucket_count < (ltable->next_index >> 4) ) |
|
409 && ( ltable->hash_bucket_count > 0 ) |
|
410 && ( ( ltable->resizes % 10 ) == 0 ) |
|
411 && ( ltable->bucket_walks > 1000*ltable->hash_bucket_count ) |
|
412 ) { |
|
413 int old_size; |
|
414 int new_size; |
|
415 TableIndex *new_buckets; |
|
416 TableIndex *old_buckets; |
|
417 int bucket; |
|
418 |
|
419 /* Increase size of hash_buckets array, and rehash all elements */ |
|
420 |
|
421 LOG3("Table resize", ltable->name, ltable->resizes); |
|
422 |
|
423 old_size = ltable->hash_bucket_count; |
|
424 old_buckets = ltable->hash_buckets; |
|
425 new_size = (ltable->next_index >> 3); /* 1/8 current used count */ |
|
426 SANITY_CHECK(new_size > old_size); |
|
427 new_buckets = HPROF_MALLOC(new_size*(int)sizeof(TableIndex)); |
|
428 (void)memset(new_buckets, 0, new_size*(int)sizeof(TableIndex)); |
|
429 ltable->hash_bucket_count = new_size; |
|
430 ltable->hash_buckets = new_buckets; |
|
431 |
|
432 for ( bucket = 0 ; bucket < old_size ; bucket++ ) { |
|
433 TableIndex index; |
|
434 |
|
435 index = old_buckets[bucket]; |
|
436 while ( index != 0 ) { |
|
437 TableElement *element; |
|
438 TableIndex next; |
|
439 |
|
440 element = (TableElement*)ELEMENT_PTR(ltable, index); |
|
441 next = element->next; |
|
442 element->next = 0; |
|
443 hash_in(ltable, index, element->hcode); |
|
444 index = next; |
|
445 } |
|
446 } |
|
447 HPROF_FREE(old_buckets); |
|
448 |
|
449 ltable->bucket_walks = 0; |
|
450 } |
|
451 } |
|
452 |
|
453 static void |
|
454 resize(LookupTable *ltable) |
|
455 { |
|
456 int old_size; |
|
457 int new_size; |
|
458 void *old_table; |
|
459 void *new_table; |
|
460 int nbytes; |
|
461 int obytes; |
|
462 |
|
463 LOG3("Table resize", ltable->name, ltable->resizes); |
|
464 |
|
465 /* Adjust increment on every resize |
|
466 * Minimum is 1/4 the size of the current table or 512. |
|
467 */ |
|
468 old_size = ltable->table_size; |
|
469 if ( ltable->table_incr < (unsigned)(old_size >> 2) ) { |
|
470 ltable->table_incr = (old_size >> 2); |
|
471 } |
|
472 if ( ltable->table_incr < 512 ) { |
|
473 ltable->table_incr = 512; |
|
474 } |
|
475 new_size = old_size + ltable->table_incr; |
|
476 |
|
477 /* Basic table element array */ |
|
478 obytes = old_size * ltable->elem_size; |
|
479 nbytes = new_size * ltable->elem_size; |
|
480 old_table = ltable->table; |
|
481 new_table = HPROF_MALLOC(nbytes); |
|
482 (void)memcpy(new_table, old_table, obytes); |
|
483 (void)memset(((char*)new_table)+obytes, 0, nbytes-obytes); |
|
484 ltable->table = new_table; |
|
485 ltable->table_size = new_size; |
|
486 HPROF_FREE(old_table); |
|
487 |
|
488 /* Then bit vector for freed entries */ |
|
489 if ( ltable->freed_bv != NULL ) { |
|
490 void *old_bv; |
|
491 void *new_bv; |
|
492 |
|
493 obytes = BV_ELEMENT_COUNT(old_size)*(int)sizeof(BV_CHUNK_TYPE); |
|
494 nbytes = BV_ELEMENT_COUNT(new_size)*(int)sizeof(BV_CHUNK_TYPE); |
|
495 old_bv = ltable->freed_bv; |
|
496 new_bv = HPROF_MALLOC(nbytes); |
|
497 (void)memcpy(new_bv, old_bv, obytes); |
|
498 (void)memset(((char*)new_bv)+obytes, 0, nbytes-obytes); |
|
499 ltable->freed_bv = new_bv; |
|
500 HPROF_FREE(old_bv); |
|
501 } |
|
502 |
|
503 /* Check to see if the hash table needs resizing */ |
|
504 resize_hash_buckets(ltable); |
|
505 |
|
506 ltable->resizes++; |
|
507 } |
|
508 |
|
509 static jboolean |
|
510 keys_equal(void *key_ptr1, void *key_ptr2, int key_len) |
|
511 { |
|
512 unsigned char * p1; |
|
513 unsigned char * p2; |
|
514 int i; |
|
515 |
|
516 if ( key_len == 0 ) { |
|
517 return JNI_TRUE; |
|
518 } |
|
519 |
|
520 /* We know these are aligned because we malloc'd them. */ |
|
521 |
|
522 /* Compare word by word, then byte by byte */ |
|
523 p1 = (unsigned char*)key_ptr1; |
|
524 p2 = (unsigned char*)key_ptr2; |
|
525 for ( i = 0 ; i < key_len-3 ; i += 4 ) { |
|
526 /*LINTED*/ |
|
527 if ( *(unsigned*)(p1+i) != *(unsigned*)(p2+i) ) { |
|
528 return JNI_FALSE; |
|
529 } |
|
530 } |
|
531 for ( ; i < key_len ; i++ ) { |
|
532 if ( p1[i] != p2[i] ) { |
|
533 return JNI_FALSE; |
|
534 } |
|
535 } |
|
536 return JNI_TRUE; |
|
537 } |
|
538 |
|
539 static TableIndex |
|
540 find_entry(LookupTable *ltable, void *key_ptr, int key_len, HashCode hcode) |
|
541 { |
|
542 TableIndex index; |
|
543 |
|
544 HPROF_ASSERT(ltable!=NULL); |
|
545 |
|
546 index = 0; |
|
547 if ( ltable->hash_bucket_count > 0 ) { |
|
548 TableIndex bucket; |
|
549 TableIndex prev_index; |
|
550 |
|
551 HPROF_ASSERT(key_ptr!=NULL); |
|
552 HPROF_ASSERT(key_len>0); |
|
553 prev_index = 0; |
|
554 bucket = (hcode % ltable->hash_bucket_count); |
|
555 index = ltable->hash_buckets[bucket]; |
|
556 while ( index != 0 ) { |
|
557 TableElement *element; |
|
558 TableElement *prev_element; |
|
559 |
|
560 element = (TableElement*)ELEMENT_PTR(ltable, index); |
|
561 if ( hcode == element->hcode && |
|
562 key_len == element->key.len && |
|
563 keys_equal(key_ptr, element->key.ptr, key_len) ) { |
|
564 /* Place this guy at the head of the bucket list */ |
|
565 if ( prev_index != 0 ) { |
|
566 prev_element = (TableElement*)ELEMENT_PTR(ltable, prev_index); |
|
567 prev_element->next = element->next; |
|
568 element->next = ltable->hash_buckets[bucket]; |
|
569 ltable->hash_buckets[bucket] = index; |
|
570 } |
|
571 break; |
|
572 } |
|
573 prev_index = index; |
|
574 index = element->next; |
|
575 ltable->bucket_walks++; |
|
576 } |
|
577 } |
|
578 return index; |
|
579 } |
|
580 |
|
581 static TableIndex |
|
582 setup_new_entry(LookupTable *ltable, void *key_ptr, int key_len, void *info_ptr) |
|
583 { |
|
584 TableIndex index; |
|
585 TableElement *element; |
|
586 void *info; |
|
587 void *dup_key; |
|
588 |
|
589 /* Assume we need new allocations for key and info */ |
|
590 dup_key = NULL; |
|
591 info = NULL; |
|
592 |
|
593 /* Look for a freed element */ |
|
594 index = 0; |
|
595 if ( ltable->freed_count > 0 ) { |
|
596 index = find_freed_entry(ltable); |
|
597 } |
|
598 if ( index != 0 ) { |
|
599 int old_key_len; |
|
600 |
|
601 /* Found a freed element, re-use what we can but clean it up. */ |
|
602 element = (TableElement*)ELEMENT_PTR(ltable, index); |
|
603 dup_key = element->key.ptr; |
|
604 old_key_len = element->key.len; |
|
605 info = element->info; |
|
606 (void)memset(element, 0, ltable->elem_size); |
|
607 |
|
608 /* Toss the key space if size is too small to hold new key */ |
|
609 if ( key_ptr != NULL ) { |
|
610 if ( old_key_len < key_len ) { |
|
611 /* This could leak space in the Blocks if keys are variable |
|
612 * in size AND the table does frees of elements. |
|
613 */ |
|
614 dup_key = NULL; |
|
615 } |
|
616 } |
|
617 } else { |
|
618 |
|
619 /* Brand new table element */ |
|
620 if ( ltable->next_index >= ltable->table_size ) { |
|
621 resize(ltable); |
|
622 } |
|
623 index = ltable->next_index++; |
|
624 element = (TableElement*)ELEMENT_PTR(ltable, index); |
|
625 } |
|
626 |
|
627 /* Setup info area */ |
|
628 if ( ltable->info_size > 0 ) { |
|
629 if ( info == NULL ) { |
|
630 info = blocks_alloc(ltable->info_blocks, ltable->info_size); |
|
631 } |
|
632 if ( info_ptr==NULL ) { |
|
633 (void)memset(info, 0, ltable->info_size); |
|
634 } else { |
|
635 (void)memcpy(info, info_ptr, ltable->info_size); |
|
636 } |
|
637 } |
|
638 |
|
639 /* Setup key area if one was provided */ |
|
640 if ( key_ptr != NULL ) { |
|
641 if ( dup_key == NULL ) { |
|
642 dup_key = blocks_alloc(ltable->key_blocks, key_len); |
|
643 } |
|
644 (void)memcpy(dup_key, key_ptr, key_len); |
|
645 } |
|
646 |
|
647 /* Fill in element */ |
|
648 element->key.ptr = dup_key; |
|
649 element->key.len = key_len; |
|
650 element->info = info; |
|
651 |
|
652 return index; |
|
653 } |
|
654 |
|
655 LookupTable * |
|
656 table_initialize(const char *name, int size, int incr, int bucket_count, |
|
657 int info_size) |
|
658 { |
|
659 LookupTable * ltable; |
|
660 char lock_name[80]; |
|
661 int elem_size; |
|
662 int key_size; |
|
663 |
|
664 HPROF_ASSERT(name!=NULL); |
|
665 HPROF_ASSERT(size>0); |
|
666 HPROF_ASSERT(incr>0); |
|
667 HPROF_ASSERT(bucket_count>=0); |
|
668 HPROF_ASSERT(info_size>=0); |
|
669 |
|
670 key_size = 1; |
|
671 ltable = (LookupTable *)HPROF_MALLOC((int)sizeof(LookupTable)); |
|
672 (void)memset(ltable, 0, (int)sizeof(LookupTable)); |
|
673 |
|
674 (void)strncpy(ltable->name, name, sizeof(ltable->name)); |
|
675 |
|
676 elem_size = (int)sizeof(TableElement); |
|
677 |
|
678 ltable->next_index = 1; /* Never use index 0 */ |
|
679 ltable->table_size = size; |
|
680 ltable->table_incr = incr; |
|
681 ltable->hash_bucket_count = bucket_count; |
|
682 ltable->elem_size = elem_size; |
|
683 ltable->info_size = info_size; |
|
684 if ( info_size > 0 ) { |
|
685 ltable->info_blocks = blocks_init(8, info_size, incr); |
|
686 } |
|
687 if ( key_size > 0 ) { |
|
688 ltable->key_blocks = blocks_init(8, key_size, incr); |
|
689 } |
|
690 ltable->table = HPROF_MALLOC(size * elem_size); |
|
691 (void)memset(ltable->table, 0, size * elem_size); |
|
692 if ( bucket_count > 0 ) { |
|
693 int nbytes; |
|
694 |
|
695 nbytes = (int)(bucket_count*sizeof(TableIndex)); |
|
696 ltable->hash_buckets = (TableIndex*)HPROF_MALLOC(nbytes); |
|
697 (void)memset(ltable->hash_buckets, 0, nbytes); |
|
698 } |
|
699 |
|
700 (void)md_snprintf(lock_name, sizeof(lock_name), |
|
701 "HPROF %s table lock", name); |
|
702 lock_name[sizeof(lock_name)-1] = 0; |
|
703 ltable->lock = lock_create(lock_name); |
|
704 ltable->serial_num = gdata->table_serial_number_counter++; |
|
705 ltable->hare = (ltable->serial_num << 28); |
|
706 |
|
707 LOG3("Table initialized", ltable->name, ltable->table_size); |
|
708 return ltable; |
|
709 } |
|
710 |
|
711 int |
|
712 table_element_count(LookupTable *ltable) |
|
713 { |
|
714 int nelems; |
|
715 |
|
716 HPROF_ASSERT(ltable!=NULL); |
|
717 |
|
718 lock_enter(ltable->lock); { |
|
719 nelems = ltable->next_index-1; |
|
720 } lock_exit(ltable->lock); |
|
721 |
|
722 return nelems; |
|
723 } |
|
724 |
|
725 void |
|
726 table_free_entry(LookupTable *ltable, TableIndex index) |
|
727 { |
|
728 HPROF_ASSERT(ltable!=NULL); |
|
729 SANITY_CHECK_HARE(index, ltable->hare); |
|
730 index = SANITY_REMOVE_HARE(index); |
|
731 SANITY_CHECK_INDEX(ltable, index); |
|
732 |
|
733 lock_enter(ltable->lock); { |
|
734 HPROF_ASSERT(!is_freed_entry(ltable, index)); |
|
735 free_entry(ltable, index); |
|
736 } lock_exit(ltable->lock); |
|
737 } |
|
738 |
|
739 void |
|
740 table_walk_items(LookupTable *ltable, LookupTableIterator func, void* arg) |
|
741 { |
|
742 if ( ltable == NULL || ltable->next_index <= 1 ) { |
|
743 return; |
|
744 } |
|
745 HPROF_ASSERT(func!=NULL); |
|
746 |
|
747 lock_enter(ltable->lock); { |
|
748 TableIndex index; |
|
749 int fcount; |
|
750 |
|
751 LOG3("table_walk_items() count+free", ltable->name, ltable->next_index); |
|
752 fcount = 0; |
|
753 for ( index = 1 ; index < ltable->next_index ; index++ ) { |
|
754 if ( ! is_freed_entry(ltable, index) ) { |
|
755 void *key_ptr; |
|
756 int key_len; |
|
757 void *info; |
|
758 |
|
759 get_key(ltable, index, &key_ptr, &key_len); |
|
760 if ( ltable->info_size == 0 ) { |
|
761 info = NULL; |
|
762 } else { |
|
763 info = get_info(ltable, index); |
|
764 } |
|
765 (*func)(SANITY_ADD_HARE(index, ltable->hare), key_ptr, key_len, info, arg); |
|
766 if ( is_freed_entry(ltable, index) ) { |
|
767 fcount++; |
|
768 } |
|
769 } else { |
|
770 fcount++; |
|
771 } |
|
772 } |
|
773 LOG3("table_walk_items() count-free", ltable->name, ltable->next_index); |
|
774 HPROF_ASSERT(fcount==ltable->freed_count); |
|
775 } lock_exit(ltable->lock); |
|
776 } |
|
777 |
|
778 void |
|
779 table_cleanup(LookupTable *ltable, LookupTableIterator func, void *arg) |
|
780 { |
|
781 if ( ltable == NULL ) { |
|
782 return; |
|
783 } |
|
784 |
|
785 if ( func != NULL ) { |
|
786 table_walk_items(ltable, func, arg); |
|
787 } |
|
788 |
|
789 lock_enter(ltable->lock); { |
|
790 |
|
791 HPROF_FREE(ltable->table); |
|
792 if ( ltable->hash_buckets != NULL ) { |
|
793 HPROF_FREE(ltable->hash_buckets); |
|
794 } |
|
795 if ( ltable->freed_bv != NULL ) { |
|
796 HPROF_FREE(ltable->freed_bv); |
|
797 } |
|
798 if ( ltable->info_blocks != NULL ) { |
|
799 blocks_term(ltable->info_blocks); |
|
800 ltable->info_blocks = NULL; |
|
801 } |
|
802 if ( ltable->key_blocks != NULL ) { |
|
803 blocks_term(ltable->key_blocks); |
|
804 ltable->key_blocks = NULL; |
|
805 } |
|
806 |
|
807 } lock_exit(ltable->lock); |
|
808 |
|
809 lock_destroy(ltable->lock); |
|
810 ltable->lock = NULL; |
|
811 |
|
812 HPROF_FREE(ltable); |
|
813 ltable = NULL; |
|
814 } |
|
815 |
|
816 TableIndex |
|
817 table_create_entry(LookupTable *ltable, void *key_ptr, int key_len, void *info_ptr) |
|
818 { |
|
819 TableIndex index; |
|
820 HashCode hcode; |
|
821 |
|
822 HPROF_ASSERT(ltable!=NULL); |
|
823 |
|
824 /* Create hash code if needed */ |
|
825 hcode = 0; |
|
826 if ( ltable->hash_bucket_count > 0 ) { |
|
827 hcode = hashcode(key_ptr, key_len); |
|
828 } |
|
829 |
|
830 /* Create a new entry */ |
|
831 lock_enter(ltable->lock); { |
|
832 |
|
833 /* Need to create a new entry */ |
|
834 index = setup_new_entry(ltable, key_ptr, key_len, info_ptr); |
|
835 |
|
836 /* Add to hash table if we have one */ |
|
837 if ( ltable->hash_bucket_count > 0 ) { |
|
838 hash_in(ltable, index, hcode); |
|
839 } |
|
840 |
|
841 } lock_exit(ltable->lock); |
|
842 return SANITY_ADD_HARE(index, ltable->hare); |
|
843 } |
|
844 |
|
845 TableIndex |
|
846 table_find_entry(LookupTable *ltable, void *key_ptr, int key_len) |
|
847 { |
|
848 TableIndex index; |
|
849 HashCode hcode; |
|
850 |
|
851 /* Create hash code if needed */ |
|
852 hcode = 0; |
|
853 if ( ltable->hash_bucket_count > 0 ) { |
|
854 hcode = hashcode(key_ptr, key_len); |
|
855 } |
|
856 |
|
857 /* Look for element */ |
|
858 lock_enter(ltable->lock); { |
|
859 index = find_entry(ltable, key_ptr, key_len, hcode); |
|
860 } lock_exit(ltable->lock); |
|
861 |
|
862 return index==0 ? index : SANITY_ADD_HARE(index, ltable->hare); |
|
863 } |
|
864 |
|
865 TableIndex |
|
866 table_find_or_create_entry(LookupTable *ltable, void *key_ptr, int key_len, |
|
867 jboolean *pnew_entry, void *info_ptr) |
|
868 { |
|
869 TableIndex index; |
|
870 HashCode hcode; |
|
871 |
|
872 /* Assume it is NOT a new entry for now */ |
|
873 if ( pnew_entry ) { |
|
874 *pnew_entry = JNI_FALSE; |
|
875 } |
|
876 |
|
877 /* Create hash code if needed */ |
|
878 hcode = 0; |
|
879 if ( ltable->hash_bucket_count > 0 ) { |
|
880 hcode = hashcode(key_ptr, key_len); |
|
881 } |
|
882 |
|
883 /* Look for element */ |
|
884 index = 0; |
|
885 lock_enter(ltable->lock); { |
|
886 if ( ltable->hash_bucket_count > 0 ) { |
|
887 index = find_entry(ltable, key_ptr, key_len, hcode); |
|
888 } |
|
889 if ( index == 0 ) { |
|
890 |
|
891 /* Need to create a new entry */ |
|
892 index = setup_new_entry(ltable, key_ptr, key_len, info_ptr); |
|
893 |
|
894 /* Add to hash table if we have one */ |
|
895 if ( ltable->hash_bucket_count > 0 ) { |
|
896 hash_in(ltable, index, hcode); |
|
897 } |
|
898 |
|
899 if ( pnew_entry ) { |
|
900 *pnew_entry = JNI_TRUE; |
|
901 } |
|
902 } |
|
903 } lock_exit(ltable->lock); |
|
904 |
|
905 return SANITY_ADD_HARE(index, ltable->hare); |
|
906 } |
|
907 |
|
908 void * |
|
909 table_get_info(LookupTable *ltable, TableIndex index) |
|
910 { |
|
911 void *info; |
|
912 |
|
913 HPROF_ASSERT(ltable!=NULL); |
|
914 HPROF_ASSERT(ltable->info_size > 0); |
|
915 SANITY_CHECK_HARE(index, ltable->hare); |
|
916 index = SANITY_REMOVE_HARE(index); |
|
917 SANITY_CHECK_INDEX(ltable, index); |
|
918 |
|
919 lock_enter(ltable->lock); { |
|
920 HPROF_ASSERT(!is_freed_entry(ltable, index)); |
|
921 info = get_info(ltable,index); |
|
922 } lock_exit(ltable->lock); |
|
923 |
|
924 return info; |
|
925 } |
|
926 |
|
927 void |
|
928 table_get_key(LookupTable *ltable, TableIndex index, void **pkey_ptr, int *pkey_len) |
|
929 { |
|
930 HPROF_ASSERT(ltable!=NULL); |
|
931 HPROF_ASSERT(pkey_ptr!=NULL); |
|
932 HPROF_ASSERT(pkey_len!=NULL); |
|
933 SANITY_CHECK_HARE(index, ltable->hare); |
|
934 HPROF_ASSERT(ltable->elem_size!=0); |
|
935 index = SANITY_REMOVE_HARE(index); |
|
936 SANITY_CHECK_INDEX(ltable, index); |
|
937 |
|
938 lock_enter(ltable->lock); { |
|
939 HPROF_ASSERT(!is_freed_entry(ltable, index)); |
|
940 get_key(ltable, index, pkey_ptr, pkey_len); |
|
941 } lock_exit(ltable->lock); |
|
942 } |
|
943 |
|
944 void |
|
945 table_lock_enter(LookupTable *ltable) |
|
946 { |
|
947 lock_enter(ltable->lock); |
|
948 } |
|
949 |
|
950 void |
|
951 table_lock_exit(LookupTable *ltable) |
|
952 { |
|
953 lock_exit(ltable->lock); |
|
954 } |
|