jdk/src/share/classes/java/util/concurrent/Phaser.java
changeset 4110 ac033ba6ede4
child 5506 202f599c92aa
equal deleted inserted replaced
4109:b997a0a1005d 4110:ac033ba6ede4
       
     1 /*
       
     2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     3  *
       
     4  * This code is free software; you can redistribute it and/or modify it
       
     5  * under the terms of the GNU General Public License version 2 only, as
       
     6  * published by the Free Software Foundation.  Sun designates this
       
     7  * particular file as subject to the "Classpath" exception as provided
       
     8  * by Sun in the LICENSE file that accompanied this code.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    21  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    22  * have any questions.
       
    23  */
       
    24 
       
    25 /*
       
    26  * This file is available under and governed by the GNU General Public
       
    27  * License version 2 only, as published by the Free Software Foundation.
       
    28  * However, the following notice accompanied the original version of this
       
    29  * file:
       
    30  *
       
    31  * Written by Doug Lea with assistance from members of JCP JSR-166
       
    32  * Expert Group and released to the public domain, as explained at
       
    33  * http://creativecommons.org/licenses/publicdomain
       
    34  */
       
    35 
       
    36 package java.util.concurrent;
       
    37 
       
    38 import java.util.concurrent.atomic.AtomicReference;
       
    39 import java.util.concurrent.locks.LockSupport;
       
    40 
       
    41 /**
       
    42  * A reusable synchronization barrier, similar in functionality to
       
    43  * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
       
    44  * {@link java.util.concurrent.CountDownLatch CountDownLatch}
       
    45  * but supporting more flexible usage.
       
    46  *
       
    47  * <p> <b>Registration.</b> Unlike the case for other barriers, the
       
    48  * number of parties <em>registered</em> to synchronize on a phaser
       
    49  * may vary over time.  Tasks may be registered at any time (using
       
    50  * methods {@link #register}, {@link #bulkRegister}, or forms of
       
    51  * constructors establishing initial numbers of parties), and
       
    52  * optionally deregistered upon any arrival (using {@link
       
    53  * #arriveAndDeregister}).  As is the case with most basic
       
    54  * synchronization constructs, registration and deregistration affect
       
    55  * only internal counts; they do not establish any further internal
       
    56  * bookkeeping, so tasks cannot query whether they are registered.
       
    57  * (However, you can introduce such bookkeeping by subclassing this
       
    58  * class.)
       
    59  *
       
    60  * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
       
    61  * Phaser} may be repeatedly awaited.  Method {@link
       
    62  * #arriveAndAwaitAdvance} has effect analogous to {@link
       
    63  * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
       
    64  * generation of a {@code Phaser} has an associated phase number. The
       
    65  * phase number starts at zero, and advances when all parties arrive
       
    66  * at the barrier, wrapping around to zero after reaching {@code
       
    67  * Integer.MAX_VALUE}. The use of phase numbers enables independent
       
    68  * control of actions upon arrival at a barrier and upon awaiting
       
    69  * others, via two kinds of methods that may be invoked by any
       
    70  * registered party:
       
    71  *
       
    72  * <ul>
       
    73  *
       
    74  *   <li> <b>Arrival.</b> Methods {@link #arrive} and
       
    75  *       {@link #arriveAndDeregister} record arrival at a
       
    76  *       barrier. These methods do not block, but return an associated
       
    77  *       <em>arrival phase number</em>; that is, the phase number of
       
    78  *       the barrier to which the arrival applied. When the final
       
    79  *       party for a given phase arrives, an optional barrier action
       
    80  *       is performed and the phase advances.  Barrier actions,
       
    81  *       performed by the party triggering a phase advance, are
       
    82  *       arranged by overriding method {@link #onAdvance(int, int)},
       
    83  *       which also controls termination. Overriding this method is
       
    84  *       similar to, but more flexible than, providing a barrier
       
    85  *       action to a {@code CyclicBarrier}.
       
    86  *
       
    87  *   <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
       
    88  *       argument indicating an arrival phase number, and returns when
       
    89  *       the barrier advances to (or is already at) a different phase.
       
    90  *       Unlike similar constructions using {@code CyclicBarrier},
       
    91  *       method {@code awaitAdvance} continues to wait even if the
       
    92  *       waiting thread is interrupted. Interruptible and timeout
       
    93  *       versions are also available, but exceptions encountered while
       
    94  *       tasks wait interruptibly or with timeout do not change the
       
    95  *       state of the barrier. If necessary, you can perform any
       
    96  *       associated recovery within handlers of those exceptions,
       
    97  *       often after invoking {@code forceTermination}.  Phasers may
       
    98  *       also be used by tasks executing in a {@link ForkJoinPool},
       
    99  *       which will ensure sufficient parallelism to execute tasks
       
   100  *       when others are blocked waiting for a phase to advance.
       
   101  *
       
   102  * </ul>
       
   103  *
       
   104  * <p> <b>Termination.</b> A {@code Phaser} may enter a
       
   105  * <em>termination</em> state in which all synchronization methods
       
   106  * immediately return without updating phaser state or waiting for
       
   107  * advance, and indicating (via a negative phase value) that execution
       
   108  * is complete.  Termination is triggered when an invocation of {@code
       
   109  * onAdvance} returns {@code true}.  As illustrated below, when
       
   110  * phasers control actions with a fixed number of iterations, it is
       
   111  * often convenient to override this method to cause termination when
       
   112  * the current phase number reaches a threshold. Method {@link
       
   113  * #forceTermination} is also available to abruptly release waiting
       
   114  * threads and allow them to terminate.
       
   115  *
       
   116  * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
       
   117  * in tree structures) to reduce contention. Phasers with large
       
   118  * numbers of parties that would otherwise experience heavy
       
   119  * synchronization contention costs may instead be set up so that
       
   120  * groups of sub-phasers share a common parent.  This may greatly
       
   121  * increase throughput even though it incurs greater per-operation
       
   122  * overhead.
       
   123  *
       
   124  * <p><b>Monitoring.</b> While synchronization methods may be invoked
       
   125  * only by registered parties, the current state of a phaser may be
       
   126  * monitored by any caller.  At any given moment there are {@link
       
   127  * #getRegisteredParties} parties in total, of which {@link
       
   128  * #getArrivedParties} have arrived at the current phase ({@link
       
   129  * #getPhase}).  When the remaining ({@link #getUnarrivedParties})
       
   130  * parties arrive, the phase advances.  The values returned by these
       
   131  * methods may reflect transient states and so are not in general
       
   132  * useful for synchronization control.  Method {@link #toString}
       
   133  * returns snapshots of these state queries in a form convenient for
       
   134  * informal monitoring.
       
   135  *
       
   136  * <p><b>Sample usages:</b>
       
   137  *
       
   138  * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
       
   139  * to control a one-shot action serving a variable number of
       
   140  * parties. The typical idiom is for the method setting this up to
       
   141  * first register, then start the actions, then deregister, as in:
       
   142  *
       
   143  *  <pre> {@code
       
   144  * void runTasks(List<Runnable> tasks) {
       
   145  *   final Phaser phaser = new Phaser(1); // "1" to register self
       
   146  *   // create and start threads
       
   147  *   for (Runnable task : tasks) {
       
   148  *     phaser.register();
       
   149  *     new Thread() {
       
   150  *       public void run() {
       
   151  *         phaser.arriveAndAwaitAdvance(); // await all creation
       
   152  *         task.run();
       
   153  *       }
       
   154  *     }.start();
       
   155  *   }
       
   156  *
       
   157  *   // allow threads to start and deregister self
       
   158  *   phaser.arriveAndDeregister();
       
   159  * }}</pre>
       
   160  *
       
   161  * <p>One way to cause a set of threads to repeatedly perform actions
       
   162  * for a given number of iterations is to override {@code onAdvance}:
       
   163  *
       
   164  *  <pre> {@code
       
   165  * void startTasks(List<Runnable> tasks, final int iterations) {
       
   166  *   final Phaser phaser = new Phaser() {
       
   167  *     protected boolean onAdvance(int phase, int registeredParties) {
       
   168  *       return phase >= iterations || registeredParties == 0;
       
   169  *     }
       
   170  *   };
       
   171  *   phaser.register();
       
   172  *   for (final Runnable task : tasks) {
       
   173  *     phaser.register();
       
   174  *     new Thread() {
       
   175  *       public void run() {
       
   176  *         do {
       
   177  *           task.run();
       
   178  *           phaser.arriveAndAwaitAdvance();
       
   179  *         } while (!phaser.isTerminated());
       
   180  *       }
       
   181  *     }.start();
       
   182  *   }
       
   183  *   phaser.arriveAndDeregister(); // deregister self, don't wait
       
   184  * }}</pre>
       
   185  *
       
   186  * If the main task must later await termination, it
       
   187  * may re-register and then execute a similar loop:
       
   188  *  <pre> {@code
       
   189  *   // ...
       
   190  *   phaser.register();
       
   191  *   while (!phaser.isTerminated())
       
   192  *     phaser.arriveAndAwaitAdvance();}</pre>
       
   193  *
       
   194  * <p>Related constructions may be used to await particular phase numbers
       
   195  * in contexts where you are sure that the phase will never wrap around
       
   196  * {@code Integer.MAX_VALUE}. For example:
       
   197  *
       
   198  *  <pre> {@code
       
   199  * void awaitPhase(Phaser phaser, int phase) {
       
   200  *   int p = phaser.register(); // assumes caller not already registered
       
   201  *   while (p < phase) {
       
   202  *     if (phaser.isTerminated())
       
   203  *       // ... deal with unexpected termination
       
   204  *     else
       
   205  *       p = phaser.arriveAndAwaitAdvance();
       
   206  *   }
       
   207  *   phaser.arriveAndDeregister();
       
   208  * }}</pre>
       
   209  *
       
   210  *
       
   211  * <p>To create a set of tasks using a tree of phasers,
       
   212  * you could use code of the following form, assuming a
       
   213  * Task class with a constructor accepting a phaser that
       
   214  * it registers for upon construction:
       
   215  *
       
   216  *  <pre> {@code
       
   217  * void build(Task[] actions, int lo, int hi, Phaser ph) {
       
   218  *   if (hi - lo > TASKS_PER_PHASER) {
       
   219  *     for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
       
   220  *       int j = Math.min(i + TASKS_PER_PHASER, hi);
       
   221  *       build(actions, i, j, new Phaser(ph));
       
   222  *     }
       
   223  *   } else {
       
   224  *     for (int i = lo; i < hi; ++i)
       
   225  *       actions[i] = new Task(ph);
       
   226  *       // assumes new Task(ph) performs ph.register()
       
   227  *   }
       
   228  * }
       
   229  * // .. initially called, for n tasks via
       
   230  * build(new Task[n], 0, n, new Phaser());}</pre>
       
   231  *
       
   232  * The best value of {@code TASKS_PER_PHASER} depends mainly on
       
   233  * expected barrier synchronization rates. A value as low as four may
       
   234  * be appropriate for extremely small per-barrier task bodies (thus
       
   235  * high rates), or up to hundreds for extremely large ones.
       
   236  *
       
   237  * </pre>
       
   238  *
       
   239  * <p><b>Implementation notes</b>: This implementation restricts the
       
   240  * maximum number of parties to 65535. Attempts to register additional
       
   241  * parties result in {@code IllegalStateException}. However, you can and
       
   242  * should create tiered phasers to accommodate arbitrarily large sets
       
   243  * of participants.
       
   244  *
       
   245  * @since 1.7
       
   246  * @author Doug Lea
       
   247  */
       
   248 public class Phaser {
       
   249     /*
       
   250      * This class implements an extension of X10 "clocks".  Thanks to
       
   251      * Vijay Saraswat for the idea, and to Vivek Sarkar for
       
   252      * enhancements to extend functionality.
       
   253      */
       
   254 
       
   255     /**
       
   256      * Barrier state representation. Conceptually, a barrier contains
       
   257      * four values:
       
   258      *
       
   259      * * parties -- the number of parties to wait (16 bits)
       
   260      * * unarrived -- the number of parties yet to hit barrier (16 bits)
       
   261      * * phase -- the generation of the barrier (31 bits)
       
   262      * * terminated -- set if barrier is terminated (1 bit)
       
   263      *
       
   264      * However, to efficiently maintain atomicity, these values are
       
   265      * packed into a single (atomic) long. Termination uses the sign
       
   266      * bit of 32 bit representation of phase, so phase is set to -1 on
       
   267      * termination. Good performance relies on keeping state decoding
       
   268      * and encoding simple, and keeping race windows short.
       
   269      *
       
   270      * Note: there are some cheats in arrive() that rely on unarrived
       
   271      * count being lowest 16 bits.
       
   272      */
       
   273     private volatile long state;
       
   274 
       
   275     private static final int ushortMask = 0xffff;
       
   276     private static final int phaseMask  = 0x7fffffff;
       
   277 
       
   278     private static int unarrivedOf(long s) {
       
   279         return (int) (s & ushortMask);
       
   280     }
       
   281 
       
   282     private static int partiesOf(long s) {
       
   283         return ((int) s) >>> 16;
       
   284     }
       
   285 
       
   286     private static int phaseOf(long s) {
       
   287         return (int) (s >>> 32);
       
   288     }
       
   289 
       
   290     private static int arrivedOf(long s) {
       
   291         return partiesOf(s) - unarrivedOf(s);
       
   292     }
       
   293 
       
   294     private static long stateFor(int phase, int parties, int unarrived) {
       
   295         return ((((long) phase) << 32) | (((long) parties) << 16) |
       
   296                 (long) unarrived);
       
   297     }
       
   298 
       
   299     private static long trippedStateFor(int phase, int parties) {
       
   300         long lp = (long) parties;
       
   301         return (((long) phase) << 32) | (lp << 16) | lp;
       
   302     }
       
   303 
       
   304     /**
       
   305      * Returns message string for bad bounds exceptions.
       
   306      */
       
   307     private static String badBounds(int parties, int unarrived) {
       
   308         return ("Attempt to set " + unarrived +
       
   309                 " unarrived of " + parties + " parties");
       
   310     }
       
   311 
       
   312     /**
       
   313      * The parent of this phaser, or null if none
       
   314      */
       
   315     private final Phaser parent;
       
   316 
       
   317     /**
       
   318      * The root of phaser tree. Equals this if not in a tree.  Used to
       
   319      * support faster state push-down.
       
   320      */
       
   321     private final Phaser root;
       
   322 
       
   323     // Wait queues
       
   324 
       
   325     /**
       
   326      * Heads of Treiber stacks for waiting threads. To eliminate
       
   327      * contention while releasing some threads while adding others, we
       
   328      * use two of them, alternating across even and odd phases.
       
   329      */
       
   330     private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
       
   331     private final AtomicReference<QNode> oddQ  = new AtomicReference<QNode>();
       
   332 
       
   333     private AtomicReference<QNode> queueFor(int phase) {
       
   334         return ((phase & 1) == 0) ? evenQ : oddQ;
       
   335     }
       
   336 
       
   337     /**
       
   338      * Returns current state, first resolving lagged propagation from
       
   339      * root if necessary.
       
   340      */
       
   341     private long getReconciledState() {
       
   342         return (parent == null) ? state : reconcileState();
       
   343     }
       
   344 
       
   345     /**
       
   346      * Recursively resolves state.
       
   347      */
       
   348     private long reconcileState() {
       
   349         Phaser p = parent;
       
   350         long s = state;
       
   351         if (p != null) {
       
   352             while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
       
   353                 long parentState = p.getReconciledState();
       
   354                 int parentPhase = phaseOf(parentState);
       
   355                 int phase = phaseOf(s = state);
       
   356                 if (phase != parentPhase) {
       
   357                     long next = trippedStateFor(parentPhase, partiesOf(s));
       
   358                     if (casState(s, next)) {
       
   359                         releaseWaiters(phase);
       
   360                         s = next;
       
   361                     }
       
   362                 }
       
   363             }
       
   364         }
       
   365         return s;
       
   366     }
       
   367 
       
   368     /**
       
   369      * Creates a new phaser without any initially registered parties,
       
   370      * initial phase number 0, and no parent. Any thread using this
       
   371      * phaser will need to first register for it.
       
   372      */
       
   373     public Phaser() {
       
   374         this(null);
       
   375     }
       
   376 
       
   377     /**
       
   378      * Creates a new phaser with the given numbers of registered
       
   379      * unarrived parties, initial phase number 0, and no parent.
       
   380      *
       
   381      * @param parties the number of parties required to trip barrier
       
   382      * @throws IllegalArgumentException if parties less than zero
       
   383      * or greater than the maximum number of parties supported
       
   384      */
       
   385     public Phaser(int parties) {
       
   386         this(null, parties);
       
   387     }
       
   388 
       
   389     /**
       
   390      * Creates a new phaser with the given parent, without any
       
   391      * initially registered parties. If parent is non-null this phaser
       
   392      * is registered with the parent and its initial phase number is
       
   393      * the same as that of parent phaser.
       
   394      *
       
   395      * @param parent the parent phaser
       
   396      */
       
   397     public Phaser(Phaser parent) {
       
   398         int phase = 0;
       
   399         this.parent = parent;
       
   400         if (parent != null) {
       
   401             this.root = parent.root;
       
   402             phase = parent.register();
       
   403         }
       
   404         else
       
   405             this.root = this;
       
   406         this.state = trippedStateFor(phase, 0);
       
   407     }
       
   408 
       
   409     /**
       
   410      * Creates a new phaser with the given parent and numbers of
       
   411      * registered unarrived parties. If parent is non-null, this phaser
       
   412      * is registered with the parent and its initial phase number is
       
   413      * the same as that of parent phaser.
       
   414      *
       
   415      * @param parent the parent phaser
       
   416      * @param parties the number of parties required to trip barrier
       
   417      * @throws IllegalArgumentException if parties less than zero
       
   418      * or greater than the maximum number of parties supported
       
   419      */
       
   420     public Phaser(Phaser parent, int parties) {
       
   421         if (parties < 0 || parties > ushortMask)
       
   422             throw new IllegalArgumentException("Illegal number of parties");
       
   423         int phase = 0;
       
   424         this.parent = parent;
       
   425         if (parent != null) {
       
   426             this.root = parent.root;
       
   427             phase = parent.register();
       
   428         }
       
   429         else
       
   430             this.root = this;
       
   431         this.state = trippedStateFor(phase, parties);
       
   432     }
       
   433 
       
   434     /**
       
   435      * Adds a new unarrived party to this phaser.
       
   436      *
       
   437      * @return the arrival phase number to which this registration applied
       
   438      * @throws IllegalStateException if attempting to register more
       
   439      * than the maximum supported number of parties
       
   440      */
       
   441     public int register() {
       
   442         return doRegister(1);
       
   443     }
       
   444 
       
   445     /**
       
   446      * Adds the given number of new unarrived parties to this phaser.
       
   447      *
       
   448      * @param parties the number of parties required to trip barrier
       
   449      * @return the arrival phase number to which this registration applied
       
   450      * @throws IllegalStateException if attempting to register more
       
   451      * than the maximum supported number of parties
       
   452      */
       
   453     public int bulkRegister(int parties) {
       
   454         if (parties < 0)
       
   455             throw new IllegalArgumentException();
       
   456         if (parties == 0)
       
   457             return getPhase();
       
   458         return doRegister(parties);
       
   459     }
       
   460 
       
   461     /**
       
   462      * Shared code for register, bulkRegister
       
   463      */
       
   464     private int doRegister(int registrations) {
       
   465         int phase;
       
   466         for (;;) {
       
   467             long s = getReconciledState();
       
   468             phase = phaseOf(s);
       
   469             int unarrived = unarrivedOf(s) + registrations;
       
   470             int parties = partiesOf(s) + registrations;
       
   471             if (phase < 0)
       
   472                 break;
       
   473             if (parties > ushortMask || unarrived > ushortMask)
       
   474                 throw new IllegalStateException(badBounds(parties, unarrived));
       
   475             if (phase == phaseOf(root.state) &&
       
   476                 casState(s, stateFor(phase, parties, unarrived)))
       
   477                 break;
       
   478         }
       
   479         return phase;
       
   480     }
       
   481 
       
   482     /**
       
   483      * Arrives at the barrier, but does not wait for others.  (You can
       
   484      * in turn wait for others via {@link #awaitAdvance}).  It is an
       
   485      * unenforced usage error for an unregistered party to invoke this
       
   486      * method.
       
   487      *
       
   488      * @return the arrival phase number, or a negative value if terminated
       
   489      * @throws IllegalStateException if not terminated and the number
       
   490      * of unarrived parties would become negative
       
   491      */
       
   492     public int arrive() {
       
   493         int phase;
       
   494         for (;;) {
       
   495             long s = state;
       
   496             phase = phaseOf(s);
       
   497             if (phase < 0)
       
   498                 break;
       
   499             int parties = partiesOf(s);
       
   500             int unarrived = unarrivedOf(s) - 1;
       
   501             if (unarrived > 0) {        // Not the last arrival
       
   502                 if (casState(s, s - 1)) // s-1 adds one arrival
       
   503                     break;
       
   504             }
       
   505             else if (unarrived == 0) {  // the last arrival
       
   506                 Phaser par = parent;
       
   507                 if (par == null) {      // directly trip
       
   508                     if (casState
       
   509                         (s,
       
   510                          trippedStateFor(onAdvance(phase, parties) ? -1 :
       
   511                                          ((phase + 1) & phaseMask), parties))) {
       
   512                         releaseWaiters(phase);
       
   513                         break;
       
   514                     }
       
   515                 }
       
   516                 else {                  // cascade to parent
       
   517                     if (casState(s, s - 1)) { // zeroes unarrived
       
   518                         par.arrive();
       
   519                         reconcileState();
       
   520                         break;
       
   521                     }
       
   522                 }
       
   523             }
       
   524             else if (phase != phaseOf(root.state)) // or if unreconciled
       
   525                 reconcileState();
       
   526             else
       
   527                 throw new IllegalStateException(badBounds(parties, unarrived));
       
   528         }
       
   529         return phase;
       
   530     }
       
   531 
       
   532     /**
       
   533      * Arrives at the barrier and deregisters from it without waiting
       
   534      * for others. Deregistration reduces the number of parties
       
   535      * required to trip the barrier in future phases.  If this phaser
       
   536      * has a parent, and deregistration causes this phaser to have
       
   537      * zero parties, this phaser also arrives at and is deregistered
       
   538      * from its parent.  It is an unenforced usage error for an
       
   539      * unregistered party to invoke this method.
       
   540      *
       
   541      * @return the arrival phase number, or a negative value if terminated
       
   542      * @throws IllegalStateException if not terminated and the number
       
   543      * of registered or unarrived parties would become negative
       
   544      */
       
   545     public int arriveAndDeregister() {
       
   546         // similar code to arrive, but too different to merge
       
   547         Phaser par = parent;
       
   548         int phase;
       
   549         for (;;) {
       
   550             long s = state;
       
   551             phase = phaseOf(s);
       
   552             if (phase < 0)
       
   553                 break;
       
   554             int parties = partiesOf(s) - 1;
       
   555             int unarrived = unarrivedOf(s) - 1;
       
   556             if (parties >= 0) {
       
   557                 if (unarrived > 0 || (unarrived == 0 && par != null)) {
       
   558                     if (casState
       
   559                         (s,
       
   560                          stateFor(phase, parties, unarrived))) {
       
   561                         if (unarrived == 0) {
       
   562                             par.arriveAndDeregister();
       
   563                             reconcileState();
       
   564                         }
       
   565                         break;
       
   566                     }
       
   567                     continue;
       
   568                 }
       
   569                 if (unarrived == 0) {
       
   570                     if (casState
       
   571                         (s,
       
   572                          trippedStateFor(onAdvance(phase, parties) ? -1 :
       
   573                                          ((phase + 1) & phaseMask), parties))) {
       
   574                         releaseWaiters(phase);
       
   575                         break;
       
   576                     }
       
   577                     continue;
       
   578                 }
       
   579                 if (par != null && phase != phaseOf(root.state)) {
       
   580                     reconcileState();
       
   581                     continue;
       
   582                 }
       
   583             }
       
   584             throw new IllegalStateException(badBounds(parties, unarrived));
       
   585         }
       
   586         return phase;
       
   587     }
       
   588 
       
   589     /**
       
   590      * Arrives at the barrier and awaits others. Equivalent in effect
       
   591      * to {@code awaitAdvance(arrive())}.  If you need to await with
       
   592      * interruption or timeout, you can arrange this with an analogous
       
   593      * construction using one of the other forms of the awaitAdvance
       
   594      * method.  If instead you need to deregister upon arrival use
       
   595      * {@code arriveAndDeregister}. It is an unenforced usage error
       
   596      * for an unregistered party to invoke this method.
       
   597      *
       
   598      * @return the arrival phase number, or a negative number if terminated
       
   599      * @throws IllegalStateException if not terminated and the number
       
   600      * of unarrived parties would become negative
       
   601      */
       
   602     public int arriveAndAwaitAdvance() {
       
   603         return awaitAdvance(arrive());
       
   604     }
       
   605 
       
   606     /**
       
   607      * Awaits the phase of the barrier to advance from the given phase
       
   608      * value, returning immediately if the current phase of the
       
   609      * barrier is not equal to the given phase value or this barrier
       
   610      * is terminated.  It is an unenforced usage error for an
       
   611      * unregistered party to invoke this method.
       
   612      *
       
   613      * @param phase an arrival phase number, or negative value if
       
   614      * terminated; this argument is normally the value returned by a
       
   615      * previous call to {@code arrive} or its variants
       
   616      * @return the next arrival phase number, or a negative value
       
   617      * if terminated or argument is negative
       
   618      */
       
   619     public int awaitAdvance(int phase) {
       
   620         if (phase < 0)
       
   621             return phase;
       
   622         long s = getReconciledState();
       
   623         int p = phaseOf(s);
       
   624         if (p != phase)
       
   625             return p;
       
   626         if (unarrivedOf(s) == 0 && parent != null)
       
   627             parent.awaitAdvance(phase);
       
   628         // Fall here even if parent waited, to reconcile and help release
       
   629         return untimedWait(phase);
       
   630     }
       
   631 
       
   632     /**
       
   633      * Awaits the phase of the barrier to advance from the given phase
       
   634      * value, throwing {@code InterruptedException} if interrupted
       
   635      * while waiting, or returning immediately if the current phase of
       
   636      * the barrier is not equal to the given phase value or this
       
   637      * barrier is terminated. It is an unenforced usage error for an
       
   638      * unregistered party to invoke this method.
       
   639      *
       
   640      * @param phase an arrival phase number, or negative value if
       
   641      * terminated; this argument is normally the value returned by a
       
   642      * previous call to {@code arrive} or its variants
       
   643      * @return the next arrival phase number, or a negative value
       
   644      * if terminated or argument is negative
       
   645      * @throws InterruptedException if thread interrupted while waiting
       
   646      */
       
   647     public int awaitAdvanceInterruptibly(int phase)
       
   648         throws InterruptedException {
       
   649         if (phase < 0)
       
   650             return phase;
       
   651         long s = getReconciledState();
       
   652         int p = phaseOf(s);
       
   653         if (p != phase)
       
   654             return p;
       
   655         if (unarrivedOf(s) == 0 && parent != null)
       
   656             parent.awaitAdvanceInterruptibly(phase);
       
   657         return interruptibleWait(phase);
       
   658     }
       
   659 
       
   660     /**
       
   661      * Awaits the phase of the barrier to advance from the given phase
       
   662      * value or the given timeout to elapse, throwing {@code
       
   663      * InterruptedException} if interrupted while waiting, or
       
   664      * returning immediately if the current phase of the barrier is
       
   665      * not equal to the given phase value or this barrier is
       
   666      * terminated.  It is an unenforced usage error for an
       
   667      * unregistered party to invoke this method.
       
   668      *
       
   669      * @param phase an arrival phase number, or negative value if
       
   670      * terminated; this argument is normally the value returned by a
       
   671      * previous call to {@code arrive} or its variants
       
   672      * @param timeout how long to wait before giving up, in units of
       
   673      *        {@code unit}
       
   674      * @param unit a {@code TimeUnit} determining how to interpret the
       
   675      *        {@code timeout} parameter
       
   676      * @return the next arrival phase number, or a negative value
       
   677      * if terminated or argument is negative
       
   678      * @throws InterruptedException if thread interrupted while waiting
       
   679      * @throws TimeoutException if timed out while waiting
       
   680      */
       
   681     public int awaitAdvanceInterruptibly(int phase,
       
   682                                          long timeout, TimeUnit unit)
       
   683         throws InterruptedException, TimeoutException {
       
   684         if (phase < 0)
       
   685             return phase;
       
   686         long s = getReconciledState();
       
   687         int p = phaseOf(s);
       
   688         if (p != phase)
       
   689             return p;
       
   690         if (unarrivedOf(s) == 0 && parent != null)
       
   691             parent.awaitAdvanceInterruptibly(phase, timeout, unit);
       
   692         return timedWait(phase, unit.toNanos(timeout));
       
   693     }
       
   694 
       
   695     /**
       
   696      * Forces this barrier to enter termination state. Counts of
       
   697      * arrived and registered parties are unaffected. If this phaser
       
   698      * has a parent, it too is terminated. This method may be useful
       
   699      * for coordinating recovery after one or more tasks encounter
       
   700      * unexpected exceptions.
       
   701      */
       
   702     public void forceTermination() {
       
   703         for (;;) {
       
   704             long s = getReconciledState();
       
   705             int phase = phaseOf(s);
       
   706             int parties = partiesOf(s);
       
   707             int unarrived = unarrivedOf(s);
       
   708             if (phase < 0 ||
       
   709                 casState(s, stateFor(-1, parties, unarrived))) {
       
   710                 releaseWaiters(0);
       
   711                 releaseWaiters(1);
       
   712                 if (parent != null)
       
   713                     parent.forceTermination();
       
   714                 return;
       
   715             }
       
   716         }
       
   717     }
       
   718 
       
   719     /**
       
   720      * Returns the current phase number. The maximum phase number is
       
   721      * {@code Integer.MAX_VALUE}, after which it restarts at
       
   722      * zero. Upon termination, the phase number is negative.
       
   723      *
       
   724      * @return the phase number, or a negative value if terminated
       
   725      */
       
   726     public final int getPhase() {
       
   727         return phaseOf(getReconciledState());
       
   728     }
       
   729 
       
   730     /**
       
   731      * Returns the number of parties registered at this barrier.
       
   732      *
       
   733      * @return the number of parties
       
   734      */
       
   735     public int getRegisteredParties() {
       
   736         return partiesOf(state);
       
   737     }
       
   738 
       
   739     /**
       
   740      * Returns the number of registered parties that have arrived at
       
   741      * the current phase of this barrier.
       
   742      *
       
   743      * @return the number of arrived parties
       
   744      */
       
   745     public int getArrivedParties() {
       
   746         return arrivedOf(state);
       
   747     }
       
   748 
       
   749     /**
       
   750      * Returns the number of registered parties that have not yet
       
   751      * arrived at the current phase of this barrier.
       
   752      *
       
   753      * @return the number of unarrived parties
       
   754      */
       
   755     public int getUnarrivedParties() {
       
   756         return unarrivedOf(state);
       
   757     }
       
   758 
       
   759     /**
       
   760      * Returns the parent of this phaser, or {@code null} if none.
       
   761      *
       
   762      * @return the parent of this phaser, or {@code null} if none
       
   763      */
       
   764     public Phaser getParent() {
       
   765         return parent;
       
   766     }
       
   767 
       
   768     /**
       
   769      * Returns the root ancestor of this phaser, which is the same as
       
   770      * this phaser if it has no parent.
       
   771      *
       
   772      * @return the root ancestor of this phaser
       
   773      */
       
   774     public Phaser getRoot() {
       
   775         return root;
       
   776     }
       
   777 
       
   778     /**
       
   779      * Returns {@code true} if this barrier has been terminated.
       
   780      *
       
   781      * @return {@code true} if this barrier has been terminated
       
   782      */
       
   783     public boolean isTerminated() {
       
   784         return getPhase() < 0;
       
   785     }
       
   786 
       
   787     /**
       
   788      * Overridable method to perform an action upon impending phase
       
   789      * advance, and to control termination. This method is invoked
       
   790      * upon arrival of the party tripping the barrier (when all other
       
   791      * waiting parties are dormant).  If this method returns {@code
       
   792      * true}, then, rather than advance the phase number, this barrier
       
   793      * will be set to a final termination state, and subsequent calls
       
   794      * to {@link #isTerminated} will return true. Any (unchecked)
       
   795      * Exception or Error thrown by an invocation of this method is
       
   796      * propagated to the party attempting to trip the barrier, in
       
   797      * which case no advance occurs.
       
   798      *
       
   799      * <p>The arguments to this method provide the state of the phaser
       
   800      * prevailing for the current transition. (When called from within
       
   801      * an implementation of {@code onAdvance} the values returned by
       
   802      * methods such as {@code getPhase} may or may not reliably
       
   803      * indicate the state to which this transition applies.)
       
   804      *
       
   805      * <p>The default version returns {@code true} when the number of
       
   806      * registered parties is zero. Normally, overrides that arrange
       
   807      * termination for other reasons should also preserve this
       
   808      * property.
       
   809      *
       
   810      * <p>You may override this method to perform an action with side
       
   811      * effects visible to participating tasks, but it is only sensible
       
   812      * to do so in designs where all parties register before any
       
   813      * arrive, and all {@link #awaitAdvance} at each phase.
       
   814      * Otherwise, you cannot ensure lack of interference from other
       
   815      * parties during the invocation of this method. Additionally,
       
   816      * method {@code onAdvance} may be invoked more than once per
       
   817      * transition if registrations are intermixed with arrivals.
       
   818      *
       
   819      * @param phase the phase number on entering the barrier
       
   820      * @param registeredParties the current number of registered parties
       
   821      * @return {@code true} if this barrier should terminate
       
   822      */
       
   823     protected boolean onAdvance(int phase, int registeredParties) {
       
   824         return registeredParties <= 0;
       
   825     }
       
   826 
       
   827     /**
       
   828      * Returns a string identifying this phaser, as well as its
       
   829      * state.  The state, in brackets, includes the String {@code
       
   830      * "phase = "} followed by the phase number, {@code "parties = "}
       
   831      * followed by the number of registered parties, and {@code
       
   832      * "arrived = "} followed by the number of arrived parties.
       
   833      *
       
   834      * @return a string identifying this barrier, as well as its state
       
   835      */
       
   836     public String toString() {
       
   837         long s = getReconciledState();
       
   838         return super.toString() +
       
   839             "[phase = " + phaseOf(s) +
       
   840             " parties = " + partiesOf(s) +
       
   841             " arrived = " + arrivedOf(s) + "]";
       
   842     }
       
   843 
       
   844     // methods for waiting
       
   845 
       
   846     /**
       
   847      * Wait nodes for Treiber stack representing wait queue
       
   848      */
       
   849     static final class QNode implements ForkJoinPool.ManagedBlocker {
       
   850         final Phaser phaser;
       
   851         final int phase;
       
   852         final long startTime;
       
   853         final long nanos;
       
   854         final boolean timed;
       
   855         final boolean interruptible;
       
   856         volatile boolean wasInterrupted = false;
       
   857         volatile Thread thread; // nulled to cancel wait
       
   858         QNode next;
       
   859         QNode(Phaser phaser, int phase, boolean interruptible,
       
   860               boolean timed, long startTime, long nanos) {
       
   861             this.phaser = phaser;
       
   862             this.phase = phase;
       
   863             this.timed = timed;
       
   864             this.interruptible = interruptible;
       
   865             this.startTime = startTime;
       
   866             this.nanos = nanos;
       
   867             thread = Thread.currentThread();
       
   868         }
       
   869         public boolean isReleasable() {
       
   870             return (thread == null ||
       
   871                     phaser.getPhase() != phase ||
       
   872                     (interruptible && wasInterrupted) ||
       
   873                     (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
       
   874         }
       
   875         public boolean block() {
       
   876             if (Thread.interrupted()) {
       
   877                 wasInterrupted = true;
       
   878                 if (interruptible)
       
   879                     return true;
       
   880             }
       
   881             if (!timed)
       
   882                 LockSupport.park(this);
       
   883             else {
       
   884                 long waitTime = nanos - (System.nanoTime() - startTime);
       
   885                 if (waitTime <= 0)
       
   886                     return true;
       
   887                 LockSupport.parkNanos(this, waitTime);
       
   888             }
       
   889             return isReleasable();
       
   890         }
       
   891         void signal() {
       
   892             Thread t = thread;
       
   893             if (t != null) {
       
   894                 thread = null;
       
   895                 LockSupport.unpark(t);
       
   896             }
       
   897         }
       
   898         boolean doWait() {
       
   899             if (thread != null) {
       
   900                 try {
       
   901                     ForkJoinPool.managedBlock(this, false);
       
   902                 } catch (InterruptedException ie) {
       
   903                 }
       
   904             }
       
   905             return wasInterrupted;
       
   906         }
       
   907 
       
   908     }
       
   909 
       
   910     /**
       
   911      * Removes and signals waiting threads from wait queue.
       
   912      */
       
   913     private void releaseWaiters(int phase) {
       
   914         AtomicReference<QNode> head = queueFor(phase);
       
   915         QNode q;
       
   916         while ((q = head.get()) != null) {
       
   917             if (head.compareAndSet(q, q.next))
       
   918                 q.signal();
       
   919         }
       
   920     }
       
   921 
       
   922     /**
       
   923      * Tries to enqueue given node in the appropriate wait queue.
       
   924      *
       
   925      * @return true if successful
       
   926      */
       
   927     private boolean tryEnqueue(QNode node) {
       
   928         AtomicReference<QNode> head = queueFor(node.phase);
       
   929         return head.compareAndSet(node.next = head.get(), node);
       
   930     }
       
   931 
       
   932     /**
       
   933      * Enqueues node and waits unless aborted or signalled.
       
   934      *
       
   935      * @return current phase
       
   936      */
       
   937     private int untimedWait(int phase) {
       
   938         QNode node = null;
       
   939         boolean queued = false;
       
   940         boolean interrupted = false;
       
   941         int p;
       
   942         while ((p = getPhase()) == phase) {
       
   943             if (Thread.interrupted())
       
   944                 interrupted = true;
       
   945             else if (node == null)
       
   946                 node = new QNode(this, phase, false, false, 0, 0);
       
   947             else if (!queued)
       
   948                 queued = tryEnqueue(node);
       
   949             else
       
   950                 interrupted = node.doWait();
       
   951         }
       
   952         if (node != null)
       
   953             node.thread = null;
       
   954         releaseWaiters(phase);
       
   955         if (interrupted)
       
   956             Thread.currentThread().interrupt();
       
   957         return p;
       
   958     }
       
   959 
       
   960     /**
       
   961      * Interruptible version
       
   962      * @return current phase
       
   963      */
       
   964     private int interruptibleWait(int phase) throws InterruptedException {
       
   965         QNode node = null;
       
   966         boolean queued = false;
       
   967         boolean interrupted = false;
       
   968         int p;
       
   969         while ((p = getPhase()) == phase && !interrupted) {
       
   970             if (Thread.interrupted())
       
   971                 interrupted = true;
       
   972             else if (node == null)
       
   973                 node = new QNode(this, phase, true, false, 0, 0);
       
   974             else if (!queued)
       
   975                 queued = tryEnqueue(node);
       
   976             else
       
   977                 interrupted = node.doWait();
       
   978         }
       
   979         if (node != null)
       
   980             node.thread = null;
       
   981         if (p != phase || (p = getPhase()) != phase)
       
   982             releaseWaiters(phase);
       
   983         if (interrupted)
       
   984             throw new InterruptedException();
       
   985         return p;
       
   986     }
       
   987 
       
   988     /**
       
   989      * Timeout version.
       
   990      * @return current phase
       
   991      */
       
   992     private int timedWait(int phase, long nanos)
       
   993         throws InterruptedException, TimeoutException {
       
   994         long startTime = System.nanoTime();
       
   995         QNode node = null;
       
   996         boolean queued = false;
       
   997         boolean interrupted = false;
       
   998         int p;
       
   999         while ((p = getPhase()) == phase && !interrupted) {
       
  1000             if (Thread.interrupted())
       
  1001                 interrupted = true;
       
  1002             else if (nanos - (System.nanoTime() - startTime) <= 0)
       
  1003                 break;
       
  1004             else if (node == null)
       
  1005                 node = new QNode(this, phase, true, true, startTime, nanos);
       
  1006             else if (!queued)
       
  1007                 queued = tryEnqueue(node);
       
  1008             else
       
  1009                 interrupted = node.doWait();
       
  1010         }
       
  1011         if (node != null)
       
  1012             node.thread = null;
       
  1013         if (p != phase || (p = getPhase()) != phase)
       
  1014             releaseWaiters(phase);
       
  1015         if (interrupted)
       
  1016             throw new InterruptedException();
       
  1017         if (p == phase)
       
  1018             throw new TimeoutException();
       
  1019         return p;
       
  1020     }
       
  1021 
       
  1022     // Unsafe mechanics
       
  1023 
       
  1024     private static final sun.misc.Unsafe UNSAFE = sun.misc.Unsafe.getUnsafe();
       
  1025     private static final long stateOffset =
       
  1026         objectFieldOffset("state", Phaser.class);
       
  1027 
       
  1028     private final boolean casState(long cmp, long val) {
       
  1029         return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
       
  1030     }
       
  1031 
       
  1032     private static long objectFieldOffset(String field, Class<?> klazz) {
       
  1033         try {
       
  1034             return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
       
  1035         } catch (NoSuchFieldException e) {
       
  1036             // Convert Exception to corresponding Error
       
  1037             NoSuchFieldError error = new NoSuchFieldError(field);
       
  1038             error.initCause(e);
       
  1039             throw error;
       
  1040         }
       
  1041     }
       
  1042 }