|
1 /* |
|
2 * Copyright 1997-2006 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Sun designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Sun in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
22 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
23 * have any questions. |
|
24 */ |
|
25 |
|
26 package java.awt.geom; |
|
27 |
|
28 import java.io.Serializable; |
|
29 |
|
30 /** |
|
31 * <CODE>Arc2D</CODE> is the abstract superclass for all objects that |
|
32 * store a 2D arc defined by a framing rectangle, |
|
33 * start angle, angular extent (length of the arc), and a closure type |
|
34 * (<CODE>OPEN</CODE>, <CODE>CHORD</CODE>, or <CODE>PIE</CODE>). |
|
35 * <p> |
|
36 * <a name="inscribes"> |
|
37 * The arc is a partial section of a full ellipse which |
|
38 * inscribes the framing rectangle of its parent {@link RectangularShape}. |
|
39 * </a> |
|
40 * <a name="angles"> |
|
41 * The angles are specified relative to the non-square |
|
42 * framing rectangle such that 45 degrees always falls on the line from |
|
43 * the center of the ellipse to the upper right corner of the framing |
|
44 * rectangle. |
|
45 * As a result, if the framing rectangle is noticeably longer along one |
|
46 * axis than the other, the angles to the start and end of the arc segment |
|
47 * will be skewed farther along the longer axis of the frame. |
|
48 * </a> |
|
49 * <p> |
|
50 * The actual storage representation of the coordinates is left to |
|
51 * the subclass. |
|
52 * |
|
53 * @author Jim Graham |
|
54 * @since 1.2 |
|
55 */ |
|
56 public abstract class Arc2D extends RectangularShape { |
|
57 |
|
58 /** |
|
59 * The closure type for an open arc with no path segments |
|
60 * connecting the two ends of the arc segment. |
|
61 * @since 1.2 |
|
62 */ |
|
63 public final static int OPEN = 0; |
|
64 |
|
65 /** |
|
66 * The closure type for an arc closed by drawing a straight |
|
67 * line segment from the start of the arc segment to the end of the |
|
68 * arc segment. |
|
69 * @since 1.2 |
|
70 */ |
|
71 public final static int CHORD = 1; |
|
72 |
|
73 /** |
|
74 * The closure type for an arc closed by drawing straight line |
|
75 * segments from the start of the arc segment to the center |
|
76 * of the full ellipse and from that point to the end of the arc segment. |
|
77 * @since 1.2 |
|
78 */ |
|
79 public final static int PIE = 2; |
|
80 |
|
81 /** |
|
82 * This class defines an arc specified in {@code float} precision. |
|
83 * @since 1.2 |
|
84 */ |
|
85 public static class Float extends Arc2D implements Serializable { |
|
86 /** |
|
87 * The X coordinate of the upper-left corner of the framing |
|
88 * rectangle of the arc. |
|
89 * @since 1.2 |
|
90 * @serial |
|
91 */ |
|
92 public float x; |
|
93 |
|
94 /** |
|
95 * The Y coordinate of the upper-left corner of the framing |
|
96 * rectangle of the arc. |
|
97 * @since 1.2 |
|
98 * @serial |
|
99 */ |
|
100 public float y; |
|
101 |
|
102 /** |
|
103 * The overall width of the full ellipse of which this arc is |
|
104 * a partial section (not considering the |
|
105 * angular extents). |
|
106 * @since 1.2 |
|
107 * @serial |
|
108 */ |
|
109 public float width; |
|
110 |
|
111 /** |
|
112 * The overall height of the full ellipse of which this arc is |
|
113 * a partial section (not considering the |
|
114 * angular extents). |
|
115 * @since 1.2 |
|
116 * @serial |
|
117 */ |
|
118 public float height; |
|
119 |
|
120 /** |
|
121 * The starting angle of the arc in degrees. |
|
122 * @since 1.2 |
|
123 * @serial |
|
124 */ |
|
125 public float start; |
|
126 |
|
127 /** |
|
128 * The angular extent of the arc in degrees. |
|
129 * @since 1.2 |
|
130 * @serial |
|
131 */ |
|
132 public float extent; |
|
133 |
|
134 /** |
|
135 * Constructs a new OPEN arc, initialized to location (0, 0), |
|
136 * size (0, 0), angular extents (start = 0, extent = 0). |
|
137 * @since 1.2 |
|
138 */ |
|
139 public Float() { |
|
140 super(OPEN); |
|
141 } |
|
142 |
|
143 /** |
|
144 * Constructs a new arc, initialized to location (0, 0), |
|
145 * size (0, 0), angular extents (start = 0, extent = 0), and |
|
146 * the specified closure type. |
|
147 * |
|
148 * @param type The closure type for the arc: |
|
149 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
150 * @since 1.2 |
|
151 */ |
|
152 public Float(int type) { |
|
153 super(type); |
|
154 } |
|
155 |
|
156 /** |
|
157 * Constructs a new arc, initialized to the specified location, |
|
158 * size, angular extents, and closure type. |
|
159 * |
|
160 * @param x The X coordinate of the upper-left corner of |
|
161 * the arc's framing rectangle. |
|
162 * @param y The Y coordinate of the upper-left corner of |
|
163 * the arc's framing rectangle. |
|
164 * @param w The overall width of the full ellipse of which |
|
165 * this arc is a partial section. |
|
166 * @param h The overall height of the full ellipse of which this |
|
167 * arc is a partial section. |
|
168 * @param start The starting angle of the arc in degrees. |
|
169 * @param extent The angular extent of the arc in degrees. |
|
170 * @param type The closure type for the arc: |
|
171 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
172 * @since 1.2 |
|
173 */ |
|
174 public Float(float x, float y, float w, float h, |
|
175 float start, float extent, int type) { |
|
176 super(type); |
|
177 this.x = x; |
|
178 this.y = y; |
|
179 this.width = w; |
|
180 this.height = h; |
|
181 this.start = start; |
|
182 this.extent = extent; |
|
183 } |
|
184 |
|
185 /** |
|
186 * Constructs a new arc, initialized to the specified location, |
|
187 * size, angular extents, and closure type. |
|
188 * |
|
189 * @param ellipseBounds The framing rectangle that defines the |
|
190 * outer boundary of the full ellipse of which this arc is a |
|
191 * partial section. |
|
192 * @param start The starting angle of the arc in degrees. |
|
193 * @param extent The angular extent of the arc in degrees. |
|
194 * @param type The closure type for the arc: |
|
195 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
196 * @since 1.2 |
|
197 */ |
|
198 public Float(Rectangle2D ellipseBounds, |
|
199 float start, float extent, int type) { |
|
200 super(type); |
|
201 this.x = (float) ellipseBounds.getX(); |
|
202 this.y = (float) ellipseBounds.getY(); |
|
203 this.width = (float) ellipseBounds.getWidth(); |
|
204 this.height = (float) ellipseBounds.getHeight(); |
|
205 this.start = start; |
|
206 this.extent = extent; |
|
207 } |
|
208 |
|
209 /** |
|
210 * {@inheritDoc} |
|
211 * Note that the arc |
|
212 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
213 * the framing rectangle of this {@code RectangularShape}. |
|
214 * |
|
215 * @since 1.2 |
|
216 */ |
|
217 public double getX() { |
|
218 return (double) x; |
|
219 } |
|
220 |
|
221 /** |
|
222 * {@inheritDoc} |
|
223 * Note that the arc |
|
224 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
225 * the framing rectangle of this {@code RectangularShape}. |
|
226 * |
|
227 * @since 1.2 |
|
228 */ |
|
229 public double getY() { |
|
230 return (double) y; |
|
231 } |
|
232 |
|
233 /** |
|
234 * {@inheritDoc} |
|
235 * Note that the arc |
|
236 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
237 * the framing rectangle of this {@code RectangularShape}. |
|
238 * |
|
239 * @since 1.2 |
|
240 */ |
|
241 public double getWidth() { |
|
242 return (double) width; |
|
243 } |
|
244 |
|
245 /** |
|
246 * {@inheritDoc} |
|
247 * Note that the arc |
|
248 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
249 * the framing rectangle of this {@code RectangularShape}. |
|
250 * |
|
251 * @since 1.2 |
|
252 */ |
|
253 public double getHeight() { |
|
254 return (double) height; |
|
255 } |
|
256 |
|
257 /** |
|
258 * {@inheritDoc} |
|
259 * @since 1.2 |
|
260 */ |
|
261 public double getAngleStart() { |
|
262 return (double) start; |
|
263 } |
|
264 |
|
265 /** |
|
266 * {@inheritDoc} |
|
267 * @since 1.2 |
|
268 */ |
|
269 public double getAngleExtent() { |
|
270 return (double) extent; |
|
271 } |
|
272 |
|
273 /** |
|
274 * {@inheritDoc} |
|
275 * @since 1.2 |
|
276 */ |
|
277 public boolean isEmpty() { |
|
278 return (width <= 0.0 || height <= 0.0); |
|
279 } |
|
280 |
|
281 /** |
|
282 * {@inheritDoc} |
|
283 * @since 1.2 |
|
284 */ |
|
285 public void setArc(double x, double y, double w, double h, |
|
286 double angSt, double angExt, int closure) { |
|
287 this.setArcType(closure); |
|
288 this.x = (float) x; |
|
289 this.y = (float) y; |
|
290 this.width = (float) w; |
|
291 this.height = (float) h; |
|
292 this.start = (float) angSt; |
|
293 this.extent = (float) angExt; |
|
294 } |
|
295 |
|
296 /** |
|
297 * {@inheritDoc} |
|
298 * @since 1.2 |
|
299 */ |
|
300 public void setAngleStart(double angSt) { |
|
301 this.start = (float) angSt; |
|
302 } |
|
303 |
|
304 /** |
|
305 * {@inheritDoc} |
|
306 * @since 1.2 |
|
307 */ |
|
308 public void setAngleExtent(double angExt) { |
|
309 this.extent = (float) angExt; |
|
310 } |
|
311 |
|
312 /** |
|
313 * {@inheritDoc} |
|
314 * @since 1.2 |
|
315 */ |
|
316 protected Rectangle2D makeBounds(double x, double y, |
|
317 double w, double h) { |
|
318 return new Rectangle2D.Float((float) x, (float) y, |
|
319 (float) w, (float) h); |
|
320 } |
|
321 |
|
322 /* |
|
323 * JDK 1.6 serialVersionUID |
|
324 */ |
|
325 private static final long serialVersionUID = 9130893014586380278L; |
|
326 |
|
327 /** |
|
328 * Writes the default serializable fields to the |
|
329 * <code>ObjectOutputStream</code> followed by a byte |
|
330 * indicating the arc type of this <code>Arc2D</code> |
|
331 * instance. |
|
332 * |
|
333 * @serialData |
|
334 * <ol> |
|
335 * <li>The default serializable fields. |
|
336 * <li> |
|
337 * followed by a <code>byte</code> indicating the arc type |
|
338 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
339 * </ol> |
|
340 */ |
|
341 private void writeObject(java.io.ObjectOutputStream s) |
|
342 throws java.io.IOException |
|
343 { |
|
344 s.defaultWriteObject(); |
|
345 |
|
346 s.writeByte(getArcType()); |
|
347 } |
|
348 |
|
349 /** |
|
350 * Reads the default serializable fields from the |
|
351 * <code>ObjectInputStream</code> followed by a byte |
|
352 * indicating the arc type of this <code>Arc2D</code> |
|
353 * instance. |
|
354 * |
|
355 * @serialData |
|
356 * <ol> |
|
357 * <li>The default serializable fields. |
|
358 * <li> |
|
359 * followed by a <code>byte</code> indicating the arc type |
|
360 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
361 * </ol> |
|
362 */ |
|
363 private void readObject(java.io.ObjectInputStream s) |
|
364 throws java.lang.ClassNotFoundException, java.io.IOException |
|
365 { |
|
366 s.defaultReadObject(); |
|
367 |
|
368 try { |
|
369 setArcType(s.readByte()); |
|
370 } catch (IllegalArgumentException iae) { |
|
371 throw new java.io.InvalidObjectException(iae.getMessage()); |
|
372 } |
|
373 } |
|
374 } |
|
375 |
|
376 /** |
|
377 * This class defines an arc specified in {@code double} precision. |
|
378 * @since 1.2 |
|
379 */ |
|
380 public static class Double extends Arc2D implements Serializable { |
|
381 /** |
|
382 * The X coordinate of the upper-left corner of the framing |
|
383 * rectangle of the arc. |
|
384 * @since 1.2 |
|
385 * @serial |
|
386 */ |
|
387 public double x; |
|
388 |
|
389 /** |
|
390 * The Y coordinate of the upper-left corner of the framing |
|
391 * rectangle of the arc. |
|
392 * @since 1.2 |
|
393 * @serial |
|
394 */ |
|
395 public double y; |
|
396 |
|
397 /** |
|
398 * The overall width of the full ellipse of which this arc is |
|
399 * a partial section (not considering the angular extents). |
|
400 * @since 1.2 |
|
401 * @serial |
|
402 */ |
|
403 public double width; |
|
404 |
|
405 /** |
|
406 * The overall height of the full ellipse of which this arc is |
|
407 * a partial section (not considering the angular extents). |
|
408 * @since 1.2 |
|
409 * @serial |
|
410 */ |
|
411 public double height; |
|
412 |
|
413 /** |
|
414 * The starting angle of the arc in degrees. |
|
415 * @since 1.2 |
|
416 * @serial |
|
417 */ |
|
418 public double start; |
|
419 |
|
420 /** |
|
421 * The angular extent of the arc in degrees. |
|
422 * @since 1.2 |
|
423 * @serial |
|
424 */ |
|
425 public double extent; |
|
426 |
|
427 /** |
|
428 * Constructs a new OPEN arc, initialized to location (0, 0), |
|
429 * size (0, 0), angular extents (start = 0, extent = 0). |
|
430 * @since 1.2 |
|
431 */ |
|
432 public Double() { |
|
433 super(OPEN); |
|
434 } |
|
435 |
|
436 /** |
|
437 * Constructs a new arc, initialized to location (0, 0), |
|
438 * size (0, 0), angular extents (start = 0, extent = 0), and |
|
439 * the specified closure type. |
|
440 * |
|
441 * @param type The closure type for the arc: |
|
442 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
443 * @since 1.2 |
|
444 */ |
|
445 public Double(int type) { |
|
446 super(type); |
|
447 } |
|
448 |
|
449 /** |
|
450 * Constructs a new arc, initialized to the specified location, |
|
451 * size, angular extents, and closure type. |
|
452 * |
|
453 * @param x The X coordinate of the upper-left corner |
|
454 * of the arc's framing rectangle. |
|
455 * @param y The Y coordinate of the upper-left corner |
|
456 * of the arc's framing rectangle. |
|
457 * @param w The overall width of the full ellipse of which this |
|
458 * arc is a partial section. |
|
459 * @param h The overall height of the full ellipse of which this |
|
460 * arc is a partial section. |
|
461 * @param start The starting angle of the arc in degrees. |
|
462 * @param extent The angular extent of the arc in degrees. |
|
463 * @param type The closure type for the arc: |
|
464 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
465 * @since 1.2 |
|
466 */ |
|
467 public Double(double x, double y, double w, double h, |
|
468 double start, double extent, int type) { |
|
469 super(type); |
|
470 this.x = x; |
|
471 this.y = y; |
|
472 this.width = w; |
|
473 this.height = h; |
|
474 this.start = start; |
|
475 this.extent = extent; |
|
476 } |
|
477 |
|
478 /** |
|
479 * Constructs a new arc, initialized to the specified location, |
|
480 * size, angular extents, and closure type. |
|
481 * |
|
482 * @param ellipseBounds The framing rectangle that defines the |
|
483 * outer boundary of the full ellipse of which this arc is a |
|
484 * partial section. |
|
485 * @param start The starting angle of the arc in degrees. |
|
486 * @param extent The angular extent of the arc in degrees. |
|
487 * @param type The closure type for the arc: |
|
488 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
489 * @since 1.2 |
|
490 */ |
|
491 public Double(Rectangle2D ellipseBounds, |
|
492 double start, double extent, int type) { |
|
493 super(type); |
|
494 this.x = ellipseBounds.getX(); |
|
495 this.y = ellipseBounds.getY(); |
|
496 this.width = ellipseBounds.getWidth(); |
|
497 this.height = ellipseBounds.getHeight(); |
|
498 this.start = start; |
|
499 this.extent = extent; |
|
500 } |
|
501 |
|
502 /** |
|
503 * {@inheritDoc} |
|
504 * Note that the arc |
|
505 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
506 * the framing rectangle of this {@code RectangularShape}. |
|
507 * |
|
508 * @since 1.2 |
|
509 */ |
|
510 public double getX() { |
|
511 return x; |
|
512 } |
|
513 |
|
514 /** |
|
515 * {@inheritDoc} |
|
516 * Note that the arc |
|
517 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
518 * the framing rectangle of this {@code RectangularShape}. |
|
519 * |
|
520 * @since 1.2 |
|
521 */ |
|
522 public double getY() { |
|
523 return y; |
|
524 } |
|
525 |
|
526 /** |
|
527 * {@inheritDoc} |
|
528 * Note that the arc |
|
529 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
530 * the framing rectangle of this {@code RectangularShape}. |
|
531 * |
|
532 * @since 1.2 |
|
533 */ |
|
534 public double getWidth() { |
|
535 return width; |
|
536 } |
|
537 |
|
538 /** |
|
539 * {@inheritDoc} |
|
540 * Note that the arc |
|
541 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
542 * the framing rectangle of this {@code RectangularShape}. |
|
543 * |
|
544 * @since 1.2 |
|
545 */ |
|
546 public double getHeight() { |
|
547 return height; |
|
548 } |
|
549 |
|
550 /** |
|
551 * {@inheritDoc} |
|
552 * @since 1.2 |
|
553 */ |
|
554 public double getAngleStart() { |
|
555 return start; |
|
556 } |
|
557 |
|
558 /** |
|
559 * {@inheritDoc} |
|
560 * @since 1.2 |
|
561 */ |
|
562 public double getAngleExtent() { |
|
563 return extent; |
|
564 } |
|
565 |
|
566 /** |
|
567 * {@inheritDoc} |
|
568 * @since 1.2 |
|
569 */ |
|
570 public boolean isEmpty() { |
|
571 return (width <= 0.0 || height <= 0.0); |
|
572 } |
|
573 |
|
574 /** |
|
575 * {@inheritDoc} |
|
576 * @since 1.2 |
|
577 */ |
|
578 public void setArc(double x, double y, double w, double h, |
|
579 double angSt, double angExt, int closure) { |
|
580 this.setArcType(closure); |
|
581 this.x = x; |
|
582 this.y = y; |
|
583 this.width = w; |
|
584 this.height = h; |
|
585 this.start = angSt; |
|
586 this.extent = angExt; |
|
587 } |
|
588 |
|
589 /** |
|
590 * {@inheritDoc} |
|
591 * @since 1.2 |
|
592 */ |
|
593 public void setAngleStart(double angSt) { |
|
594 this.start = angSt; |
|
595 } |
|
596 |
|
597 /** |
|
598 * {@inheritDoc} |
|
599 * @since 1.2 |
|
600 */ |
|
601 public void setAngleExtent(double angExt) { |
|
602 this.extent = angExt; |
|
603 } |
|
604 |
|
605 /** |
|
606 * {@inheritDoc} |
|
607 * @since 1.2 |
|
608 */ |
|
609 protected Rectangle2D makeBounds(double x, double y, |
|
610 double w, double h) { |
|
611 return new Rectangle2D.Double(x, y, w, h); |
|
612 } |
|
613 |
|
614 /* |
|
615 * JDK 1.6 serialVersionUID |
|
616 */ |
|
617 private static final long serialVersionUID = 728264085846882001L; |
|
618 |
|
619 /** |
|
620 * Writes the default serializable fields to the |
|
621 * <code>ObjectOutputStream</code> followed by a byte |
|
622 * indicating the arc type of this <code>Arc2D</code> |
|
623 * instance. |
|
624 * |
|
625 * @serialData |
|
626 * <ol> |
|
627 * <li>The default serializable fields. |
|
628 * <li> |
|
629 * followed by a <code>byte</code> indicating the arc type |
|
630 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
631 * </ol> |
|
632 */ |
|
633 private void writeObject(java.io.ObjectOutputStream s) |
|
634 throws java.io.IOException |
|
635 { |
|
636 s.defaultWriteObject(); |
|
637 |
|
638 s.writeByte(getArcType()); |
|
639 } |
|
640 |
|
641 /** |
|
642 * Reads the default serializable fields from the |
|
643 * <code>ObjectInputStream</code> followed by a byte |
|
644 * indicating the arc type of this <code>Arc2D</code> |
|
645 * instance. |
|
646 * |
|
647 * @serialData |
|
648 * <ol> |
|
649 * <li>The default serializable fields. |
|
650 * <li> |
|
651 * followed by a <code>byte</code> indicating the arc type |
|
652 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
653 * </ol> |
|
654 */ |
|
655 private void readObject(java.io.ObjectInputStream s) |
|
656 throws java.lang.ClassNotFoundException, java.io.IOException |
|
657 { |
|
658 s.defaultReadObject(); |
|
659 |
|
660 try { |
|
661 setArcType(s.readByte()); |
|
662 } catch (IllegalArgumentException iae) { |
|
663 throw new java.io.InvalidObjectException(iae.getMessage()); |
|
664 } |
|
665 } |
|
666 } |
|
667 |
|
668 private int type; |
|
669 |
|
670 /** |
|
671 * This is an abstract class that cannot be instantiated directly. |
|
672 * Type-specific implementation subclasses are available for |
|
673 * instantiation and provide a number of formats for storing |
|
674 * the information necessary to satisfy the various accessor |
|
675 * methods below. |
|
676 * <p> |
|
677 * This constructor creates an object with a default closure |
|
678 * type of {@link #OPEN}. It is provided only to enable |
|
679 * serialization of subclasses. |
|
680 * |
|
681 * @see java.awt.geom.Arc2D.Float |
|
682 * @see java.awt.geom.Arc2D.Double |
|
683 */ |
|
684 Arc2D() { |
|
685 this(OPEN); |
|
686 } |
|
687 |
|
688 /** |
|
689 * This is an abstract class that cannot be instantiated directly. |
|
690 * Type-specific implementation subclasses are available for |
|
691 * instantiation and provide a number of formats for storing |
|
692 * the information necessary to satisfy the various accessor |
|
693 * methods below. |
|
694 * |
|
695 * @param type The closure type of this arc: |
|
696 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
697 * @see java.awt.geom.Arc2D.Float |
|
698 * @see java.awt.geom.Arc2D.Double |
|
699 * @since 1.2 |
|
700 */ |
|
701 protected Arc2D(int type) { |
|
702 setArcType(type); |
|
703 } |
|
704 |
|
705 /** |
|
706 * Returns the starting angle of the arc. |
|
707 * |
|
708 * @return A double value that represents the starting angle |
|
709 * of the arc in degrees. |
|
710 * @see #setAngleStart |
|
711 * @since 1.2 |
|
712 */ |
|
713 public abstract double getAngleStart(); |
|
714 |
|
715 /** |
|
716 * Returns the angular extent of the arc. |
|
717 * |
|
718 * @return A double value that represents the angular extent |
|
719 * of the arc in degrees. |
|
720 * @see #setAngleExtent |
|
721 * @since 1.2 |
|
722 */ |
|
723 public abstract double getAngleExtent(); |
|
724 |
|
725 /** |
|
726 * Returns the arc closure type of the arc: {@link #OPEN}, |
|
727 * {@link #CHORD}, or {@link #PIE}. |
|
728 * @return One of the integer constant closure types defined |
|
729 * in this class. |
|
730 * @see #setArcType |
|
731 * @since 1.2 |
|
732 */ |
|
733 public int getArcType() { |
|
734 return type; |
|
735 } |
|
736 |
|
737 /** |
|
738 * Returns the starting point of the arc. This point is the |
|
739 * intersection of the ray from the center defined by the |
|
740 * starting angle and the elliptical boundary of the arc. |
|
741 * |
|
742 * @return A <CODE>Point2D</CODE> object representing the |
|
743 * x,y coordinates of the starting point of the arc. |
|
744 * @since 1.2 |
|
745 */ |
|
746 public Point2D getStartPoint() { |
|
747 double angle = Math.toRadians(-getAngleStart()); |
|
748 double x = getX() + (Math.cos(angle) * 0.5 + 0.5) * getWidth(); |
|
749 double y = getY() + (Math.sin(angle) * 0.5 + 0.5) * getHeight(); |
|
750 return new Point2D.Double(x, y); |
|
751 } |
|
752 |
|
753 /** |
|
754 * Returns the ending point of the arc. This point is the |
|
755 * intersection of the ray from the center defined by the |
|
756 * starting angle plus the angular extent of the arc and the |
|
757 * elliptical boundary of the arc. |
|
758 * |
|
759 * @return A <CODE>Point2D</CODE> object representing the |
|
760 * x,y coordinates of the ending point of the arc. |
|
761 * @since 1.2 |
|
762 */ |
|
763 public Point2D getEndPoint() { |
|
764 double angle = Math.toRadians(-getAngleStart() - getAngleExtent()); |
|
765 double x = getX() + (Math.cos(angle) * 0.5 + 0.5) * getWidth(); |
|
766 double y = getY() + (Math.sin(angle) * 0.5 + 0.5) * getHeight(); |
|
767 return new Point2D.Double(x, y); |
|
768 } |
|
769 |
|
770 /** |
|
771 * Sets the location, size, angular extents, and closure type of |
|
772 * this arc to the specified double values. |
|
773 * |
|
774 * @param x The X coordinate of the upper-left corner of the arc. |
|
775 * @param y The Y coordinate of the upper-left corner of the arc. |
|
776 * @param w The overall width of the full ellipse of which |
|
777 * this arc is a partial section. |
|
778 * @param h The overall height of the full ellipse of which |
|
779 * this arc is a partial section. |
|
780 * @param angSt The starting angle of the arc in degrees. |
|
781 * @param angExt The angular extent of the arc in degrees. |
|
782 * @param closure The closure type for the arc: |
|
783 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
784 * @since 1.2 |
|
785 */ |
|
786 public abstract void setArc(double x, double y, double w, double h, |
|
787 double angSt, double angExt, int closure); |
|
788 |
|
789 /** |
|
790 * Sets the location, size, angular extents, and closure type of |
|
791 * this arc to the specified values. |
|
792 * |
|
793 * @param loc The <CODE>Point2D</CODE> representing the coordinates of |
|
794 * the upper-left corner of the arc. |
|
795 * @param size The <CODE>Dimension2D</CODE> representing the width |
|
796 * and height of the full ellipse of which this arc is |
|
797 * a partial section. |
|
798 * @param angSt The starting angle of the arc in degrees. |
|
799 * @param angExt The angular extent of the arc in degrees. |
|
800 * @param closure The closure type for the arc: |
|
801 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
802 * @since 1.2 |
|
803 */ |
|
804 public void setArc(Point2D loc, Dimension2D size, |
|
805 double angSt, double angExt, int closure) { |
|
806 setArc(loc.getX(), loc.getY(), size.getWidth(), size.getHeight(), |
|
807 angSt, angExt, closure); |
|
808 } |
|
809 |
|
810 /** |
|
811 * Sets the location, size, angular extents, and closure type of |
|
812 * this arc to the specified values. |
|
813 * |
|
814 * @param rect The framing rectangle that defines the |
|
815 * outer boundary of the full ellipse of which this arc is a |
|
816 * partial section. |
|
817 * @param angSt The starting angle of the arc in degrees. |
|
818 * @param angExt The angular extent of the arc in degrees. |
|
819 * @param closure The closure type for the arc: |
|
820 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
821 * @since 1.2 |
|
822 */ |
|
823 public void setArc(Rectangle2D rect, double angSt, double angExt, |
|
824 int closure) { |
|
825 setArc(rect.getX(), rect.getY(), rect.getWidth(), rect.getHeight(), |
|
826 angSt, angExt, closure); |
|
827 } |
|
828 |
|
829 /** |
|
830 * Sets this arc to be the same as the specified arc. |
|
831 * |
|
832 * @param a The <CODE>Arc2D</CODE> to use to set the arc's values. |
|
833 * @since 1.2 |
|
834 */ |
|
835 public void setArc(Arc2D a) { |
|
836 setArc(a.getX(), a.getY(), a.getWidth(), a.getHeight(), |
|
837 a.getAngleStart(), a.getAngleExtent(), a.type); |
|
838 } |
|
839 |
|
840 /** |
|
841 * Sets the position, bounds, angular extents, and closure type of |
|
842 * this arc to the specified values. The arc is defined by a center |
|
843 * point and a radius rather than a framing rectangle for the full ellipse. |
|
844 * |
|
845 * @param x The X coordinate of the center of the arc. |
|
846 * @param y The Y coordinate of the center of the arc. |
|
847 * @param radius The radius of the arc. |
|
848 * @param angSt The starting angle of the arc in degrees. |
|
849 * @param angExt The angular extent of the arc in degrees. |
|
850 * @param closure The closure type for the arc: |
|
851 * {@link #OPEN}, {@link #CHORD}, or {@link #PIE}. |
|
852 * @since 1.2 |
|
853 */ |
|
854 public void setArcByCenter(double x, double y, double radius, |
|
855 double angSt, double angExt, int closure) { |
|
856 setArc(x - radius, y - radius, radius * 2.0, radius * 2.0, |
|
857 angSt, angExt, closure); |
|
858 } |
|
859 |
|
860 /** |
|
861 * Sets the position, bounds, and angular extents of this arc to the |
|
862 * specified value. The starting angle of the arc is tangent to the |
|
863 * line specified by points (p1, p2), the ending angle is tangent to |
|
864 * the line specified by points (p2, p3), and the arc has the |
|
865 * specified radius. |
|
866 * |
|
867 * @param p1 The first point that defines the arc. The starting |
|
868 * angle of the arc is tangent to the line specified by points (p1, p2). |
|
869 * @param p2 The second point that defines the arc. The starting |
|
870 * angle of the arc is tangent to the line specified by points (p1, p2). |
|
871 * The ending angle of the arc is tangent to the line specified by |
|
872 * points (p2, p3). |
|
873 * @param p3 The third point that defines the arc. The ending angle |
|
874 * of the arc is tangent to the line specified by points (p2, p3). |
|
875 * @param radius The radius of the arc. |
|
876 * @since 1.2 |
|
877 */ |
|
878 public void setArcByTangent(Point2D p1, Point2D p2, Point2D p3, |
|
879 double radius) { |
|
880 double ang1 = Math.atan2(p1.getY() - p2.getY(), |
|
881 p1.getX() - p2.getX()); |
|
882 double ang2 = Math.atan2(p3.getY() - p2.getY(), |
|
883 p3.getX() - p2.getX()); |
|
884 double diff = ang2 - ang1; |
|
885 if (diff > Math.PI) { |
|
886 ang2 -= Math.PI * 2.0; |
|
887 } else if (diff < -Math.PI) { |
|
888 ang2 += Math.PI * 2.0; |
|
889 } |
|
890 double bisect = (ang1 + ang2) / 2.0; |
|
891 double theta = Math.abs(ang2 - bisect); |
|
892 double dist = radius / Math.sin(theta); |
|
893 double x = p2.getX() + dist * Math.cos(bisect); |
|
894 double y = p2.getY() + dist * Math.sin(bisect); |
|
895 // REMIND: This needs some work... |
|
896 if (ang1 < ang2) { |
|
897 ang1 -= Math.PI / 2.0; |
|
898 ang2 += Math.PI / 2.0; |
|
899 } else { |
|
900 ang1 += Math.PI / 2.0; |
|
901 ang2 -= Math.PI / 2.0; |
|
902 } |
|
903 ang1 = Math.toDegrees(-ang1); |
|
904 ang2 = Math.toDegrees(-ang2); |
|
905 diff = ang2 - ang1; |
|
906 if (diff < 0) { |
|
907 diff += 360; |
|
908 } else { |
|
909 diff -= 360; |
|
910 } |
|
911 setArcByCenter(x, y, radius, ang1, diff, type); |
|
912 } |
|
913 |
|
914 /** |
|
915 * Sets the starting angle of this arc to the specified double |
|
916 * value. |
|
917 * |
|
918 * @param angSt The starting angle of the arc in degrees. |
|
919 * @see #getAngleStart |
|
920 * @since 1.2 |
|
921 */ |
|
922 public abstract void setAngleStart(double angSt); |
|
923 |
|
924 /** |
|
925 * Sets the angular extent of this arc to the specified double |
|
926 * value. |
|
927 * |
|
928 * @param angExt The angular extent of the arc in degrees. |
|
929 * @see #getAngleExtent |
|
930 * @since 1.2 |
|
931 */ |
|
932 public abstract void setAngleExtent(double angExt); |
|
933 |
|
934 /** |
|
935 * Sets the starting angle of this arc to the angle that the |
|
936 * specified point defines relative to the center of this arc. |
|
937 * The angular extent of the arc will remain the same. |
|
938 * |
|
939 * @param p The <CODE>Point2D</CODE> that defines the starting angle. |
|
940 * @see #getAngleStart |
|
941 * @since 1.2 |
|
942 */ |
|
943 public void setAngleStart(Point2D p) { |
|
944 // Bias the dx and dy by the height and width of the oval. |
|
945 double dx = getHeight() * (p.getX() - getCenterX()); |
|
946 double dy = getWidth() * (p.getY() - getCenterY()); |
|
947 setAngleStart(-Math.toDegrees(Math.atan2(dy, dx))); |
|
948 } |
|
949 |
|
950 /** |
|
951 * Sets the starting angle and angular extent of this arc using two |
|
952 * sets of coordinates. The first set of coordinates is used to |
|
953 * determine the angle of the starting point relative to the arc's |
|
954 * center. The second set of coordinates is used to determine the |
|
955 * angle of the end point relative to the arc's center. |
|
956 * The arc will always be non-empty and extend counterclockwise |
|
957 * from the first point around to the second point. |
|
958 * |
|
959 * @param x1 The X coordinate of the arc's starting point. |
|
960 * @param y1 The Y coordinate of the arc's starting point. |
|
961 * @param x2 The X coordinate of the arc's ending point. |
|
962 * @param y2 The Y coordinate of the arc's ending point. |
|
963 * @since 1.2 |
|
964 */ |
|
965 public void setAngles(double x1, double y1, double x2, double y2) { |
|
966 double x = getCenterX(); |
|
967 double y = getCenterY(); |
|
968 double w = getWidth(); |
|
969 double h = getHeight(); |
|
970 // Note: reversing the Y equations negates the angle to adjust |
|
971 // for the upside down coordinate system. |
|
972 // Also we should bias atans by the height and width of the oval. |
|
973 double ang1 = Math.atan2(w * (y - y1), h * (x1 - x)); |
|
974 double ang2 = Math.atan2(w * (y - y2), h * (x2 - x)); |
|
975 ang2 -= ang1; |
|
976 if (ang2 <= 0.0) { |
|
977 ang2 += Math.PI * 2.0; |
|
978 } |
|
979 setAngleStart(Math.toDegrees(ang1)); |
|
980 setAngleExtent(Math.toDegrees(ang2)); |
|
981 } |
|
982 |
|
983 /** |
|
984 * Sets the starting angle and angular extent of this arc using |
|
985 * two points. The first point is used to determine the angle of |
|
986 * the starting point relative to the arc's center. |
|
987 * The second point is used to determine the angle of the end point |
|
988 * relative to the arc's center. |
|
989 * The arc will always be non-empty and extend counterclockwise |
|
990 * from the first point around to the second point. |
|
991 * |
|
992 * @param p1 The <CODE>Point2D</CODE> that defines the arc's |
|
993 * starting point. |
|
994 * @param p2 The <CODE>Point2D</CODE> that defines the arc's |
|
995 * ending point. |
|
996 * @since 1.2 |
|
997 */ |
|
998 public void setAngles(Point2D p1, Point2D p2) { |
|
999 setAngles(p1.getX(), p1.getY(), p2.getX(), p2.getY()); |
|
1000 } |
|
1001 |
|
1002 /** |
|
1003 * Sets the closure type of this arc to the specified value: |
|
1004 * <CODE>OPEN</CODE>, <CODE>CHORD</CODE>, or <CODE>PIE</CODE>. |
|
1005 * |
|
1006 * @param type The integer constant that represents the closure |
|
1007 * type of this arc: {@link #OPEN}, {@link #CHORD}, or |
|
1008 * {@link #PIE}. |
|
1009 * |
|
1010 * @throws IllegalArgumentException if <code>type</code> is not |
|
1011 * 0, 1, or 2.+ |
|
1012 * @see #getArcType |
|
1013 * @since 1.2 |
|
1014 */ |
|
1015 public void setArcType(int type) { |
|
1016 if (type < OPEN || type > PIE) { |
|
1017 throw new IllegalArgumentException("invalid type for Arc: "+type); |
|
1018 } |
|
1019 this.type = type; |
|
1020 } |
|
1021 |
|
1022 /** |
|
1023 * {@inheritDoc} |
|
1024 * Note that the arc |
|
1025 * <a href="Arc2D.html#inscribes">partially inscribes</a> |
|
1026 * the framing rectangle of this {@code RectangularShape}. |
|
1027 * |
|
1028 * @since 1.2 |
|
1029 */ |
|
1030 public void setFrame(double x, double y, double w, double h) { |
|
1031 setArc(x, y, w, h, getAngleStart(), getAngleExtent(), type); |
|
1032 } |
|
1033 |
|
1034 /** |
|
1035 * Returns the high-precision framing rectangle of the arc. The framing |
|
1036 * rectangle contains only the part of this <code>Arc2D</code> that is |
|
1037 * in between the starting and ending angles and contains the pie |
|
1038 * wedge, if this <code>Arc2D</code> has a <code>PIE</code> closure type. |
|
1039 * <p> |
|
1040 * This method differs from the |
|
1041 * {@link RectangularShape#getBounds() getBounds} in that the |
|
1042 * <code>getBounds</code> method only returns the bounds of the |
|
1043 * enclosing ellipse of this <code>Arc2D</code> without considering |
|
1044 * the starting and ending angles of this <code>Arc2D</code>. |
|
1045 * |
|
1046 * @return the <CODE>Rectangle2D</CODE> that represents the arc's |
|
1047 * framing rectangle. |
|
1048 * @since 1.2 |
|
1049 */ |
|
1050 public Rectangle2D getBounds2D() { |
|
1051 if (isEmpty()) { |
|
1052 return makeBounds(getX(), getY(), getWidth(), getHeight()); |
|
1053 } |
|
1054 double x1, y1, x2, y2; |
|
1055 if (getArcType() == PIE) { |
|
1056 x1 = y1 = x2 = y2 = 0.0; |
|
1057 } else { |
|
1058 x1 = y1 = 1.0; |
|
1059 x2 = y2 = -1.0; |
|
1060 } |
|
1061 double angle = 0.0; |
|
1062 for (int i = 0; i < 6; i++) { |
|
1063 if (i < 4) { |
|
1064 // 0-3 are the four quadrants |
|
1065 angle += 90.0; |
|
1066 if (!containsAngle(angle)) { |
|
1067 continue; |
|
1068 } |
|
1069 } else if (i == 4) { |
|
1070 // 4 is start angle |
|
1071 angle = getAngleStart(); |
|
1072 } else { |
|
1073 // 5 is end angle |
|
1074 angle += getAngleExtent(); |
|
1075 } |
|
1076 double rads = Math.toRadians(-angle); |
|
1077 double xe = Math.cos(rads); |
|
1078 double ye = Math.sin(rads); |
|
1079 x1 = Math.min(x1, xe); |
|
1080 y1 = Math.min(y1, ye); |
|
1081 x2 = Math.max(x2, xe); |
|
1082 y2 = Math.max(y2, ye); |
|
1083 } |
|
1084 double w = getWidth(); |
|
1085 double h = getHeight(); |
|
1086 x2 = (x2 - x1) * 0.5 * w; |
|
1087 y2 = (y2 - y1) * 0.5 * h; |
|
1088 x1 = getX() + (x1 * 0.5 + 0.5) * w; |
|
1089 y1 = getY() + (y1 * 0.5 + 0.5) * h; |
|
1090 return makeBounds(x1, y1, x2, y2); |
|
1091 } |
|
1092 |
|
1093 /** |
|
1094 * Constructs a <code>Rectangle2D</code> of the appropriate precision |
|
1095 * to hold the parameters calculated to be the framing rectangle |
|
1096 * of this arc. |
|
1097 * |
|
1098 * @param x The X coordinate of the upper-left corner of the |
|
1099 * framing rectangle. |
|
1100 * @param y The Y coordinate of the upper-left corner of the |
|
1101 * framing rectangle. |
|
1102 * @param w The width of the framing rectangle. |
|
1103 * @param h The height of the framing rectangle. |
|
1104 * @return a <code>Rectangle2D</code> that is the framing rectangle |
|
1105 * of this arc. |
|
1106 * @since 1.2 |
|
1107 */ |
|
1108 protected abstract Rectangle2D makeBounds(double x, double y, |
|
1109 double w, double h); |
|
1110 |
|
1111 /* |
|
1112 * Normalizes the specified angle into the range -180 to 180. |
|
1113 */ |
|
1114 static double normalizeDegrees(double angle) { |
|
1115 if (angle > 180.0) { |
|
1116 if (angle <= (180.0 + 360.0)) { |
|
1117 angle = angle - 360.0; |
|
1118 } else { |
|
1119 angle = Math.IEEEremainder(angle, 360.0); |
|
1120 // IEEEremainder can return -180 here for some input values... |
|
1121 if (angle == -180.0) { |
|
1122 angle = 180.0; |
|
1123 } |
|
1124 } |
|
1125 } else if (angle <= -180.0) { |
|
1126 if (angle > (-180.0 - 360.0)) { |
|
1127 angle = angle + 360.0; |
|
1128 } else { |
|
1129 angle = Math.IEEEremainder(angle, 360.0); |
|
1130 // IEEEremainder can return -180 here for some input values... |
|
1131 if (angle == -180.0) { |
|
1132 angle = 180.0; |
|
1133 } |
|
1134 } |
|
1135 } |
|
1136 return angle; |
|
1137 } |
|
1138 |
|
1139 /** |
|
1140 * Determines whether or not the specified angle is within the |
|
1141 * angular extents of the arc. |
|
1142 * |
|
1143 * @param angle The angle to test. |
|
1144 * |
|
1145 * @return <CODE>true</CODE> if the arc contains the angle, |
|
1146 * <CODE>false</CODE> if the arc doesn't contain the angle. |
|
1147 * @since 1.2 |
|
1148 */ |
|
1149 public boolean containsAngle(double angle) { |
|
1150 double angExt = getAngleExtent(); |
|
1151 boolean backwards = (angExt < 0.0); |
|
1152 if (backwards) { |
|
1153 angExt = -angExt; |
|
1154 } |
|
1155 if (angExt >= 360.0) { |
|
1156 return true; |
|
1157 } |
|
1158 angle = normalizeDegrees(angle) - normalizeDegrees(getAngleStart()); |
|
1159 if (backwards) { |
|
1160 angle = -angle; |
|
1161 } |
|
1162 if (angle < 0.0) { |
|
1163 angle += 360.0; |
|
1164 } |
|
1165 |
|
1166 |
|
1167 return (angle >= 0.0) && (angle < angExt); |
|
1168 } |
|
1169 |
|
1170 /** |
|
1171 * Determines whether or not the specified point is inside the boundary |
|
1172 * of the arc. |
|
1173 * |
|
1174 * @param x The X coordinate of the point to test. |
|
1175 * @param y The Y coordinate of the point to test. |
|
1176 * |
|
1177 * @return <CODE>true</CODE> if the point lies within the bound of |
|
1178 * the arc, <CODE>false</CODE> if the point lies outside of the |
|
1179 * arc's bounds. |
|
1180 * @since 1.2 |
|
1181 */ |
|
1182 public boolean contains(double x, double y) { |
|
1183 // Normalize the coordinates compared to the ellipse |
|
1184 // having a center at 0,0 and a radius of 0.5. |
|
1185 double ellw = getWidth(); |
|
1186 if (ellw <= 0.0) { |
|
1187 return false; |
|
1188 } |
|
1189 double normx = (x - getX()) / ellw - 0.5; |
|
1190 double ellh = getHeight(); |
|
1191 if (ellh <= 0.0) { |
|
1192 return false; |
|
1193 } |
|
1194 double normy = (y - getY()) / ellh - 0.5; |
|
1195 double distSq = (normx * normx + normy * normy); |
|
1196 if (distSq >= 0.25) { |
|
1197 return false; |
|
1198 } |
|
1199 double angExt = Math.abs(getAngleExtent()); |
|
1200 if (angExt >= 360.0) { |
|
1201 return true; |
|
1202 } |
|
1203 boolean inarc = containsAngle(-Math.toDegrees(Math.atan2(normy, |
|
1204 normx))); |
|
1205 if (type == PIE) { |
|
1206 return inarc; |
|
1207 } |
|
1208 // CHORD and OPEN behave the same way |
|
1209 if (inarc) { |
|
1210 if (angExt >= 180.0) { |
|
1211 return true; |
|
1212 } |
|
1213 // point must be outside the "pie triangle" |
|
1214 } else { |
|
1215 if (angExt <= 180.0) { |
|
1216 return false; |
|
1217 } |
|
1218 // point must be inside the "pie triangle" |
|
1219 } |
|
1220 // The point is inside the pie triangle iff it is on the same |
|
1221 // side of the line connecting the ends of the arc as the center. |
|
1222 double angle = Math.toRadians(-getAngleStart()); |
|
1223 double x1 = Math.cos(angle); |
|
1224 double y1 = Math.sin(angle); |
|
1225 angle += Math.toRadians(-getAngleExtent()); |
|
1226 double x2 = Math.cos(angle); |
|
1227 double y2 = Math.sin(angle); |
|
1228 boolean inside = (Line2D.relativeCCW(x1, y1, x2, y2, 2*normx, 2*normy) * |
|
1229 Line2D.relativeCCW(x1, y1, x2, y2, 0, 0) >= 0); |
|
1230 return inarc ? !inside : inside; |
|
1231 } |
|
1232 |
|
1233 /** |
|
1234 * Determines whether or not the interior of the arc intersects |
|
1235 * the interior of the specified rectangle. |
|
1236 * |
|
1237 * @param x The X coordinate of the rectangle's upper-left corner. |
|
1238 * @param y The Y coordinate of the rectangle's upper-left corner. |
|
1239 * @param w The width of the rectangle. |
|
1240 * @param h The height of the rectangle. |
|
1241 * |
|
1242 * @return <CODE>true</CODE> if the arc intersects the rectangle, |
|
1243 * <CODE>false</CODE> if the arc doesn't intersect the rectangle. |
|
1244 * @since 1.2 |
|
1245 */ |
|
1246 public boolean intersects(double x, double y, double w, double h) { |
|
1247 |
|
1248 double aw = getWidth(); |
|
1249 double ah = getHeight(); |
|
1250 |
|
1251 if ( w <= 0 || h <= 0 || aw <= 0 || ah <= 0 ) { |
|
1252 return false; |
|
1253 } |
|
1254 double ext = getAngleExtent(); |
|
1255 if (ext == 0) { |
|
1256 return false; |
|
1257 } |
|
1258 |
|
1259 double ax = getX(); |
|
1260 double ay = getY(); |
|
1261 double axw = ax + aw; |
|
1262 double ayh = ay + ah; |
|
1263 double xw = x + w; |
|
1264 double yh = y + h; |
|
1265 |
|
1266 // check bbox |
|
1267 if (x >= axw || y >= ayh || xw <= ax || yh <= ay) { |
|
1268 return false; |
|
1269 } |
|
1270 |
|
1271 // extract necessary data |
|
1272 double axc = getCenterX(); |
|
1273 double ayc = getCenterY(); |
|
1274 Point2D sp = getStartPoint(); |
|
1275 Point2D ep = getEndPoint(); |
|
1276 double sx = sp.getX(); |
|
1277 double sy = sp.getY(); |
|
1278 double ex = ep.getX(); |
|
1279 double ey = ep.getY(); |
|
1280 |
|
1281 /* |
|
1282 * Try to catch rectangles that intersect arc in areas |
|
1283 * outside of rectagle with left top corner coordinates |
|
1284 * (min(center x, start point x, end point x), |
|
1285 * min(center y, start point y, end point y)) |
|
1286 * and rigth bottom corner coordinates |
|
1287 * (max(center x, start point x, end point x), |
|
1288 * max(center y, start point y, end point y)). |
|
1289 * So we'll check axis segments outside of rectangle above. |
|
1290 */ |
|
1291 if (ayc >= y && ayc <= yh) { // 0 and 180 |
|
1292 if ((sx < xw && ex < xw && axc < xw && |
|
1293 axw > x && containsAngle(0)) || |
|
1294 (sx > x && ex > x && axc > x && |
|
1295 ax < xw && containsAngle(180))) { |
|
1296 return true; |
|
1297 } |
|
1298 } |
|
1299 if (axc >= x && axc <= xw) { // 90 and 270 |
|
1300 if ((sy > y && ey > y && ayc > y && |
|
1301 ay < yh && containsAngle(90)) || |
|
1302 (sy < yh && ey < yh && ayc < yh && |
|
1303 ayh > y && containsAngle(270))) { |
|
1304 return true; |
|
1305 } |
|
1306 } |
|
1307 |
|
1308 /* |
|
1309 * For PIE we should check intersection with pie slices; |
|
1310 * also we should do the same for arcs with extent is greater |
|
1311 * than 180, because we should cover case of rectangle, which |
|
1312 * situated between center of arc and chord, but does not |
|
1313 * intersect the chord. |
|
1314 */ |
|
1315 Rectangle2D rect = new Rectangle2D.Double(x, y, w, h); |
|
1316 if (type == PIE || Math.abs(ext) > 180) { |
|
1317 // for PIE: try to find intersections with pie slices |
|
1318 if (rect.intersectsLine(axc, ayc, sx, sy) || |
|
1319 rect.intersectsLine(axc, ayc, ex, ey)) { |
|
1320 return true; |
|
1321 } |
|
1322 } else { |
|
1323 // for CHORD and OPEN: try to find intersections with chord |
|
1324 if (rect.intersectsLine(sx, sy, ex, ey)) { |
|
1325 return true; |
|
1326 } |
|
1327 } |
|
1328 |
|
1329 // finally check the rectangle corners inside the arc |
|
1330 if (contains(x, y) || contains(x + w, y) || |
|
1331 contains(x, y + h) || contains(x + w, y + h)) { |
|
1332 return true; |
|
1333 } |
|
1334 |
|
1335 return false; |
|
1336 } |
|
1337 |
|
1338 /** |
|
1339 * Determines whether or not the interior of the arc entirely contains |
|
1340 * the specified rectangle. |
|
1341 * |
|
1342 * @param x The X coordinate of the rectangle's upper-left corner. |
|
1343 * @param y The Y coordinate of the rectangle's upper-left corner. |
|
1344 * @param w The width of the rectangle. |
|
1345 * @param h The height of the rectangle. |
|
1346 * |
|
1347 * @return <CODE>true</CODE> if the arc contains the rectangle, |
|
1348 * <CODE>false</CODE> if the arc doesn't contain the rectangle. |
|
1349 * @since 1.2 |
|
1350 */ |
|
1351 public boolean contains(double x, double y, double w, double h) { |
|
1352 return contains(x, y, w, h, null); |
|
1353 } |
|
1354 |
|
1355 /** |
|
1356 * Determines whether or not the interior of the arc entirely contains |
|
1357 * the specified rectangle. |
|
1358 * |
|
1359 * @param r The <CODE>Rectangle2D</CODE> to test. |
|
1360 * |
|
1361 * @return <CODE>true</CODE> if the arc contains the rectangle, |
|
1362 * <CODE>false</CODE> if the arc doesn't contain the rectangle. |
|
1363 * @since 1.2 |
|
1364 */ |
|
1365 public boolean contains(Rectangle2D r) { |
|
1366 return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight(), r); |
|
1367 } |
|
1368 |
|
1369 private boolean contains(double x, double y, double w, double h, |
|
1370 Rectangle2D origrect) { |
|
1371 if (!(contains(x, y) && |
|
1372 contains(x + w, y) && |
|
1373 contains(x, y + h) && |
|
1374 contains(x + w, y + h))) { |
|
1375 return false; |
|
1376 } |
|
1377 // If the shape is convex then we have done all the testing |
|
1378 // we need. Only PIE arcs can be concave and then only if |
|
1379 // the angular extents are greater than 180 degrees. |
|
1380 if (type != PIE || Math.abs(getAngleExtent()) <= 180.0) { |
|
1381 return true; |
|
1382 } |
|
1383 // For a PIE shape we have an additional test for the case where |
|
1384 // the angular extents are greater than 180 degrees and all four |
|
1385 // rectangular corners are inside the shape but one of the |
|
1386 // rectangle edges spans across the "missing wedge" of the arc. |
|
1387 // We can test for this case by checking if the rectangle intersects |
|
1388 // either of the pie angle segments. |
|
1389 if (origrect == null) { |
|
1390 origrect = new Rectangle2D.Double(x, y, w, h); |
|
1391 } |
|
1392 double halfW = getWidth() / 2.0; |
|
1393 double halfH = getHeight() / 2.0; |
|
1394 double xc = getX() + halfW; |
|
1395 double yc = getY() + halfH; |
|
1396 double angle = Math.toRadians(-getAngleStart()); |
|
1397 double xe = xc + halfW * Math.cos(angle); |
|
1398 double ye = yc + halfH * Math.sin(angle); |
|
1399 if (origrect.intersectsLine(xc, yc, xe, ye)) { |
|
1400 return false; |
|
1401 } |
|
1402 angle += Math.toRadians(-getAngleExtent()); |
|
1403 xe = xc + halfW * Math.cos(angle); |
|
1404 ye = yc + halfH * Math.sin(angle); |
|
1405 return !origrect.intersectsLine(xc, yc, xe, ye); |
|
1406 } |
|
1407 |
|
1408 /** |
|
1409 * Returns an iteration object that defines the boundary of the |
|
1410 * arc. |
|
1411 * This iterator is multithread safe. |
|
1412 * <code>Arc2D</code> guarantees that |
|
1413 * modifications to the geometry of the arc |
|
1414 * do not affect any iterations of that geometry that |
|
1415 * are already in process. |
|
1416 * |
|
1417 * @param at an optional <CODE>AffineTransform</CODE> to be applied |
|
1418 * to the coordinates as they are returned in the iteration, or null |
|
1419 * if the untransformed coordinates are desired. |
|
1420 * |
|
1421 * @return A <CODE>PathIterator</CODE> that defines the arc's boundary. |
|
1422 * @since 1.2 |
|
1423 */ |
|
1424 public PathIterator getPathIterator(AffineTransform at) { |
|
1425 return new ArcIterator(this, at); |
|
1426 } |
|
1427 |
|
1428 /** |
|
1429 * Returns the hashcode for this <code>Arc2D</code>. |
|
1430 * @return the hashcode for this <code>Arc2D</code>. |
|
1431 * @since 1.6 |
|
1432 */ |
|
1433 public int hashCode() { |
|
1434 long bits = java.lang.Double.doubleToLongBits(getX()); |
|
1435 bits += java.lang.Double.doubleToLongBits(getY()) * 37; |
|
1436 bits += java.lang.Double.doubleToLongBits(getWidth()) * 43; |
|
1437 bits += java.lang.Double.doubleToLongBits(getHeight()) * 47; |
|
1438 bits += java.lang.Double.doubleToLongBits(getAngleStart()) * 53; |
|
1439 bits += java.lang.Double.doubleToLongBits(getAngleExtent()) * 59; |
|
1440 bits += getArcType() * 61; |
|
1441 return (((int) bits) ^ ((int) (bits >> 32))); |
|
1442 } |
|
1443 |
|
1444 /** |
|
1445 * Determines whether or not the specified <code>Object</code> is |
|
1446 * equal to this <code>Arc2D</code>. The specified |
|
1447 * <code>Object</code> is equal to this <code>Arc2D</code> |
|
1448 * if it is an instance of <code>Arc2D</code> and if its |
|
1449 * location, size, arc extents and type are the same as this |
|
1450 * <code>Arc2D</code>. |
|
1451 * @param obj an <code>Object</code> to be compared with this |
|
1452 * <code>Arc2D</code>. |
|
1453 * @return <code>true</code> if <code>obj</code> is an instance |
|
1454 * of <code>Arc2D</code> and has the same values; |
|
1455 * <code>false</code> otherwise. |
|
1456 * @since 1.6 |
|
1457 */ |
|
1458 public boolean equals(Object obj) { |
|
1459 if (obj == this) { |
|
1460 return true; |
|
1461 } |
|
1462 if (obj instanceof Arc2D) { |
|
1463 Arc2D a2d = (Arc2D) obj; |
|
1464 return ((getX() == a2d.getX()) && |
|
1465 (getY() == a2d.getY()) && |
|
1466 (getWidth() == a2d.getWidth()) && |
|
1467 (getHeight() == a2d.getHeight()) && |
|
1468 (getAngleStart() == a2d.getAngleStart()) && |
|
1469 (getAngleExtent() == a2d.getAngleExtent()) && |
|
1470 (getArcType() == a2d.getArcType())); |
|
1471 } |
|
1472 return false; |
|
1473 } |
|
1474 } |