1 /* |
|
2 * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 * or visit www.oracle.com if you need additional information or have any |
|
21 * questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP |
|
26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP |
|
27 |
|
28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp" |
|
29 #include "runtime/timer.hpp" |
|
30 |
|
31 // This class keeps statistical information and computes the |
|
32 // size of the heap for the concurrent mark sweep collector. |
|
33 // |
|
34 // Cost for garbage collector include cost for |
|
35 // minor collection |
|
36 // concurrent collection |
|
37 // stop-the-world component |
|
38 // concurrent component |
|
39 // major compacting collection |
|
40 // uses decaying cost |
|
41 |
|
42 // Forward decls |
|
43 class elapsedTimer; |
|
44 |
|
45 class CMSAdaptiveSizePolicy : public AdaptiveSizePolicy { |
|
46 friend class CMSGCAdaptivePolicyCounters; |
|
47 friend class CMSCollector; |
|
48 private: |
|
49 |
|
50 // Total number of processors available |
|
51 int _processor_count; |
|
52 // Number of processors used by the concurrent phases of GC |
|
53 // This number is assumed to be the same for all concurrent |
|
54 // phases. |
|
55 int _concurrent_processor_count; |
|
56 |
|
57 // Time that the mutators run exclusive of a particular |
|
58 // phase. For example, the time the mutators run excluding |
|
59 // the time during which the cms collector runs concurrently |
|
60 // with the mutators. |
|
61 // Between end of most recent cms reset and start of initial mark |
|
62 // This may be redundant |
|
63 double _latest_cms_reset_end_to_initial_mark_start_secs; |
|
64 // Between end of the most recent initial mark and start of remark |
|
65 double _latest_cms_initial_mark_end_to_remark_start_secs; |
|
66 // Between end of most recent collection and start of |
|
67 // a concurrent collection |
|
68 double _latest_cms_collection_end_to_collection_start_secs; |
|
69 // Times of the concurrent phases of the most recent |
|
70 // concurrent collection |
|
71 double _latest_cms_concurrent_marking_time_secs; |
|
72 double _latest_cms_concurrent_precleaning_time_secs; |
|
73 double _latest_cms_concurrent_sweeping_time_secs; |
|
74 // Between end of most recent STW MSC and start of next STW MSC |
|
75 double _latest_cms_msc_end_to_msc_start_time_secs; |
|
76 // Between end of most recent MS and start of next MS |
|
77 // This does not include any time spent during a concurrent |
|
78 // collection. |
|
79 double _latest_cms_ms_end_to_ms_start; |
|
80 // Between start and end of the initial mark of the most recent |
|
81 // concurrent collection. |
|
82 double _latest_cms_initial_mark_start_to_end_time_secs; |
|
83 // Between start and end of the remark phase of the most recent |
|
84 // concurrent collection |
|
85 double _latest_cms_remark_start_to_end_time_secs; |
|
86 // Between start and end of the most recent MS STW marking phase |
|
87 double _latest_cms_ms_marking_start_to_end_time_secs; |
|
88 |
|
89 // Pause time timers |
|
90 static elapsedTimer _STW_timer; |
|
91 // Concurrent collection timer. Used for total of all concurrent phases |
|
92 // during 1 collection cycle. |
|
93 static elapsedTimer _concurrent_timer; |
|
94 |
|
95 // When the size of the generation is changed, the size |
|
96 // of the change will rounded up or down (depending on the |
|
97 // type of change) by this value. |
|
98 size_t _generation_alignment; |
|
99 |
|
100 // If this variable is true, the size of the young generation |
|
101 // may be changed in order to reduce the pause(s) of the |
|
102 // collection of the tenured generation in order to meet the |
|
103 // pause time goal. It is common to change the size of the |
|
104 // tenured generation in order to meet the pause time goal |
|
105 // for the tenured generation. With the CMS collector for |
|
106 // the tenured generation, the size of the young generation |
|
107 // can have an significant affect on the pause times for collecting the |
|
108 // tenured generation. |
|
109 // This is a duplicate of a variable in PSAdaptiveSizePolicy. It |
|
110 // is duplicated because it is not clear that it is general enough |
|
111 // to go into AdaptiveSizePolicy. |
|
112 int _change_young_gen_for_maj_pauses; |
|
113 |
|
114 // Variable that is set to true after a collection. |
|
115 bool _first_after_collection; |
|
116 |
|
117 // Fraction of collections that are of each type |
|
118 double concurrent_fraction() const; |
|
119 double STW_msc_fraction() const; |
|
120 double STW_ms_fraction() const; |
|
121 |
|
122 // This call cannot be put into the epilogue as long as some |
|
123 // of the counters can be set during concurrent phases. |
|
124 virtual void clear_generation_free_space_flags(); |
|
125 |
|
126 void set_first_after_collection() { _first_after_collection = true; } |
|
127 |
|
128 protected: |
|
129 // Average of the sum of the concurrent times for |
|
130 // one collection in seconds. |
|
131 AdaptiveWeightedAverage* _avg_concurrent_time; |
|
132 // Average time between concurrent collections in seconds. |
|
133 AdaptiveWeightedAverage* _avg_concurrent_interval; |
|
134 // Average cost of the concurrent part of a collection |
|
135 // in seconds. |
|
136 AdaptiveWeightedAverage* _avg_concurrent_gc_cost; |
|
137 |
|
138 // Average of the initial pause of a concurrent collection in seconds. |
|
139 AdaptivePaddedAverage* _avg_initial_pause; |
|
140 // Average of the remark pause of a concurrent collection in seconds. |
|
141 AdaptivePaddedAverage* _avg_remark_pause; |
|
142 |
|
143 // Average of the stop-the-world (STW) (initial mark + remark) |
|
144 // times in seconds for concurrent collections. |
|
145 AdaptiveWeightedAverage* _avg_cms_STW_time; |
|
146 // Average of the STW collection cost for concurrent collections. |
|
147 AdaptiveWeightedAverage* _avg_cms_STW_gc_cost; |
|
148 |
|
149 // Average of the bytes free at the start of the sweep. |
|
150 AdaptiveWeightedAverage* _avg_cms_free_at_sweep; |
|
151 // Average of the bytes free at the end of the collection. |
|
152 AdaptiveWeightedAverage* _avg_cms_free; |
|
153 // Average of the bytes promoted between cms collections. |
|
154 AdaptiveWeightedAverage* _avg_cms_promo; |
|
155 |
|
156 // stop-the-world (STW) mark-sweep-compact |
|
157 // Average of the pause time in seconds for STW mark-sweep-compact |
|
158 // collections. |
|
159 AdaptiveWeightedAverage* _avg_msc_pause; |
|
160 // Average of the interval in seconds between STW mark-sweep-compact |
|
161 // collections. |
|
162 AdaptiveWeightedAverage* _avg_msc_interval; |
|
163 // Average of the collection costs for STW mark-sweep-compact |
|
164 // collections. |
|
165 AdaptiveWeightedAverage* _avg_msc_gc_cost; |
|
166 |
|
167 // Averages for mark-sweep collections. |
|
168 // The collection may have started as a background collection |
|
169 // that completes in a stop-the-world (STW) collection. |
|
170 // Average of the pause time in seconds for mark-sweep |
|
171 // collections. |
|
172 AdaptiveWeightedAverage* _avg_ms_pause; |
|
173 // Average of the interval in seconds between mark-sweep |
|
174 // collections. |
|
175 AdaptiveWeightedAverage* _avg_ms_interval; |
|
176 // Average of the collection costs for mark-sweep |
|
177 // collections. |
|
178 AdaptiveWeightedAverage* _avg_ms_gc_cost; |
|
179 |
|
180 // These variables contain a linear fit of |
|
181 // a generation size as the independent variable |
|
182 // and a pause time as the dependent variable. |
|
183 // For example _remark_pause_old_estimator |
|
184 // is a fit of the old generation size as the |
|
185 // independent variable and the remark pause |
|
186 // as the dependent variable. |
|
187 // remark pause time vs. cms gen size |
|
188 LinearLeastSquareFit* _remark_pause_old_estimator; |
|
189 // initial pause time vs. cms gen size |
|
190 LinearLeastSquareFit* _initial_pause_old_estimator; |
|
191 // remark pause time vs. young gen size |
|
192 LinearLeastSquareFit* _remark_pause_young_estimator; |
|
193 // initial pause time vs. young gen size |
|
194 LinearLeastSquareFit* _initial_pause_young_estimator; |
|
195 |
|
196 // Accessors |
|
197 int processor_count() const { return _processor_count; } |
|
198 int concurrent_processor_count() const { return _concurrent_processor_count; } |
|
199 |
|
200 AdaptiveWeightedAverage* avg_concurrent_time() const { |
|
201 return _avg_concurrent_time; |
|
202 } |
|
203 |
|
204 AdaptiveWeightedAverage* avg_concurrent_interval() const { |
|
205 return _avg_concurrent_interval; |
|
206 } |
|
207 |
|
208 AdaptiveWeightedAverage* avg_concurrent_gc_cost() const { |
|
209 return _avg_concurrent_gc_cost; |
|
210 } |
|
211 |
|
212 AdaptiveWeightedAverage* avg_cms_STW_time() const { |
|
213 return _avg_cms_STW_time; |
|
214 } |
|
215 |
|
216 AdaptiveWeightedAverage* avg_cms_STW_gc_cost() const { |
|
217 return _avg_cms_STW_gc_cost; |
|
218 } |
|
219 |
|
220 AdaptivePaddedAverage* avg_initial_pause() const { |
|
221 return _avg_initial_pause; |
|
222 } |
|
223 |
|
224 AdaptivePaddedAverage* avg_remark_pause() const { |
|
225 return _avg_remark_pause; |
|
226 } |
|
227 |
|
228 AdaptiveWeightedAverage* avg_cms_free() const { |
|
229 return _avg_cms_free; |
|
230 } |
|
231 |
|
232 AdaptiveWeightedAverage* avg_cms_free_at_sweep() const { |
|
233 return _avg_cms_free_at_sweep; |
|
234 } |
|
235 |
|
236 AdaptiveWeightedAverage* avg_msc_pause() const { |
|
237 return _avg_msc_pause; |
|
238 } |
|
239 |
|
240 AdaptiveWeightedAverage* avg_msc_interval() const { |
|
241 return _avg_msc_interval; |
|
242 } |
|
243 |
|
244 AdaptiveWeightedAverage* avg_msc_gc_cost() const { |
|
245 return _avg_msc_gc_cost; |
|
246 } |
|
247 |
|
248 AdaptiveWeightedAverage* avg_ms_pause() const { |
|
249 return _avg_ms_pause; |
|
250 } |
|
251 |
|
252 AdaptiveWeightedAverage* avg_ms_interval() const { |
|
253 return _avg_ms_interval; |
|
254 } |
|
255 |
|
256 AdaptiveWeightedAverage* avg_ms_gc_cost() const { |
|
257 return _avg_ms_gc_cost; |
|
258 } |
|
259 |
|
260 LinearLeastSquareFit* remark_pause_old_estimator() { |
|
261 return _remark_pause_old_estimator; |
|
262 } |
|
263 LinearLeastSquareFit* initial_pause_old_estimator() { |
|
264 return _initial_pause_old_estimator; |
|
265 } |
|
266 LinearLeastSquareFit* remark_pause_young_estimator() { |
|
267 return _remark_pause_young_estimator; |
|
268 } |
|
269 LinearLeastSquareFit* initial_pause_young_estimator() { |
|
270 return _initial_pause_young_estimator; |
|
271 } |
|
272 |
|
273 // These *slope() methods return the slope |
|
274 // m for the linear fit of an independent |
|
275 // variable vs. a dependent variable. For |
|
276 // example |
|
277 // remark_pause = m * old_generation_size + c |
|
278 // These may be used to determine if an |
|
279 // adjustment should be made to achieve a goal. |
|
280 // For example, if remark_pause_old_slope() is |
|
281 // positive, a reduction of the old generation |
|
282 // size has on average resulted in the reduction |
|
283 // of the remark pause. |
|
284 float remark_pause_old_slope() { |
|
285 return _remark_pause_old_estimator->slope(); |
|
286 } |
|
287 |
|
288 float initial_pause_old_slope() { |
|
289 return _initial_pause_old_estimator->slope(); |
|
290 } |
|
291 |
|
292 float remark_pause_young_slope() { |
|
293 return _remark_pause_young_estimator->slope(); |
|
294 } |
|
295 |
|
296 float initial_pause_young_slope() { |
|
297 return _initial_pause_young_estimator->slope(); |
|
298 } |
|
299 |
|
300 // Update estimators |
|
301 void update_minor_pause_old_estimator(double minor_pause_in_ms); |
|
302 |
|
303 // Fraction of processors used by the concurrent phases. |
|
304 double concurrent_processor_fraction(); |
|
305 |
|
306 // Returns the total times for the concurrent part of the |
|
307 // latest collection in seconds. |
|
308 double concurrent_collection_time(); |
|
309 |
|
310 // Return the total times for the concurrent part of the |
|
311 // latest collection in seconds where the times of the various |
|
312 // concurrent phases are scaled by the processor fraction used |
|
313 // during the phase. |
|
314 double scaled_concurrent_collection_time(); |
|
315 |
|
316 // Dimensionless concurrent GC cost for all the concurrent phases. |
|
317 double concurrent_collection_cost(double interval_in_seconds); |
|
318 |
|
319 // Dimensionless GC cost |
|
320 double collection_cost(double pause_in_seconds, double interval_in_seconds); |
|
321 |
|
322 virtual GCPolicyKind kind() const { return _gc_cms_adaptive_size_policy; } |
|
323 |
|
324 virtual double time_since_major_gc() const; |
|
325 |
|
326 // This returns the maximum average for the concurrent, ms, and |
|
327 // msc collections. This is meant to be used for the calculation |
|
328 // of the decayed major gc cost and is not in general the |
|
329 // average of all the different types of major collections. |
|
330 virtual double major_gc_interval_average_for_decay() const; |
|
331 |
|
332 public: |
|
333 CMSAdaptiveSizePolicy(size_t init_eden_size, |
|
334 size_t init_promo_size, |
|
335 size_t init_survivor_size, |
|
336 double max_gc_minor_pause_sec, |
|
337 double max_gc_pause_sec, |
|
338 uint gc_cost_ratio); |
|
339 |
|
340 // The timers for the stop-the-world phases measure a total |
|
341 // stop-the-world time. The timer is started and stopped |
|
342 // for each phase but is only reset after the final checkpoint. |
|
343 void checkpoint_roots_initial_begin(); |
|
344 void checkpoint_roots_initial_end(GCCause::Cause gc_cause); |
|
345 void checkpoint_roots_final_begin(); |
|
346 void checkpoint_roots_final_end(GCCause::Cause gc_cause); |
|
347 |
|
348 // Methods for gathering information about the |
|
349 // concurrent marking phase of the collection. |
|
350 // Records the mutator times and |
|
351 // resets the concurrent timer. |
|
352 void concurrent_marking_begin(); |
|
353 // Resets concurrent phase timer in the begin methods and |
|
354 // saves the time for a phase in the end methods. |
|
355 void concurrent_marking_end(); |
|
356 void concurrent_sweeping_begin(); |
|
357 void concurrent_sweeping_end(); |
|
358 // Similar to the above (e.g., concurrent_marking_end()) and |
|
359 // is used for both the precleaning an abortable precleaning |
|
360 // phases. |
|
361 void concurrent_precleaning_begin(); |
|
362 void concurrent_precleaning_end(); |
|
363 // Stops the concurrent phases time. Gathers |
|
364 // information and resets the timer. |
|
365 void concurrent_phases_end(GCCause::Cause gc_cause, |
|
366 size_t cur_eden, |
|
367 size_t cur_promo); |
|
368 |
|
369 // Methods for gather information about STW Mark-Sweep-Compact |
|
370 void msc_collection_begin(); |
|
371 void msc_collection_end(GCCause::Cause gc_cause); |
|
372 |
|
373 // Methods for gather information about Mark-Sweep done |
|
374 // in the foreground. |
|
375 void ms_collection_begin(); |
|
376 void ms_collection_end(GCCause::Cause gc_cause); |
|
377 |
|
378 // Cost for a mark-sweep tenured gen collection done in the foreground |
|
379 double ms_gc_cost() const { |
|
380 return MAX2(0.0F, _avg_ms_gc_cost->average()); |
|
381 } |
|
382 |
|
383 // Cost of collecting the tenured generation. Includes |
|
384 // concurrent collection and STW collection costs |
|
385 double cms_gc_cost() const; |
|
386 |
|
387 // Cost of STW mark-sweep-compact tenured gen collection. |
|
388 double msc_gc_cost() const { |
|
389 return MAX2(0.0F, _avg_msc_gc_cost->average()); |
|
390 } |
|
391 |
|
392 // |
|
393 double compacting_gc_cost() const { |
|
394 double result = MIN2(1.0, minor_gc_cost() + msc_gc_cost()); |
|
395 assert(result >= 0.0, "Both minor and major costs are non-negative"); |
|
396 return result; |
|
397 } |
|
398 |
|
399 // Restarts the concurrent phases timer. |
|
400 void concurrent_phases_resume(); |
|
401 |
|
402 // Time beginning and end of the marking phase for |
|
403 // a synchronous MS collection. A MS collection |
|
404 // that finishes in the foreground can have started |
|
405 // in the background. These methods capture the |
|
406 // completion of the marking (after the initial |
|
407 // marking) that is done in the foreground. |
|
408 void ms_collection_marking_begin(); |
|
409 void ms_collection_marking_end(GCCause::Cause gc_cause); |
|
410 |
|
411 static elapsedTimer* concurrent_timer_ptr() { |
|
412 return &_concurrent_timer; |
|
413 } |
|
414 |
|
415 AdaptiveWeightedAverage* avg_cms_promo() const { |
|
416 return _avg_cms_promo; |
|
417 } |
|
418 |
|
419 int change_young_gen_for_maj_pauses() { |
|
420 return _change_young_gen_for_maj_pauses; |
|
421 } |
|
422 void set_change_young_gen_for_maj_pauses(int v) { |
|
423 _change_young_gen_for_maj_pauses = v; |
|
424 } |
|
425 |
|
426 void clear_internal_time_intervals(); |
|
427 |
|
428 |
|
429 // Either calculated_promo_size_in_bytes() or promo_size() |
|
430 // should be deleted. |
|
431 size_t promo_size() { return _promo_size; } |
|
432 void set_promo_size(size_t v) { _promo_size = v; } |
|
433 |
|
434 // Cost of GC for all types of collections. |
|
435 virtual double gc_cost() const; |
|
436 |
|
437 size_t generation_alignment() { return _generation_alignment; } |
|
438 |
|
439 virtual void compute_eden_space_size(size_t cur_eden, |
|
440 size_t max_eden_size); |
|
441 // Calculates new survivor space size; returns a new tenuring threshold |
|
442 // value. Stores new survivor size in _survivor_size. |
|
443 virtual uint compute_survivor_space_size_and_threshold( |
|
444 bool is_survivor_overflow, |
|
445 uint tenuring_threshold, |
|
446 size_t survivor_limit); |
|
447 |
|
448 virtual void compute_tenured_generation_free_space(size_t cur_tenured_free, |
|
449 size_t max_tenured_available, |
|
450 size_t cur_eden); |
|
451 |
|
452 size_t eden_decrement_aligned_down(size_t cur_eden); |
|
453 size_t eden_increment_aligned_up(size_t cur_eden); |
|
454 |
|
455 size_t adjust_eden_for_pause_time(size_t cur_eden); |
|
456 size_t adjust_eden_for_throughput(size_t cur_eden); |
|
457 size_t adjust_eden_for_footprint(size_t cur_eden); |
|
458 |
|
459 size_t promo_decrement_aligned_down(size_t cur_promo); |
|
460 size_t promo_increment_aligned_up(size_t cur_promo); |
|
461 |
|
462 size_t adjust_promo_for_pause_time(size_t cur_promo); |
|
463 size_t adjust_promo_for_throughput(size_t cur_promo); |
|
464 size_t adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden); |
|
465 |
|
466 // Scale down the input size by the ratio of the cost to collect the |
|
467 // generation to the total GC cost. |
|
468 size_t scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost); |
|
469 |
|
470 // Return the value and clear it. |
|
471 bool get_and_clear_first_after_collection(); |
|
472 |
|
473 // Printing support |
|
474 virtual bool print_adaptive_size_policy_on(outputStream* st) const; |
|
475 }; |
|
476 |
|
477 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP |
|