1 /* |
|
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
3 * |
|
4 * This code is free software; you can redistribute it and/or modify it |
|
5 * under the terms of the GNU General Public License version 2 only, as |
|
6 * published by the Free Software Foundation. Oracle designates this |
|
7 * particular file as subject to the "Classpath" exception as provided |
|
8 * by Oracle in the LICENSE file that accompanied this code. |
|
9 * |
|
10 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13 * version 2 for more details (a copy is included in the LICENSE file that |
|
14 * accompanied this code). |
|
15 * |
|
16 * You should have received a copy of the GNU General Public License version |
|
17 * 2 along with this work; if not, write to the Free Software Foundation, |
|
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
19 * |
|
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
21 * or visit www.oracle.com if you need additional information or have any |
|
22 * questions. |
|
23 */ |
|
24 |
|
25 /* trees.c -- output deflated data using Huffman coding |
|
26 * Copyright (C) 1995-2012 Jean-loup Gailly |
|
27 * detect_data_type() function provided freely by Cosmin Truta, 2006 |
|
28 * For conditions of distribution and use, see copyright notice in zlib.h |
|
29 */ |
|
30 |
|
31 /* |
|
32 * ALGORITHM |
|
33 * |
|
34 * The "deflation" process uses several Huffman trees. The more |
|
35 * common source values are represented by shorter bit sequences. |
|
36 * |
|
37 * Each code tree is stored in a compressed form which is itself |
|
38 * a Huffman encoding of the lengths of all the code strings (in |
|
39 * ascending order by source values). The actual code strings are |
|
40 * reconstructed from the lengths in the inflate process, as described |
|
41 * in the deflate specification. |
|
42 * |
|
43 * REFERENCES |
|
44 * |
|
45 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". |
|
46 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc |
|
47 * |
|
48 * Storer, James A. |
|
49 * Data Compression: Methods and Theory, pp. 49-50. |
|
50 * Computer Science Press, 1988. ISBN 0-7167-8156-5. |
|
51 * |
|
52 * Sedgewick, R. |
|
53 * Algorithms, p290. |
|
54 * Addison-Wesley, 1983. ISBN 0-201-06672-6. |
|
55 */ |
|
56 |
|
57 /* @(#) $Id$ */ |
|
58 |
|
59 /* #define GEN_TREES_H */ |
|
60 |
|
61 #include "deflate.h" |
|
62 |
|
63 #ifdef DEBUG |
|
64 # include <ctype.h> |
|
65 #endif |
|
66 |
|
67 /* =========================================================================== |
|
68 * Constants |
|
69 */ |
|
70 |
|
71 #define MAX_BL_BITS 7 |
|
72 /* Bit length codes must not exceed MAX_BL_BITS bits */ |
|
73 |
|
74 #define END_BLOCK 256 |
|
75 /* end of block literal code */ |
|
76 |
|
77 #define REP_3_6 16 |
|
78 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ |
|
79 |
|
80 #define REPZ_3_10 17 |
|
81 /* repeat a zero length 3-10 times (3 bits of repeat count) */ |
|
82 |
|
83 #define REPZ_11_138 18 |
|
84 /* repeat a zero length 11-138 times (7 bits of repeat count) */ |
|
85 |
|
86 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ |
|
87 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; |
|
88 |
|
89 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ |
|
90 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; |
|
91 |
|
92 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ |
|
93 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; |
|
94 |
|
95 local const uch bl_order[BL_CODES] |
|
96 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; |
|
97 /* The lengths of the bit length codes are sent in order of decreasing |
|
98 * probability, to avoid transmitting the lengths for unused bit length codes. |
|
99 */ |
|
100 |
|
101 /* =========================================================================== |
|
102 * Local data. These are initialized only once. |
|
103 */ |
|
104 |
|
105 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ |
|
106 |
|
107 #if defined(GEN_TREES_H) || !defined(STDC) |
|
108 /* non ANSI compilers may not accept trees.h */ |
|
109 |
|
110 local ct_data static_ltree[L_CODES+2]; |
|
111 /* The static literal tree. Since the bit lengths are imposed, there is no |
|
112 * need for the L_CODES extra codes used during heap construction. However |
|
113 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init |
|
114 * below). |
|
115 */ |
|
116 |
|
117 local ct_data static_dtree[D_CODES]; |
|
118 /* The static distance tree. (Actually a trivial tree since all codes use |
|
119 * 5 bits.) |
|
120 */ |
|
121 |
|
122 uch _dist_code[DIST_CODE_LEN]; |
|
123 /* Distance codes. The first 256 values correspond to the distances |
|
124 * 3 .. 258, the last 256 values correspond to the top 8 bits of |
|
125 * the 15 bit distances. |
|
126 */ |
|
127 |
|
128 uch _length_code[MAX_MATCH-MIN_MATCH+1]; |
|
129 /* length code for each normalized match length (0 == MIN_MATCH) */ |
|
130 |
|
131 local int base_length[LENGTH_CODES]; |
|
132 /* First normalized length for each code (0 = MIN_MATCH) */ |
|
133 |
|
134 local int base_dist[D_CODES]; |
|
135 /* First normalized distance for each code (0 = distance of 1) */ |
|
136 |
|
137 #else |
|
138 # include "trees.h" |
|
139 #endif /* GEN_TREES_H */ |
|
140 |
|
141 struct static_tree_desc_s { |
|
142 const ct_data *static_tree; /* static tree or NULL */ |
|
143 const intf *extra_bits; /* extra bits for each code or NULL */ |
|
144 int extra_base; /* base index for extra_bits */ |
|
145 int elems; /* max number of elements in the tree */ |
|
146 int max_length; /* max bit length for the codes */ |
|
147 }; |
|
148 |
|
149 local static_tree_desc static_l_desc = |
|
150 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; |
|
151 |
|
152 local static_tree_desc static_d_desc = |
|
153 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; |
|
154 |
|
155 local static_tree_desc static_bl_desc = |
|
156 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; |
|
157 |
|
158 /* =========================================================================== |
|
159 * Local (static) routines in this file. |
|
160 */ |
|
161 |
|
162 local void tr_static_init OF((void)); |
|
163 local void init_block OF((deflate_state *s)); |
|
164 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); |
|
165 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); |
|
166 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); |
|
167 local void build_tree OF((deflate_state *s, tree_desc *desc)); |
|
168 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
|
169 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); |
|
170 local int build_bl_tree OF((deflate_state *s)); |
|
171 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, |
|
172 int blcodes)); |
|
173 local void compress_block OF((deflate_state *s, const ct_data *ltree, |
|
174 const ct_data *dtree)); |
|
175 local int detect_data_type OF((deflate_state *s)); |
|
176 local unsigned bi_reverse OF((unsigned value, int length)); |
|
177 local void bi_windup OF((deflate_state *s)); |
|
178 local void bi_flush OF((deflate_state *s)); |
|
179 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, |
|
180 int header)); |
|
181 |
|
182 #ifdef GEN_TREES_H |
|
183 local void gen_trees_header OF((void)); |
|
184 #endif |
|
185 |
|
186 #ifndef DEBUG |
|
187 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) |
|
188 /* Send a code of the given tree. c and tree must not have side effects */ |
|
189 |
|
190 #else /* DEBUG */ |
|
191 # define send_code(s, c, tree) \ |
|
192 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ |
|
193 send_bits(s, tree[c].Code, tree[c].Len); } |
|
194 #endif |
|
195 |
|
196 /* =========================================================================== |
|
197 * Output a short LSB first on the stream. |
|
198 * IN assertion: there is enough room in pendingBuf. |
|
199 */ |
|
200 #define put_short(s, w) { \ |
|
201 put_byte(s, (uch)((w) & 0xff)); \ |
|
202 put_byte(s, (uch)((ush)(w) >> 8)); \ |
|
203 } |
|
204 |
|
205 /* =========================================================================== |
|
206 * Send a value on a given number of bits. |
|
207 * IN assertion: length <= 16 and value fits in length bits. |
|
208 */ |
|
209 #ifdef DEBUG |
|
210 local void send_bits OF((deflate_state *s, int value, int length)); |
|
211 |
|
212 local void send_bits(s, value, length) |
|
213 deflate_state *s; |
|
214 int value; /* value to send */ |
|
215 int length; /* number of bits */ |
|
216 { |
|
217 Tracevv((stderr," l %2d v %4x ", length, value)); |
|
218 Assert(length > 0 && length <= 15, "invalid length"); |
|
219 s->bits_sent += (ulg)length; |
|
220 |
|
221 /* If not enough room in bi_buf, use (valid) bits from bi_buf and |
|
222 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) |
|
223 * unused bits in value. |
|
224 */ |
|
225 if (s->bi_valid > (int)Buf_size - length) { |
|
226 s->bi_buf |= (ush)value << s->bi_valid; |
|
227 put_short(s, s->bi_buf); |
|
228 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); |
|
229 s->bi_valid += length - Buf_size; |
|
230 } else { |
|
231 s->bi_buf |= (ush)value << s->bi_valid; |
|
232 s->bi_valid += length; |
|
233 } |
|
234 } |
|
235 #else /* !DEBUG */ |
|
236 |
|
237 #define send_bits(s, value, length) \ |
|
238 { int len = length;\ |
|
239 if (s->bi_valid > (int)Buf_size - len) {\ |
|
240 int val = value;\ |
|
241 s->bi_buf |= (ush)val << s->bi_valid;\ |
|
242 put_short(s, s->bi_buf);\ |
|
243 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ |
|
244 s->bi_valid += len - Buf_size;\ |
|
245 } else {\ |
|
246 s->bi_buf |= (ush)(value) << s->bi_valid;\ |
|
247 s->bi_valid += len;\ |
|
248 }\ |
|
249 } |
|
250 #endif /* DEBUG */ |
|
251 |
|
252 |
|
253 /* the arguments must not have side effects */ |
|
254 |
|
255 /* =========================================================================== |
|
256 * Initialize the various 'constant' tables. |
|
257 */ |
|
258 local void tr_static_init() |
|
259 { |
|
260 #if defined(GEN_TREES_H) || !defined(STDC) |
|
261 static int static_init_done = 0; |
|
262 int n; /* iterates over tree elements */ |
|
263 int bits; /* bit counter */ |
|
264 int length; /* length value */ |
|
265 int code; /* code value */ |
|
266 int dist; /* distance index */ |
|
267 ush bl_count[MAX_BITS+1]; |
|
268 /* number of codes at each bit length for an optimal tree */ |
|
269 |
|
270 if (static_init_done) return; |
|
271 |
|
272 /* For some embedded targets, global variables are not initialized: */ |
|
273 #ifdef NO_INIT_GLOBAL_POINTERS |
|
274 static_l_desc.static_tree = static_ltree; |
|
275 static_l_desc.extra_bits = extra_lbits; |
|
276 static_d_desc.static_tree = static_dtree; |
|
277 static_d_desc.extra_bits = extra_dbits; |
|
278 static_bl_desc.extra_bits = extra_blbits; |
|
279 #endif |
|
280 |
|
281 /* Initialize the mapping length (0..255) -> length code (0..28) */ |
|
282 length = 0; |
|
283 for (code = 0; code < LENGTH_CODES-1; code++) { |
|
284 base_length[code] = length; |
|
285 for (n = 0; n < (1<<extra_lbits[code]); n++) { |
|
286 _length_code[length++] = (uch)code; |
|
287 } |
|
288 } |
|
289 Assert (length == 256, "tr_static_init: length != 256"); |
|
290 /* Note that the length 255 (match length 258) can be represented |
|
291 * in two different ways: code 284 + 5 bits or code 285, so we |
|
292 * overwrite length_code[255] to use the best encoding: |
|
293 */ |
|
294 _length_code[length-1] = (uch)code; |
|
295 |
|
296 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ |
|
297 dist = 0; |
|
298 for (code = 0 ; code < 16; code++) { |
|
299 base_dist[code] = dist; |
|
300 for (n = 0; n < (1<<extra_dbits[code]); n++) { |
|
301 _dist_code[dist++] = (uch)code; |
|
302 } |
|
303 } |
|
304 Assert (dist == 256, "tr_static_init: dist != 256"); |
|
305 dist >>= 7; /* from now on, all distances are divided by 128 */ |
|
306 for ( ; code < D_CODES; code++) { |
|
307 base_dist[code] = dist << 7; |
|
308 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { |
|
309 _dist_code[256 + dist++] = (uch)code; |
|
310 } |
|
311 } |
|
312 Assert (dist == 256, "tr_static_init: 256+dist != 512"); |
|
313 |
|
314 /* Construct the codes of the static literal tree */ |
|
315 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; |
|
316 n = 0; |
|
317 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; |
|
318 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; |
|
319 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; |
|
320 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; |
|
321 /* Codes 286 and 287 do not exist, but we must include them in the |
|
322 * tree construction to get a canonical Huffman tree (longest code |
|
323 * all ones) |
|
324 */ |
|
325 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); |
|
326 |
|
327 /* The static distance tree is trivial: */ |
|
328 for (n = 0; n < D_CODES; n++) { |
|
329 static_dtree[n].Len = 5; |
|
330 static_dtree[n].Code = bi_reverse((unsigned)n, 5); |
|
331 } |
|
332 static_init_done = 1; |
|
333 |
|
334 # ifdef GEN_TREES_H |
|
335 gen_trees_header(); |
|
336 # endif |
|
337 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ |
|
338 } |
|
339 |
|
340 /* =========================================================================== |
|
341 * Genererate the file trees.h describing the static trees. |
|
342 */ |
|
343 #ifdef GEN_TREES_H |
|
344 # ifndef DEBUG |
|
345 # include <stdio.h> |
|
346 # endif |
|
347 |
|
348 # define SEPARATOR(i, last, width) \ |
|
349 ((i) == (last)? "\n};\n\n" : \ |
|
350 ((i) % (width) == (width)-1 ? ",\n" : ", ")) |
|
351 |
|
352 void gen_trees_header() |
|
353 { |
|
354 FILE *header = fopen("trees.h", "w"); |
|
355 int i; |
|
356 |
|
357 Assert (header != NULL, "Can't open trees.h"); |
|
358 fprintf(header, |
|
359 "/* header created automatically with -DGEN_TREES_H */\n\n"); |
|
360 |
|
361 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); |
|
362 for (i = 0; i < L_CODES+2; i++) { |
|
363 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, |
|
364 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); |
|
365 } |
|
366 |
|
367 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); |
|
368 for (i = 0; i < D_CODES; i++) { |
|
369 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, |
|
370 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); |
|
371 } |
|
372 |
|
373 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); |
|
374 for (i = 0; i < DIST_CODE_LEN; i++) { |
|
375 fprintf(header, "%2u%s", _dist_code[i], |
|
376 SEPARATOR(i, DIST_CODE_LEN-1, 20)); |
|
377 } |
|
378 |
|
379 fprintf(header, |
|
380 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); |
|
381 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { |
|
382 fprintf(header, "%2u%s", _length_code[i], |
|
383 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); |
|
384 } |
|
385 |
|
386 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); |
|
387 for (i = 0; i < LENGTH_CODES; i++) { |
|
388 fprintf(header, "%1u%s", base_length[i], |
|
389 SEPARATOR(i, LENGTH_CODES-1, 20)); |
|
390 } |
|
391 |
|
392 fprintf(header, "local const int base_dist[D_CODES] = {\n"); |
|
393 for (i = 0; i < D_CODES; i++) { |
|
394 fprintf(header, "%5u%s", base_dist[i], |
|
395 SEPARATOR(i, D_CODES-1, 10)); |
|
396 } |
|
397 |
|
398 fclose(header); |
|
399 } |
|
400 #endif /* GEN_TREES_H */ |
|
401 |
|
402 /* =========================================================================== |
|
403 * Initialize the tree data structures for a new zlib stream. |
|
404 */ |
|
405 void ZLIB_INTERNAL _tr_init(s) |
|
406 deflate_state *s; |
|
407 { |
|
408 tr_static_init(); |
|
409 |
|
410 s->l_desc.dyn_tree = s->dyn_ltree; |
|
411 s->l_desc.stat_desc = &static_l_desc; |
|
412 |
|
413 s->d_desc.dyn_tree = s->dyn_dtree; |
|
414 s->d_desc.stat_desc = &static_d_desc; |
|
415 |
|
416 s->bl_desc.dyn_tree = s->bl_tree; |
|
417 s->bl_desc.stat_desc = &static_bl_desc; |
|
418 |
|
419 s->bi_buf = 0; |
|
420 s->bi_valid = 0; |
|
421 #ifdef DEBUG |
|
422 s->compressed_len = 0L; |
|
423 s->bits_sent = 0L; |
|
424 #endif |
|
425 |
|
426 /* Initialize the first block of the first file: */ |
|
427 init_block(s); |
|
428 } |
|
429 |
|
430 /* =========================================================================== |
|
431 * Initialize a new block. |
|
432 */ |
|
433 local void init_block(s) |
|
434 deflate_state *s; |
|
435 { |
|
436 int n; /* iterates over tree elements */ |
|
437 |
|
438 /* Initialize the trees. */ |
|
439 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; |
|
440 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; |
|
441 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; |
|
442 |
|
443 s->dyn_ltree[END_BLOCK].Freq = 1; |
|
444 s->opt_len = s->static_len = 0L; |
|
445 s->last_lit = s->matches = 0; |
|
446 } |
|
447 |
|
448 #define SMALLEST 1 |
|
449 /* Index within the heap array of least frequent node in the Huffman tree */ |
|
450 |
|
451 |
|
452 /* =========================================================================== |
|
453 * Remove the smallest element from the heap and recreate the heap with |
|
454 * one less element. Updates heap and heap_len. |
|
455 */ |
|
456 #define pqremove(s, tree, top) \ |
|
457 {\ |
|
458 top = s->heap[SMALLEST]; \ |
|
459 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ |
|
460 pqdownheap(s, tree, SMALLEST); \ |
|
461 } |
|
462 |
|
463 /* =========================================================================== |
|
464 * Compares to subtrees, using the tree depth as tie breaker when |
|
465 * the subtrees have equal frequency. This minimizes the worst case length. |
|
466 */ |
|
467 #define smaller(tree, n, m, depth) \ |
|
468 (tree[n].Freq < tree[m].Freq || \ |
|
469 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) |
|
470 |
|
471 /* =========================================================================== |
|
472 * Restore the heap property by moving down the tree starting at node k, |
|
473 * exchanging a node with the smallest of its two sons if necessary, stopping |
|
474 * when the heap property is re-established (each father smaller than its |
|
475 * two sons). |
|
476 */ |
|
477 local void pqdownheap(s, tree, k) |
|
478 deflate_state *s; |
|
479 ct_data *tree; /* the tree to restore */ |
|
480 int k; /* node to move down */ |
|
481 { |
|
482 int v = s->heap[k]; |
|
483 int j = k << 1; /* left son of k */ |
|
484 while (j <= s->heap_len) { |
|
485 /* Set j to the smallest of the two sons: */ |
|
486 if (j < s->heap_len && |
|
487 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { |
|
488 j++; |
|
489 } |
|
490 /* Exit if v is smaller than both sons */ |
|
491 if (smaller(tree, v, s->heap[j], s->depth)) break; |
|
492 |
|
493 /* Exchange v with the smallest son */ |
|
494 s->heap[k] = s->heap[j]; k = j; |
|
495 |
|
496 /* And continue down the tree, setting j to the left son of k */ |
|
497 j <<= 1; |
|
498 } |
|
499 s->heap[k] = v; |
|
500 } |
|
501 |
|
502 /* =========================================================================== |
|
503 * Compute the optimal bit lengths for a tree and update the total bit length |
|
504 * for the current block. |
|
505 * IN assertion: the fields freq and dad are set, heap[heap_max] and |
|
506 * above are the tree nodes sorted by increasing frequency. |
|
507 * OUT assertions: the field len is set to the optimal bit length, the |
|
508 * array bl_count contains the frequencies for each bit length. |
|
509 * The length opt_len is updated; static_len is also updated if stree is |
|
510 * not null. |
|
511 */ |
|
512 local void gen_bitlen(s, desc) |
|
513 deflate_state *s; |
|
514 tree_desc *desc; /* the tree descriptor */ |
|
515 { |
|
516 ct_data *tree = desc->dyn_tree; |
|
517 int max_code = desc->max_code; |
|
518 const ct_data *stree = desc->stat_desc->static_tree; |
|
519 const intf *extra = desc->stat_desc->extra_bits; |
|
520 int base = desc->stat_desc->extra_base; |
|
521 int max_length = desc->stat_desc->max_length; |
|
522 int h; /* heap index */ |
|
523 int n, m; /* iterate over the tree elements */ |
|
524 int bits; /* bit length */ |
|
525 int xbits; /* extra bits */ |
|
526 ush f; /* frequency */ |
|
527 int overflow = 0; /* number of elements with bit length too large */ |
|
528 |
|
529 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; |
|
530 |
|
531 /* In a first pass, compute the optimal bit lengths (which may |
|
532 * overflow in the case of the bit length tree). |
|
533 */ |
|
534 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ |
|
535 |
|
536 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { |
|
537 n = s->heap[h]; |
|
538 bits = tree[tree[n].Dad].Len + 1; |
|
539 if (bits > max_length) bits = max_length, overflow++; |
|
540 tree[n].Len = (ush)bits; |
|
541 /* We overwrite tree[n].Dad which is no longer needed */ |
|
542 |
|
543 if (n > max_code) continue; /* not a leaf node */ |
|
544 |
|
545 s->bl_count[bits]++; |
|
546 xbits = 0; |
|
547 if (n >= base) xbits = extra[n-base]; |
|
548 f = tree[n].Freq; |
|
549 s->opt_len += (ulg)f * (bits + xbits); |
|
550 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); |
|
551 } |
|
552 if (overflow == 0) return; |
|
553 |
|
554 Trace((stderr,"\nbit length overflow\n")); |
|
555 /* This happens for example on obj2 and pic of the Calgary corpus */ |
|
556 |
|
557 /* Find the first bit length which could increase: */ |
|
558 do { |
|
559 bits = max_length-1; |
|
560 while (s->bl_count[bits] == 0) bits--; |
|
561 s->bl_count[bits]--; /* move one leaf down the tree */ |
|
562 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ |
|
563 s->bl_count[max_length]--; |
|
564 /* The brother of the overflow item also moves one step up, |
|
565 * but this does not affect bl_count[max_length] |
|
566 */ |
|
567 overflow -= 2; |
|
568 } while (overflow > 0); |
|
569 |
|
570 /* Now recompute all bit lengths, scanning in increasing frequency. |
|
571 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all |
|
572 * lengths instead of fixing only the wrong ones. This idea is taken |
|
573 * from 'ar' written by Haruhiko Okumura.) |
|
574 */ |
|
575 for (bits = max_length; bits != 0; bits--) { |
|
576 n = s->bl_count[bits]; |
|
577 while (n != 0) { |
|
578 m = s->heap[--h]; |
|
579 if (m > max_code) continue; |
|
580 if ((unsigned) tree[m].Len != (unsigned) bits) { |
|
581 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); |
|
582 s->opt_len += ((long)bits - (long)tree[m].Len) |
|
583 *(long)tree[m].Freq; |
|
584 tree[m].Len = (ush)bits; |
|
585 } |
|
586 n--; |
|
587 } |
|
588 } |
|
589 } |
|
590 |
|
591 /* =========================================================================== |
|
592 * Generate the codes for a given tree and bit counts (which need not be |
|
593 * optimal). |
|
594 * IN assertion: the array bl_count contains the bit length statistics for |
|
595 * the given tree and the field len is set for all tree elements. |
|
596 * OUT assertion: the field code is set for all tree elements of non |
|
597 * zero code length. |
|
598 */ |
|
599 local void gen_codes (tree, max_code, bl_count) |
|
600 ct_data *tree; /* the tree to decorate */ |
|
601 int max_code; /* largest code with non zero frequency */ |
|
602 ushf *bl_count; /* number of codes at each bit length */ |
|
603 { |
|
604 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ |
|
605 ush code = 0; /* running code value */ |
|
606 int bits; /* bit index */ |
|
607 int n; /* code index */ |
|
608 |
|
609 /* The distribution counts are first used to generate the code values |
|
610 * without bit reversal. |
|
611 */ |
|
612 for (bits = 1; bits <= MAX_BITS; bits++) { |
|
613 next_code[bits] = code = (code + bl_count[bits-1]) << 1; |
|
614 } |
|
615 /* Check that the bit counts in bl_count are consistent. The last code |
|
616 * must be all ones. |
|
617 */ |
|
618 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, |
|
619 "inconsistent bit counts"); |
|
620 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); |
|
621 |
|
622 for (n = 0; n <= max_code; n++) { |
|
623 int len = tree[n].Len; |
|
624 if (len == 0) continue; |
|
625 /* Now reverse the bits */ |
|
626 tree[n].Code = bi_reverse(next_code[len]++, len); |
|
627 |
|
628 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", |
|
629 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); |
|
630 } |
|
631 } |
|
632 |
|
633 /* =========================================================================== |
|
634 * Construct one Huffman tree and assigns the code bit strings and lengths. |
|
635 * Update the total bit length for the current block. |
|
636 * IN assertion: the field freq is set for all tree elements. |
|
637 * OUT assertions: the fields len and code are set to the optimal bit length |
|
638 * and corresponding code. The length opt_len is updated; static_len is |
|
639 * also updated if stree is not null. The field max_code is set. |
|
640 */ |
|
641 local void build_tree(s, desc) |
|
642 deflate_state *s; |
|
643 tree_desc *desc; /* the tree descriptor */ |
|
644 { |
|
645 ct_data *tree = desc->dyn_tree; |
|
646 const ct_data *stree = desc->stat_desc->static_tree; |
|
647 int elems = desc->stat_desc->elems; |
|
648 int n, m; /* iterate over heap elements */ |
|
649 int max_code = -1; /* largest code with non zero frequency */ |
|
650 int node; /* new node being created */ |
|
651 |
|
652 /* Construct the initial heap, with least frequent element in |
|
653 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. |
|
654 * heap[0] is not used. |
|
655 */ |
|
656 s->heap_len = 0, s->heap_max = HEAP_SIZE; |
|
657 |
|
658 for (n = 0; n < elems; n++) { |
|
659 if (tree[n].Freq != 0) { |
|
660 s->heap[++(s->heap_len)] = max_code = n; |
|
661 s->depth[n] = 0; |
|
662 } else { |
|
663 tree[n].Len = 0; |
|
664 } |
|
665 } |
|
666 |
|
667 /* The pkzip format requires that at least one distance code exists, |
|
668 * and that at least one bit should be sent even if there is only one |
|
669 * possible code. So to avoid special checks later on we force at least |
|
670 * two codes of non zero frequency. |
|
671 */ |
|
672 while (s->heap_len < 2) { |
|
673 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); |
|
674 tree[node].Freq = 1; |
|
675 s->depth[node] = 0; |
|
676 s->opt_len--; if (stree) s->static_len -= stree[node].Len; |
|
677 /* node is 0 or 1 so it does not have extra bits */ |
|
678 } |
|
679 desc->max_code = max_code; |
|
680 |
|
681 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, |
|
682 * establish sub-heaps of increasing lengths: |
|
683 */ |
|
684 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); |
|
685 |
|
686 /* Construct the Huffman tree by repeatedly combining the least two |
|
687 * frequent nodes. |
|
688 */ |
|
689 node = elems; /* next internal node of the tree */ |
|
690 do { |
|
691 pqremove(s, tree, n); /* n = node of least frequency */ |
|
692 m = s->heap[SMALLEST]; /* m = node of next least frequency */ |
|
693 |
|
694 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ |
|
695 s->heap[--(s->heap_max)] = m; |
|
696 |
|
697 /* Create a new node father of n and m */ |
|
698 tree[node].Freq = tree[n].Freq + tree[m].Freq; |
|
699 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? |
|
700 s->depth[n] : s->depth[m]) + 1); |
|
701 tree[n].Dad = tree[m].Dad = (ush)node; |
|
702 #ifdef DUMP_BL_TREE |
|
703 if (tree == s->bl_tree) { |
|
704 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", |
|
705 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); |
|
706 } |
|
707 #endif |
|
708 /* and insert the new node in the heap */ |
|
709 s->heap[SMALLEST] = node++; |
|
710 pqdownheap(s, tree, SMALLEST); |
|
711 |
|
712 } while (s->heap_len >= 2); |
|
713 |
|
714 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; |
|
715 |
|
716 /* At this point, the fields freq and dad are set. We can now |
|
717 * generate the bit lengths. |
|
718 */ |
|
719 gen_bitlen(s, (tree_desc *)desc); |
|
720 |
|
721 /* The field len is now set, we can generate the bit codes */ |
|
722 gen_codes ((ct_data *)tree, max_code, s->bl_count); |
|
723 } |
|
724 |
|
725 /* =========================================================================== |
|
726 * Scan a literal or distance tree to determine the frequencies of the codes |
|
727 * in the bit length tree. |
|
728 */ |
|
729 local void scan_tree (s, tree, max_code) |
|
730 deflate_state *s; |
|
731 ct_data *tree; /* the tree to be scanned */ |
|
732 int max_code; /* and its largest code of non zero frequency */ |
|
733 { |
|
734 int n; /* iterates over all tree elements */ |
|
735 int prevlen = -1; /* last emitted length */ |
|
736 int curlen; /* length of current code */ |
|
737 int nextlen = tree[0].Len; /* length of next code */ |
|
738 int count = 0; /* repeat count of the current code */ |
|
739 int max_count = 7; /* max repeat count */ |
|
740 int min_count = 4; /* min repeat count */ |
|
741 |
|
742 if (nextlen == 0) max_count = 138, min_count = 3; |
|
743 tree[max_code+1].Len = (ush)0xffff; /* guard */ |
|
744 |
|
745 for (n = 0; n <= max_code; n++) { |
|
746 curlen = nextlen; nextlen = tree[n+1].Len; |
|
747 if (++count < max_count && curlen == nextlen) { |
|
748 continue; |
|
749 } else if (count < min_count) { |
|
750 s->bl_tree[curlen].Freq += count; |
|
751 } else if (curlen != 0) { |
|
752 if (curlen != prevlen) s->bl_tree[curlen].Freq++; |
|
753 s->bl_tree[REP_3_6].Freq++; |
|
754 } else if (count <= 10) { |
|
755 s->bl_tree[REPZ_3_10].Freq++; |
|
756 } else { |
|
757 s->bl_tree[REPZ_11_138].Freq++; |
|
758 } |
|
759 count = 0; prevlen = curlen; |
|
760 if (nextlen == 0) { |
|
761 max_count = 138, min_count = 3; |
|
762 } else if (curlen == nextlen) { |
|
763 max_count = 6, min_count = 3; |
|
764 } else { |
|
765 max_count = 7, min_count = 4; |
|
766 } |
|
767 } |
|
768 } |
|
769 |
|
770 /* =========================================================================== |
|
771 * Send a literal or distance tree in compressed form, using the codes in |
|
772 * bl_tree. |
|
773 */ |
|
774 local void send_tree (s, tree, max_code) |
|
775 deflate_state *s; |
|
776 ct_data *tree; /* the tree to be scanned */ |
|
777 int max_code; /* and its largest code of non zero frequency */ |
|
778 { |
|
779 int n; /* iterates over all tree elements */ |
|
780 int prevlen = -1; /* last emitted length */ |
|
781 int curlen; /* length of current code */ |
|
782 int nextlen = tree[0].Len; /* length of next code */ |
|
783 int count = 0; /* repeat count of the current code */ |
|
784 int max_count = 7; /* max repeat count */ |
|
785 int min_count = 4; /* min repeat count */ |
|
786 |
|
787 /* tree[max_code+1].Len = -1; */ /* guard already set */ |
|
788 if (nextlen == 0) max_count = 138, min_count = 3; |
|
789 |
|
790 for (n = 0; n <= max_code; n++) { |
|
791 curlen = nextlen; nextlen = tree[n+1].Len; |
|
792 if (++count < max_count && curlen == nextlen) { |
|
793 continue; |
|
794 } else if (count < min_count) { |
|
795 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); |
|
796 |
|
797 } else if (curlen != 0) { |
|
798 if (curlen != prevlen) { |
|
799 send_code(s, curlen, s->bl_tree); count--; |
|
800 } |
|
801 Assert(count >= 3 && count <= 6, " 3_6?"); |
|
802 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); |
|
803 |
|
804 } else if (count <= 10) { |
|
805 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); |
|
806 |
|
807 } else { |
|
808 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); |
|
809 } |
|
810 count = 0; prevlen = curlen; |
|
811 if (nextlen == 0) { |
|
812 max_count = 138, min_count = 3; |
|
813 } else if (curlen == nextlen) { |
|
814 max_count = 6, min_count = 3; |
|
815 } else { |
|
816 max_count = 7, min_count = 4; |
|
817 } |
|
818 } |
|
819 } |
|
820 |
|
821 /* =========================================================================== |
|
822 * Construct the Huffman tree for the bit lengths and return the index in |
|
823 * bl_order of the last bit length code to send. |
|
824 */ |
|
825 local int build_bl_tree(s) |
|
826 deflate_state *s; |
|
827 { |
|
828 int max_blindex; /* index of last bit length code of non zero freq */ |
|
829 |
|
830 /* Determine the bit length frequencies for literal and distance trees */ |
|
831 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); |
|
832 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); |
|
833 |
|
834 /* Build the bit length tree: */ |
|
835 build_tree(s, (tree_desc *)(&(s->bl_desc))); |
|
836 /* opt_len now includes the length of the tree representations, except |
|
837 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. |
|
838 */ |
|
839 |
|
840 /* Determine the number of bit length codes to send. The pkzip format |
|
841 * requires that at least 4 bit length codes be sent. (appnote.txt says |
|
842 * 3 but the actual value used is 4.) |
|
843 */ |
|
844 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { |
|
845 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; |
|
846 } |
|
847 /* Update opt_len to include the bit length tree and counts */ |
|
848 s->opt_len += 3*(max_blindex+1) + 5+5+4; |
|
849 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", |
|
850 s->opt_len, s->static_len)); |
|
851 |
|
852 return max_blindex; |
|
853 } |
|
854 |
|
855 /* =========================================================================== |
|
856 * Send the header for a block using dynamic Huffman trees: the counts, the |
|
857 * lengths of the bit length codes, the literal tree and the distance tree. |
|
858 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. |
|
859 */ |
|
860 local void send_all_trees(s, lcodes, dcodes, blcodes) |
|
861 deflate_state *s; |
|
862 int lcodes, dcodes, blcodes; /* number of codes for each tree */ |
|
863 { |
|
864 int rank; /* index in bl_order */ |
|
865 |
|
866 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); |
|
867 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, |
|
868 "too many codes"); |
|
869 Tracev((stderr, "\nbl counts: ")); |
|
870 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ |
|
871 send_bits(s, dcodes-1, 5); |
|
872 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ |
|
873 for (rank = 0; rank < blcodes; rank++) { |
|
874 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); |
|
875 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); |
|
876 } |
|
877 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); |
|
878 |
|
879 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ |
|
880 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); |
|
881 |
|
882 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ |
|
883 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); |
|
884 } |
|
885 |
|
886 /* =========================================================================== |
|
887 * Send a stored block |
|
888 */ |
|
889 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last) |
|
890 deflate_state *s; |
|
891 charf *buf; /* input block */ |
|
892 ulg stored_len; /* length of input block */ |
|
893 int last; /* one if this is the last block for a file */ |
|
894 { |
|
895 send_bits(s, (STORED_BLOCK<<1)+last, 3); /* send block type */ |
|
896 #ifdef DEBUG |
|
897 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; |
|
898 s->compressed_len += (stored_len + 4) << 3; |
|
899 #endif |
|
900 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ |
|
901 } |
|
902 |
|
903 /* =========================================================================== |
|
904 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) |
|
905 */ |
|
906 void ZLIB_INTERNAL _tr_flush_bits(s) |
|
907 deflate_state *s; |
|
908 { |
|
909 bi_flush(s); |
|
910 } |
|
911 |
|
912 /* =========================================================================== |
|
913 * Send one empty static block to give enough lookahead for inflate. |
|
914 * This takes 10 bits, of which 7 may remain in the bit buffer. |
|
915 */ |
|
916 void ZLIB_INTERNAL _tr_align(s) |
|
917 deflate_state *s; |
|
918 { |
|
919 send_bits(s, STATIC_TREES<<1, 3); |
|
920 send_code(s, END_BLOCK, static_ltree); |
|
921 #ifdef DEBUG |
|
922 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ |
|
923 #endif |
|
924 bi_flush(s); |
|
925 } |
|
926 |
|
927 /* =========================================================================== |
|
928 * Determine the best encoding for the current block: dynamic trees, static |
|
929 * trees or store, and output the encoded block to the zip file. |
|
930 */ |
|
931 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last) |
|
932 deflate_state *s; |
|
933 charf *buf; /* input block, or NULL if too old */ |
|
934 ulg stored_len; /* length of input block */ |
|
935 int last; /* one if this is the last block for a file */ |
|
936 { |
|
937 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ |
|
938 int max_blindex = 0; /* index of last bit length code of non zero freq */ |
|
939 |
|
940 /* Build the Huffman trees unless a stored block is forced */ |
|
941 if (s->level > 0) { |
|
942 |
|
943 /* Check if the file is binary or text */ |
|
944 if (s->strm->data_type == Z_UNKNOWN) |
|
945 s->strm->data_type = detect_data_type(s); |
|
946 |
|
947 /* Construct the literal and distance trees */ |
|
948 build_tree(s, (tree_desc *)(&(s->l_desc))); |
|
949 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, |
|
950 s->static_len)); |
|
951 |
|
952 build_tree(s, (tree_desc *)(&(s->d_desc))); |
|
953 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, |
|
954 s->static_len)); |
|
955 /* At this point, opt_len and static_len are the total bit lengths of |
|
956 * the compressed block data, excluding the tree representations. |
|
957 */ |
|
958 |
|
959 /* Build the bit length tree for the above two trees, and get the index |
|
960 * in bl_order of the last bit length code to send. |
|
961 */ |
|
962 max_blindex = build_bl_tree(s); |
|
963 |
|
964 /* Determine the best encoding. Compute the block lengths in bytes. */ |
|
965 opt_lenb = (s->opt_len+3+7)>>3; |
|
966 static_lenb = (s->static_len+3+7)>>3; |
|
967 |
|
968 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", |
|
969 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, |
|
970 s->last_lit)); |
|
971 |
|
972 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; |
|
973 |
|
974 } else { |
|
975 Assert(buf != (char*)0, "lost buf"); |
|
976 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ |
|
977 } |
|
978 |
|
979 #ifdef FORCE_STORED |
|
980 if (buf != (char*)0) { /* force stored block */ |
|
981 #else |
|
982 if (stored_len+4 <= opt_lenb && buf != (char*)0) { |
|
983 /* 4: two words for the lengths */ |
|
984 #endif |
|
985 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. |
|
986 * Otherwise we can't have processed more than WSIZE input bytes since |
|
987 * the last block flush, because compression would have been |
|
988 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to |
|
989 * transform a block into a stored block. |
|
990 */ |
|
991 _tr_stored_block(s, buf, stored_len, last); |
|
992 |
|
993 #ifdef FORCE_STATIC |
|
994 } else if (static_lenb >= 0) { /* force static trees */ |
|
995 #else |
|
996 } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) { |
|
997 #endif |
|
998 send_bits(s, (STATIC_TREES<<1)+last, 3); |
|
999 compress_block(s, (const ct_data *)static_ltree, |
|
1000 (const ct_data *)static_dtree); |
|
1001 #ifdef DEBUG |
|
1002 s->compressed_len += 3 + s->static_len; |
|
1003 #endif |
|
1004 } else { |
|
1005 send_bits(s, (DYN_TREES<<1)+last, 3); |
|
1006 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, |
|
1007 max_blindex+1); |
|
1008 compress_block(s, (const ct_data *)s->dyn_ltree, |
|
1009 (const ct_data *)s->dyn_dtree); |
|
1010 #ifdef DEBUG |
|
1011 s->compressed_len += 3 + s->opt_len; |
|
1012 #endif |
|
1013 } |
|
1014 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); |
|
1015 /* The above check is made mod 2^32, for files larger than 512 MB |
|
1016 * and uLong implemented on 32 bits. |
|
1017 */ |
|
1018 init_block(s); |
|
1019 |
|
1020 if (last) { |
|
1021 bi_windup(s); |
|
1022 #ifdef DEBUG |
|
1023 s->compressed_len += 7; /* align on byte boundary */ |
|
1024 #endif |
|
1025 } |
|
1026 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, |
|
1027 s->compressed_len-7*last)); |
|
1028 } |
|
1029 |
|
1030 /* =========================================================================== |
|
1031 * Save the match info and tally the frequency counts. Return true if |
|
1032 * the current block must be flushed. |
|
1033 */ |
|
1034 int ZLIB_INTERNAL _tr_tally (s, dist, lc) |
|
1035 deflate_state *s; |
|
1036 unsigned dist; /* distance of matched string */ |
|
1037 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ |
|
1038 { |
|
1039 s->d_buf[s->last_lit] = (ush)dist; |
|
1040 s->l_buf[s->last_lit++] = (uch)lc; |
|
1041 if (dist == 0) { |
|
1042 /* lc is the unmatched char */ |
|
1043 s->dyn_ltree[lc].Freq++; |
|
1044 } else { |
|
1045 s->matches++; |
|
1046 /* Here, lc is the match length - MIN_MATCH */ |
|
1047 dist--; /* dist = match distance - 1 */ |
|
1048 Assert((ush)dist < (ush)MAX_DIST(s) && |
|
1049 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && |
|
1050 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); |
|
1051 |
|
1052 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++; |
|
1053 s->dyn_dtree[d_code(dist)].Freq++; |
|
1054 } |
|
1055 |
|
1056 #ifdef TRUNCATE_BLOCK |
|
1057 /* Try to guess if it is profitable to stop the current block here */ |
|
1058 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) { |
|
1059 /* Compute an upper bound for the compressed length */ |
|
1060 ulg out_length = (ulg)s->last_lit*8L; |
|
1061 ulg in_length = (ulg)((long)s->strstart - s->block_start); |
|
1062 int dcode; |
|
1063 for (dcode = 0; dcode < D_CODES; dcode++) { |
|
1064 out_length += (ulg)s->dyn_dtree[dcode].Freq * |
|
1065 (5L+extra_dbits[dcode]); |
|
1066 } |
|
1067 out_length >>= 3; |
|
1068 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", |
|
1069 s->last_lit, in_length, out_length, |
|
1070 100L - out_length*100L/in_length)); |
|
1071 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; |
|
1072 } |
|
1073 #endif |
|
1074 return (s->last_lit == s->lit_bufsize-1); |
|
1075 /* We avoid equality with lit_bufsize because of wraparound at 64K |
|
1076 * on 16 bit machines and because stored blocks are restricted to |
|
1077 * 64K-1 bytes. |
|
1078 */ |
|
1079 } |
|
1080 |
|
1081 /* =========================================================================== |
|
1082 * Send the block data compressed using the given Huffman trees |
|
1083 */ |
|
1084 local void compress_block(s, ltree, dtree) |
|
1085 deflate_state *s; |
|
1086 const ct_data *ltree; /* literal tree */ |
|
1087 const ct_data *dtree; /* distance tree */ |
|
1088 { |
|
1089 unsigned dist; /* distance of matched string */ |
|
1090 int lc; /* match length or unmatched char (if dist == 0) */ |
|
1091 unsigned lx = 0; /* running index in l_buf */ |
|
1092 unsigned code; /* the code to send */ |
|
1093 int extra; /* number of extra bits to send */ |
|
1094 |
|
1095 if (s->last_lit != 0) do { |
|
1096 dist = s->d_buf[lx]; |
|
1097 lc = s->l_buf[lx++]; |
|
1098 if (dist == 0) { |
|
1099 send_code(s, lc, ltree); /* send a literal byte */ |
|
1100 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); |
|
1101 } else { |
|
1102 /* Here, lc is the match length - MIN_MATCH */ |
|
1103 code = _length_code[lc]; |
|
1104 send_code(s, code+LITERALS+1, ltree); /* send the length code */ |
|
1105 extra = extra_lbits[code]; |
|
1106 if (extra != 0) { |
|
1107 lc -= base_length[code]; |
|
1108 send_bits(s, lc, extra); /* send the extra length bits */ |
|
1109 } |
|
1110 dist--; /* dist is now the match distance - 1 */ |
|
1111 code = d_code(dist); |
|
1112 Assert (code < D_CODES, "bad d_code"); |
|
1113 |
|
1114 send_code(s, code, dtree); /* send the distance code */ |
|
1115 extra = extra_dbits[code]; |
|
1116 if (extra != 0) { |
|
1117 dist -= base_dist[code]; |
|
1118 send_bits(s, dist, extra); /* send the extra distance bits */ |
|
1119 } |
|
1120 } /* literal or match pair ? */ |
|
1121 |
|
1122 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ |
|
1123 Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx, |
|
1124 "pendingBuf overflow"); |
|
1125 |
|
1126 } while (lx < s->last_lit); |
|
1127 |
|
1128 send_code(s, END_BLOCK, ltree); |
|
1129 } |
|
1130 |
|
1131 /* =========================================================================== |
|
1132 * Check if the data type is TEXT or BINARY, using the following algorithm: |
|
1133 * - TEXT if the two conditions below are satisfied: |
|
1134 * a) There are no non-portable control characters belonging to the |
|
1135 * "black list" (0..6, 14..25, 28..31). |
|
1136 * b) There is at least one printable character belonging to the |
|
1137 * "white list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). |
|
1138 * - BINARY otherwise. |
|
1139 * - The following partially-portable control characters form a |
|
1140 * "gray list" that is ignored in this detection algorithm: |
|
1141 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). |
|
1142 * IN assertion: the fields Freq of dyn_ltree are set. |
|
1143 */ |
|
1144 local int detect_data_type(s) |
|
1145 deflate_state *s; |
|
1146 { |
|
1147 /* black_mask is the bit mask of black-listed bytes |
|
1148 * set bits 0..6, 14..25, and 28..31 |
|
1149 * 0xf3ffc07f = binary 11110011111111111100000001111111 |
|
1150 */ |
|
1151 unsigned long black_mask = 0xf3ffc07fUL; |
|
1152 int n; |
|
1153 |
|
1154 /* Check for non-textual ("black-listed") bytes. */ |
|
1155 for (n = 0; n <= 31; n++, black_mask >>= 1) |
|
1156 if ((black_mask & 1) && (s->dyn_ltree[n].Freq != 0)) |
|
1157 return Z_BINARY; |
|
1158 |
|
1159 /* Check for textual ("white-listed") bytes. */ |
|
1160 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 |
|
1161 || s->dyn_ltree[13].Freq != 0) |
|
1162 return Z_TEXT; |
|
1163 for (n = 32; n < LITERALS; n++) |
|
1164 if (s->dyn_ltree[n].Freq != 0) |
|
1165 return Z_TEXT; |
|
1166 |
|
1167 /* There are no "black-listed" or "white-listed" bytes: |
|
1168 * this stream either is empty or has tolerated ("gray-listed") bytes only. |
|
1169 */ |
|
1170 return Z_BINARY; |
|
1171 } |
|
1172 |
|
1173 /* =========================================================================== |
|
1174 * Reverse the first len bits of a code, using straightforward code (a faster |
|
1175 * method would use a table) |
|
1176 * IN assertion: 1 <= len <= 15 |
|
1177 */ |
|
1178 local unsigned bi_reverse(code, len) |
|
1179 unsigned code; /* the value to invert */ |
|
1180 int len; /* its bit length */ |
|
1181 { |
|
1182 register unsigned res = 0; |
|
1183 do { |
|
1184 res |= code & 1; |
|
1185 code >>= 1, res <<= 1; |
|
1186 } while (--len > 0); |
|
1187 return res >> 1; |
|
1188 } |
|
1189 |
|
1190 /* =========================================================================== |
|
1191 * Flush the bit buffer, keeping at most 7 bits in it. |
|
1192 */ |
|
1193 local void bi_flush(s) |
|
1194 deflate_state *s; |
|
1195 { |
|
1196 if (s->bi_valid == 16) { |
|
1197 put_short(s, s->bi_buf); |
|
1198 s->bi_buf = 0; |
|
1199 s->bi_valid = 0; |
|
1200 } else if (s->bi_valid >= 8) { |
|
1201 put_byte(s, (Byte)s->bi_buf); |
|
1202 s->bi_buf >>= 8; |
|
1203 s->bi_valid -= 8; |
|
1204 } |
|
1205 } |
|
1206 |
|
1207 /* =========================================================================== |
|
1208 * Flush the bit buffer and align the output on a byte boundary |
|
1209 */ |
|
1210 local void bi_windup(s) |
|
1211 deflate_state *s; |
|
1212 { |
|
1213 if (s->bi_valid > 8) { |
|
1214 put_short(s, s->bi_buf); |
|
1215 } else if (s->bi_valid > 0) { |
|
1216 put_byte(s, (Byte)s->bi_buf); |
|
1217 } |
|
1218 s->bi_buf = 0; |
|
1219 s->bi_valid = 0; |
|
1220 #ifdef DEBUG |
|
1221 s->bits_sent = (s->bits_sent+7) & ~7; |
|
1222 #endif |
|
1223 } |
|
1224 |
|
1225 /* =========================================================================== |
|
1226 * Copy a stored block, storing first the length and its |
|
1227 * one's complement if requested. |
|
1228 */ |
|
1229 local void copy_block(s, buf, len, header) |
|
1230 deflate_state *s; |
|
1231 charf *buf; /* the input data */ |
|
1232 unsigned len; /* its length */ |
|
1233 int header; /* true if block header must be written */ |
|
1234 { |
|
1235 bi_windup(s); /* align on byte boundary */ |
|
1236 |
|
1237 if (header) { |
|
1238 put_short(s, (ush)len); |
|
1239 put_short(s, (ush)~len); |
|
1240 #ifdef DEBUG |
|
1241 s->bits_sent += 2*16; |
|
1242 #endif |
|
1243 } |
|
1244 #ifdef DEBUG |
|
1245 s->bits_sent += (ulg)len<<3; |
|
1246 #endif |
|
1247 while (len--) { |
|
1248 put_byte(s, *buf++); |
|
1249 } |
|
1250 } |
|