jdk/src/java.base/share/native/libzip/zlib-1.2.8/trees.c
changeset 44221 a26be46f6bac
parent 44170 40f9a2b0c304
parent 43915 4a79ad46e578
child 44223 14252cb702f5
equal deleted inserted replaced
44170:40f9a2b0c304 44221:a26be46f6bac
     1 /*
       
     2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     3  *
       
     4  * This code is free software; you can redistribute it and/or modify it
       
     5  * under the terms of the GNU General Public License version 2 only, as
       
     6  * published by the Free Software Foundation.  Oracle designates this
       
     7  * particular file as subject to the "Classpath" exception as provided
       
     8  * by Oracle in the LICENSE file that accompanied this code.
       
     9  *
       
    10  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    13  * version 2 for more details (a copy is included in the LICENSE file that
       
    14  * accompanied this code).
       
    15  *
       
    16  * You should have received a copy of the GNU General Public License version
       
    17  * 2 along with this work; if not, write to the Free Software Foundation,
       
    18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    19  *
       
    20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    21  * or visit www.oracle.com if you need additional information or have any
       
    22  * questions.
       
    23  */
       
    24 
       
    25 /* trees.c -- output deflated data using Huffman coding
       
    26  * Copyright (C) 1995-2012 Jean-loup Gailly
       
    27  * detect_data_type() function provided freely by Cosmin Truta, 2006
       
    28  * For conditions of distribution and use, see copyright notice in zlib.h
       
    29  */
       
    30 
       
    31 /*
       
    32  *  ALGORITHM
       
    33  *
       
    34  *      The "deflation" process uses several Huffman trees. The more
       
    35  *      common source values are represented by shorter bit sequences.
       
    36  *
       
    37  *      Each code tree is stored in a compressed form which is itself
       
    38  * a Huffman encoding of the lengths of all the code strings (in
       
    39  * ascending order by source values).  The actual code strings are
       
    40  * reconstructed from the lengths in the inflate process, as described
       
    41  * in the deflate specification.
       
    42  *
       
    43  *  REFERENCES
       
    44  *
       
    45  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
       
    46  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
       
    47  *
       
    48  *      Storer, James A.
       
    49  *          Data Compression:  Methods and Theory, pp. 49-50.
       
    50  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
       
    51  *
       
    52  *      Sedgewick, R.
       
    53  *          Algorithms, p290.
       
    54  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
       
    55  */
       
    56 
       
    57 /* @(#) $Id$ */
       
    58 
       
    59 /* #define GEN_TREES_H */
       
    60 
       
    61 #include "deflate.h"
       
    62 
       
    63 #ifdef DEBUG
       
    64 #  include <ctype.h>
       
    65 #endif
       
    66 
       
    67 /* ===========================================================================
       
    68  * Constants
       
    69  */
       
    70 
       
    71 #define MAX_BL_BITS 7
       
    72 /* Bit length codes must not exceed MAX_BL_BITS bits */
       
    73 
       
    74 #define END_BLOCK 256
       
    75 /* end of block literal code */
       
    76 
       
    77 #define REP_3_6      16
       
    78 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
       
    79 
       
    80 #define REPZ_3_10    17
       
    81 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
       
    82 
       
    83 #define REPZ_11_138  18
       
    84 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
       
    85 
       
    86 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
       
    87    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
       
    88 
       
    89 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
       
    90    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
       
    91 
       
    92 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
       
    93    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
       
    94 
       
    95 local const uch bl_order[BL_CODES]
       
    96    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
       
    97 /* The lengths of the bit length codes are sent in order of decreasing
       
    98  * probability, to avoid transmitting the lengths for unused bit length codes.
       
    99  */
       
   100 
       
   101 /* ===========================================================================
       
   102  * Local data. These are initialized only once.
       
   103  */
       
   104 
       
   105 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
       
   106 
       
   107 #if defined(GEN_TREES_H) || !defined(STDC)
       
   108 /* non ANSI compilers may not accept trees.h */
       
   109 
       
   110 local ct_data static_ltree[L_CODES+2];
       
   111 /* The static literal tree. Since the bit lengths are imposed, there is no
       
   112  * need for the L_CODES extra codes used during heap construction. However
       
   113  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
       
   114  * below).
       
   115  */
       
   116 
       
   117 local ct_data static_dtree[D_CODES];
       
   118 /* The static distance tree. (Actually a trivial tree since all codes use
       
   119  * 5 bits.)
       
   120  */
       
   121 
       
   122 uch _dist_code[DIST_CODE_LEN];
       
   123 /* Distance codes. The first 256 values correspond to the distances
       
   124  * 3 .. 258, the last 256 values correspond to the top 8 bits of
       
   125  * the 15 bit distances.
       
   126  */
       
   127 
       
   128 uch _length_code[MAX_MATCH-MIN_MATCH+1];
       
   129 /* length code for each normalized match length (0 == MIN_MATCH) */
       
   130 
       
   131 local int base_length[LENGTH_CODES];
       
   132 /* First normalized length for each code (0 = MIN_MATCH) */
       
   133 
       
   134 local int base_dist[D_CODES];
       
   135 /* First normalized distance for each code (0 = distance of 1) */
       
   136 
       
   137 #else
       
   138 #  include "trees.h"
       
   139 #endif /* GEN_TREES_H */
       
   140 
       
   141 struct static_tree_desc_s {
       
   142     const ct_data *static_tree;  /* static tree or NULL */
       
   143     const intf *extra_bits;      /* extra bits for each code or NULL */
       
   144     int     extra_base;          /* base index for extra_bits */
       
   145     int     elems;               /* max number of elements in the tree */
       
   146     int     max_length;          /* max bit length for the codes */
       
   147 };
       
   148 
       
   149 local static_tree_desc  static_l_desc =
       
   150 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
       
   151 
       
   152 local static_tree_desc  static_d_desc =
       
   153 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
       
   154 
       
   155 local static_tree_desc  static_bl_desc =
       
   156 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
       
   157 
       
   158 /* ===========================================================================
       
   159  * Local (static) routines in this file.
       
   160  */
       
   161 
       
   162 local void tr_static_init OF((void));
       
   163 local void init_block     OF((deflate_state *s));
       
   164 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
       
   165 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
       
   166 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
       
   167 local void build_tree     OF((deflate_state *s, tree_desc *desc));
       
   168 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
       
   169 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
       
   170 local int  build_bl_tree  OF((deflate_state *s));
       
   171 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
       
   172                               int blcodes));
       
   173 local void compress_block OF((deflate_state *s, const ct_data *ltree,
       
   174                               const ct_data *dtree));
       
   175 local int  detect_data_type OF((deflate_state *s));
       
   176 local unsigned bi_reverse OF((unsigned value, int length));
       
   177 local void bi_windup      OF((deflate_state *s));
       
   178 local void bi_flush       OF((deflate_state *s));
       
   179 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
       
   180                               int header));
       
   181 
       
   182 #ifdef GEN_TREES_H
       
   183 local void gen_trees_header OF((void));
       
   184 #endif
       
   185 
       
   186 #ifndef DEBUG
       
   187 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
       
   188    /* Send a code of the given tree. c and tree must not have side effects */
       
   189 
       
   190 #else /* DEBUG */
       
   191 #  define send_code(s, c, tree) \
       
   192      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
       
   193        send_bits(s, tree[c].Code, tree[c].Len); }
       
   194 #endif
       
   195 
       
   196 /* ===========================================================================
       
   197  * Output a short LSB first on the stream.
       
   198  * IN assertion: there is enough room in pendingBuf.
       
   199  */
       
   200 #define put_short(s, w) { \
       
   201     put_byte(s, (uch)((w) & 0xff)); \
       
   202     put_byte(s, (uch)((ush)(w) >> 8)); \
       
   203 }
       
   204 
       
   205 /* ===========================================================================
       
   206  * Send a value on a given number of bits.
       
   207  * IN assertion: length <= 16 and value fits in length bits.
       
   208  */
       
   209 #ifdef DEBUG
       
   210 local void send_bits      OF((deflate_state *s, int value, int length));
       
   211 
       
   212 local void send_bits(s, value, length)
       
   213     deflate_state *s;
       
   214     int value;  /* value to send */
       
   215     int length; /* number of bits */
       
   216 {
       
   217     Tracevv((stderr," l %2d v %4x ", length, value));
       
   218     Assert(length > 0 && length <= 15, "invalid length");
       
   219     s->bits_sent += (ulg)length;
       
   220 
       
   221     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
       
   222      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
       
   223      * unused bits in value.
       
   224      */
       
   225     if (s->bi_valid > (int)Buf_size - length) {
       
   226         s->bi_buf |= (ush)value << s->bi_valid;
       
   227         put_short(s, s->bi_buf);
       
   228         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
       
   229         s->bi_valid += length - Buf_size;
       
   230     } else {
       
   231         s->bi_buf |= (ush)value << s->bi_valid;
       
   232         s->bi_valid += length;
       
   233     }
       
   234 }
       
   235 #else /* !DEBUG */
       
   236 
       
   237 #define send_bits(s, value, length) \
       
   238 { int len = length;\
       
   239   if (s->bi_valid > (int)Buf_size - len) {\
       
   240     int val = value;\
       
   241     s->bi_buf |= (ush)val << s->bi_valid;\
       
   242     put_short(s, s->bi_buf);\
       
   243     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
       
   244     s->bi_valid += len - Buf_size;\
       
   245   } else {\
       
   246     s->bi_buf |= (ush)(value) << s->bi_valid;\
       
   247     s->bi_valid += len;\
       
   248   }\
       
   249 }
       
   250 #endif /* DEBUG */
       
   251 
       
   252 
       
   253 /* the arguments must not have side effects */
       
   254 
       
   255 /* ===========================================================================
       
   256  * Initialize the various 'constant' tables.
       
   257  */
       
   258 local void tr_static_init()
       
   259 {
       
   260 #if defined(GEN_TREES_H) || !defined(STDC)
       
   261     static int static_init_done = 0;
       
   262     int n;        /* iterates over tree elements */
       
   263     int bits;     /* bit counter */
       
   264     int length;   /* length value */
       
   265     int code;     /* code value */
       
   266     int dist;     /* distance index */
       
   267     ush bl_count[MAX_BITS+1];
       
   268     /* number of codes at each bit length for an optimal tree */
       
   269 
       
   270     if (static_init_done) return;
       
   271 
       
   272     /* For some embedded targets, global variables are not initialized: */
       
   273 #ifdef NO_INIT_GLOBAL_POINTERS
       
   274     static_l_desc.static_tree = static_ltree;
       
   275     static_l_desc.extra_bits = extra_lbits;
       
   276     static_d_desc.static_tree = static_dtree;
       
   277     static_d_desc.extra_bits = extra_dbits;
       
   278     static_bl_desc.extra_bits = extra_blbits;
       
   279 #endif
       
   280 
       
   281     /* Initialize the mapping length (0..255) -> length code (0..28) */
       
   282     length = 0;
       
   283     for (code = 0; code < LENGTH_CODES-1; code++) {
       
   284         base_length[code] = length;
       
   285         for (n = 0; n < (1<<extra_lbits[code]); n++) {
       
   286             _length_code[length++] = (uch)code;
       
   287         }
       
   288     }
       
   289     Assert (length == 256, "tr_static_init: length != 256");
       
   290     /* Note that the length 255 (match length 258) can be represented
       
   291      * in two different ways: code 284 + 5 bits or code 285, so we
       
   292      * overwrite length_code[255] to use the best encoding:
       
   293      */
       
   294     _length_code[length-1] = (uch)code;
       
   295 
       
   296     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
       
   297     dist = 0;
       
   298     for (code = 0 ; code < 16; code++) {
       
   299         base_dist[code] = dist;
       
   300         for (n = 0; n < (1<<extra_dbits[code]); n++) {
       
   301             _dist_code[dist++] = (uch)code;
       
   302         }
       
   303     }
       
   304     Assert (dist == 256, "tr_static_init: dist != 256");
       
   305     dist >>= 7; /* from now on, all distances are divided by 128 */
       
   306     for ( ; code < D_CODES; code++) {
       
   307         base_dist[code] = dist << 7;
       
   308         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
       
   309             _dist_code[256 + dist++] = (uch)code;
       
   310         }
       
   311     }
       
   312     Assert (dist == 256, "tr_static_init: 256+dist != 512");
       
   313 
       
   314     /* Construct the codes of the static literal tree */
       
   315     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
       
   316     n = 0;
       
   317     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
       
   318     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
       
   319     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
       
   320     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
       
   321     /* Codes 286 and 287 do not exist, but we must include them in the
       
   322      * tree construction to get a canonical Huffman tree (longest code
       
   323      * all ones)
       
   324      */
       
   325     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
       
   326 
       
   327     /* The static distance tree is trivial: */
       
   328     for (n = 0; n < D_CODES; n++) {
       
   329         static_dtree[n].Len = 5;
       
   330         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
       
   331     }
       
   332     static_init_done = 1;
       
   333 
       
   334 #  ifdef GEN_TREES_H
       
   335     gen_trees_header();
       
   336 #  endif
       
   337 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
       
   338 }
       
   339 
       
   340 /* ===========================================================================
       
   341  * Genererate the file trees.h describing the static trees.
       
   342  */
       
   343 #ifdef GEN_TREES_H
       
   344 #  ifndef DEBUG
       
   345 #    include <stdio.h>
       
   346 #  endif
       
   347 
       
   348 #  define SEPARATOR(i, last, width) \
       
   349       ((i) == (last)? "\n};\n\n" :    \
       
   350        ((i) % (width) == (width)-1 ? ",\n" : ", "))
       
   351 
       
   352 void gen_trees_header()
       
   353 {
       
   354     FILE *header = fopen("trees.h", "w");
       
   355     int i;
       
   356 
       
   357     Assert (header != NULL, "Can't open trees.h");
       
   358     fprintf(header,
       
   359             "/* header created automatically with -DGEN_TREES_H */\n\n");
       
   360 
       
   361     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
       
   362     for (i = 0; i < L_CODES+2; i++) {
       
   363         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
       
   364                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
       
   365     }
       
   366 
       
   367     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
       
   368     for (i = 0; i < D_CODES; i++) {
       
   369         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
       
   370                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
       
   371     }
       
   372 
       
   373     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
       
   374     for (i = 0; i < DIST_CODE_LEN; i++) {
       
   375         fprintf(header, "%2u%s", _dist_code[i],
       
   376                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
       
   377     }
       
   378 
       
   379     fprintf(header,
       
   380         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
       
   381     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
       
   382         fprintf(header, "%2u%s", _length_code[i],
       
   383                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
       
   384     }
       
   385 
       
   386     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
       
   387     for (i = 0; i < LENGTH_CODES; i++) {
       
   388         fprintf(header, "%1u%s", base_length[i],
       
   389                 SEPARATOR(i, LENGTH_CODES-1, 20));
       
   390     }
       
   391 
       
   392     fprintf(header, "local const int base_dist[D_CODES] = {\n");
       
   393     for (i = 0; i < D_CODES; i++) {
       
   394         fprintf(header, "%5u%s", base_dist[i],
       
   395                 SEPARATOR(i, D_CODES-1, 10));
       
   396     }
       
   397 
       
   398     fclose(header);
       
   399 }
       
   400 #endif /* GEN_TREES_H */
       
   401 
       
   402 /* ===========================================================================
       
   403  * Initialize the tree data structures for a new zlib stream.
       
   404  */
       
   405 void ZLIB_INTERNAL _tr_init(s)
       
   406     deflate_state *s;
       
   407 {
       
   408     tr_static_init();
       
   409 
       
   410     s->l_desc.dyn_tree = s->dyn_ltree;
       
   411     s->l_desc.stat_desc = &static_l_desc;
       
   412 
       
   413     s->d_desc.dyn_tree = s->dyn_dtree;
       
   414     s->d_desc.stat_desc = &static_d_desc;
       
   415 
       
   416     s->bl_desc.dyn_tree = s->bl_tree;
       
   417     s->bl_desc.stat_desc = &static_bl_desc;
       
   418 
       
   419     s->bi_buf = 0;
       
   420     s->bi_valid = 0;
       
   421 #ifdef DEBUG
       
   422     s->compressed_len = 0L;
       
   423     s->bits_sent = 0L;
       
   424 #endif
       
   425 
       
   426     /* Initialize the first block of the first file: */
       
   427     init_block(s);
       
   428 }
       
   429 
       
   430 /* ===========================================================================
       
   431  * Initialize a new block.
       
   432  */
       
   433 local void init_block(s)
       
   434     deflate_state *s;
       
   435 {
       
   436     int n; /* iterates over tree elements */
       
   437 
       
   438     /* Initialize the trees. */
       
   439     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
       
   440     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
       
   441     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
       
   442 
       
   443     s->dyn_ltree[END_BLOCK].Freq = 1;
       
   444     s->opt_len = s->static_len = 0L;
       
   445     s->last_lit = s->matches = 0;
       
   446 }
       
   447 
       
   448 #define SMALLEST 1
       
   449 /* Index within the heap array of least frequent node in the Huffman tree */
       
   450 
       
   451 
       
   452 /* ===========================================================================
       
   453  * Remove the smallest element from the heap and recreate the heap with
       
   454  * one less element. Updates heap and heap_len.
       
   455  */
       
   456 #define pqremove(s, tree, top) \
       
   457 {\
       
   458     top = s->heap[SMALLEST]; \
       
   459     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
       
   460     pqdownheap(s, tree, SMALLEST); \
       
   461 }
       
   462 
       
   463 /* ===========================================================================
       
   464  * Compares to subtrees, using the tree depth as tie breaker when
       
   465  * the subtrees have equal frequency. This minimizes the worst case length.
       
   466  */
       
   467 #define smaller(tree, n, m, depth) \
       
   468    (tree[n].Freq < tree[m].Freq || \
       
   469    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
       
   470 
       
   471 /* ===========================================================================
       
   472  * Restore the heap property by moving down the tree starting at node k,
       
   473  * exchanging a node with the smallest of its two sons if necessary, stopping
       
   474  * when the heap property is re-established (each father smaller than its
       
   475  * two sons).
       
   476  */
       
   477 local void pqdownheap(s, tree, k)
       
   478     deflate_state *s;
       
   479     ct_data *tree;  /* the tree to restore */
       
   480     int k;               /* node to move down */
       
   481 {
       
   482     int v = s->heap[k];
       
   483     int j = k << 1;  /* left son of k */
       
   484     while (j <= s->heap_len) {
       
   485         /* Set j to the smallest of the two sons: */
       
   486         if (j < s->heap_len &&
       
   487             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
       
   488             j++;
       
   489         }
       
   490         /* Exit if v is smaller than both sons */
       
   491         if (smaller(tree, v, s->heap[j], s->depth)) break;
       
   492 
       
   493         /* Exchange v with the smallest son */
       
   494         s->heap[k] = s->heap[j];  k = j;
       
   495 
       
   496         /* And continue down the tree, setting j to the left son of k */
       
   497         j <<= 1;
       
   498     }
       
   499     s->heap[k] = v;
       
   500 }
       
   501 
       
   502 /* ===========================================================================
       
   503  * Compute the optimal bit lengths for a tree and update the total bit length
       
   504  * for the current block.
       
   505  * IN assertion: the fields freq and dad are set, heap[heap_max] and
       
   506  *    above are the tree nodes sorted by increasing frequency.
       
   507  * OUT assertions: the field len is set to the optimal bit length, the
       
   508  *     array bl_count contains the frequencies for each bit length.
       
   509  *     The length opt_len is updated; static_len is also updated if stree is
       
   510  *     not null.
       
   511  */
       
   512 local void gen_bitlen(s, desc)
       
   513     deflate_state *s;
       
   514     tree_desc *desc;    /* the tree descriptor */
       
   515 {
       
   516     ct_data *tree        = desc->dyn_tree;
       
   517     int max_code         = desc->max_code;
       
   518     const ct_data *stree = desc->stat_desc->static_tree;
       
   519     const intf *extra    = desc->stat_desc->extra_bits;
       
   520     int base             = desc->stat_desc->extra_base;
       
   521     int max_length       = desc->stat_desc->max_length;
       
   522     int h;              /* heap index */
       
   523     int n, m;           /* iterate over the tree elements */
       
   524     int bits;           /* bit length */
       
   525     int xbits;          /* extra bits */
       
   526     ush f;              /* frequency */
       
   527     int overflow = 0;   /* number of elements with bit length too large */
       
   528 
       
   529     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
       
   530 
       
   531     /* In a first pass, compute the optimal bit lengths (which may
       
   532      * overflow in the case of the bit length tree).
       
   533      */
       
   534     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
       
   535 
       
   536     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
       
   537         n = s->heap[h];
       
   538         bits = tree[tree[n].Dad].Len + 1;
       
   539         if (bits > max_length) bits = max_length, overflow++;
       
   540         tree[n].Len = (ush)bits;
       
   541         /* We overwrite tree[n].Dad which is no longer needed */
       
   542 
       
   543         if (n > max_code) continue; /* not a leaf node */
       
   544 
       
   545         s->bl_count[bits]++;
       
   546         xbits = 0;
       
   547         if (n >= base) xbits = extra[n-base];
       
   548         f = tree[n].Freq;
       
   549         s->opt_len += (ulg)f * (bits + xbits);
       
   550         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
       
   551     }
       
   552     if (overflow == 0) return;
       
   553 
       
   554     Trace((stderr,"\nbit length overflow\n"));
       
   555     /* This happens for example on obj2 and pic of the Calgary corpus */
       
   556 
       
   557     /* Find the first bit length which could increase: */
       
   558     do {
       
   559         bits = max_length-1;
       
   560         while (s->bl_count[bits] == 0) bits--;
       
   561         s->bl_count[bits]--;      /* move one leaf down the tree */
       
   562         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
       
   563         s->bl_count[max_length]--;
       
   564         /* The brother of the overflow item also moves one step up,
       
   565          * but this does not affect bl_count[max_length]
       
   566          */
       
   567         overflow -= 2;
       
   568     } while (overflow > 0);
       
   569 
       
   570     /* Now recompute all bit lengths, scanning in increasing frequency.
       
   571      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
       
   572      * lengths instead of fixing only the wrong ones. This idea is taken
       
   573      * from 'ar' written by Haruhiko Okumura.)
       
   574      */
       
   575     for (bits = max_length; bits != 0; bits--) {
       
   576         n = s->bl_count[bits];
       
   577         while (n != 0) {
       
   578             m = s->heap[--h];
       
   579             if (m > max_code) continue;
       
   580             if ((unsigned) tree[m].Len != (unsigned) bits) {
       
   581                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
       
   582                 s->opt_len += ((long)bits - (long)tree[m].Len)
       
   583                               *(long)tree[m].Freq;
       
   584                 tree[m].Len = (ush)bits;
       
   585             }
       
   586             n--;
       
   587         }
       
   588     }
       
   589 }
       
   590 
       
   591 /* ===========================================================================
       
   592  * Generate the codes for a given tree and bit counts (which need not be
       
   593  * optimal).
       
   594  * IN assertion: the array bl_count contains the bit length statistics for
       
   595  * the given tree and the field len is set for all tree elements.
       
   596  * OUT assertion: the field code is set for all tree elements of non
       
   597  *     zero code length.
       
   598  */
       
   599 local void gen_codes (tree, max_code, bl_count)
       
   600     ct_data *tree;             /* the tree to decorate */
       
   601     int max_code;              /* largest code with non zero frequency */
       
   602     ushf *bl_count;            /* number of codes at each bit length */
       
   603 {
       
   604     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
       
   605     ush code = 0;              /* running code value */
       
   606     int bits;                  /* bit index */
       
   607     int n;                     /* code index */
       
   608 
       
   609     /* The distribution counts are first used to generate the code values
       
   610      * without bit reversal.
       
   611      */
       
   612     for (bits = 1; bits <= MAX_BITS; bits++) {
       
   613         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
       
   614     }
       
   615     /* Check that the bit counts in bl_count are consistent. The last code
       
   616      * must be all ones.
       
   617      */
       
   618     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
       
   619             "inconsistent bit counts");
       
   620     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
       
   621 
       
   622     for (n = 0;  n <= max_code; n++) {
       
   623         int len = tree[n].Len;
       
   624         if (len == 0) continue;
       
   625         /* Now reverse the bits */
       
   626         tree[n].Code = bi_reverse(next_code[len]++, len);
       
   627 
       
   628         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
       
   629              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
       
   630     }
       
   631 }
       
   632 
       
   633 /* ===========================================================================
       
   634  * Construct one Huffman tree and assigns the code bit strings and lengths.
       
   635  * Update the total bit length for the current block.
       
   636  * IN assertion: the field freq is set for all tree elements.
       
   637  * OUT assertions: the fields len and code are set to the optimal bit length
       
   638  *     and corresponding code. The length opt_len is updated; static_len is
       
   639  *     also updated if stree is not null. The field max_code is set.
       
   640  */
       
   641 local void build_tree(s, desc)
       
   642     deflate_state *s;
       
   643     tree_desc *desc; /* the tree descriptor */
       
   644 {
       
   645     ct_data *tree         = desc->dyn_tree;
       
   646     const ct_data *stree  = desc->stat_desc->static_tree;
       
   647     int elems             = desc->stat_desc->elems;
       
   648     int n, m;          /* iterate over heap elements */
       
   649     int max_code = -1; /* largest code with non zero frequency */
       
   650     int node;          /* new node being created */
       
   651 
       
   652     /* Construct the initial heap, with least frequent element in
       
   653      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
       
   654      * heap[0] is not used.
       
   655      */
       
   656     s->heap_len = 0, s->heap_max = HEAP_SIZE;
       
   657 
       
   658     for (n = 0; n < elems; n++) {
       
   659         if (tree[n].Freq != 0) {
       
   660             s->heap[++(s->heap_len)] = max_code = n;
       
   661             s->depth[n] = 0;
       
   662         } else {
       
   663             tree[n].Len = 0;
       
   664         }
       
   665     }
       
   666 
       
   667     /* The pkzip format requires that at least one distance code exists,
       
   668      * and that at least one bit should be sent even if there is only one
       
   669      * possible code. So to avoid special checks later on we force at least
       
   670      * two codes of non zero frequency.
       
   671      */
       
   672     while (s->heap_len < 2) {
       
   673         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
       
   674         tree[node].Freq = 1;
       
   675         s->depth[node] = 0;
       
   676         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
       
   677         /* node is 0 or 1 so it does not have extra bits */
       
   678     }
       
   679     desc->max_code = max_code;
       
   680 
       
   681     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
       
   682      * establish sub-heaps of increasing lengths:
       
   683      */
       
   684     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
       
   685 
       
   686     /* Construct the Huffman tree by repeatedly combining the least two
       
   687      * frequent nodes.
       
   688      */
       
   689     node = elems;              /* next internal node of the tree */
       
   690     do {
       
   691         pqremove(s, tree, n);  /* n = node of least frequency */
       
   692         m = s->heap[SMALLEST]; /* m = node of next least frequency */
       
   693 
       
   694         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
       
   695         s->heap[--(s->heap_max)] = m;
       
   696 
       
   697         /* Create a new node father of n and m */
       
   698         tree[node].Freq = tree[n].Freq + tree[m].Freq;
       
   699         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
       
   700                                 s->depth[n] : s->depth[m]) + 1);
       
   701         tree[n].Dad = tree[m].Dad = (ush)node;
       
   702 #ifdef DUMP_BL_TREE
       
   703         if (tree == s->bl_tree) {
       
   704             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
       
   705                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
       
   706         }
       
   707 #endif
       
   708         /* and insert the new node in the heap */
       
   709         s->heap[SMALLEST] = node++;
       
   710         pqdownheap(s, tree, SMALLEST);
       
   711 
       
   712     } while (s->heap_len >= 2);
       
   713 
       
   714     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
       
   715 
       
   716     /* At this point, the fields freq and dad are set. We can now
       
   717      * generate the bit lengths.
       
   718      */
       
   719     gen_bitlen(s, (tree_desc *)desc);
       
   720 
       
   721     /* The field len is now set, we can generate the bit codes */
       
   722     gen_codes ((ct_data *)tree, max_code, s->bl_count);
       
   723 }
       
   724 
       
   725 /* ===========================================================================
       
   726  * Scan a literal or distance tree to determine the frequencies of the codes
       
   727  * in the bit length tree.
       
   728  */
       
   729 local void scan_tree (s, tree, max_code)
       
   730     deflate_state *s;
       
   731     ct_data *tree;   /* the tree to be scanned */
       
   732     int max_code;    /* and its largest code of non zero frequency */
       
   733 {
       
   734     int n;                     /* iterates over all tree elements */
       
   735     int prevlen = -1;          /* last emitted length */
       
   736     int curlen;                /* length of current code */
       
   737     int nextlen = tree[0].Len; /* length of next code */
       
   738     int count = 0;             /* repeat count of the current code */
       
   739     int max_count = 7;         /* max repeat count */
       
   740     int min_count = 4;         /* min repeat count */
       
   741 
       
   742     if (nextlen == 0) max_count = 138, min_count = 3;
       
   743     tree[max_code+1].Len = (ush)0xffff; /* guard */
       
   744 
       
   745     for (n = 0; n <= max_code; n++) {
       
   746         curlen = nextlen; nextlen = tree[n+1].Len;
       
   747         if (++count < max_count && curlen == nextlen) {
       
   748             continue;
       
   749         } else if (count < min_count) {
       
   750             s->bl_tree[curlen].Freq += count;
       
   751         } else if (curlen != 0) {
       
   752             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
       
   753             s->bl_tree[REP_3_6].Freq++;
       
   754         } else if (count <= 10) {
       
   755             s->bl_tree[REPZ_3_10].Freq++;
       
   756         } else {
       
   757             s->bl_tree[REPZ_11_138].Freq++;
       
   758         }
       
   759         count = 0; prevlen = curlen;
       
   760         if (nextlen == 0) {
       
   761             max_count = 138, min_count = 3;
       
   762         } else if (curlen == nextlen) {
       
   763             max_count = 6, min_count = 3;
       
   764         } else {
       
   765             max_count = 7, min_count = 4;
       
   766         }
       
   767     }
       
   768 }
       
   769 
       
   770 /* ===========================================================================
       
   771  * Send a literal or distance tree in compressed form, using the codes in
       
   772  * bl_tree.
       
   773  */
       
   774 local void send_tree (s, tree, max_code)
       
   775     deflate_state *s;
       
   776     ct_data *tree; /* the tree to be scanned */
       
   777     int max_code;       /* and its largest code of non zero frequency */
       
   778 {
       
   779     int n;                     /* iterates over all tree elements */
       
   780     int prevlen = -1;          /* last emitted length */
       
   781     int curlen;                /* length of current code */
       
   782     int nextlen = tree[0].Len; /* length of next code */
       
   783     int count = 0;             /* repeat count of the current code */
       
   784     int max_count = 7;         /* max repeat count */
       
   785     int min_count = 4;         /* min repeat count */
       
   786 
       
   787     /* tree[max_code+1].Len = -1; */  /* guard already set */
       
   788     if (nextlen == 0) max_count = 138, min_count = 3;
       
   789 
       
   790     for (n = 0; n <= max_code; n++) {
       
   791         curlen = nextlen; nextlen = tree[n+1].Len;
       
   792         if (++count < max_count && curlen == nextlen) {
       
   793             continue;
       
   794         } else if (count < min_count) {
       
   795             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
       
   796 
       
   797         } else if (curlen != 0) {
       
   798             if (curlen != prevlen) {
       
   799                 send_code(s, curlen, s->bl_tree); count--;
       
   800             }
       
   801             Assert(count >= 3 && count <= 6, " 3_6?");
       
   802             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
       
   803 
       
   804         } else if (count <= 10) {
       
   805             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
       
   806 
       
   807         } else {
       
   808             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
       
   809         }
       
   810         count = 0; prevlen = curlen;
       
   811         if (nextlen == 0) {
       
   812             max_count = 138, min_count = 3;
       
   813         } else if (curlen == nextlen) {
       
   814             max_count = 6, min_count = 3;
       
   815         } else {
       
   816             max_count = 7, min_count = 4;
       
   817         }
       
   818     }
       
   819 }
       
   820 
       
   821 /* ===========================================================================
       
   822  * Construct the Huffman tree for the bit lengths and return the index in
       
   823  * bl_order of the last bit length code to send.
       
   824  */
       
   825 local int build_bl_tree(s)
       
   826     deflate_state *s;
       
   827 {
       
   828     int max_blindex;  /* index of last bit length code of non zero freq */
       
   829 
       
   830     /* Determine the bit length frequencies for literal and distance trees */
       
   831     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
       
   832     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
       
   833 
       
   834     /* Build the bit length tree: */
       
   835     build_tree(s, (tree_desc *)(&(s->bl_desc)));
       
   836     /* opt_len now includes the length of the tree representations, except
       
   837      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
       
   838      */
       
   839 
       
   840     /* Determine the number of bit length codes to send. The pkzip format
       
   841      * requires that at least 4 bit length codes be sent. (appnote.txt says
       
   842      * 3 but the actual value used is 4.)
       
   843      */
       
   844     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
       
   845         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
       
   846     }
       
   847     /* Update opt_len to include the bit length tree and counts */
       
   848     s->opt_len += 3*(max_blindex+1) + 5+5+4;
       
   849     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
       
   850             s->opt_len, s->static_len));
       
   851 
       
   852     return max_blindex;
       
   853 }
       
   854 
       
   855 /* ===========================================================================
       
   856  * Send the header for a block using dynamic Huffman trees: the counts, the
       
   857  * lengths of the bit length codes, the literal tree and the distance tree.
       
   858  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
       
   859  */
       
   860 local void send_all_trees(s, lcodes, dcodes, blcodes)
       
   861     deflate_state *s;
       
   862     int lcodes, dcodes, blcodes; /* number of codes for each tree */
       
   863 {
       
   864     int rank;                    /* index in bl_order */
       
   865 
       
   866     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
       
   867     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
       
   868             "too many codes");
       
   869     Tracev((stderr, "\nbl counts: "));
       
   870     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
       
   871     send_bits(s, dcodes-1,   5);
       
   872     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
       
   873     for (rank = 0; rank < blcodes; rank++) {
       
   874         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
       
   875         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
       
   876     }
       
   877     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
       
   878 
       
   879     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
       
   880     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
       
   881 
       
   882     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
       
   883     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
       
   884 }
       
   885 
       
   886 /* ===========================================================================
       
   887  * Send a stored block
       
   888  */
       
   889 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
       
   890     deflate_state *s;
       
   891     charf *buf;       /* input block */
       
   892     ulg stored_len;   /* length of input block */
       
   893     int last;         /* one if this is the last block for a file */
       
   894 {
       
   895     send_bits(s, (STORED_BLOCK<<1)+last, 3);    /* send block type */
       
   896 #ifdef DEBUG
       
   897     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
       
   898     s->compressed_len += (stored_len + 4) << 3;
       
   899 #endif
       
   900     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
       
   901 }
       
   902 
       
   903 /* ===========================================================================
       
   904  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
       
   905  */
       
   906 void ZLIB_INTERNAL _tr_flush_bits(s)
       
   907     deflate_state *s;
       
   908 {
       
   909     bi_flush(s);
       
   910 }
       
   911 
       
   912 /* ===========================================================================
       
   913  * Send one empty static block to give enough lookahead for inflate.
       
   914  * This takes 10 bits, of which 7 may remain in the bit buffer.
       
   915  */
       
   916 void ZLIB_INTERNAL _tr_align(s)
       
   917     deflate_state *s;
       
   918 {
       
   919     send_bits(s, STATIC_TREES<<1, 3);
       
   920     send_code(s, END_BLOCK, static_ltree);
       
   921 #ifdef DEBUG
       
   922     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
       
   923 #endif
       
   924     bi_flush(s);
       
   925 }
       
   926 
       
   927 /* ===========================================================================
       
   928  * Determine the best encoding for the current block: dynamic trees, static
       
   929  * trees or store, and output the encoded block to the zip file.
       
   930  */
       
   931 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
       
   932     deflate_state *s;
       
   933     charf *buf;       /* input block, or NULL if too old */
       
   934     ulg stored_len;   /* length of input block */
       
   935     int last;         /* one if this is the last block for a file */
       
   936 {
       
   937     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
       
   938     int max_blindex = 0;  /* index of last bit length code of non zero freq */
       
   939 
       
   940     /* Build the Huffman trees unless a stored block is forced */
       
   941     if (s->level > 0) {
       
   942 
       
   943         /* Check if the file is binary or text */
       
   944         if (s->strm->data_type == Z_UNKNOWN)
       
   945             s->strm->data_type = detect_data_type(s);
       
   946 
       
   947         /* Construct the literal and distance trees */
       
   948         build_tree(s, (tree_desc *)(&(s->l_desc)));
       
   949         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
       
   950                 s->static_len));
       
   951 
       
   952         build_tree(s, (tree_desc *)(&(s->d_desc)));
       
   953         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
       
   954                 s->static_len));
       
   955         /* At this point, opt_len and static_len are the total bit lengths of
       
   956          * the compressed block data, excluding the tree representations.
       
   957          */
       
   958 
       
   959         /* Build the bit length tree for the above two trees, and get the index
       
   960          * in bl_order of the last bit length code to send.
       
   961          */
       
   962         max_blindex = build_bl_tree(s);
       
   963 
       
   964         /* Determine the best encoding. Compute the block lengths in bytes. */
       
   965         opt_lenb = (s->opt_len+3+7)>>3;
       
   966         static_lenb = (s->static_len+3+7)>>3;
       
   967 
       
   968         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
       
   969                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
       
   970                 s->last_lit));
       
   971 
       
   972         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
       
   973 
       
   974     } else {
       
   975         Assert(buf != (char*)0, "lost buf");
       
   976         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
       
   977     }
       
   978 
       
   979 #ifdef FORCE_STORED
       
   980     if (buf != (char*)0) { /* force stored block */
       
   981 #else
       
   982     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
       
   983                        /* 4: two words for the lengths */
       
   984 #endif
       
   985         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
       
   986          * Otherwise we can't have processed more than WSIZE input bytes since
       
   987          * the last block flush, because compression would have been
       
   988          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
       
   989          * transform a block into a stored block.
       
   990          */
       
   991         _tr_stored_block(s, buf, stored_len, last);
       
   992 
       
   993 #ifdef FORCE_STATIC
       
   994     } else if (static_lenb >= 0) { /* force static trees */
       
   995 #else
       
   996     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
       
   997 #endif
       
   998         send_bits(s, (STATIC_TREES<<1)+last, 3);
       
   999         compress_block(s, (const ct_data *)static_ltree,
       
  1000                        (const ct_data *)static_dtree);
       
  1001 #ifdef DEBUG
       
  1002         s->compressed_len += 3 + s->static_len;
       
  1003 #endif
       
  1004     } else {
       
  1005         send_bits(s, (DYN_TREES<<1)+last, 3);
       
  1006         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
       
  1007                        max_blindex+1);
       
  1008         compress_block(s, (const ct_data *)s->dyn_ltree,
       
  1009                        (const ct_data *)s->dyn_dtree);
       
  1010 #ifdef DEBUG
       
  1011         s->compressed_len += 3 + s->opt_len;
       
  1012 #endif
       
  1013     }
       
  1014     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
       
  1015     /* The above check is made mod 2^32, for files larger than 512 MB
       
  1016      * and uLong implemented on 32 bits.
       
  1017      */
       
  1018     init_block(s);
       
  1019 
       
  1020     if (last) {
       
  1021         bi_windup(s);
       
  1022 #ifdef DEBUG
       
  1023         s->compressed_len += 7;  /* align on byte boundary */
       
  1024 #endif
       
  1025     }
       
  1026     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
       
  1027            s->compressed_len-7*last));
       
  1028 }
       
  1029 
       
  1030 /* ===========================================================================
       
  1031  * Save the match info and tally the frequency counts. Return true if
       
  1032  * the current block must be flushed.
       
  1033  */
       
  1034 int ZLIB_INTERNAL _tr_tally (s, dist, lc)
       
  1035     deflate_state *s;
       
  1036     unsigned dist;  /* distance of matched string */
       
  1037     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
       
  1038 {
       
  1039     s->d_buf[s->last_lit] = (ush)dist;
       
  1040     s->l_buf[s->last_lit++] = (uch)lc;
       
  1041     if (dist == 0) {
       
  1042         /* lc is the unmatched char */
       
  1043         s->dyn_ltree[lc].Freq++;
       
  1044     } else {
       
  1045         s->matches++;
       
  1046         /* Here, lc is the match length - MIN_MATCH */
       
  1047         dist--;             /* dist = match distance - 1 */
       
  1048         Assert((ush)dist < (ush)MAX_DIST(s) &&
       
  1049                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
       
  1050                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
       
  1051 
       
  1052         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
       
  1053         s->dyn_dtree[d_code(dist)].Freq++;
       
  1054     }
       
  1055 
       
  1056 #ifdef TRUNCATE_BLOCK
       
  1057     /* Try to guess if it is profitable to stop the current block here */
       
  1058     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
       
  1059         /* Compute an upper bound for the compressed length */
       
  1060         ulg out_length = (ulg)s->last_lit*8L;
       
  1061         ulg in_length = (ulg)((long)s->strstart - s->block_start);
       
  1062         int dcode;
       
  1063         for (dcode = 0; dcode < D_CODES; dcode++) {
       
  1064             out_length += (ulg)s->dyn_dtree[dcode].Freq *
       
  1065                 (5L+extra_dbits[dcode]);
       
  1066         }
       
  1067         out_length >>= 3;
       
  1068         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
       
  1069                s->last_lit, in_length, out_length,
       
  1070                100L - out_length*100L/in_length));
       
  1071         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
       
  1072     }
       
  1073 #endif
       
  1074     return (s->last_lit == s->lit_bufsize-1);
       
  1075     /* We avoid equality with lit_bufsize because of wraparound at 64K
       
  1076      * on 16 bit machines and because stored blocks are restricted to
       
  1077      * 64K-1 bytes.
       
  1078      */
       
  1079 }
       
  1080 
       
  1081 /* ===========================================================================
       
  1082  * Send the block data compressed using the given Huffman trees
       
  1083  */
       
  1084 local void compress_block(s, ltree, dtree)
       
  1085     deflate_state *s;
       
  1086     const ct_data *ltree; /* literal tree */
       
  1087     const ct_data *dtree; /* distance tree */
       
  1088 {
       
  1089     unsigned dist;      /* distance of matched string */
       
  1090     int lc;             /* match length or unmatched char (if dist == 0) */
       
  1091     unsigned lx = 0;    /* running index in l_buf */
       
  1092     unsigned code;      /* the code to send */
       
  1093     int extra;          /* number of extra bits to send */
       
  1094 
       
  1095     if (s->last_lit != 0) do {
       
  1096         dist = s->d_buf[lx];
       
  1097         lc = s->l_buf[lx++];
       
  1098         if (dist == 0) {
       
  1099             send_code(s, lc, ltree); /* send a literal byte */
       
  1100             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
       
  1101         } else {
       
  1102             /* Here, lc is the match length - MIN_MATCH */
       
  1103             code = _length_code[lc];
       
  1104             send_code(s, code+LITERALS+1, ltree); /* send the length code */
       
  1105             extra = extra_lbits[code];
       
  1106             if (extra != 0) {
       
  1107                 lc -= base_length[code];
       
  1108                 send_bits(s, lc, extra);       /* send the extra length bits */
       
  1109             }
       
  1110             dist--; /* dist is now the match distance - 1 */
       
  1111             code = d_code(dist);
       
  1112             Assert (code < D_CODES, "bad d_code");
       
  1113 
       
  1114             send_code(s, code, dtree);       /* send the distance code */
       
  1115             extra = extra_dbits[code];
       
  1116             if (extra != 0) {
       
  1117                 dist -= base_dist[code];
       
  1118                 send_bits(s, dist, extra);   /* send the extra distance bits */
       
  1119             }
       
  1120         } /* literal or match pair ? */
       
  1121 
       
  1122         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
       
  1123         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
       
  1124                "pendingBuf overflow");
       
  1125 
       
  1126     } while (lx < s->last_lit);
       
  1127 
       
  1128     send_code(s, END_BLOCK, ltree);
       
  1129 }
       
  1130 
       
  1131 /* ===========================================================================
       
  1132  * Check if the data type is TEXT or BINARY, using the following algorithm:
       
  1133  * - TEXT if the two conditions below are satisfied:
       
  1134  *    a) There are no non-portable control characters belonging to the
       
  1135  *       "black list" (0..6, 14..25, 28..31).
       
  1136  *    b) There is at least one printable character belonging to the
       
  1137  *       "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
       
  1138  * - BINARY otherwise.
       
  1139  * - The following partially-portable control characters form a
       
  1140  *   "gray list" that is ignored in this detection algorithm:
       
  1141  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
       
  1142  * IN assertion: the fields Freq of dyn_ltree are set.
       
  1143  */
       
  1144 local int detect_data_type(s)
       
  1145     deflate_state *s;
       
  1146 {
       
  1147     /* black_mask is the bit mask of black-listed bytes
       
  1148      * set bits 0..6, 14..25, and 28..31
       
  1149      * 0xf3ffc07f = binary 11110011111111111100000001111111
       
  1150      */
       
  1151     unsigned long black_mask = 0xf3ffc07fUL;
       
  1152     int n;
       
  1153 
       
  1154     /* Check for non-textual ("black-listed") bytes. */
       
  1155     for (n = 0; n <= 31; n++, black_mask >>= 1)
       
  1156         if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0))
       
  1157             return Z_BINARY;
       
  1158 
       
  1159     /* Check for textual ("white-listed") bytes. */
       
  1160     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
       
  1161             || s->dyn_ltree[13].Freq != 0)
       
  1162         return Z_TEXT;
       
  1163     for (n = 32; n < LITERALS; n++)
       
  1164         if (s->dyn_ltree[n].Freq != 0)
       
  1165             return Z_TEXT;
       
  1166 
       
  1167     /* There are no "black-listed" or "white-listed" bytes:
       
  1168      * this stream either is empty or has tolerated ("gray-listed") bytes only.
       
  1169      */
       
  1170     return Z_BINARY;
       
  1171 }
       
  1172 
       
  1173 /* ===========================================================================
       
  1174  * Reverse the first len bits of a code, using straightforward code (a faster
       
  1175  * method would use a table)
       
  1176  * IN assertion: 1 <= len <= 15
       
  1177  */
       
  1178 local unsigned bi_reverse(code, len)
       
  1179     unsigned code; /* the value to invert */
       
  1180     int len;       /* its bit length */
       
  1181 {
       
  1182     register unsigned res = 0;
       
  1183     do {
       
  1184         res |= code & 1;
       
  1185         code >>= 1, res <<= 1;
       
  1186     } while (--len > 0);
       
  1187     return res >> 1;
       
  1188 }
       
  1189 
       
  1190 /* ===========================================================================
       
  1191  * Flush the bit buffer, keeping at most 7 bits in it.
       
  1192  */
       
  1193 local void bi_flush(s)
       
  1194     deflate_state *s;
       
  1195 {
       
  1196     if (s->bi_valid == 16) {
       
  1197         put_short(s, s->bi_buf);
       
  1198         s->bi_buf = 0;
       
  1199         s->bi_valid = 0;
       
  1200     } else if (s->bi_valid >= 8) {
       
  1201         put_byte(s, (Byte)s->bi_buf);
       
  1202         s->bi_buf >>= 8;
       
  1203         s->bi_valid -= 8;
       
  1204     }
       
  1205 }
       
  1206 
       
  1207 /* ===========================================================================
       
  1208  * Flush the bit buffer and align the output on a byte boundary
       
  1209  */
       
  1210 local void bi_windup(s)
       
  1211     deflate_state *s;
       
  1212 {
       
  1213     if (s->bi_valid > 8) {
       
  1214         put_short(s, s->bi_buf);
       
  1215     } else if (s->bi_valid > 0) {
       
  1216         put_byte(s, (Byte)s->bi_buf);
       
  1217     }
       
  1218     s->bi_buf = 0;
       
  1219     s->bi_valid = 0;
       
  1220 #ifdef DEBUG
       
  1221     s->bits_sent = (s->bits_sent+7) & ~7;
       
  1222 #endif
       
  1223 }
       
  1224 
       
  1225 /* ===========================================================================
       
  1226  * Copy a stored block, storing first the length and its
       
  1227  * one's complement if requested.
       
  1228  */
       
  1229 local void copy_block(s, buf, len, header)
       
  1230     deflate_state *s;
       
  1231     charf    *buf;    /* the input data */
       
  1232     unsigned len;     /* its length */
       
  1233     int      header;  /* true if block header must be written */
       
  1234 {
       
  1235     bi_windup(s);        /* align on byte boundary */
       
  1236 
       
  1237     if (header) {
       
  1238         put_short(s, (ush)len);
       
  1239         put_short(s, (ush)~len);
       
  1240 #ifdef DEBUG
       
  1241         s->bits_sent += 2*16;
       
  1242 #endif
       
  1243     }
       
  1244 #ifdef DEBUG
       
  1245     s->bits_sent += (ulg)len<<3;
       
  1246 #endif
       
  1247     while (len--) {
       
  1248         put_byte(s, *buf++);
       
  1249     }
       
  1250 }