hotspot/src/share/vm/gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp
changeset 25581 9867e1efa2f0
parent 25580 83960d9537f6
parent 25511 99f847be8aee
child 25583 b45c49ed39cc
equal deleted inserted replaced
25580:83960d9537f6 25581:9867e1efa2f0
     1 /*
       
     2  * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #ifndef SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
       
    26 #define SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP
       
    27 
       
    28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
       
    29 #include "runtime/timer.hpp"
       
    30 
       
    31 // This class keeps statistical information and computes the
       
    32 // size of the heap for the concurrent mark sweep collector.
       
    33 //
       
    34 // Cost for garbage collector include cost for
       
    35 //   minor collection
       
    36 //   concurrent collection
       
    37 //      stop-the-world component
       
    38 //      concurrent component
       
    39 //   major compacting collection
       
    40 //      uses decaying cost
       
    41 
       
    42 // Forward decls
       
    43 class elapsedTimer;
       
    44 
       
    45 class CMSAdaptiveSizePolicy : public AdaptiveSizePolicy {
       
    46  friend class CMSGCAdaptivePolicyCounters;
       
    47  friend class CMSCollector;
       
    48  private:
       
    49 
       
    50   // Total number of processors available
       
    51   int _processor_count;
       
    52   // Number of processors used by the concurrent phases of GC
       
    53   // This number is assumed to be the same for all concurrent
       
    54   // phases.
       
    55   int _concurrent_processor_count;
       
    56 
       
    57   // Time that the mutators run exclusive of a particular
       
    58   // phase.  For example, the time the mutators run excluding
       
    59   // the time during which the cms collector runs concurrently
       
    60   // with the mutators.
       
    61   //   Between end of most recent cms reset and start of initial mark
       
    62                 // This may be redundant
       
    63   double _latest_cms_reset_end_to_initial_mark_start_secs;
       
    64   //   Between end of the most recent initial mark and start of remark
       
    65   double _latest_cms_initial_mark_end_to_remark_start_secs;
       
    66   //   Between end of most recent collection and start of
       
    67   //   a concurrent collection
       
    68   double _latest_cms_collection_end_to_collection_start_secs;
       
    69   //   Times of the concurrent phases of the most recent
       
    70   //   concurrent collection
       
    71   double _latest_cms_concurrent_marking_time_secs;
       
    72   double _latest_cms_concurrent_precleaning_time_secs;
       
    73   double _latest_cms_concurrent_sweeping_time_secs;
       
    74   //   Between end of most recent STW MSC and start of next STW MSC
       
    75   double _latest_cms_msc_end_to_msc_start_time_secs;
       
    76   //   Between end of most recent MS and start of next MS
       
    77   //   This does not include any time spent during a concurrent
       
    78   // collection.
       
    79   double _latest_cms_ms_end_to_ms_start;
       
    80   //   Between start and end of the initial mark of the most recent
       
    81   // concurrent collection.
       
    82   double _latest_cms_initial_mark_start_to_end_time_secs;
       
    83   //   Between start and end of the remark phase of the most recent
       
    84   // concurrent collection
       
    85   double _latest_cms_remark_start_to_end_time_secs;
       
    86   //   Between start and end of the most recent MS STW marking phase
       
    87   double _latest_cms_ms_marking_start_to_end_time_secs;
       
    88 
       
    89   // Pause time timers
       
    90   static elapsedTimer _STW_timer;
       
    91   // Concurrent collection timer.  Used for total of all concurrent phases
       
    92   // during 1 collection cycle.
       
    93   static elapsedTimer _concurrent_timer;
       
    94 
       
    95   // When the size of the generation is changed, the size
       
    96   // of the change will rounded up or down (depending on the
       
    97   // type of change) by this value.
       
    98   size_t _generation_alignment;
       
    99 
       
   100   // If this variable is true, the size of the young generation
       
   101   // may be changed in order to reduce the pause(s) of the
       
   102   // collection of the tenured generation in order to meet the
       
   103   // pause time goal.  It is common to change the size of the
       
   104   // tenured generation in order to meet the pause time goal
       
   105   // for the tenured generation.  With the CMS collector for
       
   106   // the tenured generation, the size of the young generation
       
   107   // can have an significant affect on the pause times for collecting the
       
   108   // tenured generation.
       
   109   // This is a duplicate of a variable in PSAdaptiveSizePolicy.  It
       
   110   // is duplicated because it is not clear that it is general enough
       
   111   // to go into AdaptiveSizePolicy.
       
   112   int _change_young_gen_for_maj_pauses;
       
   113 
       
   114   // Variable that is set to true after a collection.
       
   115   bool _first_after_collection;
       
   116 
       
   117   // Fraction of collections that are of each type
       
   118   double concurrent_fraction() const;
       
   119   double STW_msc_fraction() const;
       
   120   double STW_ms_fraction() const;
       
   121 
       
   122   // This call cannot be put into the epilogue as long as some
       
   123   // of the counters can be set during concurrent phases.
       
   124   virtual void clear_generation_free_space_flags();
       
   125 
       
   126   void set_first_after_collection() { _first_after_collection = true; }
       
   127 
       
   128  protected:
       
   129   // Average of the sum of the concurrent times for
       
   130   // one collection in seconds.
       
   131   AdaptiveWeightedAverage* _avg_concurrent_time;
       
   132   // Average time between concurrent collections in seconds.
       
   133   AdaptiveWeightedAverage* _avg_concurrent_interval;
       
   134   // Average cost of the concurrent part of a collection
       
   135   // in seconds.
       
   136   AdaptiveWeightedAverage* _avg_concurrent_gc_cost;
       
   137 
       
   138   // Average of the initial pause of a concurrent collection in seconds.
       
   139   AdaptivePaddedAverage* _avg_initial_pause;
       
   140   // Average of the remark pause of a concurrent collection in seconds.
       
   141   AdaptivePaddedAverage* _avg_remark_pause;
       
   142 
       
   143   // Average of the stop-the-world (STW) (initial mark + remark)
       
   144   // times in seconds for concurrent collections.
       
   145   AdaptiveWeightedAverage* _avg_cms_STW_time;
       
   146   // Average of the STW collection cost for concurrent collections.
       
   147   AdaptiveWeightedAverage* _avg_cms_STW_gc_cost;
       
   148 
       
   149   // Average of the bytes free at the start of the sweep.
       
   150   AdaptiveWeightedAverage* _avg_cms_free_at_sweep;
       
   151   // Average of the bytes free at the end of the collection.
       
   152   AdaptiveWeightedAverage* _avg_cms_free;
       
   153   // Average of the bytes promoted between cms collections.
       
   154   AdaptiveWeightedAverage* _avg_cms_promo;
       
   155 
       
   156   // stop-the-world (STW) mark-sweep-compact
       
   157   // Average of the pause time in seconds for STW mark-sweep-compact
       
   158   // collections.
       
   159   AdaptiveWeightedAverage* _avg_msc_pause;
       
   160   // Average of the interval in seconds between STW mark-sweep-compact
       
   161   // collections.
       
   162   AdaptiveWeightedAverage* _avg_msc_interval;
       
   163   // Average of the collection costs for STW mark-sweep-compact
       
   164   // collections.
       
   165   AdaptiveWeightedAverage* _avg_msc_gc_cost;
       
   166 
       
   167   // Averages for mark-sweep collections.
       
   168   // The collection may have started as a background collection
       
   169   // that completes in a stop-the-world (STW) collection.
       
   170   // Average of the pause time in seconds for mark-sweep
       
   171   // collections.
       
   172   AdaptiveWeightedAverage* _avg_ms_pause;
       
   173   // Average of the interval in seconds between mark-sweep
       
   174   // collections.
       
   175   AdaptiveWeightedAverage* _avg_ms_interval;
       
   176   // Average of the collection costs for mark-sweep
       
   177   // collections.
       
   178   AdaptiveWeightedAverage* _avg_ms_gc_cost;
       
   179 
       
   180   // These variables contain a linear fit of
       
   181   // a generation size as the independent variable
       
   182   // and a pause time as the dependent variable.
       
   183   // For example _remark_pause_old_estimator
       
   184   // is a fit of the old generation size as the
       
   185   // independent variable and the remark pause
       
   186   // as the dependent variable.
       
   187   //   remark pause time vs. cms gen size
       
   188   LinearLeastSquareFit* _remark_pause_old_estimator;
       
   189   //   initial pause time vs. cms gen size
       
   190   LinearLeastSquareFit* _initial_pause_old_estimator;
       
   191   //   remark pause time vs. young gen size
       
   192   LinearLeastSquareFit* _remark_pause_young_estimator;
       
   193   //   initial pause time vs. young gen size
       
   194   LinearLeastSquareFit* _initial_pause_young_estimator;
       
   195 
       
   196   // Accessors
       
   197   int processor_count() const { return _processor_count; }
       
   198   int concurrent_processor_count() const { return _concurrent_processor_count; }
       
   199 
       
   200   AdaptiveWeightedAverage* avg_concurrent_time() const {
       
   201     return _avg_concurrent_time;
       
   202   }
       
   203 
       
   204   AdaptiveWeightedAverage* avg_concurrent_interval() const {
       
   205     return _avg_concurrent_interval;
       
   206   }
       
   207 
       
   208   AdaptiveWeightedAverage* avg_concurrent_gc_cost() const {
       
   209     return _avg_concurrent_gc_cost;
       
   210   }
       
   211 
       
   212   AdaptiveWeightedAverage* avg_cms_STW_time() const {
       
   213     return _avg_cms_STW_time;
       
   214   }
       
   215 
       
   216   AdaptiveWeightedAverage* avg_cms_STW_gc_cost() const {
       
   217     return _avg_cms_STW_gc_cost;
       
   218   }
       
   219 
       
   220   AdaptivePaddedAverage* avg_initial_pause() const {
       
   221     return _avg_initial_pause;
       
   222   }
       
   223 
       
   224   AdaptivePaddedAverage* avg_remark_pause() const {
       
   225     return _avg_remark_pause;
       
   226   }
       
   227 
       
   228   AdaptiveWeightedAverage* avg_cms_free() const {
       
   229     return _avg_cms_free;
       
   230   }
       
   231 
       
   232   AdaptiveWeightedAverage* avg_cms_free_at_sweep() const {
       
   233     return _avg_cms_free_at_sweep;
       
   234   }
       
   235 
       
   236   AdaptiveWeightedAverage* avg_msc_pause() const {
       
   237     return _avg_msc_pause;
       
   238   }
       
   239 
       
   240   AdaptiveWeightedAverage* avg_msc_interval() const {
       
   241     return _avg_msc_interval;
       
   242   }
       
   243 
       
   244   AdaptiveWeightedAverage* avg_msc_gc_cost() const {
       
   245     return _avg_msc_gc_cost;
       
   246   }
       
   247 
       
   248   AdaptiveWeightedAverage* avg_ms_pause() const {
       
   249     return _avg_ms_pause;
       
   250   }
       
   251 
       
   252   AdaptiveWeightedAverage* avg_ms_interval() const {
       
   253     return _avg_ms_interval;
       
   254   }
       
   255 
       
   256   AdaptiveWeightedAverage* avg_ms_gc_cost() const {
       
   257     return _avg_ms_gc_cost;
       
   258   }
       
   259 
       
   260   LinearLeastSquareFit* remark_pause_old_estimator() {
       
   261     return _remark_pause_old_estimator;
       
   262   }
       
   263   LinearLeastSquareFit* initial_pause_old_estimator() {
       
   264     return _initial_pause_old_estimator;
       
   265   }
       
   266   LinearLeastSquareFit* remark_pause_young_estimator() {
       
   267     return _remark_pause_young_estimator;
       
   268   }
       
   269   LinearLeastSquareFit* initial_pause_young_estimator() {
       
   270     return _initial_pause_young_estimator;
       
   271   }
       
   272 
       
   273   // These *slope() methods return the slope
       
   274   // m for the linear fit of an independent
       
   275   // variable vs. a dependent variable.  For
       
   276   // example
       
   277   //  remark_pause = m * old_generation_size + c
       
   278   // These may be used to determine if an
       
   279   // adjustment should be made to achieve a goal.
       
   280   // For example, if remark_pause_old_slope() is
       
   281   // positive, a reduction of the old generation
       
   282   // size has on average resulted in the reduction
       
   283   // of the remark pause.
       
   284   float remark_pause_old_slope() {
       
   285     return _remark_pause_old_estimator->slope();
       
   286   }
       
   287 
       
   288   float initial_pause_old_slope() {
       
   289     return _initial_pause_old_estimator->slope();
       
   290   }
       
   291 
       
   292   float remark_pause_young_slope() {
       
   293     return _remark_pause_young_estimator->slope();
       
   294   }
       
   295 
       
   296   float initial_pause_young_slope() {
       
   297     return _initial_pause_young_estimator->slope();
       
   298   }
       
   299 
       
   300   // Update estimators
       
   301   void update_minor_pause_old_estimator(double minor_pause_in_ms);
       
   302 
       
   303   // Fraction of processors used by the concurrent phases.
       
   304   double concurrent_processor_fraction();
       
   305 
       
   306   // Returns the total times for the concurrent part of the
       
   307   // latest collection in seconds.
       
   308   double concurrent_collection_time();
       
   309 
       
   310   // Return the total times for the concurrent part of the
       
   311   // latest collection in seconds where the times of the various
       
   312   // concurrent phases are scaled by the processor fraction used
       
   313   // during the phase.
       
   314   double scaled_concurrent_collection_time();
       
   315 
       
   316   // Dimensionless concurrent GC cost for all the concurrent phases.
       
   317   double concurrent_collection_cost(double interval_in_seconds);
       
   318 
       
   319   // Dimensionless GC cost
       
   320   double collection_cost(double pause_in_seconds, double interval_in_seconds);
       
   321 
       
   322   virtual GCPolicyKind kind() const { return _gc_cms_adaptive_size_policy; }
       
   323 
       
   324   virtual double time_since_major_gc() const;
       
   325 
       
   326   // This returns the maximum average for the concurrent, ms, and
       
   327   // msc collections.  This is meant to be used for the calculation
       
   328   // of the decayed major gc cost and is not in general the
       
   329   // average of all the different types of major collections.
       
   330   virtual double major_gc_interval_average_for_decay() const;
       
   331 
       
   332  public:
       
   333   CMSAdaptiveSizePolicy(size_t init_eden_size,
       
   334                         size_t init_promo_size,
       
   335                         size_t init_survivor_size,
       
   336                         double max_gc_minor_pause_sec,
       
   337                         double max_gc_pause_sec,
       
   338                         uint gc_cost_ratio);
       
   339 
       
   340   // The timers for the stop-the-world phases measure a total
       
   341   // stop-the-world time.  The timer is started and stopped
       
   342   // for each phase but is only reset after the final checkpoint.
       
   343   void checkpoint_roots_initial_begin();
       
   344   void checkpoint_roots_initial_end(GCCause::Cause gc_cause);
       
   345   void checkpoint_roots_final_begin();
       
   346   void checkpoint_roots_final_end(GCCause::Cause gc_cause);
       
   347 
       
   348   // Methods for gathering information about the
       
   349   // concurrent marking phase of the collection.
       
   350   // Records the mutator times and
       
   351   // resets the concurrent timer.
       
   352   void concurrent_marking_begin();
       
   353   // Resets concurrent phase timer in the begin methods and
       
   354   // saves the time for a phase in the end methods.
       
   355   void concurrent_marking_end();
       
   356   void concurrent_sweeping_begin();
       
   357   void concurrent_sweeping_end();
       
   358   // Similar to the above (e.g., concurrent_marking_end()) and
       
   359   // is used for both the precleaning an abortable precleaning
       
   360   // phases.
       
   361   void concurrent_precleaning_begin();
       
   362   void concurrent_precleaning_end();
       
   363   // Stops the concurrent phases time.  Gathers
       
   364   // information and resets the timer.
       
   365   void concurrent_phases_end(GCCause::Cause gc_cause,
       
   366                               size_t cur_eden,
       
   367                               size_t cur_promo);
       
   368 
       
   369   // Methods for gather information about STW Mark-Sweep-Compact
       
   370   void msc_collection_begin();
       
   371   void msc_collection_end(GCCause::Cause gc_cause);
       
   372 
       
   373   // Methods for gather information about Mark-Sweep done
       
   374   // in the foreground.
       
   375   void ms_collection_begin();
       
   376   void ms_collection_end(GCCause::Cause gc_cause);
       
   377 
       
   378   // Cost for a mark-sweep tenured gen collection done in the foreground
       
   379   double ms_gc_cost() const {
       
   380     return MAX2(0.0F, _avg_ms_gc_cost->average());
       
   381   }
       
   382 
       
   383   // Cost of collecting the tenured generation.  Includes
       
   384   // concurrent collection and STW collection costs
       
   385   double cms_gc_cost() const;
       
   386 
       
   387   // Cost of STW mark-sweep-compact tenured gen collection.
       
   388   double msc_gc_cost() const {
       
   389     return MAX2(0.0F, _avg_msc_gc_cost->average());
       
   390   }
       
   391 
       
   392   //
       
   393   double compacting_gc_cost() const {
       
   394     double result = MIN2(1.0, minor_gc_cost() + msc_gc_cost());
       
   395     assert(result >= 0.0, "Both minor and major costs are non-negative");
       
   396     return result;
       
   397   }
       
   398 
       
   399    // Restarts the concurrent phases timer.
       
   400    void concurrent_phases_resume();
       
   401 
       
   402    // Time beginning and end of the marking phase for
       
   403    // a synchronous MS collection.  A MS collection
       
   404    // that finishes in the foreground can have started
       
   405    // in the background.  These methods capture the
       
   406    // completion of the marking (after the initial
       
   407    // marking) that is done in the foreground.
       
   408    void ms_collection_marking_begin();
       
   409    void ms_collection_marking_end(GCCause::Cause gc_cause);
       
   410 
       
   411    static elapsedTimer* concurrent_timer_ptr() {
       
   412      return &_concurrent_timer;
       
   413    }
       
   414 
       
   415   AdaptiveWeightedAverage* avg_cms_promo() const {
       
   416     return _avg_cms_promo;
       
   417   }
       
   418 
       
   419   int change_young_gen_for_maj_pauses() {
       
   420     return _change_young_gen_for_maj_pauses;
       
   421   }
       
   422   void set_change_young_gen_for_maj_pauses(int v) {
       
   423     _change_young_gen_for_maj_pauses = v;
       
   424   }
       
   425 
       
   426   void clear_internal_time_intervals();
       
   427 
       
   428 
       
   429   // Either calculated_promo_size_in_bytes() or promo_size()
       
   430   // should be deleted.
       
   431   size_t promo_size() { return _promo_size; }
       
   432   void set_promo_size(size_t v) { _promo_size = v; }
       
   433 
       
   434   // Cost of GC for all types of collections.
       
   435   virtual double gc_cost() const;
       
   436 
       
   437   size_t generation_alignment() { return _generation_alignment; }
       
   438 
       
   439   virtual void compute_eden_space_size(size_t cur_eden,
       
   440                                        size_t max_eden_size);
       
   441   // Calculates new survivor space size;  returns a new tenuring threshold
       
   442   // value. Stores new survivor size in _survivor_size.
       
   443   virtual uint compute_survivor_space_size_and_threshold(
       
   444                                                 bool   is_survivor_overflow,
       
   445                                                 uint   tenuring_threshold,
       
   446                                                 size_t survivor_limit);
       
   447 
       
   448   virtual void compute_tenured_generation_free_space(size_t cur_tenured_free,
       
   449                                            size_t max_tenured_available,
       
   450                                            size_t cur_eden);
       
   451 
       
   452   size_t eden_decrement_aligned_down(size_t cur_eden);
       
   453   size_t eden_increment_aligned_up(size_t cur_eden);
       
   454 
       
   455   size_t adjust_eden_for_pause_time(size_t cur_eden);
       
   456   size_t adjust_eden_for_throughput(size_t cur_eden);
       
   457   size_t adjust_eden_for_footprint(size_t cur_eden);
       
   458 
       
   459   size_t promo_decrement_aligned_down(size_t cur_promo);
       
   460   size_t promo_increment_aligned_up(size_t cur_promo);
       
   461 
       
   462   size_t adjust_promo_for_pause_time(size_t cur_promo);
       
   463   size_t adjust_promo_for_throughput(size_t cur_promo);
       
   464   size_t adjust_promo_for_footprint(size_t cur_promo, size_t cur_eden);
       
   465 
       
   466   // Scale down the input size by the ratio of the cost to collect the
       
   467   // generation to the total GC cost.
       
   468   size_t scale_by_gen_gc_cost(size_t base_change, double gen_gc_cost);
       
   469 
       
   470   // Return the value and clear it.
       
   471   bool get_and_clear_first_after_collection();
       
   472 
       
   473   // Printing support
       
   474   virtual bool print_adaptive_size_policy_on(outputStream* st) const;
       
   475 };
       
   476 
       
   477 #endif // SHARE_VM_GC_IMPLEMENTATION_CONCURRENTMARKSWEEP_CMSADAPTIVESIZEPOLICY_HPP