1 /* |
|
2 * Copyright (c) 2004, 2013, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 * or visit www.oracle.com if you need additional information or have any |
|
21 * questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 #include "precompiled.hpp" |
|
26 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp" |
|
27 #include "gc_implementation/shared/gcStats.hpp" |
|
28 #include "memory/defNewGeneration.hpp" |
|
29 #include "memory/genCollectedHeap.hpp" |
|
30 #include "runtime/thread.hpp" |
|
31 #ifdef TARGET_OS_FAMILY_linux |
|
32 # include "os_linux.inline.hpp" |
|
33 #endif |
|
34 #ifdef TARGET_OS_FAMILY_solaris |
|
35 # include "os_solaris.inline.hpp" |
|
36 #endif |
|
37 #ifdef TARGET_OS_FAMILY_windows |
|
38 # include "os_windows.inline.hpp" |
|
39 #endif |
|
40 #ifdef TARGET_OS_FAMILY_aix |
|
41 # include "os_aix.inline.hpp" |
|
42 #endif |
|
43 #ifdef TARGET_OS_FAMILY_bsd |
|
44 # include "os_bsd.inline.hpp" |
|
45 #endif |
|
46 elapsedTimer CMSAdaptiveSizePolicy::_concurrent_timer; |
|
47 elapsedTimer CMSAdaptiveSizePolicy::_STW_timer; |
|
48 |
|
49 // Defined if the granularity of the time measurements is potentially too large. |
|
50 #define CLOCK_GRANULARITY_TOO_LARGE |
|
51 |
|
52 CMSAdaptiveSizePolicy::CMSAdaptiveSizePolicy(size_t init_eden_size, |
|
53 size_t init_promo_size, |
|
54 size_t init_survivor_size, |
|
55 double max_gc_minor_pause_sec, |
|
56 double max_gc_pause_sec, |
|
57 uint gc_cost_ratio) : |
|
58 AdaptiveSizePolicy(init_eden_size, |
|
59 init_promo_size, |
|
60 init_survivor_size, |
|
61 max_gc_pause_sec, |
|
62 gc_cost_ratio) { |
|
63 |
|
64 clear_internal_time_intervals(); |
|
65 |
|
66 _processor_count = os::active_processor_count(); |
|
67 |
|
68 if (CMSConcurrentMTEnabled && (ConcGCThreads > 1)) { |
|
69 assert(_processor_count > 0, "Processor count is suspect"); |
|
70 _concurrent_processor_count = MIN2((uint) ConcGCThreads, |
|
71 (uint) _processor_count); |
|
72 } else { |
|
73 _concurrent_processor_count = 1; |
|
74 } |
|
75 |
|
76 _avg_concurrent_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
77 _avg_concurrent_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
78 _avg_concurrent_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
79 |
|
80 _avg_initial_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight, |
|
81 PausePadding); |
|
82 _avg_remark_pause = new AdaptivePaddedAverage(AdaptiveTimeWeight, |
|
83 PausePadding); |
|
84 |
|
85 _avg_cms_STW_time = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
86 _avg_cms_STW_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
87 |
|
88 _avg_cms_free = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
89 _avg_cms_free_at_sweep = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
90 _avg_cms_promo = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
91 |
|
92 // Mark-sweep-compact |
|
93 _avg_msc_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
94 _avg_msc_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
95 _avg_msc_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
96 |
|
97 // Mark-sweep |
|
98 _avg_ms_pause = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
99 _avg_ms_interval = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
100 _avg_ms_gc_cost = new AdaptiveWeightedAverage(AdaptiveTimeWeight); |
|
101 |
|
102 // Variables that estimate pause times as a function of generation |
|
103 // size. |
|
104 _remark_pause_old_estimator = |
|
105 new LinearLeastSquareFit(AdaptiveSizePolicyWeight); |
|
106 _initial_pause_old_estimator = |
|
107 new LinearLeastSquareFit(AdaptiveSizePolicyWeight); |
|
108 _remark_pause_young_estimator = |
|
109 new LinearLeastSquareFit(AdaptiveSizePolicyWeight); |
|
110 _initial_pause_young_estimator = |
|
111 new LinearLeastSquareFit(AdaptiveSizePolicyWeight); |
|
112 |
|
113 // Alignment comes from that used in ReservedSpace. |
|
114 _generation_alignment = os::vm_allocation_granularity(); |
|
115 |
|
116 // Start the concurrent timer here so that the first |
|
117 // concurrent_phases_begin() measures a finite mutator |
|
118 // time. A finite mutator time is used to determine |
|
119 // if a concurrent collection has been started. If this |
|
120 // proves to be a problem, use some explicit flag to |
|
121 // signal that a concurrent collection has been started. |
|
122 _concurrent_timer.start(); |
|
123 _STW_timer.start(); |
|
124 } |
|
125 |
|
126 double CMSAdaptiveSizePolicy::concurrent_processor_fraction() { |
|
127 // For now assume no other daemon threads are taking alway |
|
128 // cpu's from the application. |
|
129 return ((double) _concurrent_processor_count / (double) _processor_count); |
|
130 } |
|
131 |
|
132 double CMSAdaptiveSizePolicy::concurrent_collection_cost( |
|
133 double interval_in_seconds) { |
|
134 // When the precleaning and sweeping phases use multiple |
|
135 // threads, change one_processor_fraction to |
|
136 // concurrent_processor_fraction(). |
|
137 double one_processor_fraction = 1.0 / ((double) processor_count()); |
|
138 double concurrent_cost = |
|
139 collection_cost(_latest_cms_concurrent_marking_time_secs, |
|
140 interval_in_seconds) * concurrent_processor_fraction() + |
|
141 collection_cost(_latest_cms_concurrent_precleaning_time_secs, |
|
142 interval_in_seconds) * one_processor_fraction + |
|
143 collection_cost(_latest_cms_concurrent_sweeping_time_secs, |
|
144 interval_in_seconds) * one_processor_fraction; |
|
145 if (PrintAdaptiveSizePolicy && Verbose) { |
|
146 gclog_or_tty->print_cr( |
|
147 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_cost(%f) " |
|
148 "_latest_cms_concurrent_marking_cost %f " |
|
149 "_latest_cms_concurrent_precleaning_cost %f " |
|
150 "_latest_cms_concurrent_sweeping_cost %f " |
|
151 "concurrent_processor_fraction %f " |
|
152 "concurrent_cost %f ", |
|
153 interval_in_seconds, |
|
154 collection_cost(_latest_cms_concurrent_marking_time_secs, |
|
155 interval_in_seconds), |
|
156 collection_cost(_latest_cms_concurrent_precleaning_time_secs, |
|
157 interval_in_seconds), |
|
158 collection_cost(_latest_cms_concurrent_sweeping_time_secs, |
|
159 interval_in_seconds), |
|
160 concurrent_processor_fraction(), |
|
161 concurrent_cost); |
|
162 } |
|
163 return concurrent_cost; |
|
164 } |
|
165 |
|
166 double CMSAdaptiveSizePolicy::concurrent_collection_time() { |
|
167 double latest_cms_sum_concurrent_phases_time_secs = |
|
168 _latest_cms_concurrent_marking_time_secs + |
|
169 _latest_cms_concurrent_precleaning_time_secs + |
|
170 _latest_cms_concurrent_sweeping_time_secs; |
|
171 return latest_cms_sum_concurrent_phases_time_secs; |
|
172 } |
|
173 |
|
174 double CMSAdaptiveSizePolicy::scaled_concurrent_collection_time() { |
|
175 // When the precleaning and sweeping phases use multiple |
|
176 // threads, change one_processor_fraction to |
|
177 // concurrent_processor_fraction(). |
|
178 double one_processor_fraction = 1.0 / ((double) processor_count()); |
|
179 double latest_cms_sum_concurrent_phases_time_secs = |
|
180 _latest_cms_concurrent_marking_time_secs * concurrent_processor_fraction() + |
|
181 _latest_cms_concurrent_precleaning_time_secs * one_processor_fraction + |
|
182 _latest_cms_concurrent_sweeping_time_secs * one_processor_fraction ; |
|
183 if (PrintAdaptiveSizePolicy && Verbose) { |
|
184 gclog_or_tty->print_cr( |
|
185 "\nCMSAdaptiveSizePolicy::scaled_concurrent_collection_time " |
|
186 "_latest_cms_concurrent_marking_time_secs %f " |
|
187 "_latest_cms_concurrent_precleaning_time_secs %f " |
|
188 "_latest_cms_concurrent_sweeping_time_secs %f " |
|
189 "concurrent_processor_fraction %f " |
|
190 "latest_cms_sum_concurrent_phases_time_secs %f ", |
|
191 _latest_cms_concurrent_marking_time_secs, |
|
192 _latest_cms_concurrent_precleaning_time_secs, |
|
193 _latest_cms_concurrent_sweeping_time_secs, |
|
194 concurrent_processor_fraction(), |
|
195 latest_cms_sum_concurrent_phases_time_secs); |
|
196 } |
|
197 return latest_cms_sum_concurrent_phases_time_secs; |
|
198 } |
|
199 |
|
200 void CMSAdaptiveSizePolicy::update_minor_pause_old_estimator( |
|
201 double minor_pause_in_ms) { |
|
202 // Get the equivalent of the free space |
|
203 // that is available for promotions in the CMS generation |
|
204 // and use that to update _minor_pause_old_estimator |
|
205 |
|
206 // Don't implement this until it is needed. A warning is |
|
207 // printed if _minor_pause_old_estimator is used. |
|
208 } |
|
209 |
|
210 void CMSAdaptiveSizePolicy::concurrent_marking_begin() { |
|
211 if (PrintAdaptiveSizePolicy && Verbose) { |
|
212 gclog_or_tty->print(" "); |
|
213 gclog_or_tty->stamp(); |
|
214 gclog_or_tty->print(": concurrent_marking_begin "); |
|
215 } |
|
216 // Update the interval time |
|
217 _concurrent_timer.stop(); |
|
218 _latest_cms_collection_end_to_collection_start_secs = _concurrent_timer.seconds(); |
|
219 if (PrintAdaptiveSizePolicy && Verbose) { |
|
220 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_begin: " |
|
221 "mutator time %f", _latest_cms_collection_end_to_collection_start_secs); |
|
222 } |
|
223 _concurrent_timer.reset(); |
|
224 _concurrent_timer.start(); |
|
225 } |
|
226 |
|
227 void CMSAdaptiveSizePolicy::concurrent_marking_end() { |
|
228 if (PrintAdaptiveSizePolicy && Verbose) { |
|
229 gclog_or_tty->stamp(); |
|
230 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_marking_end()"); |
|
231 } |
|
232 |
|
233 _concurrent_timer.stop(); |
|
234 _latest_cms_concurrent_marking_time_secs = _concurrent_timer.seconds(); |
|
235 |
|
236 if (PrintAdaptiveSizePolicy && Verbose) { |
|
237 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_marking_end" |
|
238 ":concurrent marking time (s) %f", |
|
239 _latest_cms_concurrent_marking_time_secs); |
|
240 } |
|
241 } |
|
242 |
|
243 void CMSAdaptiveSizePolicy::concurrent_precleaning_begin() { |
|
244 if (PrintAdaptiveSizePolicy && Verbose) { |
|
245 gclog_or_tty->stamp(); |
|
246 gclog_or_tty->print_cr( |
|
247 "CMSAdaptiveSizePolicy::concurrent_precleaning_begin()"); |
|
248 } |
|
249 _concurrent_timer.reset(); |
|
250 _concurrent_timer.start(); |
|
251 } |
|
252 |
|
253 |
|
254 void CMSAdaptiveSizePolicy::concurrent_precleaning_end() { |
|
255 if (PrintAdaptiveSizePolicy && Verbose) { |
|
256 gclog_or_tty->stamp(); |
|
257 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_precleaning_end()"); |
|
258 } |
|
259 |
|
260 _concurrent_timer.stop(); |
|
261 // May be set again by a second call during the same collection. |
|
262 _latest_cms_concurrent_precleaning_time_secs = _concurrent_timer.seconds(); |
|
263 |
|
264 if (PrintAdaptiveSizePolicy && Verbose) { |
|
265 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_precleaning_end" |
|
266 ":concurrent precleaning time (s) %f", |
|
267 _latest_cms_concurrent_precleaning_time_secs); |
|
268 } |
|
269 } |
|
270 |
|
271 void CMSAdaptiveSizePolicy::concurrent_sweeping_begin() { |
|
272 if (PrintAdaptiveSizePolicy && Verbose) { |
|
273 gclog_or_tty->stamp(); |
|
274 gclog_or_tty->print_cr( |
|
275 "CMSAdaptiveSizePolicy::concurrent_sweeping_begin()"); |
|
276 } |
|
277 _concurrent_timer.reset(); |
|
278 _concurrent_timer.start(); |
|
279 } |
|
280 |
|
281 |
|
282 void CMSAdaptiveSizePolicy::concurrent_sweeping_end() { |
|
283 if (PrintAdaptiveSizePolicy && Verbose) { |
|
284 gclog_or_tty->stamp(); |
|
285 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_sweeping_end()"); |
|
286 } |
|
287 |
|
288 _concurrent_timer.stop(); |
|
289 _latest_cms_concurrent_sweeping_time_secs = _concurrent_timer.seconds(); |
|
290 |
|
291 if (PrintAdaptiveSizePolicy && Verbose) { |
|
292 gclog_or_tty->print_cr("\n CMSAdaptiveSizePolicy::concurrent_sweeping_end" |
|
293 ":concurrent sweeping time (s) %f", |
|
294 _latest_cms_concurrent_sweeping_time_secs); |
|
295 } |
|
296 } |
|
297 |
|
298 void CMSAdaptiveSizePolicy::concurrent_phases_end(GCCause::Cause gc_cause, |
|
299 size_t cur_eden, |
|
300 size_t cur_promo) { |
|
301 if (PrintAdaptiveSizePolicy && Verbose) { |
|
302 gclog_or_tty->print(" "); |
|
303 gclog_or_tty->stamp(); |
|
304 gclog_or_tty->print(": concurrent_phases_end "); |
|
305 } |
|
306 |
|
307 // Update the concurrent timer |
|
308 _concurrent_timer.stop(); |
|
309 |
|
310 if (gc_cause != GCCause::_java_lang_system_gc || |
|
311 UseAdaptiveSizePolicyWithSystemGC) { |
|
312 |
|
313 avg_cms_free()->sample(cur_promo); |
|
314 double latest_cms_sum_concurrent_phases_time_secs = |
|
315 concurrent_collection_time(); |
|
316 |
|
317 _avg_concurrent_time->sample(latest_cms_sum_concurrent_phases_time_secs); |
|
318 |
|
319 // Cost of collection (unit-less) |
|
320 |
|
321 // Total interval for collection. May not be valid. Tests |
|
322 // below determine whether to use this. |
|
323 // |
|
324 if (PrintAdaptiveSizePolicy && Verbose) { |
|
325 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::concurrent_phases_end \n" |
|
326 "_latest_cms_reset_end_to_initial_mark_start_secs %f \n" |
|
327 "_latest_cms_initial_mark_start_to_end_time_secs %f \n" |
|
328 "_latest_cms_remark_start_to_end_time_secs %f \n" |
|
329 "_latest_cms_concurrent_marking_time_secs %f \n" |
|
330 "_latest_cms_concurrent_precleaning_time_secs %f \n" |
|
331 "_latest_cms_concurrent_sweeping_time_secs %f \n" |
|
332 "latest_cms_sum_concurrent_phases_time_secs %f \n" |
|
333 "_latest_cms_collection_end_to_collection_start_secs %f \n" |
|
334 "concurrent_processor_fraction %f", |
|
335 _latest_cms_reset_end_to_initial_mark_start_secs, |
|
336 _latest_cms_initial_mark_start_to_end_time_secs, |
|
337 _latest_cms_remark_start_to_end_time_secs, |
|
338 _latest_cms_concurrent_marking_time_secs, |
|
339 _latest_cms_concurrent_precleaning_time_secs, |
|
340 _latest_cms_concurrent_sweeping_time_secs, |
|
341 latest_cms_sum_concurrent_phases_time_secs, |
|
342 _latest_cms_collection_end_to_collection_start_secs, |
|
343 concurrent_processor_fraction()); |
|
344 } |
|
345 double interval_in_seconds = |
|
346 _latest_cms_initial_mark_start_to_end_time_secs + |
|
347 _latest_cms_remark_start_to_end_time_secs + |
|
348 latest_cms_sum_concurrent_phases_time_secs + |
|
349 _latest_cms_collection_end_to_collection_start_secs; |
|
350 assert(interval_in_seconds >= 0.0, |
|
351 "Bad interval between cms collections"); |
|
352 |
|
353 // Sample for performance counter |
|
354 avg_concurrent_interval()->sample(interval_in_seconds); |
|
355 |
|
356 // STW costs (initial and remark pauses) |
|
357 // Cost of collection (unit-less) |
|
358 assert(_latest_cms_initial_mark_start_to_end_time_secs >= 0.0, |
|
359 "Bad initial mark pause"); |
|
360 assert(_latest_cms_remark_start_to_end_time_secs >= 0.0, |
|
361 "Bad remark pause"); |
|
362 double STW_time_in_seconds = |
|
363 _latest_cms_initial_mark_start_to_end_time_secs + |
|
364 _latest_cms_remark_start_to_end_time_secs; |
|
365 double STW_collection_cost = 0.0; |
|
366 if (interval_in_seconds > 0.0) { |
|
367 // cost for the STW phases of the concurrent collection. |
|
368 STW_collection_cost = STW_time_in_seconds / interval_in_seconds; |
|
369 avg_cms_STW_gc_cost()->sample(STW_collection_cost); |
|
370 } |
|
371 if (PrintAdaptiveSizePolicy && Verbose) { |
|
372 gclog_or_tty->print("cmsAdaptiveSizePolicy::STW_collection_end: " |
|
373 "STW gc cost: %f average: %f", STW_collection_cost, |
|
374 avg_cms_STW_gc_cost()->average()); |
|
375 gclog_or_tty->print_cr(" STW pause: %f (ms) STW period %f (ms)", |
|
376 (double) STW_time_in_seconds * MILLIUNITS, |
|
377 (double) interval_in_seconds * MILLIUNITS); |
|
378 } |
|
379 |
|
380 double concurrent_cost = 0.0; |
|
381 if (latest_cms_sum_concurrent_phases_time_secs > 0.0) { |
|
382 concurrent_cost = concurrent_collection_cost(interval_in_seconds); |
|
383 |
|
384 avg_concurrent_gc_cost()->sample(concurrent_cost); |
|
385 // Average this ms cost into all the other types gc costs |
|
386 |
|
387 if (PrintAdaptiveSizePolicy && Verbose) { |
|
388 gclog_or_tty->print("cmsAdaptiveSizePolicy::concurrent_phases_end: " |
|
389 "concurrent gc cost: %f average: %f", |
|
390 concurrent_cost, |
|
391 _avg_concurrent_gc_cost->average()); |
|
392 gclog_or_tty->print_cr(" concurrent time: %f (ms) cms period %f (ms)" |
|
393 " processor fraction: %f", |
|
394 latest_cms_sum_concurrent_phases_time_secs * MILLIUNITS, |
|
395 interval_in_seconds * MILLIUNITS, |
|
396 concurrent_processor_fraction()); |
|
397 } |
|
398 } |
|
399 double total_collection_cost = STW_collection_cost + concurrent_cost; |
|
400 avg_major_gc_cost()->sample(total_collection_cost); |
|
401 |
|
402 // Gather information for estimating future behavior |
|
403 double initial_pause_in_ms = _latest_cms_initial_mark_start_to_end_time_secs * MILLIUNITS; |
|
404 double remark_pause_in_ms = _latest_cms_remark_start_to_end_time_secs * MILLIUNITS; |
|
405 |
|
406 double cur_promo_size_in_mbytes = ((double)cur_promo)/((double)M); |
|
407 initial_pause_old_estimator()->update(cur_promo_size_in_mbytes, |
|
408 initial_pause_in_ms); |
|
409 remark_pause_old_estimator()->update(cur_promo_size_in_mbytes, |
|
410 remark_pause_in_ms); |
|
411 major_collection_estimator()->update(cur_promo_size_in_mbytes, |
|
412 total_collection_cost); |
|
413 |
|
414 // This estimate uses the average eden size. It could also |
|
415 // have used the latest eden size. Which is better? |
|
416 double cur_eden_size_in_mbytes = ((double)cur_eden)/((double) M); |
|
417 initial_pause_young_estimator()->update(cur_eden_size_in_mbytes, |
|
418 initial_pause_in_ms); |
|
419 remark_pause_young_estimator()->update(cur_eden_size_in_mbytes, |
|
420 remark_pause_in_ms); |
|
421 } |
|
422 |
|
423 clear_internal_time_intervals(); |
|
424 |
|
425 set_first_after_collection(); |
|
426 |
|
427 // The concurrent phases keeps track of it's own mutator interval |
|
428 // with this timer. This allows the stop-the-world phase to |
|
429 // be included in the mutator time so that the stop-the-world time |
|
430 // is not double counted. Reset and start it. |
|
431 _concurrent_timer.reset(); |
|
432 _concurrent_timer.start(); |
|
433 |
|
434 // The mutator time between STW phases does not include the |
|
435 // concurrent collection time. |
|
436 _STW_timer.reset(); |
|
437 _STW_timer.start(); |
|
438 } |
|
439 |
|
440 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_begin() { |
|
441 // Update the interval time |
|
442 _STW_timer.stop(); |
|
443 _latest_cms_reset_end_to_initial_mark_start_secs = _STW_timer.seconds(); |
|
444 // Reset for the initial mark |
|
445 _STW_timer.reset(); |
|
446 _STW_timer.start(); |
|
447 } |
|
448 |
|
449 void CMSAdaptiveSizePolicy::checkpoint_roots_initial_end( |
|
450 GCCause::Cause gc_cause) { |
|
451 _STW_timer.stop(); |
|
452 |
|
453 if (gc_cause != GCCause::_java_lang_system_gc || |
|
454 UseAdaptiveSizePolicyWithSystemGC) { |
|
455 _latest_cms_initial_mark_start_to_end_time_secs = _STW_timer.seconds(); |
|
456 avg_initial_pause()->sample(_latest_cms_initial_mark_start_to_end_time_secs); |
|
457 |
|
458 if (PrintAdaptiveSizePolicy && Verbose) { |
|
459 gclog_or_tty->print( |
|
460 "cmsAdaptiveSizePolicy::checkpoint_roots_initial_end: " |
|
461 "initial pause: %f ", _latest_cms_initial_mark_start_to_end_time_secs); |
|
462 } |
|
463 } |
|
464 |
|
465 _STW_timer.reset(); |
|
466 _STW_timer.start(); |
|
467 } |
|
468 |
|
469 void CMSAdaptiveSizePolicy::checkpoint_roots_final_begin() { |
|
470 _STW_timer.stop(); |
|
471 _latest_cms_initial_mark_end_to_remark_start_secs = _STW_timer.seconds(); |
|
472 // Start accumulating time for the remark in the STW timer. |
|
473 _STW_timer.reset(); |
|
474 _STW_timer.start(); |
|
475 } |
|
476 |
|
477 void CMSAdaptiveSizePolicy::checkpoint_roots_final_end( |
|
478 GCCause::Cause gc_cause) { |
|
479 _STW_timer.stop(); |
|
480 if (gc_cause != GCCause::_java_lang_system_gc || |
|
481 UseAdaptiveSizePolicyWithSystemGC) { |
|
482 // Total initial mark pause + remark pause. |
|
483 _latest_cms_remark_start_to_end_time_secs = _STW_timer.seconds(); |
|
484 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + |
|
485 _latest_cms_remark_start_to_end_time_secs; |
|
486 double STW_time_in_ms = STW_time_in_seconds * MILLIUNITS; |
|
487 |
|
488 avg_remark_pause()->sample(_latest_cms_remark_start_to_end_time_secs); |
|
489 |
|
490 // Sample total for initial mark + remark |
|
491 avg_cms_STW_time()->sample(STW_time_in_seconds); |
|
492 |
|
493 if (PrintAdaptiveSizePolicy && Verbose) { |
|
494 gclog_or_tty->print("cmsAdaptiveSizePolicy::checkpoint_roots_final_end: " |
|
495 "remark pause: %f", _latest_cms_remark_start_to_end_time_secs); |
|
496 } |
|
497 |
|
498 } |
|
499 // Don't start the STW times here because the concurrent |
|
500 // sweep and reset has not happened. |
|
501 // Keep the old comment above in case I don't understand |
|
502 // what is going on but now |
|
503 // Start the STW timer because it is used by ms_collection_begin() |
|
504 // and ms_collection_end() to get the sweep time if a MS is being |
|
505 // done in the foreground. |
|
506 _STW_timer.reset(); |
|
507 _STW_timer.start(); |
|
508 } |
|
509 |
|
510 void CMSAdaptiveSizePolicy::msc_collection_begin() { |
|
511 if (PrintAdaptiveSizePolicy && Verbose) { |
|
512 gclog_or_tty->print(" "); |
|
513 gclog_or_tty->stamp(); |
|
514 gclog_or_tty->print(": msc_collection_begin "); |
|
515 } |
|
516 _STW_timer.stop(); |
|
517 _latest_cms_msc_end_to_msc_start_time_secs = _STW_timer.seconds(); |
|
518 if (PrintAdaptiveSizePolicy && Verbose) { |
|
519 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::msc_collection_begin: " |
|
520 "mutator time %f", |
|
521 _latest_cms_msc_end_to_msc_start_time_secs); |
|
522 } |
|
523 avg_msc_interval()->sample(_latest_cms_msc_end_to_msc_start_time_secs); |
|
524 _STW_timer.reset(); |
|
525 _STW_timer.start(); |
|
526 } |
|
527 |
|
528 void CMSAdaptiveSizePolicy::msc_collection_end(GCCause::Cause gc_cause) { |
|
529 if (PrintAdaptiveSizePolicy && Verbose) { |
|
530 gclog_or_tty->print(" "); |
|
531 gclog_or_tty->stamp(); |
|
532 gclog_or_tty->print(": msc_collection_end "); |
|
533 } |
|
534 _STW_timer.stop(); |
|
535 if (gc_cause != GCCause::_java_lang_system_gc || |
|
536 UseAdaptiveSizePolicyWithSystemGC) { |
|
537 double msc_pause_in_seconds = _STW_timer.seconds(); |
|
538 if ((_latest_cms_msc_end_to_msc_start_time_secs > 0.0) && |
|
539 (msc_pause_in_seconds > 0.0)) { |
|
540 avg_msc_pause()->sample(msc_pause_in_seconds); |
|
541 double mutator_time_in_seconds = 0.0; |
|
542 if (_latest_cms_collection_end_to_collection_start_secs == 0.0) { |
|
543 // This assertion may fail because of time stamp granularity. |
|
544 // Comment it out and investigate it at a later time. The large |
|
545 // time stamp granularity occurs on some older linux systems. |
|
546 #ifndef CLOCK_GRANULARITY_TOO_LARGE |
|
547 assert((_latest_cms_concurrent_marking_time_secs == 0.0) && |
|
548 (_latest_cms_concurrent_precleaning_time_secs == 0.0) && |
|
549 (_latest_cms_concurrent_sweeping_time_secs == 0.0), |
|
550 "There should not be any concurrent time"); |
|
551 #endif |
|
552 // A concurrent collection did not start. Mutator time |
|
553 // between collections comes from the STW MSC timer. |
|
554 mutator_time_in_seconds = _latest_cms_msc_end_to_msc_start_time_secs; |
|
555 } else { |
|
556 // The concurrent collection did start so count the mutator |
|
557 // time to the start of the concurrent collection. In this |
|
558 // case the _latest_cms_msc_end_to_msc_start_time_secs measures |
|
559 // the time between the initial mark or remark and the |
|
560 // start of the MSC. That has no real meaning. |
|
561 mutator_time_in_seconds = _latest_cms_collection_end_to_collection_start_secs; |
|
562 } |
|
563 |
|
564 double latest_cms_sum_concurrent_phases_time_secs = |
|
565 concurrent_collection_time(); |
|
566 double interval_in_seconds = |
|
567 mutator_time_in_seconds + |
|
568 _latest_cms_initial_mark_start_to_end_time_secs + |
|
569 _latest_cms_remark_start_to_end_time_secs + |
|
570 latest_cms_sum_concurrent_phases_time_secs + |
|
571 msc_pause_in_seconds; |
|
572 |
|
573 if (PrintAdaptiveSizePolicy && Verbose) { |
|
574 gclog_or_tty->print_cr(" interval_in_seconds %f \n" |
|
575 " mutator_time_in_seconds %f \n" |
|
576 " _latest_cms_initial_mark_start_to_end_time_secs %f\n" |
|
577 " _latest_cms_remark_start_to_end_time_secs %f\n" |
|
578 " latest_cms_sum_concurrent_phases_time_secs %f\n" |
|
579 " msc_pause_in_seconds %f\n", |
|
580 interval_in_seconds, |
|
581 mutator_time_in_seconds, |
|
582 _latest_cms_initial_mark_start_to_end_time_secs, |
|
583 _latest_cms_remark_start_to_end_time_secs, |
|
584 latest_cms_sum_concurrent_phases_time_secs, |
|
585 msc_pause_in_seconds); |
|
586 } |
|
587 |
|
588 // The concurrent cost is wasted cost but it should be |
|
589 // included. |
|
590 double concurrent_cost = concurrent_collection_cost(interval_in_seconds); |
|
591 |
|
592 // Initial mark and remark, also wasted. |
|
593 double STW_time_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + |
|
594 _latest_cms_remark_start_to_end_time_secs; |
|
595 double STW_collection_cost = |
|
596 collection_cost(STW_time_in_seconds, interval_in_seconds) + |
|
597 concurrent_cost; |
|
598 |
|
599 if (PrintAdaptiveSizePolicy && Verbose) { |
|
600 gclog_or_tty->print_cr(" msc_collection_end:\n" |
|
601 "_latest_cms_collection_end_to_collection_start_secs %f\n" |
|
602 "_latest_cms_msc_end_to_msc_start_time_secs %f\n" |
|
603 "_latest_cms_initial_mark_start_to_end_time_secs %f\n" |
|
604 "_latest_cms_remark_start_to_end_time_secs %f\n" |
|
605 "latest_cms_sum_concurrent_phases_time_secs %f\n", |
|
606 _latest_cms_collection_end_to_collection_start_secs, |
|
607 _latest_cms_msc_end_to_msc_start_time_secs, |
|
608 _latest_cms_initial_mark_start_to_end_time_secs, |
|
609 _latest_cms_remark_start_to_end_time_secs, |
|
610 latest_cms_sum_concurrent_phases_time_secs); |
|
611 |
|
612 gclog_or_tty->print_cr(" msc_collection_end: \n" |
|
613 "latest_cms_sum_concurrent_phases_time_secs %f\n" |
|
614 "STW_time_in_seconds %f\n" |
|
615 "msc_pause_in_seconds %f\n", |
|
616 latest_cms_sum_concurrent_phases_time_secs, |
|
617 STW_time_in_seconds, |
|
618 msc_pause_in_seconds); |
|
619 } |
|
620 |
|
621 double cost = concurrent_cost + STW_collection_cost + |
|
622 collection_cost(msc_pause_in_seconds, interval_in_seconds); |
|
623 |
|
624 _avg_msc_gc_cost->sample(cost); |
|
625 |
|
626 // Average this ms cost into all the other types gc costs |
|
627 avg_major_gc_cost()->sample(cost); |
|
628 |
|
629 // Sample for performance counter |
|
630 _avg_msc_interval->sample(interval_in_seconds); |
|
631 if (PrintAdaptiveSizePolicy && Verbose) { |
|
632 gclog_or_tty->print("cmsAdaptiveSizePolicy::msc_collection_end: " |
|
633 "MSC gc cost: %f average: %f", cost, |
|
634 _avg_msc_gc_cost->average()); |
|
635 |
|
636 double msc_pause_in_ms = msc_pause_in_seconds * MILLIUNITS; |
|
637 gclog_or_tty->print_cr(" MSC pause: %f (ms) MSC period %f (ms)", |
|
638 msc_pause_in_ms, (double) interval_in_seconds * MILLIUNITS); |
|
639 } |
|
640 } |
|
641 } |
|
642 |
|
643 clear_internal_time_intervals(); |
|
644 |
|
645 // Can this call be put into the epilogue? |
|
646 set_first_after_collection(); |
|
647 |
|
648 // The concurrent phases keeps track of it's own mutator interval |
|
649 // with this timer. This allows the stop-the-world phase to |
|
650 // be included in the mutator time so that the stop-the-world time |
|
651 // is not double counted. Reset and start it. |
|
652 _concurrent_timer.stop(); |
|
653 _concurrent_timer.reset(); |
|
654 _concurrent_timer.start(); |
|
655 |
|
656 _STW_timer.reset(); |
|
657 _STW_timer.start(); |
|
658 } |
|
659 |
|
660 void CMSAdaptiveSizePolicy::ms_collection_begin() { |
|
661 if (PrintAdaptiveSizePolicy && Verbose) { |
|
662 gclog_or_tty->print(" "); |
|
663 gclog_or_tty->stamp(); |
|
664 gclog_or_tty->print(": ms_collection_begin "); |
|
665 } |
|
666 _STW_timer.stop(); |
|
667 _latest_cms_ms_end_to_ms_start = _STW_timer.seconds(); |
|
668 if (PrintAdaptiveSizePolicy && Verbose) { |
|
669 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::ms_collection_begin: " |
|
670 "mutator time %f", |
|
671 _latest_cms_ms_end_to_ms_start); |
|
672 } |
|
673 avg_ms_interval()->sample(_STW_timer.seconds()); |
|
674 _STW_timer.reset(); |
|
675 _STW_timer.start(); |
|
676 } |
|
677 |
|
678 void CMSAdaptiveSizePolicy::ms_collection_end(GCCause::Cause gc_cause) { |
|
679 if (PrintAdaptiveSizePolicy && Verbose) { |
|
680 gclog_or_tty->print(" "); |
|
681 gclog_or_tty->stamp(); |
|
682 gclog_or_tty->print(": ms_collection_end "); |
|
683 } |
|
684 _STW_timer.stop(); |
|
685 if (gc_cause != GCCause::_java_lang_system_gc || |
|
686 UseAdaptiveSizePolicyWithSystemGC) { |
|
687 // The MS collection is a foreground collection that does all |
|
688 // the parts of a mostly concurrent collection. |
|
689 // |
|
690 // For this collection include the cost of the |
|
691 // initial mark |
|
692 // remark |
|
693 // all concurrent time (scaled down by the |
|
694 // concurrent_processor_fraction). Some |
|
695 // may be zero if the baton was passed before |
|
696 // it was reached. |
|
697 // concurrent marking |
|
698 // sweeping |
|
699 // resetting |
|
700 // STW after baton was passed (STW_in_foreground_in_seconds) |
|
701 double STW_in_foreground_in_seconds = _STW_timer.seconds(); |
|
702 |
|
703 double latest_cms_sum_concurrent_phases_time_secs = |
|
704 concurrent_collection_time(); |
|
705 if (PrintAdaptiveSizePolicy && Verbose) { |
|
706 gclog_or_tty->print_cr("\nCMSAdaptiveSizePolicy::ms_collection_end " |
|
707 "STW_in_foreground_in_seconds %f " |
|
708 "_latest_cms_initial_mark_start_to_end_time_secs %f " |
|
709 "_latest_cms_remark_start_to_end_time_secs %f " |
|
710 "latest_cms_sum_concurrent_phases_time_secs %f " |
|
711 "_latest_cms_ms_marking_start_to_end_time_secs %f " |
|
712 "_latest_cms_ms_end_to_ms_start %f", |
|
713 STW_in_foreground_in_seconds, |
|
714 _latest_cms_initial_mark_start_to_end_time_secs, |
|
715 _latest_cms_remark_start_to_end_time_secs, |
|
716 latest_cms_sum_concurrent_phases_time_secs, |
|
717 _latest_cms_ms_marking_start_to_end_time_secs, |
|
718 _latest_cms_ms_end_to_ms_start); |
|
719 } |
|
720 |
|
721 double STW_marking_in_seconds = _latest_cms_initial_mark_start_to_end_time_secs + |
|
722 _latest_cms_remark_start_to_end_time_secs; |
|
723 #ifndef CLOCK_GRANULARITY_TOO_LARGE |
|
724 assert(_latest_cms_ms_marking_start_to_end_time_secs == 0.0 || |
|
725 latest_cms_sum_concurrent_phases_time_secs == 0.0, |
|
726 "marking done twice?"); |
|
727 #endif |
|
728 double ms_time_in_seconds = STW_marking_in_seconds + |
|
729 STW_in_foreground_in_seconds + |
|
730 _latest_cms_ms_marking_start_to_end_time_secs + |
|
731 scaled_concurrent_collection_time(); |
|
732 avg_ms_pause()->sample(ms_time_in_seconds); |
|
733 // Use the STW costs from the initial mark and remark plus |
|
734 // the cost of the concurrent phase to calculate a |
|
735 // collection cost. |
|
736 double cost = 0.0; |
|
737 if ((_latest_cms_ms_end_to_ms_start > 0.0) && |
|
738 (ms_time_in_seconds > 0.0)) { |
|
739 double interval_in_seconds = |
|
740 _latest_cms_ms_end_to_ms_start + ms_time_in_seconds; |
|
741 |
|
742 if (PrintAdaptiveSizePolicy && Verbose) { |
|
743 gclog_or_tty->print_cr("\n ms_time_in_seconds %f " |
|
744 "latest_cms_sum_concurrent_phases_time_secs %f " |
|
745 "interval_in_seconds %f", |
|
746 ms_time_in_seconds, |
|
747 latest_cms_sum_concurrent_phases_time_secs, |
|
748 interval_in_seconds); |
|
749 } |
|
750 |
|
751 cost = collection_cost(ms_time_in_seconds, interval_in_seconds); |
|
752 |
|
753 _avg_ms_gc_cost->sample(cost); |
|
754 // Average this ms cost into all the other types gc costs |
|
755 avg_major_gc_cost()->sample(cost); |
|
756 |
|
757 // Sample for performance counter |
|
758 _avg_ms_interval->sample(interval_in_seconds); |
|
759 } |
|
760 if (PrintAdaptiveSizePolicy && Verbose) { |
|
761 gclog_or_tty->print("cmsAdaptiveSizePolicy::ms_collection_end: " |
|
762 "MS gc cost: %f average: %f", cost, _avg_ms_gc_cost->average()); |
|
763 |
|
764 double ms_time_in_ms = ms_time_in_seconds * MILLIUNITS; |
|
765 gclog_or_tty->print_cr(" MS pause: %f (ms) MS period %f (ms)", |
|
766 ms_time_in_ms, |
|
767 _latest_cms_ms_end_to_ms_start * MILLIUNITS); |
|
768 } |
|
769 } |
|
770 |
|
771 // Consider putting this code (here to end) into a |
|
772 // method for convenience. |
|
773 clear_internal_time_intervals(); |
|
774 |
|
775 set_first_after_collection(); |
|
776 |
|
777 // The concurrent phases keeps track of it's own mutator interval |
|
778 // with this timer. This allows the stop-the-world phase to |
|
779 // be included in the mutator time so that the stop-the-world time |
|
780 // is not double counted. Reset and start it. |
|
781 _concurrent_timer.stop(); |
|
782 _concurrent_timer.reset(); |
|
783 _concurrent_timer.start(); |
|
784 |
|
785 _STW_timer.reset(); |
|
786 _STW_timer.start(); |
|
787 } |
|
788 |
|
789 void CMSAdaptiveSizePolicy::clear_internal_time_intervals() { |
|
790 _latest_cms_reset_end_to_initial_mark_start_secs = 0.0; |
|
791 _latest_cms_initial_mark_end_to_remark_start_secs = 0.0; |
|
792 _latest_cms_collection_end_to_collection_start_secs = 0.0; |
|
793 _latest_cms_concurrent_marking_time_secs = 0.0; |
|
794 _latest_cms_concurrent_precleaning_time_secs = 0.0; |
|
795 _latest_cms_concurrent_sweeping_time_secs = 0.0; |
|
796 _latest_cms_msc_end_to_msc_start_time_secs = 0.0; |
|
797 _latest_cms_ms_end_to_ms_start = 0.0; |
|
798 _latest_cms_remark_start_to_end_time_secs = 0.0; |
|
799 _latest_cms_initial_mark_start_to_end_time_secs = 0.0; |
|
800 _latest_cms_ms_marking_start_to_end_time_secs = 0.0; |
|
801 } |
|
802 |
|
803 void CMSAdaptiveSizePolicy::clear_generation_free_space_flags() { |
|
804 AdaptiveSizePolicy::clear_generation_free_space_flags(); |
|
805 |
|
806 set_change_young_gen_for_maj_pauses(0); |
|
807 } |
|
808 |
|
809 void CMSAdaptiveSizePolicy::concurrent_phases_resume() { |
|
810 if (PrintAdaptiveSizePolicy && Verbose) { |
|
811 gclog_or_tty->stamp(); |
|
812 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::concurrent_phases_resume()"); |
|
813 } |
|
814 _concurrent_timer.start(); |
|
815 } |
|
816 |
|
817 double CMSAdaptiveSizePolicy::time_since_major_gc() const { |
|
818 _concurrent_timer.stop(); |
|
819 double time_since_cms_gc = _concurrent_timer.seconds(); |
|
820 _concurrent_timer.start(); |
|
821 _STW_timer.stop(); |
|
822 double time_since_STW_gc = _STW_timer.seconds(); |
|
823 _STW_timer.start(); |
|
824 |
|
825 return MIN2(time_since_cms_gc, time_since_STW_gc); |
|
826 } |
|
827 |
|
828 double CMSAdaptiveSizePolicy::major_gc_interval_average_for_decay() const { |
|
829 double cms_interval = _avg_concurrent_interval->average(); |
|
830 double msc_interval = _avg_msc_interval->average(); |
|
831 double ms_interval = _avg_ms_interval->average(); |
|
832 |
|
833 return MAX3(cms_interval, msc_interval, ms_interval); |
|
834 } |
|
835 |
|
836 double CMSAdaptiveSizePolicy::cms_gc_cost() const { |
|
837 return avg_major_gc_cost()->average(); |
|
838 } |
|
839 |
|
840 void CMSAdaptiveSizePolicy::ms_collection_marking_begin() { |
|
841 _STW_timer.stop(); |
|
842 // Start accumulating time for the marking in the STW timer. |
|
843 _STW_timer.reset(); |
|
844 _STW_timer.start(); |
|
845 } |
|
846 |
|
847 void CMSAdaptiveSizePolicy::ms_collection_marking_end( |
|
848 GCCause::Cause gc_cause) { |
|
849 _STW_timer.stop(); |
|
850 if (gc_cause != GCCause::_java_lang_system_gc || |
|
851 UseAdaptiveSizePolicyWithSystemGC) { |
|
852 _latest_cms_ms_marking_start_to_end_time_secs = _STW_timer.seconds(); |
|
853 if (PrintAdaptiveSizePolicy && Verbose) { |
|
854 gclog_or_tty->print_cr("CMSAdaptiveSizePolicy::" |
|
855 "msc_collection_marking_end: mutator time %f", |
|
856 _latest_cms_ms_marking_start_to_end_time_secs); |
|
857 } |
|
858 } |
|
859 _STW_timer.reset(); |
|
860 _STW_timer.start(); |
|
861 } |
|
862 |
|
863 double CMSAdaptiveSizePolicy::gc_cost() const { |
|
864 double cms_gen_cost = cms_gc_cost(); |
|
865 double result = MIN2(1.0, minor_gc_cost() + cms_gen_cost); |
|
866 assert(result >= 0.0, "Both minor and major costs are non-negative"); |
|
867 return result; |
|
868 } |
|
869 |
|
870 // Cost of collection (unit-less) |
|
871 double CMSAdaptiveSizePolicy::collection_cost(double pause_in_seconds, |
|
872 double interval_in_seconds) { |
|
873 // Cost of collection (unit-less) |
|
874 double cost = 0.0; |
|
875 if ((interval_in_seconds > 0.0) && |
|
876 (pause_in_seconds > 0.0)) { |
|
877 cost = |
|
878 pause_in_seconds / interval_in_seconds; |
|
879 } |
|
880 return cost; |
|
881 } |
|
882 |
|
883 size_t CMSAdaptiveSizePolicy::adjust_eden_for_pause_time(size_t cur_eden) { |
|
884 size_t change = 0; |
|
885 size_t desired_eden = cur_eden; |
|
886 |
|
887 // reduce eden size |
|
888 change = eden_decrement_aligned_down(cur_eden); |
|
889 desired_eden = cur_eden - change; |
|
890 |
|
891 if (PrintAdaptiveSizePolicy && Verbose) { |
|
892 gclog_or_tty->print_cr( |
|
893 "CMSAdaptiveSizePolicy::adjust_eden_for_pause_time " |
|
894 "adjusting eden for pause time. " |
|
895 " starting eden size " SIZE_FORMAT |
|
896 " reduced eden size " SIZE_FORMAT |
|
897 " eden delta " SIZE_FORMAT, |
|
898 cur_eden, desired_eden, change); |
|
899 } |
|
900 |
|
901 return desired_eden; |
|
902 } |
|
903 |
|
904 size_t CMSAdaptiveSizePolicy::adjust_eden_for_throughput(size_t cur_eden) { |
|
905 |
|
906 size_t desired_eden = cur_eden; |
|
907 |
|
908 set_change_young_gen_for_throughput(increase_young_gen_for_througput_true); |
|
909 |
|
910 size_t change = eden_increment_aligned_up(cur_eden); |
|
911 size_t scaled_change = scale_by_gen_gc_cost(change, minor_gc_cost()); |
|
912 |
|
913 if (cur_eden + scaled_change > cur_eden) { |
|
914 desired_eden = cur_eden + scaled_change; |
|
915 } |
|
916 |
|
917 _young_gen_change_for_minor_throughput++; |
|
918 |
|
919 if (PrintAdaptiveSizePolicy && Verbose) { |
|
920 gclog_or_tty->print_cr( |
|
921 "CMSAdaptiveSizePolicy::adjust_eden_for_throughput " |
|
922 "adjusting eden for throughput. " |
|
923 " starting eden size " SIZE_FORMAT |
|
924 " increased eden size " SIZE_FORMAT |
|
925 " eden delta " SIZE_FORMAT, |
|
926 cur_eden, desired_eden, scaled_change); |
|
927 } |
|
928 |
|
929 return desired_eden; |
|
930 } |
|
931 |
|
932 size_t CMSAdaptiveSizePolicy::adjust_eden_for_footprint(size_t cur_eden) { |
|
933 |
|
934 set_decrease_for_footprint(decrease_young_gen_for_footprint_true); |
|
935 |
|
936 size_t change = eden_decrement(cur_eden); |
|
937 size_t desired_eden_size = cur_eden - change; |
|
938 |
|
939 if (PrintAdaptiveSizePolicy && Verbose) { |
|
940 gclog_or_tty->print_cr( |
|
941 "CMSAdaptiveSizePolicy::adjust_eden_for_footprint " |
|
942 "adjusting eden for footprint. " |
|
943 " starting eden size " SIZE_FORMAT |
|
944 " reduced eden size " SIZE_FORMAT |
|
945 " eden delta " SIZE_FORMAT, |
|
946 cur_eden, desired_eden_size, change); |
|
947 } |
|
948 return desired_eden_size; |
|
949 } |
|
950 |
|
951 // The eden and promo versions should be combined if possible. |
|
952 // They are the same except that the sizes of the decrement |
|
953 // and increment are different for eden and promo. |
|
954 size_t CMSAdaptiveSizePolicy::eden_decrement_aligned_down(size_t cur_eden) { |
|
955 size_t delta = eden_decrement(cur_eden); |
|
956 return align_size_down(delta, generation_alignment()); |
|
957 } |
|
958 |
|
959 size_t CMSAdaptiveSizePolicy::eden_increment_aligned_up(size_t cur_eden) { |
|
960 size_t delta = eden_increment(cur_eden); |
|
961 return align_size_up(delta, generation_alignment()); |
|
962 } |
|
963 |
|
964 size_t CMSAdaptiveSizePolicy::promo_decrement_aligned_down(size_t cur_promo) { |
|
965 size_t delta = promo_decrement(cur_promo); |
|
966 return align_size_down(delta, generation_alignment()); |
|
967 } |
|
968 |
|
969 size_t CMSAdaptiveSizePolicy::promo_increment_aligned_up(size_t cur_promo) { |
|
970 size_t delta = promo_increment(cur_promo); |
|
971 return align_size_up(delta, generation_alignment()); |
|
972 } |
|
973 |
|
974 |
|
975 void CMSAdaptiveSizePolicy::compute_eden_space_size(size_t cur_eden, |
|
976 size_t max_eden_size) |
|
977 { |
|
978 size_t desired_eden_size = cur_eden; |
|
979 size_t eden_limit = max_eden_size; |
|
980 |
|
981 // Printout input |
|
982 if (PrintGC && PrintAdaptiveSizePolicy) { |
|
983 gclog_or_tty->print_cr( |
|
984 "CMSAdaptiveSizePolicy::compute_eden_space_size: " |
|
985 "cur_eden " SIZE_FORMAT, |
|
986 cur_eden); |
|
987 } |
|
988 |
|
989 // Used for diagnostics |
|
990 clear_generation_free_space_flags(); |
|
991 |
|
992 if (_avg_minor_pause->padded_average() > gc_pause_goal_sec()) { |
|
993 if (minor_pause_young_estimator()->decrement_will_decrease()) { |
|
994 // If the minor pause is too long, shrink the young gen. |
|
995 set_change_young_gen_for_min_pauses( |
|
996 decrease_young_gen_for_min_pauses_true); |
|
997 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size); |
|
998 } |
|
999 } else if ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) || |
|
1000 (avg_initial_pause()->padded_average() > gc_pause_goal_sec())) { |
|
1001 // The remark or initial pauses are not meeting the goal. Should |
|
1002 // the generation be shrunk? |
|
1003 if (get_and_clear_first_after_collection() && |
|
1004 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec() && |
|
1005 remark_pause_young_estimator()->decrement_will_decrease()) || |
|
1006 (avg_initial_pause()->padded_average() > gc_pause_goal_sec() && |
|
1007 initial_pause_young_estimator()->decrement_will_decrease()))) { |
|
1008 |
|
1009 set_change_young_gen_for_maj_pauses( |
|
1010 decrease_young_gen_for_maj_pauses_true); |
|
1011 |
|
1012 // If the remark or initial pause is too long and this is the |
|
1013 // first young gen collection after a cms collection, shrink |
|
1014 // the young gen. |
|
1015 desired_eden_size = adjust_eden_for_pause_time(desired_eden_size); |
|
1016 } |
|
1017 // If not the first young gen collection after a cms collection, |
|
1018 // don't do anything. In this case an adjustment has already |
|
1019 // been made and the results of the adjustment has not yet been |
|
1020 // measured. |
|
1021 } else if ((minor_gc_cost() >= 0.0) && |
|
1022 (adjusted_mutator_cost() < _throughput_goal)) { |
|
1023 desired_eden_size = adjust_eden_for_throughput(desired_eden_size); |
|
1024 } else { |
|
1025 desired_eden_size = adjust_eden_for_footprint(desired_eden_size); |
|
1026 } |
|
1027 |
|
1028 if (PrintGC && PrintAdaptiveSizePolicy) { |
|
1029 gclog_or_tty->print_cr( |
|
1030 "CMSAdaptiveSizePolicy::compute_eden_space_size limits:" |
|
1031 " desired_eden_size: " SIZE_FORMAT |
|
1032 " old_eden_size: " SIZE_FORMAT, |
|
1033 desired_eden_size, cur_eden); |
|
1034 } |
|
1035 |
|
1036 set_eden_size(desired_eden_size); |
|
1037 } |
|
1038 |
|
1039 size_t CMSAdaptiveSizePolicy::adjust_promo_for_pause_time(size_t cur_promo) { |
|
1040 size_t change = 0; |
|
1041 size_t desired_promo = cur_promo; |
|
1042 // Move this test up to caller like the adjust_eden_for_pause_time() |
|
1043 // call. |
|
1044 if ((AdaptiveSizePausePolicy == 0) && |
|
1045 ((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) || |
|
1046 (avg_initial_pause()->padded_average() > gc_pause_goal_sec()))) { |
|
1047 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); |
|
1048 change = promo_decrement_aligned_down(cur_promo); |
|
1049 desired_promo = cur_promo - change; |
|
1050 } else if ((AdaptiveSizePausePolicy > 0) && |
|
1051 (((avg_remark_pause()->padded_average() > gc_pause_goal_sec()) && |
|
1052 remark_pause_old_estimator()->decrement_will_decrease()) || |
|
1053 ((avg_initial_pause()->padded_average() > gc_pause_goal_sec()) && |
|
1054 initial_pause_old_estimator()->decrement_will_decrease()))) { |
|
1055 set_change_old_gen_for_maj_pauses(decrease_old_gen_for_maj_pauses_true); |
|
1056 change = promo_decrement_aligned_down(cur_promo); |
|
1057 desired_promo = cur_promo - change; |
|
1058 } |
|
1059 |
|
1060 if ((change != 0) &&PrintAdaptiveSizePolicy && Verbose) { |
|
1061 gclog_or_tty->print_cr( |
|
1062 "CMSAdaptiveSizePolicy::adjust_promo_for_pause_time " |
|
1063 "adjusting promo for pause time. " |
|
1064 " starting promo size " SIZE_FORMAT |
|
1065 " reduced promo size " SIZE_FORMAT |
|
1066 " promo delta " SIZE_FORMAT, |
|
1067 cur_promo, desired_promo, change); |
|
1068 } |
|
1069 |
|
1070 return desired_promo; |
|
1071 } |
|
1072 |
|
1073 // Try to share this with PS. |
|
1074 size_t CMSAdaptiveSizePolicy::scale_by_gen_gc_cost(size_t base_change, |
|
1075 double gen_gc_cost) { |
|
1076 |
|
1077 // Calculate the change to use for the tenured gen. |
|
1078 size_t scaled_change = 0; |
|
1079 // Can the increment to the generation be scaled? |
|
1080 if (gc_cost() >= 0.0 && gen_gc_cost >= 0.0) { |
|
1081 double scale_by_ratio = gen_gc_cost / gc_cost(); |
|
1082 scaled_change = |
|
1083 (size_t) (scale_by_ratio * (double) base_change); |
|
1084 if (PrintAdaptiveSizePolicy && Verbose) { |
|
1085 gclog_or_tty->print_cr( |
|
1086 "Scaled tenured increment: " SIZE_FORMAT " by %f down to " |
|
1087 SIZE_FORMAT, |
|
1088 base_change, scale_by_ratio, scaled_change); |
|
1089 } |
|
1090 } else if (gen_gc_cost >= 0.0) { |
|
1091 // Scaling is not going to work. If the major gc time is the |
|
1092 // larger than the other GC costs, give it a full increment. |
|
1093 if (gen_gc_cost >= (gc_cost() - gen_gc_cost)) { |
|
1094 scaled_change = base_change; |
|
1095 } |
|
1096 } else { |
|
1097 // Don't expect to get here but it's ok if it does |
|
1098 // in the product build since the delta will be 0 |
|
1099 // and nothing will change. |
|
1100 assert(false, "Unexpected value for gc costs"); |
|
1101 } |
|
1102 |
|
1103 return scaled_change; |
|
1104 } |
|
1105 |
|
1106 size_t CMSAdaptiveSizePolicy::adjust_promo_for_throughput(size_t cur_promo) { |
|
1107 |
|
1108 size_t desired_promo = cur_promo; |
|
1109 |
|
1110 set_change_old_gen_for_throughput(increase_old_gen_for_throughput_true); |
|
1111 |
|
1112 size_t change = promo_increment_aligned_up(cur_promo); |
|
1113 size_t scaled_change = scale_by_gen_gc_cost(change, major_gc_cost()); |
|
1114 |
|
1115 if (cur_promo + scaled_change > cur_promo) { |
|
1116 desired_promo = cur_promo + scaled_change; |
|
1117 } |
|
1118 |
|
1119 _old_gen_change_for_major_throughput++; |
|
1120 |
|
1121 if (PrintAdaptiveSizePolicy && Verbose) { |
|
1122 gclog_or_tty->print_cr( |
|
1123 "CMSAdaptiveSizePolicy::adjust_promo_for_throughput " |
|
1124 "adjusting promo for throughput. " |
|
1125 " starting promo size " SIZE_FORMAT |
|
1126 " increased promo size " SIZE_FORMAT |
|
1127 " promo delta " SIZE_FORMAT, |
|
1128 cur_promo, desired_promo, scaled_change); |
|
1129 } |
|
1130 |
|
1131 return desired_promo; |
|
1132 } |
|
1133 |
|
1134 size_t CMSAdaptiveSizePolicy::adjust_promo_for_footprint(size_t cur_promo, |
|
1135 size_t cur_eden) { |
|
1136 |
|
1137 set_decrease_for_footprint(decrease_young_gen_for_footprint_true); |
|
1138 |
|
1139 size_t change = promo_decrement(cur_promo); |
|
1140 size_t desired_promo_size = cur_promo - change; |
|
1141 |
|
1142 if (PrintAdaptiveSizePolicy && Verbose) { |
|
1143 gclog_or_tty->print_cr( |
|
1144 "CMSAdaptiveSizePolicy::adjust_promo_for_footprint " |
|
1145 "adjusting promo for footprint. " |
|
1146 " starting promo size " SIZE_FORMAT |
|
1147 " reduced promo size " SIZE_FORMAT |
|
1148 " promo delta " SIZE_FORMAT, |
|
1149 cur_promo, desired_promo_size, change); |
|
1150 } |
|
1151 return desired_promo_size; |
|
1152 } |
|
1153 |
|
1154 void CMSAdaptiveSizePolicy::compute_tenured_generation_free_space( |
|
1155 size_t cur_tenured_free, |
|
1156 size_t max_tenured_available, |
|
1157 size_t cur_eden) { |
|
1158 // This can be bad if the desired value grows/shrinks without |
|
1159 // any connection to the read free space |
|
1160 size_t desired_promo_size = promo_size(); |
|
1161 size_t tenured_limit = max_tenured_available; |
|
1162 |
|
1163 // Printout input |
|
1164 if (PrintGC && PrintAdaptiveSizePolicy) { |
|
1165 gclog_or_tty->print_cr( |
|
1166 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space: " |
|
1167 "cur_tenured_free " SIZE_FORMAT |
|
1168 " max_tenured_available " SIZE_FORMAT, |
|
1169 cur_tenured_free, max_tenured_available); |
|
1170 } |
|
1171 |
|
1172 // Used for diagnostics |
|
1173 clear_generation_free_space_flags(); |
|
1174 |
|
1175 set_decide_at_full_gc(decide_at_full_gc_true); |
|
1176 if (avg_remark_pause()->padded_average() > gc_pause_goal_sec() || |
|
1177 avg_initial_pause()->padded_average() > gc_pause_goal_sec()) { |
|
1178 desired_promo_size = adjust_promo_for_pause_time(cur_tenured_free); |
|
1179 } else if (avg_minor_pause()->padded_average() > gc_pause_goal_sec()) { |
|
1180 // Nothing to do since the minor collections are too large and |
|
1181 // this method only deals with the cms generation. |
|
1182 } else if ((cms_gc_cost() >= 0.0) && |
|
1183 (adjusted_mutator_cost() < _throughput_goal)) { |
|
1184 desired_promo_size = adjust_promo_for_throughput(cur_tenured_free); |
|
1185 } else { |
|
1186 desired_promo_size = adjust_promo_for_footprint(cur_tenured_free, |
|
1187 cur_eden); |
|
1188 } |
|
1189 |
|
1190 if (PrintGC && PrintAdaptiveSizePolicy) { |
|
1191 gclog_or_tty->print_cr( |
|
1192 "CMSAdaptiveSizePolicy::compute_tenured_generation_free_space limits:" |
|
1193 " desired_promo_size: " SIZE_FORMAT |
|
1194 " old_promo_size: " SIZE_FORMAT, |
|
1195 desired_promo_size, cur_tenured_free); |
|
1196 } |
|
1197 |
|
1198 set_promo_size(desired_promo_size); |
|
1199 } |
|
1200 |
|
1201 uint CMSAdaptiveSizePolicy::compute_survivor_space_size_and_threshold( |
|
1202 bool is_survivor_overflow, |
|
1203 uint tenuring_threshold, |
|
1204 size_t survivor_limit) { |
|
1205 assert(survivor_limit >= generation_alignment(), |
|
1206 "survivor_limit too small"); |
|
1207 assert((size_t)align_size_down(survivor_limit, generation_alignment()) |
|
1208 == survivor_limit, "survivor_limit not aligned"); |
|
1209 |
|
1210 // Change UsePSAdaptiveSurvivorSizePolicy -> UseAdaptiveSurvivorSizePolicy? |
|
1211 if (!UsePSAdaptiveSurvivorSizePolicy || |
|
1212 !young_gen_policy_is_ready()) { |
|
1213 return tenuring_threshold; |
|
1214 } |
|
1215 |
|
1216 // We'll decide whether to increase or decrease the tenuring |
|
1217 // threshold based partly on the newly computed survivor size |
|
1218 // (if we hit the maximum limit allowed, we'll always choose to |
|
1219 // decrement the threshold). |
|
1220 bool incr_tenuring_threshold = false; |
|
1221 bool decr_tenuring_threshold = false; |
|
1222 |
|
1223 set_decrement_tenuring_threshold_for_gc_cost(false); |
|
1224 set_increment_tenuring_threshold_for_gc_cost(false); |
|
1225 set_decrement_tenuring_threshold_for_survivor_limit(false); |
|
1226 |
|
1227 if (!is_survivor_overflow) { |
|
1228 // Keep running averages on how much survived |
|
1229 |
|
1230 // We use the tenuring threshold to equalize the cost of major |
|
1231 // and minor collections. |
|
1232 // ThresholdTolerance is used to indicate how sensitive the |
|
1233 // tenuring threshold is to differences in cost between the |
|
1234 // collection types. |
|
1235 |
|
1236 // Get the times of interest. This involves a little work, so |
|
1237 // we cache the values here. |
|
1238 const double major_cost = major_gc_cost(); |
|
1239 const double minor_cost = minor_gc_cost(); |
|
1240 |
|
1241 if (minor_cost > major_cost * _threshold_tolerance_percent) { |
|
1242 // Minor times are getting too long; lower the threshold so |
|
1243 // less survives and more is promoted. |
|
1244 decr_tenuring_threshold = true; |
|
1245 set_decrement_tenuring_threshold_for_gc_cost(true); |
|
1246 } else if (major_cost > minor_cost * _threshold_tolerance_percent) { |
|
1247 // Major times are too long, so we want less promotion. |
|
1248 incr_tenuring_threshold = true; |
|
1249 set_increment_tenuring_threshold_for_gc_cost(true); |
|
1250 } |
|
1251 |
|
1252 } else { |
|
1253 // Survivor space overflow occurred, so promoted and survived are |
|
1254 // not accurate. We'll make our best guess by combining survived |
|
1255 // and promoted and count them as survivors. |
|
1256 // |
|
1257 // We'll lower the tenuring threshold to see if we can correct |
|
1258 // things. Also, set the survivor size conservatively. We're |
|
1259 // trying to avoid many overflows from occurring if defnew size |
|
1260 // is just too small. |
|
1261 |
|
1262 decr_tenuring_threshold = true; |
|
1263 } |
|
1264 |
|
1265 // The padded average also maintains a deviation from the average; |
|
1266 // we use this to see how good of an estimate we have of what survived. |
|
1267 // We're trying to pad the survivor size as little as possible without |
|
1268 // overflowing the survivor spaces. |
|
1269 size_t target_size = align_size_up((size_t)_avg_survived->padded_average(), |
|
1270 generation_alignment()); |
|
1271 target_size = MAX2(target_size, generation_alignment()); |
|
1272 |
|
1273 if (target_size > survivor_limit) { |
|
1274 // Target size is bigger than we can handle. Let's also reduce |
|
1275 // the tenuring threshold. |
|
1276 target_size = survivor_limit; |
|
1277 decr_tenuring_threshold = true; |
|
1278 set_decrement_tenuring_threshold_for_survivor_limit(true); |
|
1279 } |
|
1280 |
|
1281 // Finally, increment or decrement the tenuring threshold, as decided above. |
|
1282 // We test for decrementing first, as we might have hit the target size |
|
1283 // limit. |
|
1284 if (decr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { |
|
1285 if (tenuring_threshold > 1) { |
|
1286 tenuring_threshold--; |
|
1287 } |
|
1288 } else if (incr_tenuring_threshold && !(AlwaysTenure || NeverTenure)) { |
|
1289 if (tenuring_threshold < MaxTenuringThreshold) { |
|
1290 tenuring_threshold++; |
|
1291 } |
|
1292 } |
|
1293 |
|
1294 // We keep a running average of the amount promoted which is used |
|
1295 // to decide when we should collect the old generation (when |
|
1296 // the amount of old gen free space is less than what we expect to |
|
1297 // promote). |
|
1298 |
|
1299 if (PrintAdaptiveSizePolicy) { |
|
1300 // A little more detail if Verbose is on |
|
1301 GenCollectedHeap* gch = GenCollectedHeap::heap(); |
|
1302 if (Verbose) { |
|
1303 gclog_or_tty->print( " avg_survived: %f" |
|
1304 " avg_deviation: %f", |
|
1305 _avg_survived->average(), |
|
1306 _avg_survived->deviation()); |
|
1307 } |
|
1308 |
|
1309 gclog_or_tty->print( " avg_survived_padded_avg: %f", |
|
1310 _avg_survived->padded_average()); |
|
1311 |
|
1312 if (Verbose) { |
|
1313 gclog_or_tty->print( " avg_promoted_avg: %f" |
|
1314 " avg_promoted_dev: %f", |
|
1315 gch->gc_stats(1)->avg_promoted()->average(), |
|
1316 gch->gc_stats(1)->avg_promoted()->deviation()); |
|
1317 } |
|
1318 |
|
1319 gclog_or_tty->print( " avg_promoted_padded_avg: %f" |
|
1320 " avg_pretenured_padded_avg: %f" |
|
1321 " tenuring_thresh: %u" |
|
1322 " target_size: " SIZE_FORMAT |
|
1323 " survivor_limit: " SIZE_FORMAT, |
|
1324 gch->gc_stats(1)->avg_promoted()->padded_average(), |
|
1325 _avg_pretenured->padded_average(), |
|
1326 tenuring_threshold, target_size, survivor_limit); |
|
1327 gclog_or_tty->cr(); |
|
1328 } |
|
1329 |
|
1330 set_survivor_size(target_size); |
|
1331 |
|
1332 return tenuring_threshold; |
|
1333 } |
|
1334 |
|
1335 bool CMSAdaptiveSizePolicy::get_and_clear_first_after_collection() { |
|
1336 bool result = _first_after_collection; |
|
1337 _first_after_collection = false; |
|
1338 return result; |
|
1339 } |
|
1340 |
|
1341 bool CMSAdaptiveSizePolicy::print_adaptive_size_policy_on( |
|
1342 outputStream* st) const { |
|
1343 |
|
1344 if (!UseAdaptiveSizePolicy) { |
|
1345 return false; |
|
1346 } |
|
1347 |
|
1348 GenCollectedHeap* gch = GenCollectedHeap::heap(); |
|
1349 Generation* young = gch->get_gen(0); |
|
1350 DefNewGeneration* def_new = young->as_DefNewGeneration(); |
|
1351 return AdaptiveSizePolicy::print_adaptive_size_policy_on( |
|
1352 st, |
|
1353 def_new->tenuring_threshold()); |
|
1354 } |
|