jdk/src/share/classes/java/util/Collections.java
changeset 2 90ce3da70b43
child 3420 bba8035eebfa
equal deleted inserted replaced
0:fd16c54261b3 2:90ce3da70b43
       
     1 /*
       
     2  * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Sun designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Sun in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    22  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    23  * have any questions.
       
    24  */
       
    25 
       
    26 package java.util;
       
    27 import java.io.Serializable;
       
    28 import java.io.ObjectOutputStream;
       
    29 import java.io.IOException;
       
    30 import java.lang.reflect.Array;
       
    31 
       
    32 /**
       
    33  * This class consists exclusively of static methods that operate on or return
       
    34  * collections.  It contains polymorphic algorithms that operate on
       
    35  * collections, "wrappers", which return a new collection backed by a
       
    36  * specified collection, and a few other odds and ends.
       
    37  *
       
    38  * <p>The methods of this class all throw a <tt>NullPointerException</tt>
       
    39  * if the collections or class objects provided to them are null.
       
    40  *
       
    41  * <p>The documentation for the polymorphic algorithms contained in this class
       
    42  * generally includes a brief description of the <i>implementation</i>.  Such
       
    43  * descriptions should be regarded as <i>implementation notes</i>, rather than
       
    44  * parts of the <i>specification</i>.  Implementors should feel free to
       
    45  * substitute other algorithms, so long as the specification itself is adhered
       
    46  * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
       
    47  * a mergesort, but it does have to be <i>stable</i>.)
       
    48  *
       
    49  * <p>The "destructive" algorithms contained in this class, that is, the
       
    50  * algorithms that modify the collection on which they operate, are specified
       
    51  * to throw <tt>UnsupportedOperationException</tt> if the collection does not
       
    52  * support the appropriate mutation primitive(s), such as the <tt>set</tt>
       
    53  * method.  These algorithms may, but are not required to, throw this
       
    54  * exception if an invocation would have no effect on the collection.  For
       
    55  * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
       
    56  * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
       
    57  *
       
    58  * <p>This class is a member of the
       
    59  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
       
    60  * Java Collections Framework</a>.
       
    61  *
       
    62  * @author  Josh Bloch
       
    63  * @author  Neal Gafter
       
    64  * @see     Collection
       
    65  * @see     Set
       
    66  * @see     List
       
    67  * @see     Map
       
    68  * @since   1.2
       
    69  */
       
    70 
       
    71 public class Collections {
       
    72     // Suppresses default constructor, ensuring non-instantiability.
       
    73     private Collections() {
       
    74     }
       
    75 
       
    76     // Algorithms
       
    77 
       
    78     /*
       
    79      * Tuning parameters for algorithms - Many of the List algorithms have
       
    80      * two implementations, one of which is appropriate for RandomAccess
       
    81      * lists, the other for "sequential."  Often, the random access variant
       
    82      * yields better performance on small sequential access lists.  The
       
    83      * tuning parameters below determine the cutoff point for what constitutes
       
    84      * a "small" sequential access list for each algorithm.  The values below
       
    85      * were empirically determined to work well for LinkedList. Hopefully
       
    86      * they should be reasonable for other sequential access List
       
    87      * implementations.  Those doing performance work on this code would
       
    88      * do well to validate the values of these parameters from time to time.
       
    89      * (The first word of each tuning parameter name is the algorithm to which
       
    90      * it applies.)
       
    91      */
       
    92     private static final int BINARYSEARCH_THRESHOLD   = 5000;
       
    93     private static final int REVERSE_THRESHOLD        =   18;
       
    94     private static final int SHUFFLE_THRESHOLD        =    5;
       
    95     private static final int FILL_THRESHOLD           =   25;
       
    96     private static final int ROTATE_THRESHOLD         =  100;
       
    97     private static final int COPY_THRESHOLD           =   10;
       
    98     private static final int REPLACEALL_THRESHOLD     =   11;
       
    99     private static final int INDEXOFSUBLIST_THRESHOLD =   35;
       
   100 
       
   101     /**
       
   102      * Sorts the specified list into ascending order, according to the
       
   103      * <i>natural ordering</i> of its elements.  All elements in the list must
       
   104      * implement the <tt>Comparable</tt> interface.  Furthermore, all elements
       
   105      * in the list must be <i>mutually comparable</i> (that is,
       
   106      * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
       
   107      * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
       
   108      *
       
   109      * This sort is guaranteed to be <i>stable</i>:  equal elements will
       
   110      * not be reordered as a result of the sort.<p>
       
   111      *
       
   112      * The specified list must be modifiable, but need not be resizable.<p>
       
   113      *
       
   114      * The sorting algorithm is a modified mergesort (in which the merge is
       
   115      * omitted if the highest element in the low sublist is less than the
       
   116      * lowest element in the high sublist).  This algorithm offers guaranteed
       
   117      * n log(n) performance.
       
   118      *
       
   119      * This implementation dumps the specified list into an array, sorts
       
   120      * the array, and iterates over the list resetting each element
       
   121      * from the corresponding position in the array.  This avoids the
       
   122      * n<sup>2</sup> log(n) performance that would result from attempting
       
   123      * to sort a linked list in place.
       
   124      *
       
   125      * @param  list the list to be sorted.
       
   126      * @throws ClassCastException if the list contains elements that are not
       
   127      *         <i>mutually comparable</i> (for example, strings and integers).
       
   128      * @throws UnsupportedOperationException if the specified list's
       
   129      *         list-iterator does not support the <tt>set</tt> operation.
       
   130      * @see Comparable
       
   131      */
       
   132     public static <T extends Comparable<? super T>> void sort(List<T> list) {
       
   133         Object[] a = list.toArray();
       
   134         Arrays.sort(a);
       
   135         ListIterator<T> i = list.listIterator();
       
   136         for (int j=0; j<a.length; j++) {
       
   137             i.next();
       
   138             i.set((T)a[j]);
       
   139         }
       
   140     }
       
   141 
       
   142     /**
       
   143      * Sorts the specified list according to the order induced by the
       
   144      * specified comparator.  All elements in the list must be <i>mutually
       
   145      * comparable</i> using the specified comparator (that is,
       
   146      * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
       
   147      * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
       
   148      *
       
   149      * This sort is guaranteed to be <i>stable</i>:  equal elements will
       
   150      * not be reordered as a result of the sort.<p>
       
   151      *
       
   152      * The sorting algorithm is a modified mergesort (in which the merge is
       
   153      * omitted if the highest element in the low sublist is less than the
       
   154      * lowest element in the high sublist).  This algorithm offers guaranteed
       
   155      * n log(n) performance.
       
   156      *
       
   157      * The specified list must be modifiable, but need not be resizable.
       
   158      * This implementation dumps the specified list into an array, sorts
       
   159      * the array, and iterates over the list resetting each element
       
   160      * from the corresponding position in the array.  This avoids the
       
   161      * n<sup>2</sup> log(n) performance that would result from attempting
       
   162      * to sort a linked list in place.
       
   163      *
       
   164      * @param  list the list to be sorted.
       
   165      * @param  c the comparator to determine the order of the list.  A
       
   166      *        <tt>null</tt> value indicates that the elements' <i>natural
       
   167      *        ordering</i> should be used.
       
   168      * @throws ClassCastException if the list contains elements that are not
       
   169      *         <i>mutually comparable</i> using the specified comparator.
       
   170      * @throws UnsupportedOperationException if the specified list's
       
   171      *         list-iterator does not support the <tt>set</tt> operation.
       
   172      * @see Comparator
       
   173      */
       
   174     public static <T> void sort(List<T> list, Comparator<? super T> c) {
       
   175         Object[] a = list.toArray();
       
   176         Arrays.sort(a, (Comparator)c);
       
   177         ListIterator i = list.listIterator();
       
   178         for (int j=0; j<a.length; j++) {
       
   179             i.next();
       
   180             i.set(a[j]);
       
   181         }
       
   182     }
       
   183 
       
   184 
       
   185     /**
       
   186      * Searches the specified list for the specified object using the binary
       
   187      * search algorithm.  The list must be sorted into ascending order
       
   188      * according to the {@linkplain Comparable natural ordering} of its
       
   189      * elements (as by the {@link #sort(List)} method) prior to making this
       
   190      * call.  If it is not sorted, the results are undefined.  If the list
       
   191      * contains multiple elements equal to the specified object, there is no
       
   192      * guarantee which one will be found.
       
   193      *
       
   194      * <p>This method runs in log(n) time for a "random access" list (which
       
   195      * provides near-constant-time positional access).  If the specified list
       
   196      * does not implement the {@link RandomAccess} interface and is large,
       
   197      * this method will do an iterator-based binary search that performs
       
   198      * O(n) link traversals and O(log n) element comparisons.
       
   199      *
       
   200      * @param  list the list to be searched.
       
   201      * @param  key the key to be searched for.
       
   202      * @return the index of the search key, if it is contained in the list;
       
   203      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
       
   204      *         <i>insertion point</i> is defined as the point at which the
       
   205      *         key would be inserted into the list: the index of the first
       
   206      *         element greater than the key, or <tt>list.size()</tt> if all
       
   207      *         elements in the list are less than the specified key.  Note
       
   208      *         that this guarantees that the return value will be &gt;= 0 if
       
   209      *         and only if the key is found.
       
   210      * @throws ClassCastException if the list contains elements that are not
       
   211      *         <i>mutually comparable</i> (for example, strings and
       
   212      *         integers), or the search key is not mutually comparable
       
   213      *         with the elements of the list.
       
   214      */
       
   215     public static <T>
       
   216     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
       
   217         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
       
   218             return Collections.indexedBinarySearch(list, key);
       
   219         else
       
   220             return Collections.iteratorBinarySearch(list, key);
       
   221     }
       
   222 
       
   223     private static <T>
       
   224     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
       
   225     {
       
   226         int low = 0;
       
   227         int high = list.size()-1;
       
   228 
       
   229         while (low <= high) {
       
   230             int mid = (low + high) >>> 1;
       
   231             Comparable<? super T> midVal = list.get(mid);
       
   232             int cmp = midVal.compareTo(key);
       
   233 
       
   234             if (cmp < 0)
       
   235                 low = mid + 1;
       
   236             else if (cmp > 0)
       
   237                 high = mid - 1;
       
   238             else
       
   239                 return mid; // key found
       
   240         }
       
   241         return -(low + 1);  // key not found
       
   242     }
       
   243 
       
   244     private static <T>
       
   245     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
       
   246     {
       
   247         int low = 0;
       
   248         int high = list.size()-1;
       
   249         ListIterator<? extends Comparable<? super T>> i = list.listIterator();
       
   250 
       
   251         while (low <= high) {
       
   252             int mid = (low + high) >>> 1;
       
   253             Comparable<? super T> midVal = get(i, mid);
       
   254             int cmp = midVal.compareTo(key);
       
   255 
       
   256             if (cmp < 0)
       
   257                 low = mid + 1;
       
   258             else if (cmp > 0)
       
   259                 high = mid - 1;
       
   260             else
       
   261                 return mid; // key found
       
   262         }
       
   263         return -(low + 1);  // key not found
       
   264     }
       
   265 
       
   266     /**
       
   267      * Gets the ith element from the given list by repositioning the specified
       
   268      * list listIterator.
       
   269      */
       
   270     private static <T> T get(ListIterator<? extends T> i, int index) {
       
   271         T obj = null;
       
   272         int pos = i.nextIndex();
       
   273         if (pos <= index) {
       
   274             do {
       
   275                 obj = i.next();
       
   276             } while (pos++ < index);
       
   277         } else {
       
   278             do {
       
   279                 obj = i.previous();
       
   280             } while (--pos > index);
       
   281         }
       
   282         return obj;
       
   283     }
       
   284 
       
   285     /**
       
   286      * Searches the specified list for the specified object using the binary
       
   287      * search algorithm.  The list must be sorted into ascending order
       
   288      * according to the specified comparator (as by the
       
   289      * {@link #sort(List, Comparator) sort(List, Comparator)}
       
   290      * method), prior to making this call.  If it is
       
   291      * not sorted, the results are undefined.  If the list contains multiple
       
   292      * elements equal to the specified object, there is no guarantee which one
       
   293      * will be found.
       
   294      *
       
   295      * <p>This method runs in log(n) time for a "random access" list (which
       
   296      * provides near-constant-time positional access).  If the specified list
       
   297      * does not implement the {@link RandomAccess} interface and is large,
       
   298      * this method will do an iterator-based binary search that performs
       
   299      * O(n) link traversals and O(log n) element comparisons.
       
   300      *
       
   301      * @param  list the list to be searched.
       
   302      * @param  key the key to be searched for.
       
   303      * @param  c the comparator by which the list is ordered.
       
   304      *         A <tt>null</tt> value indicates that the elements'
       
   305      *         {@linkplain Comparable natural ordering} should be used.
       
   306      * @return the index of the search key, if it is contained in the list;
       
   307      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
       
   308      *         <i>insertion point</i> is defined as the point at which the
       
   309      *         key would be inserted into the list: the index of the first
       
   310      *         element greater than the key, or <tt>list.size()</tt> if all
       
   311      *         elements in the list are less than the specified key.  Note
       
   312      *         that this guarantees that the return value will be &gt;= 0 if
       
   313      *         and only if the key is found.
       
   314      * @throws ClassCastException if the list contains elements that are not
       
   315      *         <i>mutually comparable</i> using the specified comparator,
       
   316      *         or the search key is not mutually comparable with the
       
   317      *         elements of the list using this comparator.
       
   318      */
       
   319     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
       
   320         if (c==null)
       
   321             return binarySearch((List) list, key);
       
   322 
       
   323         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
       
   324             return Collections.indexedBinarySearch(list, key, c);
       
   325         else
       
   326             return Collections.iteratorBinarySearch(list, key, c);
       
   327     }
       
   328 
       
   329     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
       
   330         int low = 0;
       
   331         int high = l.size()-1;
       
   332 
       
   333         while (low <= high) {
       
   334             int mid = (low + high) >>> 1;
       
   335             T midVal = l.get(mid);
       
   336             int cmp = c.compare(midVal, key);
       
   337 
       
   338             if (cmp < 0)
       
   339                 low = mid + 1;
       
   340             else if (cmp > 0)
       
   341                 high = mid - 1;
       
   342             else
       
   343                 return mid; // key found
       
   344         }
       
   345         return -(low + 1);  // key not found
       
   346     }
       
   347 
       
   348     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
       
   349         int low = 0;
       
   350         int high = l.size()-1;
       
   351         ListIterator<? extends T> i = l.listIterator();
       
   352 
       
   353         while (low <= high) {
       
   354             int mid = (low + high) >>> 1;
       
   355             T midVal = get(i, mid);
       
   356             int cmp = c.compare(midVal, key);
       
   357 
       
   358             if (cmp < 0)
       
   359                 low = mid + 1;
       
   360             else if (cmp > 0)
       
   361                 high = mid - 1;
       
   362             else
       
   363                 return mid; // key found
       
   364         }
       
   365         return -(low + 1);  // key not found
       
   366     }
       
   367 
       
   368     private interface SelfComparable extends Comparable<SelfComparable> {}
       
   369 
       
   370 
       
   371     /**
       
   372      * Reverses the order of the elements in the specified list.<p>
       
   373      *
       
   374      * This method runs in linear time.
       
   375      *
       
   376      * @param  list the list whose elements are to be reversed.
       
   377      * @throws UnsupportedOperationException if the specified list or
       
   378      *         its list-iterator does not support the <tt>set</tt> operation.
       
   379      */
       
   380     public static void reverse(List<?> list) {
       
   381         int size = list.size();
       
   382         if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
       
   383             for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
       
   384                 swap(list, i, j);
       
   385         } else {
       
   386             ListIterator fwd = list.listIterator();
       
   387             ListIterator rev = list.listIterator(size);
       
   388             for (int i=0, mid=list.size()>>1; i<mid; i++) {
       
   389                 Object tmp = fwd.next();
       
   390                 fwd.set(rev.previous());
       
   391                 rev.set(tmp);
       
   392             }
       
   393         }
       
   394     }
       
   395 
       
   396     /**
       
   397      * Randomly permutes the specified list using a default source of
       
   398      * randomness.  All permutations occur with approximately equal
       
   399      * likelihood.<p>
       
   400      *
       
   401      * The hedge "approximately" is used in the foregoing description because
       
   402      * default source of randomness is only approximately an unbiased source
       
   403      * of independently chosen bits. If it were a perfect source of randomly
       
   404      * chosen bits, then the algorithm would choose permutations with perfect
       
   405      * uniformity.<p>
       
   406      *
       
   407      * This implementation traverses the list backwards, from the last element
       
   408      * up to the second, repeatedly swapping a randomly selected element into
       
   409      * the "current position".  Elements are randomly selected from the
       
   410      * portion of the list that runs from the first element to the current
       
   411      * position, inclusive.<p>
       
   412      *
       
   413      * This method runs in linear time.  If the specified list does not
       
   414      * implement the {@link RandomAccess} interface and is large, this
       
   415      * implementation dumps the specified list into an array before shuffling
       
   416      * it, and dumps the shuffled array back into the list.  This avoids the
       
   417      * quadratic behavior that would result from shuffling a "sequential
       
   418      * access" list in place.
       
   419      *
       
   420      * @param  list the list to be shuffled.
       
   421      * @throws UnsupportedOperationException if the specified list or
       
   422      *         its list-iterator does not support the <tt>set</tt> operation.
       
   423      */
       
   424     public static void shuffle(List<?> list) {
       
   425         if (r == null) {
       
   426             r = new Random();
       
   427         }
       
   428         shuffle(list, r);
       
   429     }
       
   430     private static Random r;
       
   431 
       
   432     /**
       
   433      * Randomly permute the specified list using the specified source of
       
   434      * randomness.  All permutations occur with equal likelihood
       
   435      * assuming that the source of randomness is fair.<p>
       
   436      *
       
   437      * This implementation traverses the list backwards, from the last element
       
   438      * up to the second, repeatedly swapping a randomly selected element into
       
   439      * the "current position".  Elements are randomly selected from the
       
   440      * portion of the list that runs from the first element to the current
       
   441      * position, inclusive.<p>
       
   442      *
       
   443      * This method runs in linear time.  If the specified list does not
       
   444      * implement the {@link RandomAccess} interface and is large, this
       
   445      * implementation dumps the specified list into an array before shuffling
       
   446      * it, and dumps the shuffled array back into the list.  This avoids the
       
   447      * quadratic behavior that would result from shuffling a "sequential
       
   448      * access" list in place.
       
   449      *
       
   450      * @param  list the list to be shuffled.
       
   451      * @param  rnd the source of randomness to use to shuffle the list.
       
   452      * @throws UnsupportedOperationException if the specified list or its
       
   453      *         list-iterator does not support the <tt>set</tt> operation.
       
   454      */
       
   455     public static void shuffle(List<?> list, Random rnd) {
       
   456         int size = list.size();
       
   457         if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
       
   458             for (int i=size; i>1; i--)
       
   459                 swap(list, i-1, rnd.nextInt(i));
       
   460         } else {
       
   461             Object arr[] = list.toArray();
       
   462 
       
   463             // Shuffle array
       
   464             for (int i=size; i>1; i--)
       
   465                 swap(arr, i-1, rnd.nextInt(i));
       
   466 
       
   467             // Dump array back into list
       
   468             ListIterator it = list.listIterator();
       
   469             for (int i=0; i<arr.length; i++) {
       
   470                 it.next();
       
   471                 it.set(arr[i]);
       
   472             }
       
   473         }
       
   474     }
       
   475 
       
   476     /**
       
   477      * Swaps the elements at the specified positions in the specified list.
       
   478      * (If the specified positions are equal, invoking this method leaves
       
   479      * the list unchanged.)
       
   480      *
       
   481      * @param list The list in which to swap elements.
       
   482      * @param i the index of one element to be swapped.
       
   483      * @param j the index of the other element to be swapped.
       
   484      * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
       
   485      *         is out of range (i &lt; 0 || i &gt;= list.size()
       
   486      *         || j &lt; 0 || j &gt;= list.size()).
       
   487      * @since 1.4
       
   488      */
       
   489     public static void swap(List<?> list, int i, int j) {
       
   490         final List l = list;
       
   491         l.set(i, l.set(j, l.get(i)));
       
   492     }
       
   493 
       
   494     /**
       
   495      * Swaps the two specified elements in the specified array.
       
   496      */
       
   497     private static void swap(Object[] arr, int i, int j) {
       
   498         Object tmp = arr[i];
       
   499         arr[i] = arr[j];
       
   500         arr[j] = tmp;
       
   501     }
       
   502 
       
   503     /**
       
   504      * Replaces all of the elements of the specified list with the specified
       
   505      * element. <p>
       
   506      *
       
   507      * This method runs in linear time.
       
   508      *
       
   509      * @param  list the list to be filled with the specified element.
       
   510      * @param  obj The element with which to fill the specified list.
       
   511      * @throws UnsupportedOperationException if the specified list or its
       
   512      *         list-iterator does not support the <tt>set</tt> operation.
       
   513      */
       
   514     public static <T> void fill(List<? super T> list, T obj) {
       
   515         int size = list.size();
       
   516 
       
   517         if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
       
   518             for (int i=0; i<size; i++)
       
   519                 list.set(i, obj);
       
   520         } else {
       
   521             ListIterator<? super T> itr = list.listIterator();
       
   522             for (int i=0; i<size; i++) {
       
   523                 itr.next();
       
   524                 itr.set(obj);
       
   525             }
       
   526         }
       
   527     }
       
   528 
       
   529     /**
       
   530      * Copies all of the elements from one list into another.  After the
       
   531      * operation, the index of each copied element in the destination list
       
   532      * will be identical to its index in the source list.  The destination
       
   533      * list must be at least as long as the source list.  If it is longer, the
       
   534      * remaining elements in the destination list are unaffected. <p>
       
   535      *
       
   536      * This method runs in linear time.
       
   537      *
       
   538      * @param  dest The destination list.
       
   539      * @param  src The source list.
       
   540      * @throws IndexOutOfBoundsException if the destination list is too small
       
   541      *         to contain the entire source List.
       
   542      * @throws UnsupportedOperationException if the destination list's
       
   543      *         list-iterator does not support the <tt>set</tt> operation.
       
   544      */
       
   545     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
       
   546         int srcSize = src.size();
       
   547         if (srcSize > dest.size())
       
   548             throw new IndexOutOfBoundsException("Source does not fit in dest");
       
   549 
       
   550         if (srcSize < COPY_THRESHOLD ||
       
   551             (src instanceof RandomAccess && dest instanceof RandomAccess)) {
       
   552             for (int i=0; i<srcSize; i++)
       
   553                 dest.set(i, src.get(i));
       
   554         } else {
       
   555             ListIterator<? super T> di=dest.listIterator();
       
   556             ListIterator<? extends T> si=src.listIterator();
       
   557             for (int i=0; i<srcSize; i++) {
       
   558                 di.next();
       
   559                 di.set(si.next());
       
   560             }
       
   561         }
       
   562     }
       
   563 
       
   564     /**
       
   565      * Returns the minimum element of the given collection, according to the
       
   566      * <i>natural ordering</i> of its elements.  All elements in the
       
   567      * collection must implement the <tt>Comparable</tt> interface.
       
   568      * Furthermore, all elements in the collection must be <i>mutually
       
   569      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
       
   570      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
       
   571      * <tt>e2</tt> in the collection).<p>
       
   572      *
       
   573      * This method iterates over the entire collection, hence it requires
       
   574      * time proportional to the size of the collection.
       
   575      *
       
   576      * @param  coll the collection whose minimum element is to be determined.
       
   577      * @return the minimum element of the given collection, according
       
   578      *         to the <i>natural ordering</i> of its elements.
       
   579      * @throws ClassCastException if the collection contains elements that are
       
   580      *         not <i>mutually comparable</i> (for example, strings and
       
   581      *         integers).
       
   582      * @throws NoSuchElementException if the collection is empty.
       
   583      * @see Comparable
       
   584      */
       
   585     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
       
   586         Iterator<? extends T> i = coll.iterator();
       
   587         T candidate = i.next();
       
   588 
       
   589         while (i.hasNext()) {
       
   590             T next = i.next();
       
   591             if (next.compareTo(candidate) < 0)
       
   592                 candidate = next;
       
   593         }
       
   594         return candidate;
       
   595     }
       
   596 
       
   597     /**
       
   598      * Returns the minimum element of the given collection, according to the
       
   599      * order induced by the specified comparator.  All elements in the
       
   600      * collection must be <i>mutually comparable</i> by the specified
       
   601      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
       
   602      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
       
   603      * <tt>e2</tt> in the collection).<p>
       
   604      *
       
   605      * This method iterates over the entire collection, hence it requires
       
   606      * time proportional to the size of the collection.
       
   607      *
       
   608      * @param  coll the collection whose minimum element is to be determined.
       
   609      * @param  comp the comparator with which to determine the minimum element.
       
   610      *         A <tt>null</tt> value indicates that the elements' <i>natural
       
   611      *         ordering</i> should be used.
       
   612      * @return the minimum element of the given collection, according
       
   613      *         to the specified comparator.
       
   614      * @throws ClassCastException if the collection contains elements that are
       
   615      *         not <i>mutually comparable</i> using the specified comparator.
       
   616      * @throws NoSuchElementException if the collection is empty.
       
   617      * @see Comparable
       
   618      */
       
   619     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
       
   620         if (comp==null)
       
   621             return (T)min((Collection<SelfComparable>) (Collection) coll);
       
   622 
       
   623         Iterator<? extends T> i = coll.iterator();
       
   624         T candidate = i.next();
       
   625 
       
   626         while (i.hasNext()) {
       
   627             T next = i.next();
       
   628             if (comp.compare(next, candidate) < 0)
       
   629                 candidate = next;
       
   630         }
       
   631         return candidate;
       
   632     }
       
   633 
       
   634     /**
       
   635      * Returns the maximum element of the given collection, according to the
       
   636      * <i>natural ordering</i> of its elements.  All elements in the
       
   637      * collection must implement the <tt>Comparable</tt> interface.
       
   638      * Furthermore, all elements in the collection must be <i>mutually
       
   639      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
       
   640      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
       
   641      * <tt>e2</tt> in the collection).<p>
       
   642      *
       
   643      * This method iterates over the entire collection, hence it requires
       
   644      * time proportional to the size of the collection.
       
   645      *
       
   646      * @param  coll the collection whose maximum element is to be determined.
       
   647      * @return the maximum element of the given collection, according
       
   648      *         to the <i>natural ordering</i> of its elements.
       
   649      * @throws ClassCastException if the collection contains elements that are
       
   650      *         not <i>mutually comparable</i> (for example, strings and
       
   651      *         integers).
       
   652      * @throws NoSuchElementException if the collection is empty.
       
   653      * @see Comparable
       
   654      */
       
   655     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
       
   656         Iterator<? extends T> i = coll.iterator();
       
   657         T candidate = i.next();
       
   658 
       
   659         while (i.hasNext()) {
       
   660             T next = i.next();
       
   661             if (next.compareTo(candidate) > 0)
       
   662                 candidate = next;
       
   663         }
       
   664         return candidate;
       
   665     }
       
   666 
       
   667     /**
       
   668      * Returns the maximum element of the given collection, according to the
       
   669      * order induced by the specified comparator.  All elements in the
       
   670      * collection must be <i>mutually comparable</i> by the specified
       
   671      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
       
   672      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
       
   673      * <tt>e2</tt> in the collection).<p>
       
   674      *
       
   675      * This method iterates over the entire collection, hence it requires
       
   676      * time proportional to the size of the collection.
       
   677      *
       
   678      * @param  coll the collection whose maximum element is to be determined.
       
   679      * @param  comp the comparator with which to determine the maximum element.
       
   680      *         A <tt>null</tt> value indicates that the elements' <i>natural
       
   681      *        ordering</i> should be used.
       
   682      * @return the maximum element of the given collection, according
       
   683      *         to the specified comparator.
       
   684      * @throws ClassCastException if the collection contains elements that are
       
   685      *         not <i>mutually comparable</i> using the specified comparator.
       
   686      * @throws NoSuchElementException if the collection is empty.
       
   687      * @see Comparable
       
   688      */
       
   689     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
       
   690         if (comp==null)
       
   691             return (T)max((Collection<SelfComparable>) (Collection) coll);
       
   692 
       
   693         Iterator<? extends T> i = coll.iterator();
       
   694         T candidate = i.next();
       
   695 
       
   696         while (i.hasNext()) {
       
   697             T next = i.next();
       
   698             if (comp.compare(next, candidate) > 0)
       
   699                 candidate = next;
       
   700         }
       
   701         return candidate;
       
   702     }
       
   703 
       
   704     /**
       
   705      * Rotates the elements in the specified list by the specified distance.
       
   706      * After calling this method, the element at index <tt>i</tt> will be
       
   707      * the element previously at index <tt>(i - distance)</tt> mod
       
   708      * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
       
   709      * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
       
   710      * the size of the list.)
       
   711      *
       
   712      * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
       
   713      * After invoking <tt>Collections.rotate(list, 1)</tt> (or
       
   714      * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
       
   715      * <tt>[s, t, a, n, k]</tt>.
       
   716      *
       
   717      * <p>Note that this method can usefully be applied to sublists to
       
   718      * move one or more elements within a list while preserving the
       
   719      * order of the remaining elements.  For example, the following idiom
       
   720      * moves the element at index <tt>j</tt> forward to position
       
   721      * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
       
   722      * <pre>
       
   723      *     Collections.rotate(list.subList(j, k+1), -1);
       
   724      * </pre>
       
   725      * To make this concrete, suppose <tt>list</tt> comprises
       
   726      * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
       
   727      * (<tt>b</tt>) forward two positions, perform the following invocation:
       
   728      * <pre>
       
   729      *     Collections.rotate(l.subList(1, 4), -1);
       
   730      * </pre>
       
   731      * The resulting list is <tt>[a, c, d, b, e]</tt>.
       
   732      *
       
   733      * <p>To move more than one element forward, increase the absolute value
       
   734      * of the rotation distance.  To move elements backward, use a positive
       
   735      * shift distance.
       
   736      *
       
   737      * <p>If the specified list is small or implements the {@link
       
   738      * RandomAccess} interface, this implementation exchanges the first
       
   739      * element into the location it should go, and then repeatedly exchanges
       
   740      * the displaced element into the location it should go until a displaced
       
   741      * element is swapped into the first element.  If necessary, the process
       
   742      * is repeated on the second and successive elements, until the rotation
       
   743      * is complete.  If the specified list is large and doesn't implement the
       
   744      * <tt>RandomAccess</tt> interface, this implementation breaks the
       
   745      * list into two sublist views around index <tt>-distance mod size</tt>.
       
   746      * Then the {@link #reverse(List)} method is invoked on each sublist view,
       
   747      * and finally it is invoked on the entire list.  For a more complete
       
   748      * description of both algorithms, see Section 2.3 of Jon Bentley's
       
   749      * <i>Programming Pearls</i> (Addison-Wesley, 1986).
       
   750      *
       
   751      * @param list the list to be rotated.
       
   752      * @param distance the distance to rotate the list.  There are no
       
   753      *        constraints on this value; it may be zero, negative, or
       
   754      *        greater than <tt>list.size()</tt>.
       
   755      * @throws UnsupportedOperationException if the specified list or
       
   756      *         its list-iterator does not support the <tt>set</tt> operation.
       
   757      * @since 1.4
       
   758      */
       
   759     public static void rotate(List<?> list, int distance) {
       
   760         if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
       
   761             rotate1(list, distance);
       
   762         else
       
   763             rotate2(list, distance);
       
   764     }
       
   765 
       
   766     private static <T> void rotate1(List<T> list, int distance) {
       
   767         int size = list.size();
       
   768         if (size == 0)
       
   769             return;
       
   770         distance = distance % size;
       
   771         if (distance < 0)
       
   772             distance += size;
       
   773         if (distance == 0)
       
   774             return;
       
   775 
       
   776         for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
       
   777             T displaced = list.get(cycleStart);
       
   778             int i = cycleStart;
       
   779             do {
       
   780                 i += distance;
       
   781                 if (i >= size)
       
   782                     i -= size;
       
   783                 displaced = list.set(i, displaced);
       
   784                 nMoved ++;
       
   785             } while(i != cycleStart);
       
   786         }
       
   787     }
       
   788 
       
   789     private static void rotate2(List<?> list, int distance) {
       
   790         int size = list.size();
       
   791         if (size == 0)
       
   792             return;
       
   793         int mid =  -distance % size;
       
   794         if (mid < 0)
       
   795             mid += size;
       
   796         if (mid == 0)
       
   797             return;
       
   798 
       
   799         reverse(list.subList(0, mid));
       
   800         reverse(list.subList(mid, size));
       
   801         reverse(list);
       
   802     }
       
   803 
       
   804     /**
       
   805      * Replaces all occurrences of one specified value in a list with another.
       
   806      * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
       
   807      * in <tt>list</tt> such that
       
   808      * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
       
   809      * (This method has no effect on the size of the list.)
       
   810      *
       
   811      * @param list the list in which replacement is to occur.
       
   812      * @param oldVal the old value to be replaced.
       
   813      * @param newVal the new value with which <tt>oldVal</tt> is to be
       
   814      *        replaced.
       
   815      * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
       
   816      *         <tt>e</tt> such that
       
   817      *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
       
   818      * @throws UnsupportedOperationException if the specified list or
       
   819      *         its list-iterator does not support the <tt>set</tt> operation.
       
   820      * @since  1.4
       
   821      */
       
   822     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
       
   823         boolean result = false;
       
   824         int size = list.size();
       
   825         if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
       
   826             if (oldVal==null) {
       
   827                 for (int i=0; i<size; i++) {
       
   828                     if (list.get(i)==null) {
       
   829                         list.set(i, newVal);
       
   830                         result = true;
       
   831                     }
       
   832                 }
       
   833             } else {
       
   834                 for (int i=0; i<size; i++) {
       
   835                     if (oldVal.equals(list.get(i))) {
       
   836                         list.set(i, newVal);
       
   837                         result = true;
       
   838                     }
       
   839                 }
       
   840             }
       
   841         } else {
       
   842             ListIterator<T> itr=list.listIterator();
       
   843             if (oldVal==null) {
       
   844                 for (int i=0; i<size; i++) {
       
   845                     if (itr.next()==null) {
       
   846                         itr.set(newVal);
       
   847                         result = true;
       
   848                     }
       
   849                 }
       
   850             } else {
       
   851                 for (int i=0; i<size; i++) {
       
   852                     if (oldVal.equals(itr.next())) {
       
   853                         itr.set(newVal);
       
   854                         result = true;
       
   855                     }
       
   856                 }
       
   857             }
       
   858         }
       
   859         return result;
       
   860     }
       
   861 
       
   862     /**
       
   863      * Returns the starting position of the first occurrence of the specified
       
   864      * target list within the specified source list, or -1 if there is no
       
   865      * such occurrence.  More formally, returns the lowest index <tt>i</tt>
       
   866      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
       
   867      * or -1 if there is no such index.  (Returns -1 if
       
   868      * <tt>target.size() > source.size()</tt>.)
       
   869      *
       
   870      * <p>This implementation uses the "brute force" technique of scanning
       
   871      * over the source list, looking for a match with the target at each
       
   872      * location in turn.
       
   873      *
       
   874      * @param source the list in which to search for the first occurrence
       
   875      *        of <tt>target</tt>.
       
   876      * @param target the list to search for as a subList of <tt>source</tt>.
       
   877      * @return the starting position of the first occurrence of the specified
       
   878      *         target list within the specified source list, or -1 if there
       
   879      *         is no such occurrence.
       
   880      * @since  1.4
       
   881      */
       
   882     public static int indexOfSubList(List<?> source, List<?> target) {
       
   883         int sourceSize = source.size();
       
   884         int targetSize = target.size();
       
   885         int maxCandidate = sourceSize - targetSize;
       
   886 
       
   887         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
       
   888             (source instanceof RandomAccess&&target instanceof RandomAccess)) {
       
   889         nextCand:
       
   890             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
       
   891                 for (int i=0, j=candidate; i<targetSize; i++, j++)
       
   892                     if (!eq(target.get(i), source.get(j)))
       
   893                         continue nextCand;  // Element mismatch, try next cand
       
   894                 return candidate;  // All elements of candidate matched target
       
   895             }
       
   896         } else {  // Iterator version of above algorithm
       
   897             ListIterator<?> si = source.listIterator();
       
   898         nextCand:
       
   899             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
       
   900                 ListIterator<?> ti = target.listIterator();
       
   901                 for (int i=0; i<targetSize; i++) {
       
   902                     if (!eq(ti.next(), si.next())) {
       
   903                         // Back up source iterator to next candidate
       
   904                         for (int j=0; j<i; j++)
       
   905                             si.previous();
       
   906                         continue nextCand;
       
   907                     }
       
   908                 }
       
   909                 return candidate;
       
   910             }
       
   911         }
       
   912         return -1;  // No candidate matched the target
       
   913     }
       
   914 
       
   915     /**
       
   916      * Returns the starting position of the last occurrence of the specified
       
   917      * target list within the specified source list, or -1 if there is no such
       
   918      * occurrence.  More formally, returns the highest index <tt>i</tt>
       
   919      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
       
   920      * or -1 if there is no such index.  (Returns -1 if
       
   921      * <tt>target.size() > source.size()</tt>.)
       
   922      *
       
   923      * <p>This implementation uses the "brute force" technique of iterating
       
   924      * over the source list, looking for a match with the target at each
       
   925      * location in turn.
       
   926      *
       
   927      * @param source the list in which to search for the last occurrence
       
   928      *        of <tt>target</tt>.
       
   929      * @param target the list to search for as a subList of <tt>source</tt>.
       
   930      * @return the starting position of the last occurrence of the specified
       
   931      *         target list within the specified source list, or -1 if there
       
   932      *         is no such occurrence.
       
   933      * @since  1.4
       
   934      */
       
   935     public static int lastIndexOfSubList(List<?> source, List<?> target) {
       
   936         int sourceSize = source.size();
       
   937         int targetSize = target.size();
       
   938         int maxCandidate = sourceSize - targetSize;
       
   939 
       
   940         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
       
   941             source instanceof RandomAccess) {   // Index access version
       
   942         nextCand:
       
   943             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
       
   944                 for (int i=0, j=candidate; i<targetSize; i++, j++)
       
   945                     if (!eq(target.get(i), source.get(j)))
       
   946                         continue nextCand;  // Element mismatch, try next cand
       
   947                 return candidate;  // All elements of candidate matched target
       
   948             }
       
   949         } else {  // Iterator version of above algorithm
       
   950             if (maxCandidate < 0)
       
   951                 return -1;
       
   952             ListIterator<?> si = source.listIterator(maxCandidate);
       
   953         nextCand:
       
   954             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
       
   955                 ListIterator<?> ti = target.listIterator();
       
   956                 for (int i=0; i<targetSize; i++) {
       
   957                     if (!eq(ti.next(), si.next())) {
       
   958                         if (candidate != 0) {
       
   959                             // Back up source iterator to next candidate
       
   960                             for (int j=0; j<=i+1; j++)
       
   961                                 si.previous();
       
   962                         }
       
   963                         continue nextCand;
       
   964                     }
       
   965                 }
       
   966                 return candidate;
       
   967             }
       
   968         }
       
   969         return -1;  // No candidate matched the target
       
   970     }
       
   971 
       
   972 
       
   973     // Unmodifiable Wrappers
       
   974 
       
   975     /**
       
   976      * Returns an unmodifiable view of the specified collection.  This method
       
   977      * allows modules to provide users with "read-only" access to internal
       
   978      * collections.  Query operations on the returned collection "read through"
       
   979      * to the specified collection, and attempts to modify the returned
       
   980      * collection, whether direct or via its iterator, result in an
       
   981      * <tt>UnsupportedOperationException</tt>.<p>
       
   982      *
       
   983      * The returned collection does <i>not</i> pass the hashCode and equals
       
   984      * operations through to the backing collection, but relies on
       
   985      * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
       
   986      * is necessary to preserve the contracts of these operations in the case
       
   987      * that the backing collection is a set or a list.<p>
       
   988      *
       
   989      * The returned collection will be serializable if the specified collection
       
   990      * is serializable.
       
   991      *
       
   992      * @param  c the collection for which an unmodifiable view is to be
       
   993      *         returned.
       
   994      * @return an unmodifiable view of the specified collection.
       
   995      */
       
   996     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
       
   997         return new UnmodifiableCollection<T>(c);
       
   998     }
       
   999 
       
  1000     /**
       
  1001      * @serial include
       
  1002      */
       
  1003     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
       
  1004         private static final long serialVersionUID = 1820017752578914078L;
       
  1005 
       
  1006         final Collection<? extends E> c;
       
  1007 
       
  1008         UnmodifiableCollection(Collection<? extends E> c) {
       
  1009             if (c==null)
       
  1010                 throw new NullPointerException();
       
  1011             this.c = c;
       
  1012         }
       
  1013 
       
  1014         public int size()                   {return c.size();}
       
  1015         public boolean isEmpty()            {return c.isEmpty();}
       
  1016         public boolean contains(Object o)   {return c.contains(o);}
       
  1017         public Object[] toArray()           {return c.toArray();}
       
  1018         public <T> T[] toArray(T[] a)       {return c.toArray(a);}
       
  1019         public String toString()            {return c.toString();}
       
  1020 
       
  1021         public Iterator<E> iterator() {
       
  1022             return new Iterator<E>() {
       
  1023                 private final Iterator<? extends E> i = c.iterator();
       
  1024 
       
  1025                 public boolean hasNext() {return i.hasNext();}
       
  1026                 public E next()          {return i.next();}
       
  1027                 public void remove() {
       
  1028                     throw new UnsupportedOperationException();
       
  1029                 }
       
  1030             };
       
  1031         }
       
  1032 
       
  1033         public boolean add(E e) {
       
  1034             throw new UnsupportedOperationException();
       
  1035         }
       
  1036         public boolean remove(Object o) {
       
  1037             throw new UnsupportedOperationException();
       
  1038         }
       
  1039 
       
  1040         public boolean containsAll(Collection<?> coll) {
       
  1041             return c.containsAll(coll);
       
  1042         }
       
  1043         public boolean addAll(Collection<? extends E> coll) {
       
  1044             throw new UnsupportedOperationException();
       
  1045         }
       
  1046         public boolean removeAll(Collection<?> coll) {
       
  1047             throw new UnsupportedOperationException();
       
  1048         }
       
  1049         public boolean retainAll(Collection<?> coll) {
       
  1050             throw new UnsupportedOperationException();
       
  1051         }
       
  1052         public void clear() {
       
  1053             throw new UnsupportedOperationException();
       
  1054         }
       
  1055     }
       
  1056 
       
  1057     /**
       
  1058      * Returns an unmodifiable view of the specified set.  This method allows
       
  1059      * modules to provide users with "read-only" access to internal sets.
       
  1060      * Query operations on the returned set "read through" to the specified
       
  1061      * set, and attempts to modify the returned set, whether direct or via its
       
  1062      * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
       
  1063      *
       
  1064      * The returned set will be serializable if the specified set
       
  1065      * is serializable.
       
  1066      *
       
  1067      * @param  s the set for which an unmodifiable view is to be returned.
       
  1068      * @return an unmodifiable view of the specified set.
       
  1069      */
       
  1070     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
       
  1071         return new UnmodifiableSet<T>(s);
       
  1072     }
       
  1073 
       
  1074     /**
       
  1075      * @serial include
       
  1076      */
       
  1077     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
       
  1078                                  implements Set<E>, Serializable {
       
  1079         private static final long serialVersionUID = -9215047833775013803L;
       
  1080 
       
  1081         UnmodifiableSet(Set<? extends E> s)     {super(s);}
       
  1082         public boolean equals(Object o) {return o == this || c.equals(o);}
       
  1083         public int hashCode()           {return c.hashCode();}
       
  1084     }
       
  1085 
       
  1086     /**
       
  1087      * Returns an unmodifiable view of the specified sorted set.  This method
       
  1088      * allows modules to provide users with "read-only" access to internal
       
  1089      * sorted sets.  Query operations on the returned sorted set "read
       
  1090      * through" to the specified sorted set.  Attempts to modify the returned
       
  1091      * sorted set, whether direct, via its iterator, or via its
       
  1092      * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
       
  1093      * an <tt>UnsupportedOperationException</tt>.<p>
       
  1094      *
       
  1095      * The returned sorted set will be serializable if the specified sorted set
       
  1096      * is serializable.
       
  1097      *
       
  1098      * @param s the sorted set for which an unmodifiable view is to be
       
  1099      *        returned.
       
  1100      * @return an unmodifiable view of the specified sorted set.
       
  1101      */
       
  1102     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
       
  1103         return new UnmodifiableSortedSet<T>(s);
       
  1104     }
       
  1105 
       
  1106     /**
       
  1107      * @serial include
       
  1108      */
       
  1109     static class UnmodifiableSortedSet<E>
       
  1110                              extends UnmodifiableSet<E>
       
  1111                              implements SortedSet<E>, Serializable {
       
  1112         private static final long serialVersionUID = -4929149591599911165L;
       
  1113         private final SortedSet<E> ss;
       
  1114 
       
  1115         UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
       
  1116 
       
  1117         public Comparator<? super E> comparator() {return ss.comparator();}
       
  1118 
       
  1119         public SortedSet<E> subSet(E fromElement, E toElement) {
       
  1120             return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
       
  1121         }
       
  1122         public SortedSet<E> headSet(E toElement) {
       
  1123             return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
       
  1124         }
       
  1125         public SortedSet<E> tailSet(E fromElement) {
       
  1126             return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
       
  1127         }
       
  1128 
       
  1129         public E first()                   {return ss.first();}
       
  1130         public E last()                    {return ss.last();}
       
  1131     }
       
  1132 
       
  1133     /**
       
  1134      * Returns an unmodifiable view of the specified list.  This method allows
       
  1135      * modules to provide users with "read-only" access to internal
       
  1136      * lists.  Query operations on the returned list "read through" to the
       
  1137      * specified list, and attempts to modify the returned list, whether
       
  1138      * direct or via its iterator, result in an
       
  1139      * <tt>UnsupportedOperationException</tt>.<p>
       
  1140      *
       
  1141      * The returned list will be serializable if the specified list
       
  1142      * is serializable. Similarly, the returned list will implement
       
  1143      * {@link RandomAccess} if the specified list does.
       
  1144      *
       
  1145      * @param  list the list for which an unmodifiable view is to be returned.
       
  1146      * @return an unmodifiable view of the specified list.
       
  1147      */
       
  1148     public static <T> List<T> unmodifiableList(List<? extends T> list) {
       
  1149         return (list instanceof RandomAccess ?
       
  1150                 new UnmodifiableRandomAccessList<T>(list) :
       
  1151                 new UnmodifiableList<T>(list));
       
  1152     }
       
  1153 
       
  1154     /**
       
  1155      * @serial include
       
  1156      */
       
  1157     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
       
  1158                                   implements List<E> {
       
  1159         private static final long serialVersionUID = -283967356065247728L;
       
  1160         final List<? extends E> list;
       
  1161 
       
  1162         UnmodifiableList(List<? extends E> list) {
       
  1163             super(list);
       
  1164             this.list = list;
       
  1165         }
       
  1166 
       
  1167         public boolean equals(Object o) {return o == this || list.equals(o);}
       
  1168         public int hashCode()           {return list.hashCode();}
       
  1169 
       
  1170         public E get(int index) {return list.get(index);}
       
  1171         public E set(int index, E element) {
       
  1172             throw new UnsupportedOperationException();
       
  1173         }
       
  1174         public void add(int index, E element) {
       
  1175             throw new UnsupportedOperationException();
       
  1176         }
       
  1177         public E remove(int index) {
       
  1178             throw new UnsupportedOperationException();
       
  1179         }
       
  1180         public int indexOf(Object o)            {return list.indexOf(o);}
       
  1181         public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
       
  1182         public boolean addAll(int index, Collection<? extends E> c) {
       
  1183             throw new UnsupportedOperationException();
       
  1184         }
       
  1185         public ListIterator<E> listIterator()   {return listIterator(0);}
       
  1186 
       
  1187         public ListIterator<E> listIterator(final int index) {
       
  1188             return new ListIterator<E>() {
       
  1189                 private final ListIterator<? extends E> i
       
  1190                     = list.listIterator(index);
       
  1191 
       
  1192                 public boolean hasNext()     {return i.hasNext();}
       
  1193                 public E next()              {return i.next();}
       
  1194                 public boolean hasPrevious() {return i.hasPrevious();}
       
  1195                 public E previous()          {return i.previous();}
       
  1196                 public int nextIndex()       {return i.nextIndex();}
       
  1197                 public int previousIndex()   {return i.previousIndex();}
       
  1198 
       
  1199                 public void remove() {
       
  1200                     throw new UnsupportedOperationException();
       
  1201                 }
       
  1202                 public void set(E e) {
       
  1203                     throw new UnsupportedOperationException();
       
  1204                 }
       
  1205                 public void add(E e) {
       
  1206                     throw new UnsupportedOperationException();
       
  1207                 }
       
  1208             };
       
  1209         }
       
  1210 
       
  1211         public List<E> subList(int fromIndex, int toIndex) {
       
  1212             return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
       
  1213         }
       
  1214 
       
  1215         /**
       
  1216          * UnmodifiableRandomAccessList instances are serialized as
       
  1217          * UnmodifiableList instances to allow them to be deserialized
       
  1218          * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
       
  1219          * This method inverts the transformation.  As a beneficial
       
  1220          * side-effect, it also grafts the RandomAccess marker onto
       
  1221          * UnmodifiableList instances that were serialized in pre-1.4 JREs.
       
  1222          *
       
  1223          * Note: Unfortunately, UnmodifiableRandomAccessList instances
       
  1224          * serialized in 1.4.1 and deserialized in 1.4 will become
       
  1225          * UnmodifiableList instances, as this method was missing in 1.4.
       
  1226          */
       
  1227         private Object readResolve() {
       
  1228             return (list instanceof RandomAccess
       
  1229                     ? new UnmodifiableRandomAccessList<E>(list)
       
  1230                     : this);
       
  1231         }
       
  1232     }
       
  1233 
       
  1234     /**
       
  1235      * @serial include
       
  1236      */
       
  1237     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
       
  1238                                               implements RandomAccess
       
  1239     {
       
  1240         UnmodifiableRandomAccessList(List<? extends E> list) {
       
  1241             super(list);
       
  1242         }
       
  1243 
       
  1244         public List<E> subList(int fromIndex, int toIndex) {
       
  1245             return new UnmodifiableRandomAccessList<E>(
       
  1246                 list.subList(fromIndex, toIndex));
       
  1247         }
       
  1248 
       
  1249         private static final long serialVersionUID = -2542308836966382001L;
       
  1250 
       
  1251         /**
       
  1252          * Allows instances to be deserialized in pre-1.4 JREs (which do
       
  1253          * not have UnmodifiableRandomAccessList).  UnmodifiableList has
       
  1254          * a readResolve method that inverts this transformation upon
       
  1255          * deserialization.
       
  1256          */
       
  1257         private Object writeReplace() {
       
  1258             return new UnmodifiableList<E>(list);
       
  1259         }
       
  1260     }
       
  1261 
       
  1262     /**
       
  1263      * Returns an unmodifiable view of the specified map.  This method
       
  1264      * allows modules to provide users with "read-only" access to internal
       
  1265      * maps.  Query operations on the returned map "read through"
       
  1266      * to the specified map, and attempts to modify the returned
       
  1267      * map, whether direct or via its collection views, result in an
       
  1268      * <tt>UnsupportedOperationException</tt>.<p>
       
  1269      *
       
  1270      * The returned map will be serializable if the specified map
       
  1271      * is serializable.
       
  1272      *
       
  1273      * @param  m the map for which an unmodifiable view is to be returned.
       
  1274      * @return an unmodifiable view of the specified map.
       
  1275      */
       
  1276     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
       
  1277         return new UnmodifiableMap<K,V>(m);
       
  1278     }
       
  1279 
       
  1280     /**
       
  1281      * @serial include
       
  1282      */
       
  1283     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
       
  1284         private static final long serialVersionUID = -1034234728574286014L;
       
  1285 
       
  1286         private final Map<? extends K, ? extends V> m;
       
  1287 
       
  1288         UnmodifiableMap(Map<? extends K, ? extends V> m) {
       
  1289             if (m==null)
       
  1290                 throw new NullPointerException();
       
  1291             this.m = m;
       
  1292         }
       
  1293 
       
  1294         public int size()                        {return m.size();}
       
  1295         public boolean isEmpty()                 {return m.isEmpty();}
       
  1296         public boolean containsKey(Object key)   {return m.containsKey(key);}
       
  1297         public boolean containsValue(Object val) {return m.containsValue(val);}
       
  1298         public V get(Object key)                 {return m.get(key);}
       
  1299 
       
  1300         public V put(K key, V value) {
       
  1301             throw new UnsupportedOperationException();
       
  1302         }
       
  1303         public V remove(Object key) {
       
  1304             throw new UnsupportedOperationException();
       
  1305         }
       
  1306         public void putAll(Map<? extends K, ? extends V> m) {
       
  1307             throw new UnsupportedOperationException();
       
  1308         }
       
  1309         public void clear() {
       
  1310             throw new UnsupportedOperationException();
       
  1311         }
       
  1312 
       
  1313         private transient Set<K> keySet = null;
       
  1314         private transient Set<Map.Entry<K,V>> entrySet = null;
       
  1315         private transient Collection<V> values = null;
       
  1316 
       
  1317         public Set<K> keySet() {
       
  1318             if (keySet==null)
       
  1319                 keySet = unmodifiableSet(m.keySet());
       
  1320             return keySet;
       
  1321         }
       
  1322 
       
  1323         public Set<Map.Entry<K,V>> entrySet() {
       
  1324             if (entrySet==null)
       
  1325                 entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
       
  1326             return entrySet;
       
  1327         }
       
  1328 
       
  1329         public Collection<V> values() {
       
  1330             if (values==null)
       
  1331                 values = unmodifiableCollection(m.values());
       
  1332             return values;
       
  1333         }
       
  1334 
       
  1335         public boolean equals(Object o) {return o == this || m.equals(o);}
       
  1336         public int hashCode()           {return m.hashCode();}
       
  1337         public String toString()        {return m.toString();}
       
  1338 
       
  1339         /**
       
  1340          * We need this class in addition to UnmodifiableSet as
       
  1341          * Map.Entries themselves permit modification of the backing Map
       
  1342          * via their setValue operation.  This class is subtle: there are
       
  1343          * many possible attacks that must be thwarted.
       
  1344          *
       
  1345          * @serial include
       
  1346          */
       
  1347         static class UnmodifiableEntrySet<K,V>
       
  1348             extends UnmodifiableSet<Map.Entry<K,V>> {
       
  1349             private static final long serialVersionUID = 7854390611657943733L;
       
  1350 
       
  1351             UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
       
  1352                 super((Set)s);
       
  1353             }
       
  1354             public Iterator<Map.Entry<K,V>> iterator() {
       
  1355                 return new Iterator<Map.Entry<K,V>>() {
       
  1356                     private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
       
  1357 
       
  1358                     public boolean hasNext() {
       
  1359                         return i.hasNext();
       
  1360                     }
       
  1361                     public Map.Entry<K,V> next() {
       
  1362                         return new UnmodifiableEntry<K,V>(i.next());
       
  1363                     }
       
  1364                     public void remove() {
       
  1365                         throw new UnsupportedOperationException();
       
  1366                     }
       
  1367                 };
       
  1368             }
       
  1369 
       
  1370             public Object[] toArray() {
       
  1371                 Object[] a = c.toArray();
       
  1372                 for (int i=0; i<a.length; i++)
       
  1373                     a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
       
  1374                 return a;
       
  1375             }
       
  1376 
       
  1377             public <T> T[] toArray(T[] a) {
       
  1378                 // We don't pass a to c.toArray, to avoid window of
       
  1379                 // vulnerability wherein an unscrupulous multithreaded client
       
  1380                 // could get his hands on raw (unwrapped) Entries from c.
       
  1381                 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
       
  1382 
       
  1383                 for (int i=0; i<arr.length; i++)
       
  1384                     arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
       
  1385 
       
  1386                 if (arr.length > a.length)
       
  1387                     return (T[])arr;
       
  1388 
       
  1389                 System.arraycopy(arr, 0, a, 0, arr.length);
       
  1390                 if (a.length > arr.length)
       
  1391                     a[arr.length] = null;
       
  1392                 return a;
       
  1393             }
       
  1394 
       
  1395             /**
       
  1396              * This method is overridden to protect the backing set against
       
  1397              * an object with a nefarious equals function that senses
       
  1398              * that the equality-candidate is Map.Entry and calls its
       
  1399              * setValue method.
       
  1400              */
       
  1401             public boolean contains(Object o) {
       
  1402                 if (!(o instanceof Map.Entry))
       
  1403                     return false;
       
  1404                 return c.contains(
       
  1405                     new UnmodifiableEntry<Object,Object>((Map.Entry<?,?>) o));
       
  1406             }
       
  1407 
       
  1408             /**
       
  1409              * The next two methods are overridden to protect against
       
  1410              * an unscrupulous List whose contains(Object o) method senses
       
  1411              * when o is a Map.Entry, and calls o.setValue.
       
  1412              */
       
  1413             public boolean containsAll(Collection<?> coll) {
       
  1414                 Iterator<?> e = coll.iterator();
       
  1415                 while (e.hasNext())
       
  1416                     if (!contains(e.next())) // Invokes safe contains() above
       
  1417                         return false;
       
  1418                 return true;
       
  1419             }
       
  1420             public boolean equals(Object o) {
       
  1421                 if (o == this)
       
  1422                     return true;
       
  1423 
       
  1424                 if (!(o instanceof Set))
       
  1425                     return false;
       
  1426                 Set s = (Set) o;
       
  1427                 if (s.size() != c.size())
       
  1428                     return false;
       
  1429                 return containsAll(s); // Invokes safe containsAll() above
       
  1430             }
       
  1431 
       
  1432             /**
       
  1433              * This "wrapper class" serves two purposes: it prevents
       
  1434              * the client from modifying the backing Map, by short-circuiting
       
  1435              * the setValue method, and it protects the backing Map against
       
  1436              * an ill-behaved Map.Entry that attempts to modify another
       
  1437              * Map Entry when asked to perform an equality check.
       
  1438              */
       
  1439             private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
       
  1440                 private Map.Entry<? extends K, ? extends V> e;
       
  1441 
       
  1442                 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
       
  1443 
       
  1444                 public K getKey()         {return e.getKey();}
       
  1445                 public V getValue()  {return e.getValue();}
       
  1446                 public V setValue(V value) {
       
  1447                     throw new UnsupportedOperationException();
       
  1448                 }
       
  1449                 public int hashCode()     {return e.hashCode();}
       
  1450                 public boolean equals(Object o) {
       
  1451                     if (!(o instanceof Map.Entry))
       
  1452                         return false;
       
  1453                     Map.Entry t = (Map.Entry)o;
       
  1454                     return eq(e.getKey(),   t.getKey()) &&
       
  1455                            eq(e.getValue(), t.getValue());
       
  1456                 }
       
  1457                 public String toString()  {return e.toString();}
       
  1458             }
       
  1459         }
       
  1460     }
       
  1461 
       
  1462     /**
       
  1463      * Returns an unmodifiable view of the specified sorted map.  This method
       
  1464      * allows modules to provide users with "read-only" access to internal
       
  1465      * sorted maps.  Query operations on the returned sorted map "read through"
       
  1466      * to the specified sorted map.  Attempts to modify the returned
       
  1467      * sorted map, whether direct, via its collection views, or via its
       
  1468      * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
       
  1469      * an <tt>UnsupportedOperationException</tt>.<p>
       
  1470      *
       
  1471      * The returned sorted map will be serializable if the specified sorted map
       
  1472      * is serializable.
       
  1473      *
       
  1474      * @param m the sorted map for which an unmodifiable view is to be
       
  1475      *        returned.
       
  1476      * @return an unmodifiable view of the specified sorted map.
       
  1477      */
       
  1478     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
       
  1479         return new UnmodifiableSortedMap<K,V>(m);
       
  1480     }
       
  1481 
       
  1482     /**
       
  1483      * @serial include
       
  1484      */
       
  1485     static class UnmodifiableSortedMap<K,V>
       
  1486           extends UnmodifiableMap<K,V>
       
  1487           implements SortedMap<K,V>, Serializable {
       
  1488         private static final long serialVersionUID = -8806743815996713206L;
       
  1489 
       
  1490         private final SortedMap<K, ? extends V> sm;
       
  1491 
       
  1492         UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
       
  1493 
       
  1494         public Comparator<? super K> comparator() {return sm.comparator();}
       
  1495 
       
  1496         public SortedMap<K,V> subMap(K fromKey, K toKey) {
       
  1497             return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
       
  1498         }
       
  1499         public SortedMap<K,V> headMap(K toKey) {
       
  1500             return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
       
  1501         }
       
  1502         public SortedMap<K,V> tailMap(K fromKey) {
       
  1503             return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
       
  1504         }
       
  1505 
       
  1506         public K firstKey()           {return sm.firstKey();}
       
  1507         public K lastKey()            {return sm.lastKey();}
       
  1508     }
       
  1509 
       
  1510 
       
  1511     // Synch Wrappers
       
  1512 
       
  1513     /**
       
  1514      * Returns a synchronized (thread-safe) collection backed by the specified
       
  1515      * collection.  In order to guarantee serial access, it is critical that
       
  1516      * <strong>all</strong> access to the backing collection is accomplished
       
  1517      * through the returned collection.<p>
       
  1518      *
       
  1519      * It is imperative that the user manually synchronize on the returned
       
  1520      * collection when iterating over it:
       
  1521      * <pre>
       
  1522      *  Collection c = Collections.synchronizedCollection(myCollection);
       
  1523      *     ...
       
  1524      *  synchronized(c) {
       
  1525      *      Iterator i = c.iterator(); // Must be in the synchronized block
       
  1526      *      while (i.hasNext())
       
  1527      *         foo(i.next());
       
  1528      *  }
       
  1529      * </pre>
       
  1530      * Failure to follow this advice may result in non-deterministic behavior.
       
  1531      *
       
  1532      * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
       
  1533      * and <tt>equals</tt> operations through to the backing collection, but
       
  1534      * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
       
  1535      * necessary to preserve the contracts of these operations in the case
       
  1536      * that the backing collection is a set or a list.<p>
       
  1537      *
       
  1538      * The returned collection will be serializable if the specified collection
       
  1539      * is serializable.
       
  1540      *
       
  1541      * @param  c the collection to be "wrapped" in a synchronized collection.
       
  1542      * @return a synchronized view of the specified collection.
       
  1543      */
       
  1544     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
       
  1545         return new SynchronizedCollection<T>(c);
       
  1546     }
       
  1547 
       
  1548     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
       
  1549         return new SynchronizedCollection<T>(c, mutex);
       
  1550     }
       
  1551 
       
  1552     /**
       
  1553      * @serial include
       
  1554      */
       
  1555     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
       
  1556         private static final long serialVersionUID = 3053995032091335093L;
       
  1557 
       
  1558         final Collection<E> c;  // Backing Collection
       
  1559         final Object mutex;     // Object on which to synchronize
       
  1560 
       
  1561         SynchronizedCollection(Collection<E> c) {
       
  1562             if (c==null)
       
  1563                 throw new NullPointerException();
       
  1564             this.c = c;
       
  1565             mutex = this;
       
  1566         }
       
  1567         SynchronizedCollection(Collection<E> c, Object mutex) {
       
  1568             this.c = c;
       
  1569             this.mutex = mutex;
       
  1570         }
       
  1571 
       
  1572         public int size() {
       
  1573             synchronized(mutex) {return c.size();}
       
  1574         }
       
  1575         public boolean isEmpty() {
       
  1576             synchronized(mutex) {return c.isEmpty();}
       
  1577         }
       
  1578         public boolean contains(Object o) {
       
  1579             synchronized(mutex) {return c.contains(o);}
       
  1580         }
       
  1581         public Object[] toArray() {
       
  1582             synchronized(mutex) {return c.toArray();}
       
  1583         }
       
  1584         public <T> T[] toArray(T[] a) {
       
  1585             synchronized(mutex) {return c.toArray(a);}
       
  1586         }
       
  1587 
       
  1588         public Iterator<E> iterator() {
       
  1589             return c.iterator(); // Must be manually synched by user!
       
  1590         }
       
  1591 
       
  1592         public boolean add(E e) {
       
  1593             synchronized(mutex) {return c.add(e);}
       
  1594         }
       
  1595         public boolean remove(Object o) {
       
  1596             synchronized(mutex) {return c.remove(o);}
       
  1597         }
       
  1598 
       
  1599         public boolean containsAll(Collection<?> coll) {
       
  1600             synchronized(mutex) {return c.containsAll(coll);}
       
  1601         }
       
  1602         public boolean addAll(Collection<? extends E> coll) {
       
  1603             synchronized(mutex) {return c.addAll(coll);}
       
  1604         }
       
  1605         public boolean removeAll(Collection<?> coll) {
       
  1606             synchronized(mutex) {return c.removeAll(coll);}
       
  1607         }
       
  1608         public boolean retainAll(Collection<?> coll) {
       
  1609             synchronized(mutex) {return c.retainAll(coll);}
       
  1610         }
       
  1611         public void clear() {
       
  1612             synchronized(mutex) {c.clear();}
       
  1613         }
       
  1614         public String toString() {
       
  1615             synchronized(mutex) {return c.toString();}
       
  1616         }
       
  1617         private void writeObject(ObjectOutputStream s) throws IOException {
       
  1618             synchronized(mutex) {s.defaultWriteObject();}
       
  1619         }
       
  1620     }
       
  1621 
       
  1622     /**
       
  1623      * Returns a synchronized (thread-safe) set backed by the specified
       
  1624      * set.  In order to guarantee serial access, it is critical that
       
  1625      * <strong>all</strong> access to the backing set is accomplished
       
  1626      * through the returned set.<p>
       
  1627      *
       
  1628      * It is imperative that the user manually synchronize on the returned
       
  1629      * set when iterating over it:
       
  1630      * <pre>
       
  1631      *  Set s = Collections.synchronizedSet(new HashSet());
       
  1632      *      ...
       
  1633      *  synchronized(s) {
       
  1634      *      Iterator i = s.iterator(); // Must be in the synchronized block
       
  1635      *      while (i.hasNext())
       
  1636      *          foo(i.next());
       
  1637      *  }
       
  1638      * </pre>
       
  1639      * Failure to follow this advice may result in non-deterministic behavior.
       
  1640      *
       
  1641      * <p>The returned set will be serializable if the specified set is
       
  1642      * serializable.
       
  1643      *
       
  1644      * @param  s the set to be "wrapped" in a synchronized set.
       
  1645      * @return a synchronized view of the specified set.
       
  1646      */
       
  1647     public static <T> Set<T> synchronizedSet(Set<T> s) {
       
  1648         return new SynchronizedSet<T>(s);
       
  1649     }
       
  1650 
       
  1651     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
       
  1652         return new SynchronizedSet<T>(s, mutex);
       
  1653     }
       
  1654 
       
  1655     /**
       
  1656      * @serial include
       
  1657      */
       
  1658     static class SynchronizedSet<E>
       
  1659           extends SynchronizedCollection<E>
       
  1660           implements Set<E> {
       
  1661         private static final long serialVersionUID = 487447009682186044L;
       
  1662 
       
  1663         SynchronizedSet(Set<E> s) {
       
  1664             super(s);
       
  1665         }
       
  1666         SynchronizedSet(Set<E> s, Object mutex) {
       
  1667             super(s, mutex);
       
  1668         }
       
  1669 
       
  1670         public boolean equals(Object o) {
       
  1671             synchronized(mutex) {return c.equals(o);}
       
  1672         }
       
  1673         public int hashCode() {
       
  1674             synchronized(mutex) {return c.hashCode();}
       
  1675         }
       
  1676     }
       
  1677 
       
  1678     /**
       
  1679      * Returns a synchronized (thread-safe) sorted set backed by the specified
       
  1680      * sorted set.  In order to guarantee serial access, it is critical that
       
  1681      * <strong>all</strong> access to the backing sorted set is accomplished
       
  1682      * through the returned sorted set (or its views).<p>
       
  1683      *
       
  1684      * It is imperative that the user manually synchronize on the returned
       
  1685      * sorted set when iterating over it or any of its <tt>subSet</tt>,
       
  1686      * <tt>headSet</tt>, or <tt>tailSet</tt> views.
       
  1687      * <pre>
       
  1688      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
       
  1689      *      ...
       
  1690      *  synchronized(s) {
       
  1691      *      Iterator i = s.iterator(); // Must be in the synchronized block
       
  1692      *      while (i.hasNext())
       
  1693      *          foo(i.next());
       
  1694      *  }
       
  1695      * </pre>
       
  1696      * or:
       
  1697      * <pre>
       
  1698      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
       
  1699      *  SortedSet s2 = s.headSet(foo);
       
  1700      *      ...
       
  1701      *  synchronized(s) {  // Note: s, not s2!!!
       
  1702      *      Iterator i = s2.iterator(); // Must be in the synchronized block
       
  1703      *      while (i.hasNext())
       
  1704      *          foo(i.next());
       
  1705      *  }
       
  1706      * </pre>
       
  1707      * Failure to follow this advice may result in non-deterministic behavior.
       
  1708      *
       
  1709      * <p>The returned sorted set will be serializable if the specified
       
  1710      * sorted set is serializable.
       
  1711      *
       
  1712      * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
       
  1713      * @return a synchronized view of the specified sorted set.
       
  1714      */
       
  1715     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
       
  1716         return new SynchronizedSortedSet<T>(s);
       
  1717     }
       
  1718 
       
  1719     /**
       
  1720      * @serial include
       
  1721      */
       
  1722     static class SynchronizedSortedSet<E>
       
  1723         extends SynchronizedSet<E>
       
  1724         implements SortedSet<E>
       
  1725     {
       
  1726         private static final long serialVersionUID = 8695801310862127406L;
       
  1727 
       
  1728         final private SortedSet<E> ss;
       
  1729 
       
  1730         SynchronizedSortedSet(SortedSet<E> s) {
       
  1731             super(s);
       
  1732             ss = s;
       
  1733         }
       
  1734         SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
       
  1735             super(s, mutex);
       
  1736             ss = s;
       
  1737         }
       
  1738 
       
  1739         public Comparator<? super E> comparator() {
       
  1740             synchronized(mutex) {return ss.comparator();}
       
  1741         }
       
  1742 
       
  1743         public SortedSet<E> subSet(E fromElement, E toElement) {
       
  1744             synchronized(mutex) {
       
  1745                 return new SynchronizedSortedSet<E>(
       
  1746                     ss.subSet(fromElement, toElement), mutex);
       
  1747             }
       
  1748         }
       
  1749         public SortedSet<E> headSet(E toElement) {
       
  1750             synchronized(mutex) {
       
  1751                 return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
       
  1752             }
       
  1753         }
       
  1754         public SortedSet<E> tailSet(E fromElement) {
       
  1755             synchronized(mutex) {
       
  1756                return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
       
  1757             }
       
  1758         }
       
  1759 
       
  1760         public E first() {
       
  1761             synchronized(mutex) {return ss.first();}
       
  1762         }
       
  1763         public E last() {
       
  1764             synchronized(mutex) {return ss.last();}
       
  1765         }
       
  1766     }
       
  1767 
       
  1768     /**
       
  1769      * Returns a synchronized (thread-safe) list backed by the specified
       
  1770      * list.  In order to guarantee serial access, it is critical that
       
  1771      * <strong>all</strong> access to the backing list is accomplished
       
  1772      * through the returned list.<p>
       
  1773      *
       
  1774      * It is imperative that the user manually synchronize on the returned
       
  1775      * list when iterating over it:
       
  1776      * <pre>
       
  1777      *  List list = Collections.synchronizedList(new ArrayList());
       
  1778      *      ...
       
  1779      *  synchronized(list) {
       
  1780      *      Iterator i = list.iterator(); // Must be in synchronized block
       
  1781      *      while (i.hasNext())
       
  1782      *          foo(i.next());
       
  1783      *  }
       
  1784      * </pre>
       
  1785      * Failure to follow this advice may result in non-deterministic behavior.
       
  1786      *
       
  1787      * <p>The returned list will be serializable if the specified list is
       
  1788      * serializable.
       
  1789      *
       
  1790      * @param  list the list to be "wrapped" in a synchronized list.
       
  1791      * @return a synchronized view of the specified list.
       
  1792      */
       
  1793     public static <T> List<T> synchronizedList(List<T> list) {
       
  1794         return (list instanceof RandomAccess ?
       
  1795                 new SynchronizedRandomAccessList<T>(list) :
       
  1796                 new SynchronizedList<T>(list));
       
  1797     }
       
  1798 
       
  1799     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
       
  1800         return (list instanceof RandomAccess ?
       
  1801                 new SynchronizedRandomAccessList<T>(list, mutex) :
       
  1802                 new SynchronizedList<T>(list, mutex));
       
  1803     }
       
  1804 
       
  1805     /**
       
  1806      * @serial include
       
  1807      */
       
  1808     static class SynchronizedList<E>
       
  1809         extends SynchronizedCollection<E>
       
  1810         implements List<E> {
       
  1811         private static final long serialVersionUID = -7754090372962971524L;
       
  1812 
       
  1813         final List<E> list;
       
  1814 
       
  1815         SynchronizedList(List<E> list) {
       
  1816             super(list);
       
  1817             this.list = list;
       
  1818         }
       
  1819         SynchronizedList(List<E> list, Object mutex) {
       
  1820             super(list, mutex);
       
  1821             this.list = list;
       
  1822         }
       
  1823 
       
  1824         public boolean equals(Object o) {
       
  1825             synchronized(mutex) {return list.equals(o);}
       
  1826         }
       
  1827         public int hashCode() {
       
  1828             synchronized(mutex) {return list.hashCode();}
       
  1829         }
       
  1830 
       
  1831         public E get(int index) {
       
  1832             synchronized(mutex) {return list.get(index);}
       
  1833         }
       
  1834         public E set(int index, E element) {
       
  1835             synchronized(mutex) {return list.set(index, element);}
       
  1836         }
       
  1837         public void add(int index, E element) {
       
  1838             synchronized(mutex) {list.add(index, element);}
       
  1839         }
       
  1840         public E remove(int index) {
       
  1841             synchronized(mutex) {return list.remove(index);}
       
  1842         }
       
  1843 
       
  1844         public int indexOf(Object o) {
       
  1845             synchronized(mutex) {return list.indexOf(o);}
       
  1846         }
       
  1847         public int lastIndexOf(Object o) {
       
  1848             synchronized(mutex) {return list.lastIndexOf(o);}
       
  1849         }
       
  1850 
       
  1851         public boolean addAll(int index, Collection<? extends E> c) {
       
  1852             synchronized(mutex) {return list.addAll(index, c);}
       
  1853         }
       
  1854 
       
  1855         public ListIterator<E> listIterator() {
       
  1856             return list.listIterator(); // Must be manually synched by user
       
  1857         }
       
  1858 
       
  1859         public ListIterator<E> listIterator(int index) {
       
  1860             return list.listIterator(index); // Must be manually synched by user
       
  1861         }
       
  1862 
       
  1863         public List<E> subList(int fromIndex, int toIndex) {
       
  1864             synchronized(mutex) {
       
  1865                 return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
       
  1866                                             mutex);
       
  1867             }
       
  1868         }
       
  1869 
       
  1870         /**
       
  1871          * SynchronizedRandomAccessList instances are serialized as
       
  1872          * SynchronizedList instances to allow them to be deserialized
       
  1873          * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
       
  1874          * This method inverts the transformation.  As a beneficial
       
  1875          * side-effect, it also grafts the RandomAccess marker onto
       
  1876          * SynchronizedList instances that were serialized in pre-1.4 JREs.
       
  1877          *
       
  1878          * Note: Unfortunately, SynchronizedRandomAccessList instances
       
  1879          * serialized in 1.4.1 and deserialized in 1.4 will become
       
  1880          * SynchronizedList instances, as this method was missing in 1.4.
       
  1881          */
       
  1882         private Object readResolve() {
       
  1883             return (list instanceof RandomAccess
       
  1884                     ? new SynchronizedRandomAccessList<E>(list)
       
  1885                     : this);
       
  1886         }
       
  1887     }
       
  1888 
       
  1889     /**
       
  1890      * @serial include
       
  1891      */
       
  1892     static class SynchronizedRandomAccessList<E>
       
  1893         extends SynchronizedList<E>
       
  1894         implements RandomAccess {
       
  1895 
       
  1896         SynchronizedRandomAccessList(List<E> list) {
       
  1897             super(list);
       
  1898         }
       
  1899 
       
  1900         SynchronizedRandomAccessList(List<E> list, Object mutex) {
       
  1901             super(list, mutex);
       
  1902         }
       
  1903 
       
  1904         public List<E> subList(int fromIndex, int toIndex) {
       
  1905             synchronized(mutex) {
       
  1906                 return new SynchronizedRandomAccessList<E>(
       
  1907                     list.subList(fromIndex, toIndex), mutex);
       
  1908             }
       
  1909         }
       
  1910 
       
  1911         private static final long serialVersionUID = 1530674583602358482L;
       
  1912 
       
  1913         /**
       
  1914          * Allows instances to be deserialized in pre-1.4 JREs (which do
       
  1915          * not have SynchronizedRandomAccessList).  SynchronizedList has
       
  1916          * a readResolve method that inverts this transformation upon
       
  1917          * deserialization.
       
  1918          */
       
  1919         private Object writeReplace() {
       
  1920             return new SynchronizedList<E>(list);
       
  1921         }
       
  1922     }
       
  1923 
       
  1924     /**
       
  1925      * Returns a synchronized (thread-safe) map backed by the specified
       
  1926      * map.  In order to guarantee serial access, it is critical that
       
  1927      * <strong>all</strong> access to the backing map is accomplished
       
  1928      * through the returned map.<p>
       
  1929      *
       
  1930      * It is imperative that the user manually synchronize on the returned
       
  1931      * map when iterating over any of its collection views:
       
  1932      * <pre>
       
  1933      *  Map m = Collections.synchronizedMap(new HashMap());
       
  1934      *      ...
       
  1935      *  Set s = m.keySet();  // Needn't be in synchronized block
       
  1936      *      ...
       
  1937      *  synchronized(m) {  // Synchronizing on m, not s!
       
  1938      *      Iterator i = s.iterator(); // Must be in synchronized block
       
  1939      *      while (i.hasNext())
       
  1940      *          foo(i.next());
       
  1941      *  }
       
  1942      * </pre>
       
  1943      * Failure to follow this advice may result in non-deterministic behavior.
       
  1944      *
       
  1945      * <p>The returned map will be serializable if the specified map is
       
  1946      * serializable.
       
  1947      *
       
  1948      * @param  m the map to be "wrapped" in a synchronized map.
       
  1949      * @return a synchronized view of the specified map.
       
  1950      */
       
  1951     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
       
  1952         return new SynchronizedMap<K,V>(m);
       
  1953     }
       
  1954 
       
  1955     /**
       
  1956      * @serial include
       
  1957      */
       
  1958     private static class SynchronizedMap<K,V>
       
  1959         implements Map<K,V>, Serializable {
       
  1960         private static final long serialVersionUID = 1978198479659022715L;
       
  1961 
       
  1962         private final Map<K,V> m;     // Backing Map
       
  1963         final Object      mutex;        // Object on which to synchronize
       
  1964 
       
  1965         SynchronizedMap(Map<K,V> m) {
       
  1966             if (m==null)
       
  1967                 throw new NullPointerException();
       
  1968             this.m = m;
       
  1969             mutex = this;
       
  1970         }
       
  1971 
       
  1972         SynchronizedMap(Map<K,V> m, Object mutex) {
       
  1973             this.m = m;
       
  1974             this.mutex = mutex;
       
  1975         }
       
  1976 
       
  1977         public int size() {
       
  1978             synchronized(mutex) {return m.size();}
       
  1979         }
       
  1980         public boolean isEmpty() {
       
  1981             synchronized(mutex) {return m.isEmpty();}
       
  1982         }
       
  1983         public boolean containsKey(Object key) {
       
  1984             synchronized(mutex) {return m.containsKey(key);}
       
  1985         }
       
  1986         public boolean containsValue(Object value) {
       
  1987             synchronized(mutex) {return m.containsValue(value);}
       
  1988         }
       
  1989         public V get(Object key) {
       
  1990             synchronized(mutex) {return m.get(key);}
       
  1991         }
       
  1992 
       
  1993         public V put(K key, V value) {
       
  1994             synchronized(mutex) {return m.put(key, value);}
       
  1995         }
       
  1996         public V remove(Object key) {
       
  1997             synchronized(mutex) {return m.remove(key);}
       
  1998         }
       
  1999         public void putAll(Map<? extends K, ? extends V> map) {
       
  2000             synchronized(mutex) {m.putAll(map);}
       
  2001         }
       
  2002         public void clear() {
       
  2003             synchronized(mutex) {m.clear();}
       
  2004         }
       
  2005 
       
  2006         private transient Set<K> keySet = null;
       
  2007         private transient Set<Map.Entry<K,V>> entrySet = null;
       
  2008         private transient Collection<V> values = null;
       
  2009 
       
  2010         public Set<K> keySet() {
       
  2011             synchronized(mutex) {
       
  2012                 if (keySet==null)
       
  2013                     keySet = new SynchronizedSet<K>(m.keySet(), mutex);
       
  2014                 return keySet;
       
  2015             }
       
  2016         }
       
  2017 
       
  2018         public Set<Map.Entry<K,V>> entrySet() {
       
  2019             synchronized(mutex) {
       
  2020                 if (entrySet==null)
       
  2021                     entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
       
  2022                 return entrySet;
       
  2023             }
       
  2024         }
       
  2025 
       
  2026         public Collection<V> values() {
       
  2027             synchronized(mutex) {
       
  2028                 if (values==null)
       
  2029                     values = new SynchronizedCollection<V>(m.values(), mutex);
       
  2030                 return values;
       
  2031             }
       
  2032         }
       
  2033 
       
  2034         public boolean equals(Object o) {
       
  2035             synchronized(mutex) {return m.equals(o);}
       
  2036         }
       
  2037         public int hashCode() {
       
  2038             synchronized(mutex) {return m.hashCode();}
       
  2039         }
       
  2040         public String toString() {
       
  2041             synchronized(mutex) {return m.toString();}
       
  2042         }
       
  2043         private void writeObject(ObjectOutputStream s) throws IOException {
       
  2044             synchronized(mutex) {s.defaultWriteObject();}
       
  2045         }
       
  2046     }
       
  2047 
       
  2048     /**
       
  2049      * Returns a synchronized (thread-safe) sorted map backed by the specified
       
  2050      * sorted map.  In order to guarantee serial access, it is critical that
       
  2051      * <strong>all</strong> access to the backing sorted map is accomplished
       
  2052      * through the returned sorted map (or its views).<p>
       
  2053      *
       
  2054      * It is imperative that the user manually synchronize on the returned
       
  2055      * sorted map when iterating over any of its collection views, or the
       
  2056      * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
       
  2057      * <tt>tailMap</tt> views.
       
  2058      * <pre>
       
  2059      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
       
  2060      *      ...
       
  2061      *  Set s = m.keySet();  // Needn't be in synchronized block
       
  2062      *      ...
       
  2063      *  synchronized(m) {  // Synchronizing on m, not s!
       
  2064      *      Iterator i = s.iterator(); // Must be in synchronized block
       
  2065      *      while (i.hasNext())
       
  2066      *          foo(i.next());
       
  2067      *  }
       
  2068      * </pre>
       
  2069      * or:
       
  2070      * <pre>
       
  2071      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
       
  2072      *  SortedMap m2 = m.subMap(foo, bar);
       
  2073      *      ...
       
  2074      *  Set s2 = m2.keySet();  // Needn't be in synchronized block
       
  2075      *      ...
       
  2076      *  synchronized(m) {  // Synchronizing on m, not m2 or s2!
       
  2077      *      Iterator i = s.iterator(); // Must be in synchronized block
       
  2078      *      while (i.hasNext())
       
  2079      *          foo(i.next());
       
  2080      *  }
       
  2081      * </pre>
       
  2082      * Failure to follow this advice may result in non-deterministic behavior.
       
  2083      *
       
  2084      * <p>The returned sorted map will be serializable if the specified
       
  2085      * sorted map is serializable.
       
  2086      *
       
  2087      * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
       
  2088      * @return a synchronized view of the specified sorted map.
       
  2089      */
       
  2090     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
       
  2091         return new SynchronizedSortedMap<K,V>(m);
       
  2092     }
       
  2093 
       
  2094 
       
  2095     /**
       
  2096      * @serial include
       
  2097      */
       
  2098     static class SynchronizedSortedMap<K,V>
       
  2099         extends SynchronizedMap<K,V>
       
  2100         implements SortedMap<K,V>
       
  2101     {
       
  2102         private static final long serialVersionUID = -8798146769416483793L;
       
  2103 
       
  2104         private final SortedMap<K,V> sm;
       
  2105 
       
  2106         SynchronizedSortedMap(SortedMap<K,V> m) {
       
  2107             super(m);
       
  2108             sm = m;
       
  2109         }
       
  2110         SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
       
  2111             super(m, mutex);
       
  2112             sm = m;
       
  2113         }
       
  2114 
       
  2115         public Comparator<? super K> comparator() {
       
  2116             synchronized(mutex) {return sm.comparator();}
       
  2117         }
       
  2118 
       
  2119         public SortedMap<K,V> subMap(K fromKey, K toKey) {
       
  2120             synchronized(mutex) {
       
  2121                 return new SynchronizedSortedMap<K,V>(
       
  2122                     sm.subMap(fromKey, toKey), mutex);
       
  2123             }
       
  2124         }
       
  2125         public SortedMap<K,V> headMap(K toKey) {
       
  2126             synchronized(mutex) {
       
  2127                 return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
       
  2128             }
       
  2129         }
       
  2130         public SortedMap<K,V> tailMap(K fromKey) {
       
  2131             synchronized(mutex) {
       
  2132                return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
       
  2133             }
       
  2134         }
       
  2135 
       
  2136         public K firstKey() {
       
  2137             synchronized(mutex) {return sm.firstKey();}
       
  2138         }
       
  2139         public K lastKey() {
       
  2140             synchronized(mutex) {return sm.lastKey();}
       
  2141         }
       
  2142     }
       
  2143 
       
  2144     // Dynamically typesafe collection wrappers
       
  2145 
       
  2146     /**
       
  2147      * Returns a dynamically typesafe view of the specified collection.
       
  2148      * Any attempt to insert an element of the wrong type will result in an
       
  2149      * immediate {@link ClassCastException}.  Assuming a collection
       
  2150      * contains no incorrectly typed elements prior to the time a
       
  2151      * dynamically typesafe view is generated, and that all subsequent
       
  2152      * access to the collection takes place through the view, it is
       
  2153      * <i>guaranteed</i> that the collection cannot contain an incorrectly
       
  2154      * typed element.
       
  2155      *
       
  2156      * <p>The generics mechanism in the language provides compile-time
       
  2157      * (static) type checking, but it is possible to defeat this mechanism
       
  2158      * with unchecked casts.  Usually this is not a problem, as the compiler
       
  2159      * issues warnings on all such unchecked operations.  There are, however,
       
  2160      * times when static type checking alone is not sufficient.  For example,
       
  2161      * suppose a collection is passed to a third-party library and it is
       
  2162      * imperative that the library code not corrupt the collection by
       
  2163      * inserting an element of the wrong type.
       
  2164      *
       
  2165      * <p>Another use of dynamically typesafe views is debugging.  Suppose a
       
  2166      * program fails with a {@code ClassCastException}, indicating that an
       
  2167      * incorrectly typed element was put into a parameterized collection.
       
  2168      * Unfortunately, the exception can occur at any time after the erroneous
       
  2169      * element is inserted, so it typically provides little or no information
       
  2170      * as to the real source of the problem.  If the problem is reproducible,
       
  2171      * one can quickly determine its source by temporarily modifying the
       
  2172      * program to wrap the collection with a dynamically typesafe view.
       
  2173      * For example, this declaration:
       
  2174      *  <pre> {@code
       
  2175      *     Collection<String> c = new HashSet<String>();
       
  2176      * }</pre>
       
  2177      * may be replaced temporarily by this one:
       
  2178      *  <pre> {@code
       
  2179      *     Collection<String> c = Collections.checkedCollection(
       
  2180      *         new HashSet<String>(), String.class);
       
  2181      * }</pre>
       
  2182      * Running the program again will cause it to fail at the point where
       
  2183      * an incorrectly typed element is inserted into the collection, clearly
       
  2184      * identifying the source of the problem.  Once the problem is fixed, the
       
  2185      * modified declaration may be reverted back to the original.
       
  2186      *
       
  2187      * <p>The returned collection does <i>not</i> pass the hashCode and equals
       
  2188      * operations through to the backing collection, but relies on
       
  2189      * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
       
  2190      * is necessary to preserve the contracts of these operations in the case
       
  2191      * that the backing collection is a set or a list.
       
  2192      *
       
  2193      * <p>The returned collection will be serializable if the specified
       
  2194      * collection is serializable.
       
  2195      *
       
  2196      * <p>Since {@code null} is considered to be a value of any reference
       
  2197      * type, the returned collection permits insertion of null elements
       
  2198      * whenever the backing collection does.
       
  2199      *
       
  2200      * @param c the collection for which a dynamically typesafe view is to be
       
  2201      *          returned
       
  2202      * @param type the type of element that {@code c} is permitted to hold
       
  2203      * @return a dynamically typesafe view of the specified collection
       
  2204      * @since 1.5
       
  2205      */
       
  2206     public static <E> Collection<E> checkedCollection(Collection<E> c,
       
  2207                                                       Class<E> type) {
       
  2208         return new CheckedCollection<E>(c, type);
       
  2209     }
       
  2210 
       
  2211     @SuppressWarnings("unchecked")
       
  2212     static <T> T[] zeroLengthArray(Class<T> type) {
       
  2213         return (T[]) Array.newInstance(type, 0);
       
  2214     }
       
  2215 
       
  2216     /**
       
  2217      * @serial include
       
  2218      */
       
  2219     static class CheckedCollection<E> implements Collection<E>, Serializable {
       
  2220         private static final long serialVersionUID = 1578914078182001775L;
       
  2221 
       
  2222         final Collection<E> c;
       
  2223         final Class<E> type;
       
  2224 
       
  2225         void typeCheck(Object o) {
       
  2226             if (o != null && !type.isInstance(o))
       
  2227                 throw new ClassCastException(badElementMsg(o));
       
  2228         }
       
  2229 
       
  2230         private String badElementMsg(Object o) {
       
  2231             return "Attempt to insert " + o.getClass() +
       
  2232                 " element into collection with element type " + type;
       
  2233         }
       
  2234 
       
  2235         CheckedCollection(Collection<E> c, Class<E> type) {
       
  2236             if (c==null || type == null)
       
  2237                 throw new NullPointerException();
       
  2238             this.c = c;
       
  2239             this.type = type;
       
  2240         }
       
  2241 
       
  2242         public int size()                 { return c.size(); }
       
  2243         public boolean isEmpty()          { return c.isEmpty(); }
       
  2244         public boolean contains(Object o) { return c.contains(o); }
       
  2245         public Object[] toArray()         { return c.toArray(); }
       
  2246         public <T> T[] toArray(T[] a)     { return c.toArray(a); }
       
  2247         public String toString()          { return c.toString(); }
       
  2248         public boolean remove(Object o)   { return c.remove(o); }
       
  2249         public void clear()               {        c.clear(); }
       
  2250 
       
  2251         public boolean containsAll(Collection<?> coll) {
       
  2252             return c.containsAll(coll);
       
  2253         }
       
  2254         public boolean removeAll(Collection<?> coll) {
       
  2255             return c.removeAll(coll);
       
  2256         }
       
  2257         public boolean retainAll(Collection<?> coll) {
       
  2258             return c.retainAll(coll);
       
  2259         }
       
  2260 
       
  2261         public Iterator<E> iterator() {
       
  2262             final Iterator<E> it = c.iterator();
       
  2263             return new Iterator<E>() {
       
  2264                 public boolean hasNext() { return it.hasNext(); }
       
  2265                 public E next()          { return it.next(); }
       
  2266                 public void remove()     {        it.remove(); }};
       
  2267         }
       
  2268 
       
  2269         public boolean add(E e) {
       
  2270             typeCheck(e);
       
  2271             return c.add(e);
       
  2272         }
       
  2273 
       
  2274         private E[] zeroLengthElementArray = null; // Lazily initialized
       
  2275 
       
  2276         private E[] zeroLengthElementArray() {
       
  2277             return zeroLengthElementArray != null ? zeroLengthElementArray :
       
  2278                 (zeroLengthElementArray = zeroLengthArray(type));
       
  2279         }
       
  2280 
       
  2281         @SuppressWarnings("unchecked")
       
  2282         Collection<E> checkedCopyOf(Collection<? extends E> coll) {
       
  2283             Object[] a = null;
       
  2284             try {
       
  2285                 E[] z = zeroLengthElementArray();
       
  2286                 a = coll.toArray(z);
       
  2287                 // Defend against coll violating the toArray contract
       
  2288                 if (a.getClass() != z.getClass())
       
  2289                     a = Arrays.copyOf(a, a.length, z.getClass());
       
  2290             } catch (ArrayStoreException ignore) {
       
  2291                 // To get better and consistent diagnostics,
       
  2292                 // we call typeCheck explicitly on each element.
       
  2293                 // We call clone() to defend against coll retaining a
       
  2294                 // reference to the returned array and storing a bad
       
  2295                 // element into it after it has been type checked.
       
  2296                 a = coll.toArray().clone();
       
  2297                 for (Object o : a)
       
  2298                     typeCheck(o);
       
  2299             }
       
  2300             // A slight abuse of the type system, but safe here.
       
  2301             return (Collection<E>) Arrays.asList(a);
       
  2302         }
       
  2303 
       
  2304         public boolean addAll(Collection<? extends E> coll) {
       
  2305             // Doing things this way insulates us from concurrent changes
       
  2306             // in the contents of coll and provides all-or-nothing
       
  2307             // semantics (which we wouldn't get if we type-checked each
       
  2308             // element as we added it)
       
  2309             return c.addAll(checkedCopyOf(coll));
       
  2310         }
       
  2311     }
       
  2312 
       
  2313     /**
       
  2314      * Returns a dynamically typesafe view of the specified set.
       
  2315      * Any attempt to insert an element of the wrong type will result in
       
  2316      * an immediate {@link ClassCastException}.  Assuming a set contains
       
  2317      * no incorrectly typed elements prior to the time a dynamically typesafe
       
  2318      * view is generated, and that all subsequent access to the set
       
  2319      * takes place through the view, it is <i>guaranteed</i> that the
       
  2320      * set cannot contain an incorrectly typed element.
       
  2321      *
       
  2322      * <p>A discussion of the use of dynamically typesafe views may be
       
  2323      * found in the documentation for the {@link #checkedCollection
       
  2324      * checkedCollection} method.
       
  2325      *
       
  2326      * <p>The returned set will be serializable if the specified set is
       
  2327      * serializable.
       
  2328      *
       
  2329      * <p>Since {@code null} is considered to be a value of any reference
       
  2330      * type, the returned set permits insertion of null elements whenever
       
  2331      * the backing set does.
       
  2332      *
       
  2333      * @param s the set for which a dynamically typesafe view is to be
       
  2334      *          returned
       
  2335      * @param type the type of element that {@code s} is permitted to hold
       
  2336      * @return a dynamically typesafe view of the specified set
       
  2337      * @since 1.5
       
  2338      */
       
  2339     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
       
  2340         return new CheckedSet<E>(s, type);
       
  2341     }
       
  2342 
       
  2343     /**
       
  2344      * @serial include
       
  2345      */
       
  2346     static class CheckedSet<E> extends CheckedCollection<E>
       
  2347                                  implements Set<E>, Serializable
       
  2348     {
       
  2349         private static final long serialVersionUID = 4694047833775013803L;
       
  2350 
       
  2351         CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
       
  2352 
       
  2353         public boolean equals(Object o) { return o == this || c.equals(o); }
       
  2354         public int hashCode()           { return c.hashCode(); }
       
  2355     }
       
  2356 
       
  2357     /**
       
  2358      * Returns a dynamically typesafe view of the specified sorted set.
       
  2359      * Any attempt to insert an element of the wrong type will result in an
       
  2360      * immediate {@link ClassCastException}.  Assuming a sorted set
       
  2361      * contains no incorrectly typed elements prior to the time a
       
  2362      * dynamically typesafe view is generated, and that all subsequent
       
  2363      * access to the sorted set takes place through the view, it is
       
  2364      * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
       
  2365      * typed element.
       
  2366      *
       
  2367      * <p>A discussion of the use of dynamically typesafe views may be
       
  2368      * found in the documentation for the {@link #checkedCollection
       
  2369      * checkedCollection} method.
       
  2370      *
       
  2371      * <p>The returned sorted set will be serializable if the specified sorted
       
  2372      * set is serializable.
       
  2373      *
       
  2374      * <p>Since {@code null} is considered to be a value of any reference
       
  2375      * type, the returned sorted set permits insertion of null elements
       
  2376      * whenever the backing sorted set does.
       
  2377      *
       
  2378      * @param s the sorted set for which a dynamically typesafe view is to be
       
  2379      *          returned
       
  2380      * @param type the type of element that {@code s} is permitted to hold
       
  2381      * @return a dynamically typesafe view of the specified sorted set
       
  2382      * @since 1.5
       
  2383      */
       
  2384     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
       
  2385                                                     Class<E> type) {
       
  2386         return new CheckedSortedSet<E>(s, type);
       
  2387     }
       
  2388 
       
  2389     /**
       
  2390      * @serial include
       
  2391      */
       
  2392     static class CheckedSortedSet<E> extends CheckedSet<E>
       
  2393         implements SortedSet<E>, Serializable
       
  2394     {
       
  2395         private static final long serialVersionUID = 1599911165492914959L;
       
  2396         private final SortedSet<E> ss;
       
  2397 
       
  2398         CheckedSortedSet(SortedSet<E> s, Class<E> type) {
       
  2399             super(s, type);
       
  2400             ss = s;
       
  2401         }
       
  2402 
       
  2403         public Comparator<? super E> comparator() { return ss.comparator(); }
       
  2404         public E first()                   { return ss.first(); }
       
  2405         public E last()                    { return ss.last(); }
       
  2406 
       
  2407         public SortedSet<E> subSet(E fromElement, E toElement) {
       
  2408             return checkedSortedSet(ss.subSet(fromElement,toElement), type);
       
  2409         }
       
  2410         public SortedSet<E> headSet(E toElement) {
       
  2411             return checkedSortedSet(ss.headSet(toElement), type);
       
  2412         }
       
  2413         public SortedSet<E> tailSet(E fromElement) {
       
  2414             return checkedSortedSet(ss.tailSet(fromElement), type);
       
  2415         }
       
  2416     }
       
  2417 
       
  2418     /**
       
  2419      * Returns a dynamically typesafe view of the specified list.
       
  2420      * Any attempt to insert an element of the wrong type will result in
       
  2421      * an immediate {@link ClassCastException}.  Assuming a list contains
       
  2422      * no incorrectly typed elements prior to the time a dynamically typesafe
       
  2423      * view is generated, and that all subsequent access to the list
       
  2424      * takes place through the view, it is <i>guaranteed</i> that the
       
  2425      * list cannot contain an incorrectly typed element.
       
  2426      *
       
  2427      * <p>A discussion of the use of dynamically typesafe views may be
       
  2428      * found in the documentation for the {@link #checkedCollection
       
  2429      * checkedCollection} method.
       
  2430      *
       
  2431      * <p>The returned list will be serializable if the specified list
       
  2432      * is serializable.
       
  2433      *
       
  2434      * <p>Since {@code null} is considered to be a value of any reference
       
  2435      * type, the returned list permits insertion of null elements whenever
       
  2436      * the backing list does.
       
  2437      *
       
  2438      * @param list the list for which a dynamically typesafe view is to be
       
  2439      *             returned
       
  2440      * @param type the type of element that {@code list} is permitted to hold
       
  2441      * @return a dynamically typesafe view of the specified list
       
  2442      * @since 1.5
       
  2443      */
       
  2444     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
       
  2445         return (list instanceof RandomAccess ?
       
  2446                 new CheckedRandomAccessList<E>(list, type) :
       
  2447                 new CheckedList<E>(list, type));
       
  2448     }
       
  2449 
       
  2450     /**
       
  2451      * @serial include
       
  2452      */
       
  2453     static class CheckedList<E>
       
  2454         extends CheckedCollection<E>
       
  2455         implements List<E>
       
  2456     {
       
  2457         private static final long serialVersionUID = 65247728283967356L;
       
  2458         final List<E> list;
       
  2459 
       
  2460         CheckedList(List<E> list, Class<E> type) {
       
  2461             super(list, type);
       
  2462             this.list = list;
       
  2463         }
       
  2464 
       
  2465         public boolean equals(Object o)  { return o == this || list.equals(o); }
       
  2466         public int hashCode()            { return list.hashCode(); }
       
  2467         public E get(int index)          { return list.get(index); }
       
  2468         public E remove(int index)       { return list.remove(index); }
       
  2469         public int indexOf(Object o)     { return list.indexOf(o); }
       
  2470         public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
       
  2471 
       
  2472         public E set(int index, E element) {
       
  2473             typeCheck(element);
       
  2474             return list.set(index, element);
       
  2475         }
       
  2476 
       
  2477         public void add(int index, E element) {
       
  2478             typeCheck(element);
       
  2479             list.add(index, element);
       
  2480         }
       
  2481 
       
  2482         public boolean addAll(int index, Collection<? extends E> c) {
       
  2483             return list.addAll(index, checkedCopyOf(c));
       
  2484         }
       
  2485         public ListIterator<E> listIterator()   { return listIterator(0); }
       
  2486 
       
  2487         public ListIterator<E> listIterator(final int index) {
       
  2488             final ListIterator<E> i = list.listIterator(index);
       
  2489 
       
  2490             return new ListIterator<E>() {
       
  2491                 public boolean hasNext()     { return i.hasNext(); }
       
  2492                 public E next()              { return i.next(); }
       
  2493                 public boolean hasPrevious() { return i.hasPrevious(); }
       
  2494                 public E previous()          { return i.previous(); }
       
  2495                 public int nextIndex()       { return i.nextIndex(); }
       
  2496                 public int previousIndex()   { return i.previousIndex(); }
       
  2497                 public void remove()         {        i.remove(); }
       
  2498 
       
  2499                 public void set(E e) {
       
  2500                     typeCheck(e);
       
  2501                     i.set(e);
       
  2502                 }
       
  2503 
       
  2504                 public void add(E e) {
       
  2505                     typeCheck(e);
       
  2506                     i.add(e);
       
  2507                 }
       
  2508             };
       
  2509         }
       
  2510 
       
  2511         public List<E> subList(int fromIndex, int toIndex) {
       
  2512             return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
       
  2513         }
       
  2514     }
       
  2515 
       
  2516     /**
       
  2517      * @serial include
       
  2518      */
       
  2519     static class CheckedRandomAccessList<E> extends CheckedList<E>
       
  2520                                             implements RandomAccess
       
  2521     {
       
  2522         private static final long serialVersionUID = 1638200125423088369L;
       
  2523 
       
  2524         CheckedRandomAccessList(List<E> list, Class<E> type) {
       
  2525             super(list, type);
       
  2526         }
       
  2527 
       
  2528         public List<E> subList(int fromIndex, int toIndex) {
       
  2529             return new CheckedRandomAccessList<E>(
       
  2530                 list.subList(fromIndex, toIndex), type);
       
  2531         }
       
  2532     }
       
  2533 
       
  2534     /**
       
  2535      * Returns a dynamically typesafe view of the specified map.
       
  2536      * Any attempt to insert a mapping whose key or value have the wrong
       
  2537      * type will result in an immediate {@link ClassCastException}.
       
  2538      * Similarly, any attempt to modify the value currently associated with
       
  2539      * a key will result in an immediate {@link ClassCastException},
       
  2540      * whether the modification is attempted directly through the map
       
  2541      * itself, or through a {@link Map.Entry} instance obtained from the
       
  2542      * map's {@link Map#entrySet() entry set} view.
       
  2543      *
       
  2544      * <p>Assuming a map contains no incorrectly typed keys or values
       
  2545      * prior to the time a dynamically typesafe view is generated, and
       
  2546      * that all subsequent access to the map takes place through the view
       
  2547      * (or one of its collection views), it is <i>guaranteed</i> that the
       
  2548      * map cannot contain an incorrectly typed key or value.
       
  2549      *
       
  2550      * <p>A discussion of the use of dynamically typesafe views may be
       
  2551      * found in the documentation for the {@link #checkedCollection
       
  2552      * checkedCollection} method.
       
  2553      *
       
  2554      * <p>The returned map will be serializable if the specified map is
       
  2555      * serializable.
       
  2556      *
       
  2557      * <p>Since {@code null} is considered to be a value of any reference
       
  2558      * type, the returned map permits insertion of null keys or values
       
  2559      * whenever the backing map does.
       
  2560      *
       
  2561      * @param m the map for which a dynamically typesafe view is to be
       
  2562      *          returned
       
  2563      * @param keyType the type of key that {@code m} is permitted to hold
       
  2564      * @param valueType the type of value that {@code m} is permitted to hold
       
  2565      * @return a dynamically typesafe view of the specified map
       
  2566      * @since 1.5
       
  2567      */
       
  2568     public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
       
  2569                                               Class<K> keyType,
       
  2570                                               Class<V> valueType) {
       
  2571         return new CheckedMap<K,V>(m, keyType, valueType);
       
  2572     }
       
  2573 
       
  2574 
       
  2575     /**
       
  2576      * @serial include
       
  2577      */
       
  2578     private static class CheckedMap<K,V>
       
  2579         implements Map<K,V>, Serializable
       
  2580     {
       
  2581         private static final long serialVersionUID = 5742860141034234728L;
       
  2582 
       
  2583         private final Map<K, V> m;
       
  2584         final Class<K> keyType;
       
  2585         final Class<V> valueType;
       
  2586 
       
  2587         private void typeCheck(Object key, Object value) {
       
  2588             if (key != null && !keyType.isInstance(key))
       
  2589                 throw new ClassCastException(badKeyMsg(key));
       
  2590 
       
  2591             if (value != null && !valueType.isInstance(value))
       
  2592                 throw new ClassCastException(badValueMsg(value));
       
  2593         }
       
  2594 
       
  2595         private String badKeyMsg(Object key) {
       
  2596             return "Attempt to insert " + key.getClass() +
       
  2597                 " key into map with key type " + keyType;
       
  2598         }
       
  2599 
       
  2600         private String badValueMsg(Object value) {
       
  2601             return "Attempt to insert " + value.getClass() +
       
  2602                 " value into map with value type " + valueType;
       
  2603         }
       
  2604 
       
  2605         CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
       
  2606             if (m == null || keyType == null || valueType == null)
       
  2607                 throw new NullPointerException();
       
  2608             this.m = m;
       
  2609             this.keyType = keyType;
       
  2610             this.valueType = valueType;
       
  2611         }
       
  2612 
       
  2613         public int size()                      { return m.size(); }
       
  2614         public boolean isEmpty()               { return m.isEmpty(); }
       
  2615         public boolean containsKey(Object key) { return m.containsKey(key); }
       
  2616         public boolean containsValue(Object v) { return m.containsValue(v); }
       
  2617         public V get(Object key)               { return m.get(key); }
       
  2618         public V remove(Object key)            { return m.remove(key); }
       
  2619         public void clear()                    { m.clear(); }
       
  2620         public Set<K> keySet()                 { return m.keySet(); }
       
  2621         public Collection<V> values()          { return m.values(); }
       
  2622         public boolean equals(Object o)        { return o == this || m.equals(o); }
       
  2623         public int hashCode()                  { return m.hashCode(); }
       
  2624         public String toString()               { return m.toString(); }
       
  2625 
       
  2626         public V put(K key, V value) {
       
  2627             typeCheck(key, value);
       
  2628             return m.put(key, value);
       
  2629         }
       
  2630 
       
  2631         @SuppressWarnings("unchecked")
       
  2632         public void putAll(Map<? extends K, ? extends V> t) {
       
  2633             // Satisfy the following goals:
       
  2634             // - good diagnostics in case of type mismatch
       
  2635             // - all-or-nothing semantics
       
  2636             // - protection from malicious t
       
  2637             // - correct behavior if t is a concurrent map
       
  2638             Object[] entries = t.entrySet().toArray();
       
  2639             List<Map.Entry<K,V>> checked =
       
  2640                 new ArrayList<Map.Entry<K,V>>(entries.length);
       
  2641             for (Object o : entries) {
       
  2642                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
       
  2643                 Object k = e.getKey();
       
  2644                 Object v = e.getValue();
       
  2645                 typeCheck(k, v);
       
  2646                 checked.add(
       
  2647                     new AbstractMap.SimpleImmutableEntry<K,V>((K) k, (V) v));
       
  2648             }
       
  2649             for (Map.Entry<K,V> e : checked)
       
  2650                 m.put(e.getKey(), e.getValue());
       
  2651         }
       
  2652 
       
  2653         private transient Set<Map.Entry<K,V>> entrySet = null;
       
  2654 
       
  2655         public Set<Map.Entry<K,V>> entrySet() {
       
  2656             if (entrySet==null)
       
  2657                 entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
       
  2658             return entrySet;
       
  2659         }
       
  2660 
       
  2661         /**
       
  2662          * We need this class in addition to CheckedSet as Map.Entry permits
       
  2663          * modification of the backing Map via the setValue operation.  This
       
  2664          * class is subtle: there are many possible attacks that must be
       
  2665          * thwarted.
       
  2666          *
       
  2667          * @serial exclude
       
  2668          */
       
  2669         static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
       
  2670             private final Set<Map.Entry<K,V>> s;
       
  2671             private final Class<V> valueType;
       
  2672 
       
  2673             CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
       
  2674                 this.s = s;
       
  2675                 this.valueType = valueType;
       
  2676             }
       
  2677 
       
  2678             public int size()        { return s.size(); }
       
  2679             public boolean isEmpty() { return s.isEmpty(); }
       
  2680             public String toString() { return s.toString(); }
       
  2681             public int hashCode()    { return s.hashCode(); }
       
  2682             public void clear()      {        s.clear(); }
       
  2683 
       
  2684             public boolean add(Map.Entry<K, V> e) {
       
  2685                 throw new UnsupportedOperationException();
       
  2686             }
       
  2687             public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
       
  2688                 throw new UnsupportedOperationException();
       
  2689             }
       
  2690 
       
  2691             public Iterator<Map.Entry<K,V>> iterator() {
       
  2692                 final Iterator<Map.Entry<K, V>> i = s.iterator();
       
  2693                 final Class<V> valueType = this.valueType;
       
  2694 
       
  2695                 return new Iterator<Map.Entry<K,V>>() {
       
  2696                     public boolean hasNext() { return i.hasNext(); }
       
  2697                     public void remove()     { i.remove(); }
       
  2698 
       
  2699                     public Map.Entry<K,V> next() {
       
  2700                         return checkedEntry(i.next(), valueType);
       
  2701                     }
       
  2702                 };
       
  2703             }
       
  2704 
       
  2705             @SuppressWarnings("unchecked")
       
  2706             public Object[] toArray() {
       
  2707                 Object[] source = s.toArray();
       
  2708 
       
  2709                 /*
       
  2710                  * Ensure that we don't get an ArrayStoreException even if
       
  2711                  * s.toArray returns an array of something other than Object
       
  2712                  */
       
  2713                 Object[] dest = (CheckedEntry.class.isInstance(
       
  2714                     source.getClass().getComponentType()) ? source :
       
  2715                                  new Object[source.length]);
       
  2716 
       
  2717                 for (int i = 0; i < source.length; i++)
       
  2718                     dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
       
  2719                                            valueType);
       
  2720                 return dest;
       
  2721             }
       
  2722 
       
  2723             @SuppressWarnings("unchecked")
       
  2724             public <T> T[] toArray(T[] a) {
       
  2725                 // We don't pass a to s.toArray, to avoid window of
       
  2726                 // vulnerability wherein an unscrupulous multithreaded client
       
  2727                 // could get his hands on raw (unwrapped) Entries from s.
       
  2728                 T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
       
  2729 
       
  2730                 for (int i=0; i<arr.length; i++)
       
  2731                     arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
       
  2732                                               valueType);
       
  2733                 if (arr.length > a.length)
       
  2734                     return arr;
       
  2735 
       
  2736                 System.arraycopy(arr, 0, a, 0, arr.length);
       
  2737                 if (a.length > arr.length)
       
  2738                     a[arr.length] = null;
       
  2739                 return a;
       
  2740             }
       
  2741 
       
  2742             /**
       
  2743              * This method is overridden to protect the backing set against
       
  2744              * an object with a nefarious equals function that senses
       
  2745              * that the equality-candidate is Map.Entry and calls its
       
  2746              * setValue method.
       
  2747              */
       
  2748             public boolean contains(Object o) {
       
  2749                 if (!(o instanceof Map.Entry))
       
  2750                     return false;
       
  2751                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
       
  2752                 return s.contains(
       
  2753                     (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
       
  2754             }
       
  2755 
       
  2756             /**
       
  2757              * The bulk collection methods are overridden to protect
       
  2758              * against an unscrupulous collection whose contains(Object o)
       
  2759              * method senses when o is a Map.Entry, and calls o.setValue.
       
  2760              */
       
  2761             public boolean containsAll(Collection<?> c) {
       
  2762                 for (Object o : c)
       
  2763                     if (!contains(o)) // Invokes safe contains() above
       
  2764                         return false;
       
  2765                 return true;
       
  2766             }
       
  2767 
       
  2768             public boolean remove(Object o) {
       
  2769                 if (!(o instanceof Map.Entry))
       
  2770                     return false;
       
  2771                 return s.remove(new AbstractMap.SimpleImmutableEntry
       
  2772                                 <Object, Object>((Map.Entry<?,?>)o));
       
  2773             }
       
  2774 
       
  2775             public boolean removeAll(Collection<?> c) {
       
  2776                 return batchRemove(c, false);
       
  2777             }
       
  2778             public boolean retainAll(Collection<?> c) {
       
  2779                 return batchRemove(c, true);
       
  2780             }
       
  2781             private boolean batchRemove(Collection<?> c, boolean complement) {
       
  2782                 boolean modified = false;
       
  2783                 Iterator<Map.Entry<K,V>> it = iterator();
       
  2784                 while (it.hasNext()) {
       
  2785                     if (c.contains(it.next()) != complement) {
       
  2786                         it.remove();
       
  2787                         modified = true;
       
  2788                     }
       
  2789                 }
       
  2790                 return modified;
       
  2791             }
       
  2792 
       
  2793             public boolean equals(Object o) {
       
  2794                 if (o == this)
       
  2795                     return true;
       
  2796                 if (!(o instanceof Set))
       
  2797                     return false;
       
  2798                 Set<?> that = (Set<?>) o;
       
  2799                 return that.size() == s.size()
       
  2800                     && containsAll(that); // Invokes safe containsAll() above
       
  2801             }
       
  2802 
       
  2803             static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
       
  2804                                                             Class<T> valueType) {
       
  2805                 return new CheckedEntry<K,V,T>(e, valueType);
       
  2806             }
       
  2807 
       
  2808             /**
       
  2809              * This "wrapper class" serves two purposes: it prevents
       
  2810              * the client from modifying the backing Map, by short-circuiting
       
  2811              * the setValue method, and it protects the backing Map against
       
  2812              * an ill-behaved Map.Entry that attempts to modify another
       
  2813              * Map.Entry when asked to perform an equality check.
       
  2814              */
       
  2815             private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
       
  2816                 private final Map.Entry<K, V> e;
       
  2817                 private final Class<T> valueType;
       
  2818 
       
  2819                 CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
       
  2820                     this.e = e;
       
  2821                     this.valueType = valueType;
       
  2822                 }
       
  2823 
       
  2824                 public K getKey()        { return e.getKey(); }
       
  2825                 public V getValue()      { return e.getValue(); }
       
  2826                 public int hashCode()    { return e.hashCode(); }
       
  2827                 public String toString() { return e.toString(); }
       
  2828 
       
  2829                 public V setValue(V value) {
       
  2830                     if (value != null && !valueType.isInstance(value))
       
  2831                         throw new ClassCastException(badValueMsg(value));
       
  2832                     return e.setValue(value);
       
  2833                 }
       
  2834 
       
  2835                 private String badValueMsg(Object value) {
       
  2836                     return "Attempt to insert " + value.getClass() +
       
  2837                         " value into map with value type " + valueType;
       
  2838                 }
       
  2839 
       
  2840                 public boolean equals(Object o) {
       
  2841                     if (o == this)
       
  2842                         return true;
       
  2843                     if (!(o instanceof Map.Entry))
       
  2844                         return false;
       
  2845                     return e.equals(new AbstractMap.SimpleImmutableEntry
       
  2846                                     <Object, Object>((Map.Entry<?,?>)o));
       
  2847                 }
       
  2848             }
       
  2849         }
       
  2850     }
       
  2851 
       
  2852     /**
       
  2853      * Returns a dynamically typesafe view of the specified sorted map.
       
  2854      * Any attempt to insert a mapping whose key or value have the wrong
       
  2855      * type will result in an immediate {@link ClassCastException}.
       
  2856      * Similarly, any attempt to modify the value currently associated with
       
  2857      * a key will result in an immediate {@link ClassCastException},
       
  2858      * whether the modification is attempted directly through the map
       
  2859      * itself, or through a {@link Map.Entry} instance obtained from the
       
  2860      * map's {@link Map#entrySet() entry set} view.
       
  2861      *
       
  2862      * <p>Assuming a map contains no incorrectly typed keys or values
       
  2863      * prior to the time a dynamically typesafe view is generated, and
       
  2864      * that all subsequent access to the map takes place through the view
       
  2865      * (or one of its collection views), it is <i>guaranteed</i> that the
       
  2866      * map cannot contain an incorrectly typed key or value.
       
  2867      *
       
  2868      * <p>A discussion of the use of dynamically typesafe views may be
       
  2869      * found in the documentation for the {@link #checkedCollection
       
  2870      * checkedCollection} method.
       
  2871      *
       
  2872      * <p>The returned map will be serializable if the specified map is
       
  2873      * serializable.
       
  2874      *
       
  2875      * <p>Since {@code null} is considered to be a value of any reference
       
  2876      * type, the returned map permits insertion of null keys or values
       
  2877      * whenever the backing map does.
       
  2878      *
       
  2879      * @param m the map for which a dynamically typesafe view is to be
       
  2880      *          returned
       
  2881      * @param keyType the type of key that {@code m} is permitted to hold
       
  2882      * @param valueType the type of value that {@code m} is permitted to hold
       
  2883      * @return a dynamically typesafe view of the specified map
       
  2884      * @since 1.5
       
  2885      */
       
  2886     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
       
  2887                                                         Class<K> keyType,
       
  2888                                                         Class<V> valueType) {
       
  2889         return new CheckedSortedMap<K,V>(m, keyType, valueType);
       
  2890     }
       
  2891 
       
  2892     /**
       
  2893      * @serial include
       
  2894      */
       
  2895     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
       
  2896         implements SortedMap<K,V>, Serializable
       
  2897     {
       
  2898         private static final long serialVersionUID = 1599671320688067438L;
       
  2899 
       
  2900         private final SortedMap<K, V> sm;
       
  2901 
       
  2902         CheckedSortedMap(SortedMap<K, V> m,
       
  2903                          Class<K> keyType, Class<V> valueType) {
       
  2904             super(m, keyType, valueType);
       
  2905             sm = m;
       
  2906         }
       
  2907 
       
  2908         public Comparator<? super K> comparator() { return sm.comparator(); }
       
  2909         public K firstKey()                       { return sm.firstKey(); }
       
  2910         public K lastKey()                        { return sm.lastKey(); }
       
  2911 
       
  2912         public SortedMap<K,V> subMap(K fromKey, K toKey) {
       
  2913             return checkedSortedMap(sm.subMap(fromKey, toKey),
       
  2914                                     keyType, valueType);
       
  2915         }
       
  2916         public SortedMap<K,V> headMap(K toKey) {
       
  2917             return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
       
  2918         }
       
  2919         public SortedMap<K,V> tailMap(K fromKey) {
       
  2920             return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
       
  2921         }
       
  2922     }
       
  2923 
       
  2924     // Empty collections
       
  2925 
       
  2926     /**
       
  2927      * Returns an iterator that has no elements.  More precisely,
       
  2928      *
       
  2929      * <ul compact>
       
  2930      *
       
  2931      * <li>{@link Iterator#hasNext hasNext} always returns {@code
       
  2932      * false}.
       
  2933      *
       
  2934      * <li>{@link Iterator#next next} always throws {@link
       
  2935      * NoSuchElementException}.
       
  2936      *
       
  2937      * <li>{@link Iterator#remove remove} always throws {@link
       
  2938      * IllegalStateException}.
       
  2939      *
       
  2940      * </ul>
       
  2941      *
       
  2942      * <p>Implementations of this method are permitted, but not
       
  2943      * required, to return the same object from multiple invocations.
       
  2944      *
       
  2945      * @return an empty iterator
       
  2946      * @since 1.7
       
  2947      */
       
  2948     @SuppressWarnings("unchecked")
       
  2949     public static <T> Iterator<T> emptyIterator() {
       
  2950         return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
       
  2951     }
       
  2952 
       
  2953     private static class EmptyIterator<E> implements Iterator<E> {
       
  2954         static final EmptyIterator<Object> EMPTY_ITERATOR
       
  2955             = new EmptyIterator<Object>();
       
  2956 
       
  2957         public boolean hasNext() { return false; }
       
  2958         public E next() { throw new NoSuchElementException(); }
       
  2959         public void remove() { throw new IllegalStateException(); }
       
  2960     }
       
  2961 
       
  2962     /**
       
  2963      * Returns a list iterator that has no elements.  More precisely,
       
  2964      *
       
  2965      * <ul compact>
       
  2966      *
       
  2967      * <li>{@link Iterator#hasNext hasNext} and {@link
       
  2968      * ListIterator#hasPrevious hasPrevious} always return {@code
       
  2969      * false}.
       
  2970      *
       
  2971      * <li>{@link Iterator#next next} and {@link ListIterator#previous
       
  2972      * previous} always throw {@link NoSuchElementException}.
       
  2973      *
       
  2974      * <li>{@link Iterator#remove remove} and {@link ListIterator#set
       
  2975      * set} always throw {@link IllegalStateException}.
       
  2976      *
       
  2977      * <li>{@link ListIterator#add add} always throws {@link
       
  2978      * UnsupportedOperationException}.
       
  2979      *
       
  2980      * <li>{@link ListIterator#nextIndex nextIndex} always returns
       
  2981      * {@code 0} .
       
  2982      *
       
  2983      * <li>{@link ListIterator#previousIndex previousIndex} always
       
  2984      * returns {@code -1}.
       
  2985      *
       
  2986      * </ul>
       
  2987      *
       
  2988      * <p>Implementations of this method are permitted, but not
       
  2989      * required, to return the same object from multiple invocations.
       
  2990      *
       
  2991      * @return an empty list iterator
       
  2992      * @since 1.7
       
  2993      */
       
  2994     @SuppressWarnings("unchecked")
       
  2995     public static <T> ListIterator<T> emptyListIterator() {
       
  2996         return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
       
  2997     }
       
  2998 
       
  2999     private static class EmptyListIterator<E>
       
  3000         extends EmptyIterator<E>
       
  3001         implements ListIterator<E>
       
  3002     {
       
  3003         static final EmptyListIterator<Object> EMPTY_ITERATOR
       
  3004             = new EmptyListIterator<Object>();
       
  3005 
       
  3006         public boolean hasPrevious() { return false; }
       
  3007         public E previous() { throw new NoSuchElementException(); }
       
  3008         public int nextIndex()     { return 0; }
       
  3009         public int previousIndex() { return -1; }
       
  3010         public void set(E e) { throw new IllegalStateException(); }
       
  3011         public void add(E e) { throw new UnsupportedOperationException(); }
       
  3012     }
       
  3013 
       
  3014     /**
       
  3015      * Returns an enumeration that has no elements.  More precisely,
       
  3016      *
       
  3017      * <ul compact>
       
  3018      *
       
  3019      * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
       
  3020      * returns {@code false}.
       
  3021      *
       
  3022      * <li> {@link Enumeration#nextElement nextElement} always throws
       
  3023      * {@link NoSuchElementException}.
       
  3024      *
       
  3025      * </ul>
       
  3026      *
       
  3027      * <p>Implementations of this method are permitted, but not
       
  3028      * required, to return the same object from multiple invocations.
       
  3029      *
       
  3030      * @return an empty enumeration
       
  3031      * @since 1.7
       
  3032      */
       
  3033     @SuppressWarnings("unchecked")
       
  3034     public static <T> Enumeration<T> emptyEnumeration() {
       
  3035         return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
       
  3036     }
       
  3037 
       
  3038     private static class EmptyEnumeration<E> implements Enumeration<E> {
       
  3039         static final EmptyEnumeration<Object> EMPTY_ENUMERATION
       
  3040             = new EmptyEnumeration<Object>();
       
  3041 
       
  3042         public boolean hasMoreElements() { return false; }
       
  3043         public E nextElement() { throw new NoSuchElementException(); }
       
  3044     }
       
  3045 
       
  3046     /**
       
  3047      * The empty set (immutable).  This set is serializable.
       
  3048      *
       
  3049      * @see #emptySet()
       
  3050      */
       
  3051     @SuppressWarnings("unchecked")
       
  3052     public static final Set EMPTY_SET = new EmptySet<Object>();
       
  3053 
       
  3054     /**
       
  3055      * Returns the empty set (immutable).  This set is serializable.
       
  3056      * Unlike the like-named field, this method is parameterized.
       
  3057      *
       
  3058      * <p>This example illustrates the type-safe way to obtain an empty set:
       
  3059      * <pre>
       
  3060      *     Set&lt;String&gt; s = Collections.emptySet();
       
  3061      * </pre>
       
  3062      * Implementation note:  Implementations of this method need not
       
  3063      * create a separate <tt>Set</tt> object for each call.   Using this
       
  3064      * method is likely to have comparable cost to using the like-named
       
  3065      * field.  (Unlike this method, the field does not provide type safety.)
       
  3066      *
       
  3067      * @see #EMPTY_SET
       
  3068      * @since 1.5
       
  3069      */
       
  3070     @SuppressWarnings("unchecked")
       
  3071     public static final <T> Set<T> emptySet() {
       
  3072         return (Set<T>) EMPTY_SET;
       
  3073     }
       
  3074 
       
  3075     /**
       
  3076      * @serial include
       
  3077      */
       
  3078     private static class EmptySet<E>
       
  3079         extends AbstractSet<E>
       
  3080         implements Serializable
       
  3081     {
       
  3082         private static final long serialVersionUID = 1582296315990362920L;
       
  3083 
       
  3084         public Iterator<E> iterator() { return emptyIterator(); }
       
  3085 
       
  3086         public int size() {return 0;}
       
  3087         public boolean isEmpty() {return true;}
       
  3088 
       
  3089         public boolean contains(Object obj) {return false;}
       
  3090         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
       
  3091 
       
  3092         public Object[] toArray() { return new Object[0]; }
       
  3093 
       
  3094         public <T> T[] toArray(T[] a) {
       
  3095             if (a.length > 0)
       
  3096                 a[0] = null;
       
  3097             return a;
       
  3098         }
       
  3099 
       
  3100         // Preserves singleton property
       
  3101         private Object readResolve() {
       
  3102             return EMPTY_SET;
       
  3103         }
       
  3104     }
       
  3105 
       
  3106     /**
       
  3107      * The empty list (immutable).  This list is serializable.
       
  3108      *
       
  3109      * @see #emptyList()
       
  3110      */
       
  3111     @SuppressWarnings("unchecked")
       
  3112     public static final List EMPTY_LIST = new EmptyList<Object>();
       
  3113 
       
  3114     /**
       
  3115      * Returns the empty list (immutable).  This list is serializable.
       
  3116      *
       
  3117      * <p>This example illustrates the type-safe way to obtain an empty list:
       
  3118      * <pre>
       
  3119      *     List&lt;String&gt; s = Collections.emptyList();
       
  3120      * </pre>
       
  3121      * Implementation note:  Implementations of this method need not
       
  3122      * create a separate <tt>List</tt> object for each call.   Using this
       
  3123      * method is likely to have comparable cost to using the like-named
       
  3124      * field.  (Unlike this method, the field does not provide type safety.)
       
  3125      *
       
  3126      * @see #EMPTY_LIST
       
  3127      * @since 1.5
       
  3128      */
       
  3129     @SuppressWarnings("unchecked")
       
  3130     public static final <T> List<T> emptyList() {
       
  3131         return (List<T>) EMPTY_LIST;
       
  3132     }
       
  3133 
       
  3134     /**
       
  3135      * @serial include
       
  3136      */
       
  3137     private static class EmptyList<E>
       
  3138         extends AbstractList<E>
       
  3139         implements RandomAccess, Serializable {
       
  3140         private static final long serialVersionUID = 8842843931221139166L;
       
  3141 
       
  3142         public Iterator<E> iterator() {
       
  3143             return emptyIterator();
       
  3144         }
       
  3145         public ListIterator<E> listIterator() {
       
  3146             return emptyListIterator();
       
  3147         }
       
  3148 
       
  3149         public int size() {return 0;}
       
  3150         public boolean isEmpty() {return true;}
       
  3151 
       
  3152         public boolean contains(Object obj) {return false;}
       
  3153         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
       
  3154 
       
  3155         public Object[] toArray() { return new Object[0]; }
       
  3156 
       
  3157         public <T> T[] toArray(T[] a) {
       
  3158             if (a.length > 0)
       
  3159                 a[0] = null;
       
  3160             return a;
       
  3161         }
       
  3162 
       
  3163         public E get(int index) {
       
  3164             throw new IndexOutOfBoundsException("Index: "+index);
       
  3165         }
       
  3166 
       
  3167         public boolean equals(Object o) {
       
  3168             return (o instanceof List) && ((List<?>)o).isEmpty();
       
  3169         }
       
  3170 
       
  3171         public int hashCode() { return 1; }
       
  3172 
       
  3173         // Preserves singleton property
       
  3174         private Object readResolve() {
       
  3175             return EMPTY_LIST;
       
  3176         }
       
  3177     }
       
  3178 
       
  3179     /**
       
  3180      * The empty map (immutable).  This map is serializable.
       
  3181      *
       
  3182      * @see #emptyMap()
       
  3183      * @since 1.3
       
  3184      */
       
  3185     @SuppressWarnings("unchecked")
       
  3186     public static final Map EMPTY_MAP = new EmptyMap<Object,Object>();
       
  3187 
       
  3188     /**
       
  3189      * Returns the empty map (immutable).  This map is serializable.
       
  3190      *
       
  3191      * <p>This example illustrates the type-safe way to obtain an empty set:
       
  3192      * <pre>
       
  3193      *     Map&lt;String, Date&gt; s = Collections.emptyMap();
       
  3194      * </pre>
       
  3195      * Implementation note:  Implementations of this method need not
       
  3196      * create a separate <tt>Map</tt> object for each call.   Using this
       
  3197      * method is likely to have comparable cost to using the like-named
       
  3198      * field.  (Unlike this method, the field does not provide type safety.)
       
  3199      *
       
  3200      * @see #EMPTY_MAP
       
  3201      * @since 1.5
       
  3202      */
       
  3203     @SuppressWarnings("unchecked")
       
  3204     public static final <K,V> Map<K,V> emptyMap() {
       
  3205         return (Map<K,V>) EMPTY_MAP;
       
  3206     }
       
  3207 
       
  3208     /**
       
  3209      * @serial include
       
  3210      */
       
  3211     private static class EmptyMap<K,V>
       
  3212         extends AbstractMap<K,V>
       
  3213         implements Serializable
       
  3214     {
       
  3215         private static final long serialVersionUID = 6428348081105594320L;
       
  3216 
       
  3217         public int size()                          {return 0;}
       
  3218         public boolean isEmpty()                   {return true;}
       
  3219         public boolean containsKey(Object key)     {return false;}
       
  3220         public boolean containsValue(Object value) {return false;}
       
  3221         public V get(Object key)                   {return null;}
       
  3222         public Set<K> keySet()                     {return emptySet();}
       
  3223         public Collection<V> values()              {return emptySet();}
       
  3224         public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
       
  3225 
       
  3226         public boolean equals(Object o) {
       
  3227             return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
       
  3228         }
       
  3229 
       
  3230         public int hashCode()                      {return 0;}
       
  3231 
       
  3232         // Preserves singleton property
       
  3233         private Object readResolve() {
       
  3234             return EMPTY_MAP;
       
  3235         }
       
  3236     }
       
  3237 
       
  3238     // Singleton collections
       
  3239 
       
  3240     /**
       
  3241      * Returns an immutable set containing only the specified object.
       
  3242      * The returned set is serializable.
       
  3243      *
       
  3244      * @param o the sole object to be stored in the returned set.
       
  3245      * @return an immutable set containing only the specified object.
       
  3246      */
       
  3247     public static <T> Set<T> singleton(T o) {
       
  3248         return new SingletonSet<T>(o);
       
  3249     }
       
  3250 
       
  3251     static <E> Iterator<E> singletonIterator(final E e) {
       
  3252         return new Iterator<E>() {
       
  3253             private boolean hasNext = true;
       
  3254             public boolean hasNext() {
       
  3255                 return hasNext;
       
  3256             }
       
  3257             public E next() {
       
  3258                 if (hasNext) {
       
  3259                     hasNext = false;
       
  3260                     return e;
       
  3261                 }
       
  3262                 throw new NoSuchElementException();
       
  3263             }
       
  3264             public void remove() {
       
  3265                 throw new UnsupportedOperationException();
       
  3266             }
       
  3267         };
       
  3268     }
       
  3269 
       
  3270     /**
       
  3271      * @serial include
       
  3272      */
       
  3273     private static class SingletonSet<E>
       
  3274         extends AbstractSet<E>
       
  3275         implements Serializable
       
  3276     {
       
  3277         private static final long serialVersionUID = 3193687207550431679L;
       
  3278 
       
  3279         final private E element;
       
  3280 
       
  3281         SingletonSet(E e) {element = e;}
       
  3282 
       
  3283         public Iterator<E> iterator() {
       
  3284             return singletonIterator(element);
       
  3285         }
       
  3286 
       
  3287         public int size() {return 1;}
       
  3288 
       
  3289         public boolean contains(Object o) {return eq(o, element);}
       
  3290     }
       
  3291 
       
  3292     /**
       
  3293      * Returns an immutable list containing only the specified object.
       
  3294      * The returned list is serializable.
       
  3295      *
       
  3296      * @param o the sole object to be stored in the returned list.
       
  3297      * @return an immutable list containing only the specified object.
       
  3298      * @since 1.3
       
  3299      */
       
  3300     public static <T> List<T> singletonList(T o) {
       
  3301         return new SingletonList<T>(o);
       
  3302     }
       
  3303 
       
  3304     /**
       
  3305      * @serial include
       
  3306      */
       
  3307     private static class SingletonList<E>
       
  3308         extends AbstractList<E>
       
  3309         implements RandomAccess, Serializable {
       
  3310 
       
  3311         private static final long serialVersionUID = 3093736618740652951L;
       
  3312 
       
  3313         private final E element;
       
  3314 
       
  3315         SingletonList(E obj)                {element = obj;}
       
  3316 
       
  3317         public Iterator<E> iterator() {
       
  3318             return singletonIterator(element);
       
  3319         }
       
  3320 
       
  3321         public int size()                   {return 1;}
       
  3322 
       
  3323         public boolean contains(Object obj) {return eq(obj, element);}
       
  3324 
       
  3325         public E get(int index) {
       
  3326             if (index != 0)
       
  3327               throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
       
  3328             return element;
       
  3329         }
       
  3330     }
       
  3331 
       
  3332     /**
       
  3333      * Returns an immutable map, mapping only the specified key to the
       
  3334      * specified value.  The returned map is serializable.
       
  3335      *
       
  3336      * @param key the sole key to be stored in the returned map.
       
  3337      * @param value the value to which the returned map maps <tt>key</tt>.
       
  3338      * @return an immutable map containing only the specified key-value
       
  3339      *         mapping.
       
  3340      * @since 1.3
       
  3341      */
       
  3342     public static <K,V> Map<K,V> singletonMap(K key, V value) {
       
  3343         return new SingletonMap<K,V>(key, value);
       
  3344     }
       
  3345 
       
  3346     /**
       
  3347      * @serial include
       
  3348      */
       
  3349     private static class SingletonMap<K,V>
       
  3350           extends AbstractMap<K,V>
       
  3351           implements Serializable {
       
  3352         private static final long serialVersionUID = -6979724477215052911L;
       
  3353 
       
  3354         private final K k;
       
  3355         private final V v;
       
  3356 
       
  3357         SingletonMap(K key, V value) {
       
  3358             k = key;
       
  3359             v = value;
       
  3360         }
       
  3361 
       
  3362         public int size()                          {return 1;}
       
  3363 
       
  3364         public boolean isEmpty()                   {return false;}
       
  3365 
       
  3366         public boolean containsKey(Object key)     {return eq(key, k);}
       
  3367 
       
  3368         public boolean containsValue(Object value) {return eq(value, v);}
       
  3369 
       
  3370         public V get(Object key)                   {return (eq(key, k) ? v : null);}
       
  3371 
       
  3372         private transient Set<K> keySet = null;
       
  3373         private transient Set<Map.Entry<K,V>> entrySet = null;
       
  3374         private transient Collection<V> values = null;
       
  3375 
       
  3376         public Set<K> keySet() {
       
  3377             if (keySet==null)
       
  3378                 keySet = singleton(k);
       
  3379             return keySet;
       
  3380         }
       
  3381 
       
  3382         public Set<Map.Entry<K,V>> entrySet() {
       
  3383             if (entrySet==null)
       
  3384                 entrySet = Collections.<Map.Entry<K,V>>singleton(
       
  3385                     new SimpleImmutableEntry<K,V>(k, v));
       
  3386             return entrySet;
       
  3387         }
       
  3388 
       
  3389         public Collection<V> values() {
       
  3390             if (values==null)
       
  3391                 values = singleton(v);
       
  3392             return values;
       
  3393         }
       
  3394 
       
  3395     }
       
  3396 
       
  3397     // Miscellaneous
       
  3398 
       
  3399     /**
       
  3400      * Returns an immutable list consisting of <tt>n</tt> copies of the
       
  3401      * specified object.  The newly allocated data object is tiny (it contains
       
  3402      * a single reference to the data object).  This method is useful in
       
  3403      * combination with the <tt>List.addAll</tt> method to grow lists.
       
  3404      * The returned list is serializable.
       
  3405      *
       
  3406      * @param  n the number of elements in the returned list.
       
  3407      * @param  o the element to appear repeatedly in the returned list.
       
  3408      * @return an immutable list consisting of <tt>n</tt> copies of the
       
  3409      *         specified object.
       
  3410      * @throws IllegalArgumentException if n &lt; 0.
       
  3411      * @see    List#addAll(Collection)
       
  3412      * @see    List#addAll(int, Collection)
       
  3413      */
       
  3414     public static <T> List<T> nCopies(int n, T o) {
       
  3415         if (n < 0)
       
  3416             throw new IllegalArgumentException("List length = " + n);
       
  3417         return new CopiesList<T>(n, o);
       
  3418     }
       
  3419 
       
  3420     /**
       
  3421      * @serial include
       
  3422      */
       
  3423     private static class CopiesList<E>
       
  3424         extends AbstractList<E>
       
  3425         implements RandomAccess, Serializable
       
  3426     {
       
  3427         private static final long serialVersionUID = 2739099268398711800L;
       
  3428 
       
  3429         final int n;
       
  3430         final E element;
       
  3431 
       
  3432         CopiesList(int n, E e) {
       
  3433             assert n >= 0;
       
  3434             this.n = n;
       
  3435             element = e;
       
  3436         }
       
  3437 
       
  3438         public int size() {
       
  3439             return n;
       
  3440         }
       
  3441 
       
  3442         public boolean contains(Object obj) {
       
  3443             return n != 0 && eq(obj, element);
       
  3444         }
       
  3445 
       
  3446         public int indexOf(Object o) {
       
  3447             return contains(o) ? 0 : -1;
       
  3448         }
       
  3449 
       
  3450         public int lastIndexOf(Object o) {
       
  3451             return contains(o) ? n - 1 : -1;
       
  3452         }
       
  3453 
       
  3454         public E get(int index) {
       
  3455             if (index < 0 || index >= n)
       
  3456                 throw new IndexOutOfBoundsException("Index: "+index+
       
  3457                                                     ", Size: "+n);
       
  3458             return element;
       
  3459         }
       
  3460 
       
  3461         public Object[] toArray() {
       
  3462             final Object[] a = new Object[n];
       
  3463             if (element != null)
       
  3464                 Arrays.fill(a, 0, n, element);
       
  3465             return a;
       
  3466         }
       
  3467 
       
  3468         public <T> T[] toArray(T[] a) {
       
  3469             final int n = this.n;
       
  3470             if (a.length < n) {
       
  3471                 a = (T[])java.lang.reflect.Array
       
  3472                     .newInstance(a.getClass().getComponentType(), n);
       
  3473                 if (element != null)
       
  3474                     Arrays.fill(a, 0, n, element);
       
  3475             } else {
       
  3476                 Arrays.fill(a, 0, n, element);
       
  3477                 if (a.length > n)
       
  3478                     a[n] = null;
       
  3479             }
       
  3480             return a;
       
  3481         }
       
  3482 
       
  3483         public List<E> subList(int fromIndex, int toIndex) {
       
  3484             if (fromIndex < 0)
       
  3485                 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
       
  3486             if (toIndex > n)
       
  3487                 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
       
  3488             if (fromIndex > toIndex)
       
  3489                 throw new IllegalArgumentException("fromIndex(" + fromIndex +
       
  3490                                                    ") > toIndex(" + toIndex + ")");
       
  3491             return new CopiesList<E>(toIndex - fromIndex, element);
       
  3492         }
       
  3493     }
       
  3494 
       
  3495     /**
       
  3496      * Returns a comparator that imposes the reverse of the <i>natural
       
  3497      * ordering</i> on a collection of objects that implement the
       
  3498      * <tt>Comparable</tt> interface.  (The natural ordering is the ordering
       
  3499      * imposed by the objects' own <tt>compareTo</tt> method.)  This enables a
       
  3500      * simple idiom for sorting (or maintaining) collections (or arrays) of
       
  3501      * objects that implement the <tt>Comparable</tt> interface in
       
  3502      * reverse-natural-order.  For example, suppose a is an array of
       
  3503      * strings. Then: <pre>
       
  3504      *          Arrays.sort(a, Collections.reverseOrder());
       
  3505      * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
       
  3506      *
       
  3507      * The returned comparator is serializable.
       
  3508      *
       
  3509      * @return a comparator that imposes the reverse of the <i>natural
       
  3510      *         ordering</i> on a collection of objects that implement
       
  3511      *         the <tt>Comparable</tt> interface.
       
  3512      * @see Comparable
       
  3513      */
       
  3514     public static <T> Comparator<T> reverseOrder() {
       
  3515         return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
       
  3516     }
       
  3517 
       
  3518     /**
       
  3519      * @serial include
       
  3520      */
       
  3521     private static class ReverseComparator
       
  3522         implements Comparator<Comparable<Object>>, Serializable {
       
  3523 
       
  3524         private static final long serialVersionUID = 7207038068494060240L;
       
  3525 
       
  3526         static final ReverseComparator REVERSE_ORDER
       
  3527             = new ReverseComparator();
       
  3528 
       
  3529         public int compare(Comparable<Object> c1, Comparable<Object> c2) {
       
  3530             return c2.compareTo(c1);
       
  3531         }
       
  3532 
       
  3533         private Object readResolve() { return reverseOrder(); }
       
  3534     }
       
  3535 
       
  3536     /**
       
  3537      * Returns a comparator that imposes the reverse ordering of the specified
       
  3538      * comparator.  If the specified comparator is null, this method is
       
  3539      * equivalent to {@link #reverseOrder()} (in other words, it returns a
       
  3540      * comparator that imposes the reverse of the <i>natural ordering</i> on a
       
  3541      * collection of objects that implement the Comparable interface).
       
  3542      *
       
  3543      * <p>The returned comparator is serializable (assuming the specified
       
  3544      * comparator is also serializable or null).
       
  3545      *
       
  3546      * @return a comparator that imposes the reverse ordering of the
       
  3547      *         specified comparator
       
  3548      * @since 1.5
       
  3549      */
       
  3550     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
       
  3551         if (cmp == null)
       
  3552             return reverseOrder();
       
  3553 
       
  3554         if (cmp instanceof ReverseComparator2)
       
  3555             return ((ReverseComparator2<T>)cmp).cmp;
       
  3556 
       
  3557         return new ReverseComparator2<T>(cmp);
       
  3558     }
       
  3559 
       
  3560     /**
       
  3561      * @serial include
       
  3562      */
       
  3563     private static class ReverseComparator2<T> implements Comparator<T>,
       
  3564         Serializable
       
  3565     {
       
  3566         private static final long serialVersionUID = 4374092139857L;
       
  3567 
       
  3568         /**
       
  3569          * The comparator specified in the static factory.  This will never
       
  3570          * be null, as the static factory returns a ReverseComparator
       
  3571          * instance if its argument is null.
       
  3572          *
       
  3573          * @serial
       
  3574          */
       
  3575         final Comparator<T> cmp;
       
  3576 
       
  3577         ReverseComparator2(Comparator<T> cmp) {
       
  3578             assert cmp != null;
       
  3579             this.cmp = cmp;
       
  3580         }
       
  3581 
       
  3582         public int compare(T t1, T t2) {
       
  3583             return cmp.compare(t2, t1);
       
  3584         }
       
  3585 
       
  3586         public boolean equals(Object o) {
       
  3587             return (o == this) ||
       
  3588                 (o instanceof ReverseComparator2 &&
       
  3589                  cmp.equals(((ReverseComparator2)o).cmp));
       
  3590         }
       
  3591 
       
  3592         public int hashCode() {
       
  3593             return cmp.hashCode() ^ Integer.MIN_VALUE;
       
  3594         }
       
  3595     }
       
  3596 
       
  3597     /**
       
  3598      * Returns an enumeration over the specified collection.  This provides
       
  3599      * interoperability with legacy APIs that require an enumeration
       
  3600      * as input.
       
  3601      *
       
  3602      * @param c the collection for which an enumeration is to be returned.
       
  3603      * @return an enumeration over the specified collection.
       
  3604      * @see Enumeration
       
  3605      */
       
  3606     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
       
  3607         return new Enumeration<T>() {
       
  3608             private final Iterator<T> i = c.iterator();
       
  3609 
       
  3610             public boolean hasMoreElements() {
       
  3611                 return i.hasNext();
       
  3612             }
       
  3613 
       
  3614             public T nextElement() {
       
  3615                 return i.next();
       
  3616             }
       
  3617         };
       
  3618     }
       
  3619 
       
  3620     /**
       
  3621      * Returns an array list containing the elements returned by the
       
  3622      * specified enumeration in the order they are returned by the
       
  3623      * enumeration.  This method provides interoperability between
       
  3624      * legacy APIs that return enumerations and new APIs that require
       
  3625      * collections.
       
  3626      *
       
  3627      * @param e enumeration providing elements for the returned
       
  3628      *          array list
       
  3629      * @return an array list containing the elements returned
       
  3630      *         by the specified enumeration.
       
  3631      * @since 1.4
       
  3632      * @see Enumeration
       
  3633      * @see ArrayList
       
  3634      */
       
  3635     public static <T> ArrayList<T> list(Enumeration<T> e) {
       
  3636         ArrayList<T> l = new ArrayList<T>();
       
  3637         while (e.hasMoreElements())
       
  3638             l.add(e.nextElement());
       
  3639         return l;
       
  3640     }
       
  3641 
       
  3642     /**
       
  3643      * Returns true if the specified arguments are equal, or both null.
       
  3644      */
       
  3645     static boolean eq(Object o1, Object o2) {
       
  3646         return o1==null ? o2==null : o1.equals(o2);
       
  3647     }
       
  3648 
       
  3649     /**
       
  3650      * Returns the number of elements in the specified collection equal to the
       
  3651      * specified object.  More formally, returns the number of elements
       
  3652      * <tt>e</tt> in the collection such that
       
  3653      * <tt>(o == null ? e == null : o.equals(e))</tt>.
       
  3654      *
       
  3655      * @param c the collection in which to determine the frequency
       
  3656      *     of <tt>o</tt>
       
  3657      * @param o the object whose frequency is to be determined
       
  3658      * @throws NullPointerException if <tt>c</tt> is null
       
  3659      * @since 1.5
       
  3660      */
       
  3661     public static int frequency(Collection<?> c, Object o) {
       
  3662         int result = 0;
       
  3663         if (o == null) {
       
  3664             for (Object e : c)
       
  3665                 if (e == null)
       
  3666                     result++;
       
  3667         } else {
       
  3668             for (Object e : c)
       
  3669                 if (o.equals(e))
       
  3670                     result++;
       
  3671         }
       
  3672         return result;
       
  3673     }
       
  3674 
       
  3675     /**
       
  3676      * Returns <tt>true</tt> if the two specified collections have no
       
  3677      * elements in common.
       
  3678      *
       
  3679      * <p>Care must be exercised if this method is used on collections that
       
  3680      * do not comply with the general contract for <tt>Collection</tt>.
       
  3681      * Implementations may elect to iterate over either collection and test
       
  3682      * for containment in the other collection (or to perform any equivalent
       
  3683      * computation).  If either collection uses a nonstandard equality test
       
  3684      * (as does a {@link SortedSet} whose ordering is not <i>compatible with
       
  3685      * equals</i>, or the key set of an {@link IdentityHashMap}), both
       
  3686      * collections must use the same nonstandard equality test, or the
       
  3687      * result of this method is undefined.
       
  3688      *
       
  3689      * <p>Note that it is permissible to pass the same collection in both
       
  3690      * parameters, in which case the method will return true if and only if
       
  3691      * the collection is empty.
       
  3692      *
       
  3693      * @param c1 a collection
       
  3694      * @param c2 a collection
       
  3695      * @throws NullPointerException if either collection is null
       
  3696      * @since 1.5
       
  3697      */
       
  3698     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
       
  3699         /*
       
  3700          * We're going to iterate through c1 and test for inclusion in c2.
       
  3701          * If c1 is a Set and c2 isn't, swap the collections.  Otherwise,
       
  3702          * place the shorter collection in c1.  Hopefully this heuristic
       
  3703          * will minimize the cost of the operation.
       
  3704          */
       
  3705         if ((c1 instanceof Set) && !(c2 instanceof Set) ||
       
  3706             (c1.size() > c2.size())) {
       
  3707             Collection<?> tmp = c1;
       
  3708             c1 = c2;
       
  3709             c2 = tmp;
       
  3710         }
       
  3711 
       
  3712         for (Object e : c1)
       
  3713             if (c2.contains(e))
       
  3714                 return false;
       
  3715         return true;
       
  3716     }
       
  3717 
       
  3718     /**
       
  3719      * Adds all of the specified elements to the specified collection.
       
  3720      * Elements to be added may be specified individually or as an array.
       
  3721      * The behavior of this convenience method is identical to that of
       
  3722      * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
       
  3723      * to run significantly faster under most implementations.
       
  3724      *
       
  3725      * <p>When elements are specified individually, this method provides a
       
  3726      * convenient way to add a few elements to an existing collection:
       
  3727      * <pre>
       
  3728      *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
       
  3729      * </pre>
       
  3730      *
       
  3731      * @param c the collection into which <tt>elements</tt> are to be inserted
       
  3732      * @param elements the elements to insert into <tt>c</tt>
       
  3733      * @return <tt>true</tt> if the collection changed as a result of the call
       
  3734      * @throws UnsupportedOperationException if <tt>c</tt> does not support
       
  3735      *         the <tt>add</tt> operation
       
  3736      * @throws NullPointerException if <tt>elements</tt> contains one or more
       
  3737      *         null values and <tt>c</tt> does not permit null elements, or
       
  3738      *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
       
  3739      * @throws IllegalArgumentException if some property of a value in
       
  3740      *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
       
  3741      * @see Collection#addAll(Collection)
       
  3742      * @since 1.5
       
  3743      */
       
  3744     public static <T> boolean addAll(Collection<? super T> c, T... elements) {
       
  3745         boolean result = false;
       
  3746         for (T element : elements)
       
  3747             result |= c.add(element);
       
  3748         return result;
       
  3749     }
       
  3750 
       
  3751     /**
       
  3752      * Returns a set backed by the specified map.  The resulting set displays
       
  3753      * the same ordering, concurrency, and performance characteristics as the
       
  3754      * backing map.  In essence, this factory method provides a {@link Set}
       
  3755      * implementation corresponding to any {@link Map} implementation.  There
       
  3756      * is no need to use this method on a {@link Map} implementation that
       
  3757      * already has a corresponding {@link Set} implementation (such as {@link
       
  3758      * HashMap} or {@link TreeMap}).
       
  3759      *
       
  3760      * <p>Each method invocation on the set returned by this method results in
       
  3761      * exactly one method invocation on the backing map or its <tt>keySet</tt>
       
  3762      * view, with one exception.  The <tt>addAll</tt> method is implemented
       
  3763      * as a sequence of <tt>put</tt> invocations on the backing map.
       
  3764      *
       
  3765      * <p>The specified map must be empty at the time this method is invoked,
       
  3766      * and should not be accessed directly after this method returns.  These
       
  3767      * conditions are ensured if the map is created empty, passed directly
       
  3768      * to this method, and no reference to the map is retained, as illustrated
       
  3769      * in the following code fragment:
       
  3770      * <pre>
       
  3771      *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
       
  3772      *        new WeakHashMap&lt;Object, Boolean&gt;());
       
  3773      * </pre>
       
  3774      *
       
  3775      * @param map the backing map
       
  3776      * @return the set backed by the map
       
  3777      * @throws IllegalArgumentException if <tt>map</tt> is not empty
       
  3778      * @since 1.6
       
  3779      */
       
  3780     public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
       
  3781         return new SetFromMap<E>(map);
       
  3782     }
       
  3783 
       
  3784     /**
       
  3785      * @serial include
       
  3786      */
       
  3787     private static class SetFromMap<E> extends AbstractSet<E>
       
  3788         implements Set<E>, Serializable
       
  3789     {
       
  3790         private final Map<E, Boolean> m;  // The backing map
       
  3791         private transient Set<E> s;       // Its keySet
       
  3792 
       
  3793         SetFromMap(Map<E, Boolean> map) {
       
  3794             if (!map.isEmpty())
       
  3795                 throw new IllegalArgumentException("Map is non-empty");
       
  3796             m = map;
       
  3797             s = map.keySet();
       
  3798         }
       
  3799 
       
  3800         public void clear()               {        m.clear(); }
       
  3801         public int size()                 { return m.size(); }
       
  3802         public boolean isEmpty()          { return m.isEmpty(); }
       
  3803         public boolean contains(Object o) { return m.containsKey(o); }
       
  3804         public boolean remove(Object o)   { return m.remove(o) != null; }
       
  3805         public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
       
  3806         public Iterator<E> iterator()     { return s.iterator(); }
       
  3807         public Object[] toArray()         { return s.toArray(); }
       
  3808         public <T> T[] toArray(T[] a)     { return s.toArray(a); }
       
  3809         public String toString()          { return s.toString(); }
       
  3810         public int hashCode()             { return s.hashCode(); }
       
  3811         public boolean equals(Object o)   { return o == this || s.equals(o); }
       
  3812         public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
       
  3813         public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
       
  3814         public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
       
  3815         // addAll is the only inherited implementation
       
  3816 
       
  3817         private static final long serialVersionUID = 2454657854757543876L;
       
  3818 
       
  3819         private void readObject(java.io.ObjectInputStream stream)
       
  3820             throws IOException, ClassNotFoundException
       
  3821         {
       
  3822             stream.defaultReadObject();
       
  3823             s = m.keySet();
       
  3824         }
       
  3825     }
       
  3826 
       
  3827     /**
       
  3828      * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
       
  3829      * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
       
  3830      * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
       
  3831      * view can be useful when you would like to use a method
       
  3832      * requiring a <tt>Queue</tt> but you need Lifo ordering.
       
  3833      *
       
  3834      * <p>Each method invocation on the queue returned by this method
       
  3835      * results in exactly one method invocation on the backing deque, with
       
  3836      * one exception.  The {@link Queue#addAll addAll} method is
       
  3837      * implemented as a sequence of {@link Deque#addFirst addFirst}
       
  3838      * invocations on the backing deque.
       
  3839      *
       
  3840      * @param deque the deque
       
  3841      * @return the queue
       
  3842      * @since  1.6
       
  3843      */
       
  3844     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
       
  3845         return new AsLIFOQueue<T>(deque);
       
  3846     }
       
  3847 
       
  3848     /**
       
  3849      * @serial include
       
  3850      */
       
  3851     static class AsLIFOQueue<E> extends AbstractQueue<E>
       
  3852         implements Queue<E>, Serializable {
       
  3853         private static final long serialVersionUID = 1802017725587941708L;
       
  3854         private final Deque<E> q;
       
  3855         AsLIFOQueue(Deque<E> q)           { this.q = q; }
       
  3856         public boolean add(E e)           { q.addFirst(e); return true; }
       
  3857         public boolean offer(E e)         { return q.offerFirst(e); }
       
  3858         public E poll()                   { return q.pollFirst(); }
       
  3859         public E remove()                 { return q.removeFirst(); }
       
  3860         public E peek()                   { return q.peekFirst(); }
       
  3861         public E element()                { return q.getFirst(); }
       
  3862         public void clear()               {        q.clear(); }
       
  3863         public int size()                 { return q.size(); }
       
  3864         public boolean isEmpty()          { return q.isEmpty(); }
       
  3865         public boolean contains(Object o) { return q.contains(o); }
       
  3866         public boolean remove(Object o)   { return q.remove(o); }
       
  3867         public Iterator<E> iterator()     { return q.iterator(); }
       
  3868         public Object[] toArray()         { return q.toArray(); }
       
  3869         public <T> T[] toArray(T[] a)     { return q.toArray(a); }
       
  3870         public String toString()          { return q.toString(); }
       
  3871         public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
       
  3872         public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
       
  3873         public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
       
  3874         // We use inherited addAll; forwarding addAll would be wrong
       
  3875     }
       
  3876 }