1 /* |
|
2 * Copyright (c) 2008, 2011, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Oracle designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Oracle in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
22 * or visit www.oracle.com if you need additional information or have any |
|
23 * questions. |
|
24 */ |
|
25 |
|
26 package java.dyn; |
|
27 |
|
28 import java.lang.reflect.*; |
|
29 import sun.dyn.Access; |
|
30 import sun.dyn.MemberName; |
|
31 import sun.dyn.MethodHandleImpl; |
|
32 import sun.dyn.WrapperInstance; |
|
33 import sun.dyn.util.ValueConversions; |
|
34 import sun.dyn.util.VerifyAccess; |
|
35 import sun.dyn.util.Wrapper; |
|
36 import java.util.List; |
|
37 import java.util.ArrayList; |
|
38 import java.util.Arrays; |
|
39 import sun.dyn.Invokers; |
|
40 import sun.dyn.MethodTypeImpl; |
|
41 import sun.reflect.Reflection; |
|
42 import static sun.dyn.MemberName.newIllegalArgumentException; |
|
43 import static sun.dyn.MemberName.newNoAccessException; |
|
44 |
|
45 /** |
|
46 * This class consists exclusively of static methods that operate on or return |
|
47 * method handles. They fall into several categories: |
|
48 * <ul> |
|
49 * <li>Lookup methods which help create method handles for methods and fields. |
|
50 * <li>Combinator methods, which combine or transform pre-existing method handles into new ones. |
|
51 * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns. |
|
52 * <li>Wrapper methods which can convert between method handles and other function-like "SAM types". |
|
53 * </ul> |
|
54 * <p> |
|
55 * @author John Rose, JSR 292 EG |
|
56 */ |
|
57 public class MethodHandles { |
|
58 |
|
59 private MethodHandles() { } // do not instantiate |
|
60 |
|
61 private static final Access IMPL_TOKEN = Access.getToken(); |
|
62 private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(IMPL_TOKEN); |
|
63 static { MethodHandleImpl.initStatics(); } |
|
64 // See IMPL_LOOKUP below. |
|
65 |
|
66 //// Method handle creation from ordinary methods. |
|
67 |
|
68 /** |
|
69 * Return a {@link Lookup lookup object} on the caller, |
|
70 * which has the capability to access any method handle that the caller has access to, |
|
71 * including direct method handles to private fields and methods. |
|
72 * This lookup object is a <em>capability</em> which may be delegated to trusted agents. |
|
73 * Do not store it in place where untrusted code can access it. |
|
74 */ |
|
75 public static Lookup lookup() { |
|
76 return new Lookup(); |
|
77 } |
|
78 |
|
79 /** |
|
80 * Return a {@link Lookup lookup object} which is trusted minimally. |
|
81 * It can only be used to create method handles to |
|
82 * publicly accessible fields and methods. |
|
83 * <p> |
|
84 * As a matter of pure convention, the {@linkplain Lookup#lookupClass lookup class} |
|
85 * of this lookup object will be {@link java.lang.Object}. |
|
86 * <p> |
|
87 * The lookup class can be changed to any other class {@code C} using an expression of the form |
|
88 * {@linkplain Lookup#in <code>publicLookup().in(C.class)</code>}. |
|
89 * Since all classes have equal access to public names, |
|
90 * such a change would confer no new access rights. |
|
91 */ |
|
92 public static Lookup publicLookup() { |
|
93 return Lookup.PUBLIC_LOOKUP; |
|
94 } |
|
95 |
|
96 /** |
|
97 * A <em>lookup object</em> is a factory for creating method handles, |
|
98 * when the creation requires access checking. |
|
99 * Method handles do not perform |
|
100 * access checks when they are called, but rather when they are created. |
|
101 * Therefore, method handle access |
|
102 * restrictions must be enforced when a method handle is created. |
|
103 * The caller class against which those restrictions are enforced |
|
104 * is known as the {@linkplain #lookupClass lookup class}. |
|
105 * <p> |
|
106 * A lookup class which needs to create method handles will call |
|
107 * {@link MethodHandles#lookup MethodHandles.lookup} to create a factory for itself. |
|
108 * When the {@code Lookup} factory object is created, the identity of the lookup class is |
|
109 * determined, and securely stored in the {@code Lookup} object. |
|
110 * The lookup class (or its delegates) may then use factory methods |
|
111 * on the {@code Lookup} object to create method handles for access-checked members. |
|
112 * This includes all methods, constructors, and fields which are allowed to the lookup class, |
|
113 * even private ones. |
|
114 * <p> |
|
115 * The factory methods on a {@code Lookup} object correspond to all major |
|
116 * use cases for methods, constructors, and fields. |
|
117 * Here is a summary of the correspondence between these factory methods and |
|
118 * the behavior the resulting method handles: |
|
119 * <code> |
|
120 * <table border=1 cellpadding=5 summary="lookup method behaviors"> |
|
121 * <tr><th>lookup expression</th><th>member</th><th>behavior</th></tr> |
|
122 * <tr> |
|
123 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</td> |
|
124 * <td>FT f;</td><td>(T) this.f;</td> |
|
125 * </tr> |
|
126 * <tr> |
|
127 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</td> |
|
128 * <td>static<br>FT f;</td><td>(T) C.f;</td> |
|
129 * </tr> |
|
130 * <tr> |
|
131 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</td> |
|
132 * <td>FT f;</td><td>this.f = x;</td> |
|
133 * </tr> |
|
134 * <tr> |
|
135 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</td> |
|
136 * <td>static<br>FT f;</td><td>C.f = arg;</td> |
|
137 * </tr> |
|
138 * <tr> |
|
139 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</td> |
|
140 * <td>T m(A*);</td><td>(T) this.m(arg*);</td> |
|
141 * </tr> |
|
142 * <tr> |
|
143 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</td> |
|
144 * <td>static<br>T m(A*);</td><td>(T) C.m(arg*);</td> |
|
145 * </tr> |
|
146 * <tr> |
|
147 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</td> |
|
148 * <td>T m(A*);</td><td>(T) super.m(arg*);</td> |
|
149 * </tr> |
|
150 * <tr> |
|
151 * <td>{@linkplain java.dyn.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</td> |
|
152 * <td>C(A*);</td><td>(T) new C(arg*);</td> |
|
153 * </tr> |
|
154 * <tr> |
|
155 * <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</td> |
|
156 * <td>(static)?<br>FT f;</td><td>(FT) aField.get(thisOrNull);</td> |
|
157 * </tr> |
|
158 * <tr> |
|
159 * <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</td> |
|
160 * <td>(static)?<br>FT f;</td><td>aField.set(thisOrNull, arg);</td> |
|
161 * </tr> |
|
162 * <tr> |
|
163 * <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> |
|
164 * <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td> |
|
165 * </tr> |
|
166 * <tr> |
|
167 * <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</td> |
|
168 * <td>C(A*);</td><td>(C) aConstructor.newInstance(arg*);</td> |
|
169 * </tr> |
|
170 * <tr> |
|
171 * <td>{@linkplain java.dyn.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</td> |
|
172 * <td>(static)?<br>T m(A*);</td><td>(T) aMethod.invoke(thisOrNull, arg*);</td> |
|
173 * </tr> |
|
174 * </table> |
|
175 * </code> |
|
176 * Here, the type {@code C} is the class or interface being searched for a member, |
|
177 * documented as a parameter named {@code refc} in the lookup methods. |
|
178 * The method or constructor type {@code MT} is composed from the return type {@code T} |
|
179 * and the sequence of argument types {@code A*}. |
|
180 * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}. |
|
181 * The formal parameter {@code this} stands for the self-reference of type {@code C}; |
|
182 * if it is present, it is always the leading argument to the method handle invocation. |
|
183 * The name {@code arg} stands for all the other method handle arguments. |
|
184 * In the code examples for the Core Reflection API, the name {@code thisOrNull} |
|
185 * stands for a null reference if the accessed method or field is static, |
|
186 * and {@code this} otherwise. |
|
187 * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand |
|
188 * for reflective objects corresponding to the given members. |
|
189 * <p> |
|
190 * The equivalence between looked-up method handles and underlying |
|
191 * class members can break down in a few ways: |
|
192 * <ul> |
|
193 * <li>If {@code C} is not symbolically accessible from the lookup class's loader, |
|
194 * the lookup can still succeed, even when there is no equivalent |
|
195 * Java expression or bytecoded constant. |
|
196 * <li>Likewise, if {@code T} or {@code MT} |
|
197 * is not symbolically accessible from the lookup class's loader, |
|
198 * the lookup can still succeed. |
|
199 * For example, lookups for {@code MethodHandle.invokeExact} and |
|
200 * {@code MethodHandle.invokeGeneric} will always succeed, regardless of requested type. |
|
201 * <li>If there is a security manager installed, it can forbid the lookup |
|
202 * on various grounds (<a href="#secmgr">see below</a>). |
|
203 * By contrast, the {@code ldc} instruction is not subject to |
|
204 * security manager checks. |
|
205 * </ul> |
|
206 * |
|
207 * <h3><a name="access"></a>Access checking</h3> |
|
208 * Access checks are applied in the factory methods of {@code Lookup}, |
|
209 * when a method handle is created. |
|
210 * This is a key difference from the Core Reflection API, since |
|
211 * {@link java.lang.reflect.Method#invoke Method.invoke} |
|
212 * performs access checking against every caller, on every call. |
|
213 * <p> |
|
214 * All access checks start from a {@code Lookup} object, which |
|
215 * compares its recorded lookup class against all requests to |
|
216 * create method handles. |
|
217 * A single {@code Lookup} object can be used to create any number |
|
218 * of access-checked method handles, all checked against a single |
|
219 * lookup class. |
|
220 * <p> |
|
221 * A {@code Lookup} object can be shared with other trusted code, |
|
222 * such as a metaobject protocol. |
|
223 * A shared {@code Lookup} object delegates the capability |
|
224 * to create method handles on private members of the lookup class. |
|
225 * Even if privileged code uses the {@code Lookup} object, |
|
226 * the access checking is confined to the privileges of the |
|
227 * original lookup class. |
|
228 * <p> |
|
229 * A lookup can fail, because |
|
230 * the containing class is not accessible to the lookup class, or |
|
231 * because the desired class member is missing, or because the |
|
232 * desired class member is not accessible to the lookup class. |
|
233 * In any of these cases, a {@code ReflectiveOperationException} will be |
|
234 * thrown from the attempted lookup. The exact class will be one of |
|
235 * the following: |
|
236 * <ul> |
|
237 * <li>NoSuchMethodException — if a method is requested but does not exist |
|
238 * <li>NoSuchFieldException — if a field is requested but does not exist |
|
239 * <li>IllegalAccessException — if the member exists but an access check fails |
|
240 * </ul> |
|
241 * <p> |
|
242 * In general, the conditions under which a method handle may be |
|
243 * looked up for a method {@code M} are exactly equivalent to the conditions |
|
244 * under which the lookup class could have compiled and resolved a call to {@code M}. |
|
245 * And the effect of invoking the method handle resulting from the lookup |
|
246 * is exactly equivalent to executing the compiled and resolved call to {@code M}. |
|
247 * The same point is true of fields and constructors. |
|
248 * <p> |
|
249 * In some cases, access between nested classes is obtained by the Java compiler by creating |
|
250 * an wrapper method to access a private method of another class |
|
251 * in the same top-level declaration. |
|
252 * For example, a nested class {@code C.D} |
|
253 * can access private members within other related classes such as |
|
254 * {@code C}, {@code C.D.E}, or {@code C.B}, |
|
255 * but the Java compiler may need to generate wrapper methods in |
|
256 * those related classes. In such cases, a {@code Lookup} object on |
|
257 * {@code C.E} would be unable to those private members. |
|
258 * A workaround for this limitation is the {@link Lookup#in Lookup.in} method, |
|
259 * which can transform a lookup on {@code C.E} into one on any of those other |
|
260 * classes, without special elevation of privilege. |
|
261 * <p> |
|
262 * Although bytecode instructions can only refer to classes in |
|
263 * a related class loader, this API can search for methods in any |
|
264 * class, as long as a reference to its {@code Class} object is |
|
265 * available. Such cross-loader references are also possible with the |
|
266 * Core Reflection API, and are impossible to bytecode instructions |
|
267 * such as {@code invokestatic} or {@code getfield}. |
|
268 * There is a {@linkplain java.lang.SecurityManager security manager API} |
|
269 * to allow applications to check such cross-loader references. |
|
270 * These checks apply to both the {@code MethodHandles.Lookup} API |
|
271 * and the Core Reflection API |
|
272 * (as found on {@link java.lang.Class Class}). |
|
273 * <p> |
|
274 * Access checks only apply to named and reflected methods, |
|
275 * constructors, and fields. |
|
276 * Other method handle creation methods, such as |
|
277 * {@link #convertArguments MethodHandles.convertArguments}, |
|
278 * do not require any access checks, and are done |
|
279 * with static methods of {@link MethodHandles}, |
|
280 * independently of any {@code Lookup} object. |
|
281 * |
|
282 * <h3>Security manager interactions</h3> |
|
283 * <a name="secmgr"></a> |
|
284 * If a security manager is present, member lookups are subject to |
|
285 * additional checks. |
|
286 * From one to four calls are made to the security manager. |
|
287 * Any of these calls can refuse access by throwing a |
|
288 * {@link java.lang.SecurityException SecurityException}. |
|
289 * Define {@code smgr} as the security manager, |
|
290 * {@code refc} as the containing class in which the member |
|
291 * is being sought, and {@code defc} as the class in which the |
|
292 * member is actually defined. |
|
293 * The calls are made according to the following rules: |
|
294 * <ul> |
|
295 * <li>In all cases, {@link SecurityManager#checkMemberAccess |
|
296 * smgr.checkMemberAccess(refc, Member.PUBLIC)} is called. |
|
297 * <li>If the class loader of the lookup class is not |
|
298 * the same as or an ancestor of the class loader of {@code refc}, |
|
299 * then {@link SecurityManager#checkPackageAccess |
|
300 * smgr.checkPackageAccess(refcPkg)} is called, |
|
301 * where {@code refcPkg} is the package of {@code refc}. |
|
302 * <li>If the retrieved member is not public, |
|
303 * {@link SecurityManager#checkMemberAccess |
|
304 * smgr.checkMemberAccess(defc, Member.DECLARED)} is called. |
|
305 * (Note that {@code defc} might be the same as {@code refc}.) |
|
306 * <li>If the retrieved member is not public, |
|
307 * and if {@code defc} and {@code refc} are in different class loaders, |
|
308 * and if the class loader of the lookup class is not |
|
309 * the same as or an ancestor of the class loader of {@code defc}, |
|
310 * then {@link SecurityManager#checkPackageAccess |
|
311 * smgr.checkPackageAccess(defcPkg)} is called, |
|
312 * where {@code defcPkg} is the package of {@code defc}. |
|
313 * </ul> |
|
314 * In all cases, the requesting class presented to the security |
|
315 * manager will be the lookup class from the current {@code Lookup} object. |
|
316 */ |
|
317 public static final |
|
318 class Lookup { |
|
319 /** The class on behalf of whom the lookup is being performed. */ |
|
320 private final Class<?> lookupClass; |
|
321 |
|
322 /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */ |
|
323 private final int allowedModes; |
|
324 |
|
325 /** A single-bit mask representing {@code public} access, |
|
326 * which may contribute to the result of {@link #lookupModes lookupModes}. |
|
327 * The value, {@code 0x01}, happens to be the same as the value of the |
|
328 * {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}. |
|
329 */ |
|
330 public static final int PUBLIC = Modifier.PUBLIC; |
|
331 |
|
332 /** A single-bit mask representing {@code private} access, |
|
333 * which may contribute to the result of {@link #lookupModes lookupModes}. |
|
334 * The value, {@code 0x02}, happens to be the same as the value of the |
|
335 * {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}. |
|
336 */ |
|
337 public static final int PRIVATE = Modifier.PRIVATE; |
|
338 |
|
339 /** A single-bit mask representing {@code protected} access, |
|
340 * which may contribute to the result of {@link #lookupModes lookupModes}. |
|
341 * The value, {@code 0x04}, happens to be the same as the value of the |
|
342 * {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}. |
|
343 */ |
|
344 public static final int PROTECTED = Modifier.PROTECTED; |
|
345 |
|
346 /** A single-bit mask representing {@code package} access (default access), |
|
347 * which may contribute to the result of {@link #lookupModes lookupModes}. |
|
348 * The value is {@code 0x08}, which does not correspond meaningfully to |
|
349 * any particular {@linkplain java.lang.reflect.Modifier modifier bit}. |
|
350 */ |
|
351 public static final int PACKAGE = Modifier.STATIC; |
|
352 |
|
353 private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE); |
|
354 private static final int TRUSTED = -1; |
|
355 |
|
356 private static int fixmods(int mods) { |
|
357 mods &= (ALL_MODES - PACKAGE); |
|
358 return (mods != 0) ? mods : PACKAGE; |
|
359 } |
|
360 |
|
361 /** Tells which class is performing the lookup. It is this class against |
|
362 * which checks are performed for visibility and access permissions. |
|
363 * <p> |
|
364 * The class implies a maximum level of access permission, |
|
365 * but the permissions may be additionally limited by the bitmask |
|
366 * {@link #lookupModes lookupModes}, which controls whether non-public members |
|
367 * can be accessed. |
|
368 */ |
|
369 public Class<?> lookupClass() { |
|
370 return lookupClass; |
|
371 } |
|
372 |
|
373 // This is just for calling out to MethodHandleImpl. |
|
374 private Class<?> lookupClassOrNull() { |
|
375 return (allowedModes == TRUSTED) ? null : lookupClass; |
|
376 } |
|
377 |
|
378 /** Tells which access-protection classes of members this lookup object can produce. |
|
379 * The result is a bit-mask of the bits |
|
380 * {@linkplain #PUBLIC PUBLIC (0x01)}, |
|
381 * {@linkplain #PRIVATE PRIVATE (0x02)}, |
|
382 * {@linkplain #PROTECTED PROTECTED (0x04)}, |
|
383 * and {@linkplain #PACKAGE PACKAGE (0x08)}. |
|
384 * <p> |
|
385 * A freshly-created lookup object |
|
386 * on the {@linkplain java.dyn.MethodHandles#lookup() caller's class} |
|
387 * has all possible bits set, since the caller class can access all its own members. |
|
388 * A lookup object on a new lookup class |
|
389 * {@linkplain java.dyn.MethodHandles.Lookup#in created from a previous lookup object} |
|
390 * may have some mode bits set to zero. |
|
391 * The purpose of this is to restrict access via the new lookup object, |
|
392 * so that it can access only names which can be reached by the original |
|
393 * lookup object, and also by the new lookup class. |
|
394 */ |
|
395 public int lookupModes() { |
|
396 return allowedModes & ALL_MODES; |
|
397 } |
|
398 |
|
399 /** Embody the current class (the lookupClass) as a lookup class |
|
400 * for method handle creation. |
|
401 * Must be called by from a method in this package, |
|
402 * which in turn is called by a method not in this package. |
|
403 * <p> |
|
404 * Also, don't make it private, lest javac interpose |
|
405 * an access$N method. |
|
406 */ |
|
407 Lookup() { |
|
408 this(getCallerClassAtEntryPoint(), ALL_MODES); |
|
409 // make sure we haven't accidentally picked up a privileged class: |
|
410 checkUnprivilegedlookupClass(lookupClass); |
|
411 } |
|
412 |
|
413 Lookup(Access token, Class<?> lookupClass) { |
|
414 this(lookupClass, ALL_MODES); |
|
415 Access.check(token); |
|
416 } |
|
417 |
|
418 private Lookup(Class<?> lookupClass, int allowedModes) { |
|
419 this.lookupClass = lookupClass; |
|
420 this.allowedModes = allowedModes; |
|
421 } |
|
422 |
|
423 /** |
|
424 * Creates a lookup on the specified new lookup class. |
|
425 * The resulting object will report the specified |
|
426 * class as its own {@link #lookupClass lookupClass}. |
|
427 * <p> |
|
428 * However, the resulting {@code Lookup} object is guaranteed |
|
429 * to have no more access capabilities than the original. |
|
430 * In particular, access capabilities can be lost as follows:<ul> |
|
431 * <li>If the new lookup class differs from the old one, |
|
432 * protected members will not be accessible by virtue of inheritance. |
|
433 * (Protected members may continue to be accessible because of package sharing.) |
|
434 * <li>If the new lookup class is in a different package |
|
435 * than the old one, protected and default (package) members will not be accessible. |
|
436 * <li>If the new lookup class is not within the same package member |
|
437 * as the old one, private members will not be accessible. |
|
438 * <li>If the new lookup class is not accessible to the old lookup class, |
|
439 * then no members, not even public members, will be accessible. |
|
440 * (In all other cases, public members will continue to be accessible.) |
|
441 * </ul> |
|
442 * |
|
443 * @param requestedLookupClass the desired lookup class for the new lookup object |
|
444 * @return a lookup object which reports the desired lookup class |
|
445 * @throws NullPointerException if the argument is null |
|
446 */ |
|
447 public Lookup in(Class<?> requestedLookupClass) { |
|
448 requestedLookupClass.getClass(); // null check |
|
449 if (allowedModes == TRUSTED) // IMPL_LOOKUP can make any lookup at all |
|
450 return new Lookup(requestedLookupClass, ALL_MODES); |
|
451 if (requestedLookupClass == this.lookupClass) |
|
452 return this; // keep same capabilities |
|
453 int newModes = (allowedModes & (ALL_MODES & ~PROTECTED)); |
|
454 if ((newModes & PACKAGE) != 0 |
|
455 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) { |
|
456 newModes &= ~(PACKAGE|PRIVATE); |
|
457 } |
|
458 // Allow nestmate lookups to be created without special privilege: |
|
459 if ((newModes & PRIVATE) != 0 |
|
460 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) { |
|
461 newModes &= ~PRIVATE; |
|
462 } |
|
463 if (newModes == PUBLIC |
|
464 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass)) { |
|
465 // The requested class it not accessible from the lookup class. |
|
466 // No permissions. |
|
467 newModes = 0; |
|
468 } |
|
469 checkUnprivilegedlookupClass(requestedLookupClass); |
|
470 return new Lookup(requestedLookupClass, newModes); |
|
471 } |
|
472 |
|
473 // Make sure outer class is initialized first. |
|
474 static { IMPL_TOKEN.getClass(); } |
|
475 |
|
476 /** Version of lookup which is trusted minimally. |
|
477 * It can only be used to create method handles to |
|
478 * publicly accessible members. |
|
479 */ |
|
480 static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, PUBLIC); |
|
481 |
|
482 /** Package-private version of lookup which is trusted. */ |
|
483 static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED); |
|
484 static { MethodHandleImpl.initLookup(IMPL_TOKEN, IMPL_LOOKUP); } |
|
485 |
|
486 private static void checkUnprivilegedlookupClass(Class<?> lookupClass) { |
|
487 String name = lookupClass.getName(); |
|
488 if (name.startsWith("java.dyn.") || name.startsWith("sun.dyn.")) |
|
489 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass); |
|
490 } |
|
491 |
|
492 /** |
|
493 * Displays the name of the class from which lookups are to be made. |
|
494 * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.) |
|
495 * If there are restrictions on the access permitted to this lookup, |
|
496 * this is indicated by adding a suffix to the class name, consisting |
|
497 * of a slash and a keyword. The keyword represents the strongest |
|
498 * allowed access, and is chosen as follows: |
|
499 * <ul> |
|
500 * <li>If no access is allowed, the suffix is "/noaccess". |
|
501 * <li>If only public access is allowed, the suffix is "/public". |
|
502 * <li>If only public and package access are allowed, the suffix is "/package". |
|
503 * <li>If only public, package, and private access are allowed, the suffix is "/private". |
|
504 * </ul> |
|
505 * If none of the above cases apply, it is the case that full |
|
506 * access (public, package, private, and protected) is allowed. |
|
507 * In this case, no suffix is added. |
|
508 * This is true only of an object obtained originally from |
|
509 * {@link java.dyn.MethodHandles#lookup MethodHandles.lookup}. |
|
510 * Objects created by {@link java.dyn.MethodHandles.Lookup#in Lookup.in} |
|
511 * always have restricted access, and will display a suffix. |
|
512 * <p> |
|
513 * (It may seem strange that protected access should be |
|
514 * stronger than private access. Viewed independently from |
|
515 * package access, protected access is the first to be lost, |
|
516 * because it requires a direct subclass relationship between |
|
517 * caller and callee.) |
|
518 * @see #in |
|
519 */ |
|
520 @Override |
|
521 public String toString() { |
|
522 String cname = lookupClass.getName(); |
|
523 switch (allowedModes) { |
|
524 case 0: // no privileges |
|
525 return cname + "/noaccess"; |
|
526 case PUBLIC: |
|
527 return cname + "/public"; |
|
528 case PUBLIC|PACKAGE: |
|
529 return cname + "/package"; |
|
530 case ALL_MODES & ~PROTECTED: |
|
531 return cname + "/private"; |
|
532 case ALL_MODES: |
|
533 return cname; |
|
534 case TRUSTED: |
|
535 return "/trusted"; // internal only; not exported |
|
536 default: // Should not happen, but it's a bitfield... |
|
537 cname = cname + "/" + Integer.toHexString(allowedModes); |
|
538 assert(false) : cname; |
|
539 return cname; |
|
540 } |
|
541 } |
|
542 |
|
543 // call this from an entry point method in Lookup with extraFrames=0. |
|
544 private static Class<?> getCallerClassAtEntryPoint() { |
|
545 final int CALLER_DEPTH = 4; |
|
546 // 0: Reflection.getCC, 1: getCallerClassAtEntryPoint, |
|
547 // 2: Lookup.<init>, 3: MethodHandles.*, 4: caller |
|
548 // Note: This should be the only use of getCallerClass in this file. |
|
549 assert(Reflection.getCallerClass(CALLER_DEPTH-1) == MethodHandles.class); |
|
550 return Reflection.getCallerClass(CALLER_DEPTH); |
|
551 } |
|
552 |
|
553 /** |
|
554 * Produces a method handle for a static method. |
|
555 * The type of the method handle will be that of the method. |
|
556 * (Since static methods do not take receivers, there is no |
|
557 * additional receiver argument inserted into the method handle type, |
|
558 * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.) |
|
559 * The method and all its argument types must be accessible to the lookup class. |
|
560 * If the method's class has not yet been initialized, that is done |
|
561 * immediately, before the method handle is returned. |
|
562 * <p> |
|
563 * The returned method handle will have |
|
564 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
565 * the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
566 * @param refc the class from which the method is accessed |
|
567 * @param name the name of the method |
|
568 * @param type the type of the method |
|
569 * @return the desired method handle |
|
570 * @throws NoSuchMethodException if the method does not exist |
|
571 * @throws IllegalAccessException if access checking fails, or if the method is not {@code static} |
|
572 * @exception SecurityException if a security manager is present and it |
|
573 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
574 * @throws NullPointerException if any argument is null |
|
575 */ |
|
576 public |
|
577 MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
578 MemberName method = resolveOrFail(refc, name, type, true); |
|
579 checkMethod(refc, method, true); |
|
580 return MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, lookupClassOrNull()); |
|
581 } |
|
582 |
|
583 /** |
|
584 * Produces a method handle for a virtual method. |
|
585 * The type of the method handle will be that of the method, |
|
586 * with the receiver type (usually {@code refc}) prepended. |
|
587 * The method and all its argument types must be accessible to the lookup class. |
|
588 * <p> |
|
589 * When called, the handle will treat the first argument as a receiver |
|
590 * and dispatch on the receiver's type to determine which method |
|
591 * implementation to enter. |
|
592 * (The dispatching action is identical with that performed by an |
|
593 * {@code invokevirtual} or {@code invokeinterface} instruction.) |
|
594 * <p> |
|
595 * The returned method handle will have |
|
596 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
597 * the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
598 * <p> |
|
599 * Because of the general equivalence between {@code invokevirtual} |
|
600 * instructions and method handles produced by {@code findVirtual}, |
|
601 * if the class is {@code MethodHandle} and the name string is |
|
602 * {@code invokeExact} or {@code invokeGeneric}, the resulting |
|
603 * method handle is equivalent to one produced by |
|
604 * {@link java.dyn.MethodHandles#exactInvoker MethodHandles.exactInvoker} or |
|
605 * {@link java.dyn.MethodHandles#genericInvoker MethodHandles.genericInvoker} |
|
606 * with the same {@code type} argument. |
|
607 * |
|
608 * @param refc the class or interface from which the method is accessed |
|
609 * @param name the name of the method |
|
610 * @param type the type of the method, with the receiver argument omitted |
|
611 * @return the desired method handle |
|
612 * @throws NoSuchMethodException if the method does not exist |
|
613 * @throws IllegalAccessException if access checking fails, or if the method is {@code static} |
|
614 * @exception SecurityException if a security manager is present and it |
|
615 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
616 * @throws NullPointerException if any argument is null |
|
617 */ |
|
618 public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
619 MemberName method = resolveOrFail(refc, name, type, false); |
|
620 checkMethod(refc, method, false); |
|
621 MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClassOrNull()); |
|
622 return restrictProtectedReceiver(method, mh); |
|
623 } |
|
624 |
|
625 /** |
|
626 * Produces a method handle which creates an object and initializes it, using |
|
627 * the constructor of the specified type. |
|
628 * The parameter types of the method handle will be those of the constructor, |
|
629 * while the return type will be a reference to the constructor's class. |
|
630 * The constructor and all its argument types must be accessible to the lookup class. |
|
631 * If the constructor's class has not yet been initialized, that is done |
|
632 * immediately, before the method handle is returned. |
|
633 * <p> |
|
634 * Note: The requested type must have a return type of {@code void}. |
|
635 * This is consistent with the JVM's treatment of constructor type descriptors. |
|
636 * <p> |
|
637 * The returned method handle will have |
|
638 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
639 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. |
|
640 * @param refc the class or interface from which the method is accessed |
|
641 * @param type the type of the method, with the receiver argument omitted, and a void return type |
|
642 * @return the desired method handle |
|
643 * @throws NoSuchMethodException if the constructor does not exist |
|
644 * @throws IllegalAccessException if access checking fails |
|
645 * @exception SecurityException if a security manager is present and it |
|
646 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
647 * @throws NullPointerException if any argument is null |
|
648 */ |
|
649 public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
650 String name = "<init>"; |
|
651 MemberName ctor = resolveOrFail(refc, name, type, false, false, lookupClassOrNull()); |
|
652 assert(ctor.isConstructor()); |
|
653 checkAccess(refc, ctor); |
|
654 MethodHandle rawMH = MethodHandleImpl.findMethod(IMPL_TOKEN, ctor, false, lookupClassOrNull()); |
|
655 MethodHandle allocMH = MethodHandleImpl.makeAllocator(IMPL_TOKEN, rawMH); |
|
656 return fixVarargs(allocMH, rawMH); |
|
657 } |
|
658 |
|
659 /** Return a version of MH which matches matchMH w.r.t. isVarargsCollector. */ |
|
660 private static MethodHandle fixVarargs(MethodHandle mh, MethodHandle matchMH) { |
|
661 boolean va1 = mh.isVarargsCollector(); |
|
662 boolean va2 = matchMH.isVarargsCollector(); |
|
663 if (va1 == va2) { |
|
664 return mh; |
|
665 } else if (va2) { |
|
666 MethodType type = mh.type(); |
|
667 int arity = type.parameterCount(); |
|
668 return mh.asVarargsCollector(type.parameterType(arity-1)); |
|
669 } else { |
|
670 throw new InternalError("already varargs, but template is not: "+mh); |
|
671 } |
|
672 } |
|
673 |
|
674 /** |
|
675 * Produces an early-bound method handle for a virtual method, |
|
676 * as if called from an {@code invokespecial} |
|
677 * instruction from {@code caller}. |
|
678 * The type of the method handle will be that of the method, |
|
679 * with a suitably restricted receiver type (such as {@code caller}) prepended. |
|
680 * The method and all its argument types must be accessible |
|
681 * to the caller. |
|
682 * <p> |
|
683 * When called, the handle will treat the first argument as a receiver, |
|
684 * but will not dispatch on the receiver's type. |
|
685 * (This direct invocation action is identical with that performed by an |
|
686 * {@code invokespecial} instruction.) |
|
687 * <p> |
|
688 * If the explicitly specified caller class is not identical with the |
|
689 * lookup class, or if this lookup object does not have private access |
|
690 * privileges, the access fails. |
|
691 * <p> |
|
692 * The returned method handle will have |
|
693 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
694 * the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
695 * @param refc the class or interface from which the method is accessed |
|
696 * @param name the name of the method (which must not be "<init>") |
|
697 * @param type the type of the method, with the receiver argument omitted |
|
698 * @param specialCaller the proposed calling class to perform the {@code invokespecial} |
|
699 * @return the desired method handle |
|
700 * @throws NoSuchMethodException if the method does not exist |
|
701 * @throws IllegalAccessException if access checking fails |
|
702 * @exception SecurityException if a security manager is present and it |
|
703 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
704 * @throws NullPointerException if any argument is null |
|
705 */ |
|
706 public MethodHandle findSpecial(Class<?> refc, String name, MethodType type, |
|
707 Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { |
|
708 checkSpecialCaller(specialCaller); |
|
709 MemberName method = resolveOrFail(refc, name, type, false, false, specialCaller); |
|
710 checkMethod(refc, method, false); |
|
711 MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, specialCaller); |
|
712 return restrictReceiver(method, mh, specialCaller); |
|
713 } |
|
714 |
|
715 /** |
|
716 * Produces a method handle giving read access to a non-static field. |
|
717 * The type of the method handle will have a return type of the field's |
|
718 * value type. |
|
719 * The method handle's single argument will be the instance containing |
|
720 * the field. |
|
721 * Access checking is performed immediately on behalf of the lookup class. |
|
722 * @param refc the class or interface from which the method is accessed |
|
723 * @param name the field's name |
|
724 * @param type the field's type |
|
725 * @return a method handle which can load values from the field |
|
726 * @throws NoSuchFieldException if the field does not exist |
|
727 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
|
728 * @exception SecurityException if a security manager is present and it |
|
729 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
730 * @throws NullPointerException if any argument is null |
|
731 */ |
|
732 public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
733 return makeAccessor(refc, name, type, false, false); |
|
734 } |
|
735 |
|
736 /** |
|
737 * Produces a method handle giving write access to a non-static field. |
|
738 * The type of the method handle will have a void return type. |
|
739 * The method handle will take two arguments, the instance containing |
|
740 * the field, and the value to be stored. |
|
741 * The second argument will be of the field's value type. |
|
742 * Access checking is performed immediately on behalf of the lookup class. |
|
743 * @param refc the class or interface from which the method is accessed |
|
744 * @param name the field's name |
|
745 * @param type the field's type |
|
746 * @return a method handle which can store values into the field |
|
747 * @throws NoSuchFieldException if the field does not exist |
|
748 * @throws IllegalAccessException if access checking fails, or if the field is {@code static} |
|
749 * @exception SecurityException if a security manager is present and it |
|
750 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
751 * @throws NullPointerException if any argument is null |
|
752 */ |
|
753 public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
754 return makeAccessor(refc, name, type, false, true); |
|
755 } |
|
756 |
|
757 /** |
|
758 * Produces a method handle giving read access to a static field. |
|
759 * The type of the method handle will have a return type of the field's |
|
760 * value type. |
|
761 * The method handle will take no arguments. |
|
762 * Access checking is performed immediately on behalf of the lookup class. |
|
763 * @param refc the class or interface from which the method is accessed |
|
764 * @param name the field's name |
|
765 * @param type the field's type |
|
766 * @return a method handle which can load values from the field |
|
767 * @throws NoSuchFieldException if the field does not exist |
|
768 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
|
769 * @exception SecurityException if a security manager is present and it |
|
770 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
771 * @throws NullPointerException if any argument is null |
|
772 */ |
|
773 public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
774 return makeAccessor(refc, name, type, true, false); |
|
775 } |
|
776 |
|
777 /** |
|
778 * Produces a method handle giving write access to a static field. |
|
779 * The type of the method handle will have a void return type. |
|
780 * The method handle will take a single |
|
781 * argument, of the field's value type, the value to be stored. |
|
782 * Access checking is performed immediately on behalf of the lookup class. |
|
783 * @param refc the class or interface from which the method is accessed |
|
784 * @param name the field's name |
|
785 * @param type the field's type |
|
786 * @return a method handle which can store values into the field |
|
787 * @throws NoSuchFieldException if the field does not exist |
|
788 * @throws IllegalAccessException if access checking fails, or if the field is not {@code static} |
|
789 * @exception SecurityException if a security manager is present and it |
|
790 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
791 * @throws NullPointerException if any argument is null |
|
792 */ |
|
793 public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException { |
|
794 return makeAccessor(refc, name, type, true, true); |
|
795 } |
|
796 |
|
797 /** |
|
798 * Produces an early-bound method handle for a non-static method. |
|
799 * The receiver must have a supertype {@code defc} in which a method |
|
800 * of the given name and type is accessible to the lookup class. |
|
801 * The method and all its argument types must be accessible to the lookup class. |
|
802 * The type of the method handle will be that of the method, |
|
803 * without any insertion of an additional receiver parameter. |
|
804 * The given receiver will be bound into the method handle, |
|
805 * so that every call to the method handle will invoke the |
|
806 * requested method on the given receiver. |
|
807 * <p> |
|
808 * The returned method handle will have |
|
809 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
810 * the method's variable arity modifier bit ({@code 0x0080}) is set |
|
811 * <em>and</em> the trailing array argument is not the only argument. |
|
812 * (If the trailing array argument is the only argument, |
|
813 * the given receiver value will be bound to it.) |
|
814 * <p> |
|
815 * This is equivalent to the following code: |
|
816 * <blockquote><pre> |
|
817 MethodHandle mh0 = {@link #findVirtual findVirtual}(defc, name, type); |
|
818 MethodHandle mh1 = mh0.{@link MethodHandle#bindTo bindTo}(receiver); |
|
819 MethodType mt1 = mh1.type(); |
|
820 if (mh0.isVarargsCollector() && mt1.parameterCount() > 0) { |
|
821 mh1 = mh1.asVarargsCollector(mt1.parameterType(mt1.parameterCount()-1)); |
|
822 return mh1; |
|
823 * </pre></blockquote> |
|
824 * where {@code defc} is either {@code receiver.getClass()} or a super |
|
825 * type of that class, in which the requested method is accessible |
|
826 * to the lookup class. |
|
827 * (Note that {@code bindTo} does not preserve variable arity.) |
|
828 * @param receiver the object from which the method is accessed |
|
829 * @param name the name of the method |
|
830 * @param type the type of the method, with the receiver argument omitted |
|
831 * @return the desired method handle |
|
832 * @throws NoSuchMethodException if the method does not exist |
|
833 * @throws IllegalAccessException if access checking fails |
|
834 * @exception SecurityException if a security manager is present and it |
|
835 * <a href="MethodHandles.Lookup.html#secmgr">refuses access</a> |
|
836 * @throws NullPointerException if any argument is null |
|
837 */ |
|
838 public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException { |
|
839 Class<? extends Object> refc = receiver.getClass(); // may get NPE |
|
840 MemberName method = resolveOrFail(refc, name, type, false); |
|
841 checkMethod(refc, method, false); |
|
842 MethodHandle dmh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClassOrNull()); |
|
843 MethodHandle bmh = MethodHandleImpl.bindReceiver(IMPL_TOKEN, dmh, receiver); |
|
844 if (bmh == null) |
|
845 throw newNoAccessException(method, this); |
|
846 if (dmh.type().parameterCount() == 0) |
|
847 return dmh; // bound the trailing parameter; no varargs possible |
|
848 return fixVarargs(bmh, dmh); |
|
849 } |
|
850 |
|
851 /** |
|
852 * Make a direct method handle to <i>m</i>, if the lookup class has permission. |
|
853 * If <i>m</i> is non-static, the receiver argument is treated as an initial argument. |
|
854 * If <i>m</i> is virtual, overriding is respected on every call. |
|
855 * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped. |
|
856 * The type of the method handle will be that of the method, |
|
857 * with the receiver type prepended (but only if it is non-static). |
|
858 * If the method's {@code accessible} flag is not set, |
|
859 * access checking is performed immediately on behalf of the lookup class. |
|
860 * If <i>m</i> is not public, do not share the resulting handle with untrusted parties. |
|
861 * <p> |
|
862 * The returned method handle will have |
|
863 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
864 * the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
865 * @param m the reflected method |
|
866 * @return a method handle which can invoke the reflected method |
|
867 * @throws IllegalAccessException if access checking fails |
|
868 * @throws NullPointerException if the argument is null |
|
869 */ |
|
870 public MethodHandle unreflect(Method m) throws IllegalAccessException { |
|
871 MemberName method = new MemberName(m); |
|
872 assert(method.isMethod()); |
|
873 if (!m.isAccessible()) checkMethod(method.getDeclaringClass(), method, method.isStatic()); |
|
874 MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, true, lookupClassOrNull()); |
|
875 if (!m.isAccessible()) mh = restrictProtectedReceiver(method, mh); |
|
876 return mh; |
|
877 } |
|
878 |
|
879 /** |
|
880 * Produces a method handle for a reflected method. |
|
881 * It will bypass checks for overriding methods on the receiver, |
|
882 * as if by a {@code invokespecial} instruction from within the {@code specialCaller}. |
|
883 * The type of the method handle will be that of the method, |
|
884 * with the special caller type prepended (and <em>not</em> the receiver of the method). |
|
885 * If the method's {@code accessible} flag is not set, |
|
886 * access checking is performed immediately on behalf of the lookup class, |
|
887 * as if {@code invokespecial} instruction were being linked. |
|
888 * <p> |
|
889 * The returned method handle will have |
|
890 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
891 * the method's variable arity modifier bit ({@code 0x0080}) is set. |
|
892 * @param m the reflected method |
|
893 * @param specialCaller the class nominally calling the method |
|
894 * @return a method handle which can invoke the reflected method |
|
895 * @throws IllegalAccessException if access checking fails |
|
896 * @throws NullPointerException if any argument is null |
|
897 */ |
|
898 public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException { |
|
899 checkSpecialCaller(specialCaller); |
|
900 MemberName method = new MemberName(m); |
|
901 assert(method.isMethod()); |
|
902 // ignore m.isAccessible: this is a new kind of access |
|
903 checkMethod(m.getDeclaringClass(), method, false); |
|
904 MethodHandle mh = MethodHandleImpl.findMethod(IMPL_TOKEN, method, false, lookupClassOrNull()); |
|
905 return restrictReceiver(method, mh, specialCaller); |
|
906 } |
|
907 |
|
908 /** |
|
909 * Produces a method handle for a reflected constructor. |
|
910 * The type of the method handle will be that of the constructor, |
|
911 * with the return type changed to the declaring class. |
|
912 * The method handle will perform a {@code newInstance} operation, |
|
913 * creating a new instance of the constructor's class on the |
|
914 * arguments passed to the method handle. |
|
915 * <p> |
|
916 * If the constructor's {@code accessible} flag is not set, |
|
917 * access checking is performed immediately on behalf of the lookup class. |
|
918 * <p> |
|
919 * The returned method handle will have |
|
920 * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if |
|
921 * the constructor's variable arity modifier bit ({@code 0x0080}) is set. |
|
922 * @param c the reflected constructor |
|
923 * @return a method handle which can invoke the reflected constructor |
|
924 * @throws IllegalAccessException if access checking fails |
|
925 * @throws NullPointerException if the argument is null |
|
926 */ |
|
927 public MethodHandle unreflectConstructor(Constructor c) throws IllegalAccessException { |
|
928 MemberName ctor = new MemberName(c); |
|
929 assert(ctor.isConstructor()); |
|
930 if (!c.isAccessible()) checkAccess(c.getDeclaringClass(), ctor); |
|
931 MethodHandle rawCtor = MethodHandleImpl.findMethod(IMPL_TOKEN, ctor, false, lookupClassOrNull()); |
|
932 MethodHandle allocator = MethodHandleImpl.makeAllocator(IMPL_TOKEN, rawCtor); |
|
933 return fixVarargs(allocator, rawCtor); |
|
934 } |
|
935 |
|
936 /** |
|
937 * Produces a method handle giving read access to a reflected field. |
|
938 * The type of the method handle will have a return type of the field's |
|
939 * value type. |
|
940 * If the field is static, the method handle will take no arguments. |
|
941 * Otherwise, its single argument will be the instance containing |
|
942 * the field. |
|
943 * If the method's {@code accessible} flag is not set, |
|
944 * access checking is performed immediately on behalf of the lookup class. |
|
945 * @param f the reflected field |
|
946 * @return a method handle which can load values from the reflected field |
|
947 * @throws IllegalAccessException if access checking fails |
|
948 * @throws NullPointerException if the argument is null |
|
949 */ |
|
950 public MethodHandle unreflectGetter(Field f) throws IllegalAccessException { |
|
951 return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), false); |
|
952 } |
|
953 |
|
954 /** |
|
955 * Produces a method handle giving write access to a reflected field. |
|
956 * The type of the method handle will have a void return type. |
|
957 * If the field is static, the method handle will take a single |
|
958 * argument, of the field's value type, the value to be stored. |
|
959 * Otherwise, the two arguments will be the instance containing |
|
960 * the field, and the value to be stored. |
|
961 * If the method's {@code accessible} flag is not set, |
|
962 * access checking is performed immediately on behalf of the lookup class. |
|
963 * @param f the reflected field |
|
964 * @return a method handle which can store values into the reflected field |
|
965 * @throws IllegalAccessException if access checking fails |
|
966 * @throws NullPointerException if the argument is null |
|
967 */ |
|
968 public MethodHandle unreflectSetter(Field f) throws IllegalAccessException { |
|
969 return makeAccessor(f.getDeclaringClass(), new MemberName(f), f.isAccessible(), true); |
|
970 } |
|
971 |
|
972 /// Helper methods, all package-private. |
|
973 |
|
974 MemberName resolveOrFail(Class<?> refc, String name, Class<?> type, boolean isStatic) throws NoSuchFieldException, IllegalAccessException { |
|
975 checkSymbolicClass(refc); // do this before attempting to resolve |
|
976 name.getClass(); type.getClass(); // NPE |
|
977 int mods = (isStatic ? Modifier.STATIC : 0); |
|
978 return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(), |
|
979 NoSuchFieldException.class); |
|
980 } |
|
981 |
|
982 MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic) throws NoSuchMethodException, IllegalAccessException { |
|
983 checkSymbolicClass(refc); // do this before attempting to resolve |
|
984 name.getClass(); type.getClass(); // NPE |
|
985 int mods = (isStatic ? Modifier.STATIC : 0); |
|
986 return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), true, lookupClassOrNull(), |
|
987 NoSuchMethodException.class); |
|
988 } |
|
989 |
|
990 MemberName resolveOrFail(Class<?> refc, String name, MethodType type, boolean isStatic, |
|
991 boolean searchSupers, Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException { |
|
992 checkSymbolicClass(refc); // do this before attempting to resolve |
|
993 name.getClass(); type.getClass(); // NPE |
|
994 int mods = (isStatic ? Modifier.STATIC : 0); |
|
995 return IMPL_NAMES.resolveOrFail(new MemberName(refc, name, type, mods), searchSupers, specialCaller, |
|
996 NoSuchMethodException.class); |
|
997 } |
|
998 |
|
999 void checkSymbolicClass(Class<?> refc) throws IllegalAccessException { |
|
1000 Class<?> caller = lookupClassOrNull(); |
|
1001 if (caller != null && !VerifyAccess.isClassAccessible(refc, caller)) |
|
1002 throw newNoAccessException("symbolic reference class is not public", new MemberName(refc), this); |
|
1003 } |
|
1004 |
|
1005 void checkMethod(Class<?> refc, MemberName m, boolean wantStatic) throws IllegalAccessException { |
|
1006 String message; |
|
1007 if (m.isConstructor()) |
|
1008 message = "expected a method, not a constructor"; |
|
1009 else if (!m.isMethod()) |
|
1010 message = "expected a method"; |
|
1011 else if (wantStatic != m.isStatic()) |
|
1012 message = wantStatic ? "expected a static method" : "expected a non-static method"; |
|
1013 else |
|
1014 { checkAccess(refc, m); return; } |
|
1015 throw newNoAccessException(message, m, this); |
|
1016 } |
|
1017 |
|
1018 void checkAccess(Class<?> refc, MemberName m) throws IllegalAccessException { |
|
1019 int allowedModes = this.allowedModes; |
|
1020 if (allowedModes == TRUSTED) return; |
|
1021 int mods = m.getModifiers(); |
|
1022 if (Modifier.isPublic(mods) && Modifier.isPublic(refc.getModifiers()) && allowedModes != 0) |
|
1023 return; // common case |
|
1024 int requestedModes = fixmods(mods); // adjust 0 => PACKAGE |
|
1025 if ((requestedModes & allowedModes) != 0 |
|
1026 && VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(), |
|
1027 mods, lookupClass())) |
|
1028 return; |
|
1029 if (((requestedModes & ~allowedModes) & PROTECTED) != 0 |
|
1030 && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass())) |
|
1031 // Protected members can also be checked as if they were package-private. |
|
1032 return; |
|
1033 throw newNoAccessException(accessFailedMessage(refc, m), m, this); |
|
1034 } |
|
1035 |
|
1036 String accessFailedMessage(Class<?> refc, MemberName m) { |
|
1037 Class<?> defc = m.getDeclaringClass(); |
|
1038 int mods = m.getModifiers(); |
|
1039 // check the class first: |
|
1040 boolean classOK = (Modifier.isPublic(defc.getModifiers()) && |
|
1041 (defc == refc || |
|
1042 Modifier.isPublic(refc.getModifiers()))); |
|
1043 if (!classOK && (allowedModes & PACKAGE) != 0) { |
|
1044 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass()) && |
|
1045 (defc == refc || |
|
1046 VerifyAccess.isClassAccessible(refc, lookupClass()))); |
|
1047 } |
|
1048 if (!classOK) |
|
1049 return "class is not public"; |
|
1050 if (Modifier.isPublic(mods)) |
|
1051 return "access to public member failed"; // (how?) |
|
1052 if (Modifier.isPrivate(mods)) |
|
1053 return "member is private"; |
|
1054 if (Modifier.isProtected(mods)) |
|
1055 return "member is protected"; |
|
1056 return "member is private to package"; |
|
1057 } |
|
1058 |
|
1059 private static final boolean ALLOW_NESTMATE_ACCESS = false; |
|
1060 |
|
1061 void checkSpecialCaller(Class<?> specialCaller) throws IllegalAccessException { |
|
1062 if (allowedModes == TRUSTED) return; |
|
1063 if ((allowedModes & PRIVATE) == 0 |
|
1064 || (specialCaller != lookupClass() |
|
1065 && !(ALLOW_NESTMATE_ACCESS && |
|
1066 VerifyAccess.isSamePackageMember(specialCaller, lookupClass())))) |
|
1067 throw newNoAccessException("no private access for invokespecial", |
|
1068 new MemberName(specialCaller), this); |
|
1069 } |
|
1070 |
|
1071 MethodHandle restrictProtectedReceiver(MemberName method, MethodHandle mh) throws IllegalAccessException { |
|
1072 // The accessing class only has the right to use a protected member |
|
1073 // on itself or a subclass. Enforce that restriction, from JVMS 5.4.4, etc. |
|
1074 if (!method.isProtected() || method.isStatic() |
|
1075 || allowedModes == TRUSTED |
|
1076 || method.getDeclaringClass() == lookupClass() |
|
1077 || (ALLOW_NESTMATE_ACCESS && |
|
1078 VerifyAccess.isSamePackageMember(method.getDeclaringClass(), lookupClass()))) |
|
1079 return mh; |
|
1080 else |
|
1081 return restrictReceiver(method, mh, lookupClass()); |
|
1082 } |
|
1083 MethodHandle restrictReceiver(MemberName method, MethodHandle mh, Class<?> caller) throws IllegalAccessException { |
|
1084 assert(!method.isStatic()); |
|
1085 Class<?> defc = method.getDeclaringClass(); // receiver type of mh is too wide |
|
1086 if (defc.isInterface() || !defc.isAssignableFrom(caller)) { |
|
1087 throw newNoAccessException("caller class must be a subclass below the method", method, caller); |
|
1088 } |
|
1089 MethodType rawType = mh.type(); |
|
1090 if (rawType.parameterType(0) == caller) return mh; |
|
1091 MethodType narrowType = rawType.changeParameterType(0, caller); |
|
1092 MethodHandle narrowMH = MethodHandleImpl.convertArguments(IMPL_TOKEN, mh, narrowType, rawType, null); |
|
1093 return fixVarargs(narrowMH, mh); |
|
1094 } |
|
1095 |
|
1096 MethodHandle makeAccessor(Class<?> refc, String name, Class<?> type, |
|
1097 boolean isStatic, boolean isSetter) throws NoSuchFieldException, IllegalAccessException { |
|
1098 MemberName field = resolveOrFail(refc, name, type, isStatic); |
|
1099 if (isStatic != field.isStatic()) |
|
1100 throw newNoAccessException(isStatic |
|
1101 ? "expected a static field" |
|
1102 : "expected a non-static field", |
|
1103 field, this); |
|
1104 return makeAccessor(refc, field, false, isSetter); |
|
1105 } |
|
1106 |
|
1107 MethodHandle makeAccessor(Class<?> refc, MemberName field, |
|
1108 boolean trusted, boolean isSetter) throws IllegalAccessException { |
|
1109 assert(field.isField()); |
|
1110 if (trusted) |
|
1111 return MethodHandleImpl.accessField(IMPL_TOKEN, field, isSetter, lookupClassOrNull()); |
|
1112 checkAccess(refc, field); |
|
1113 MethodHandle mh = MethodHandleImpl.accessField(IMPL_TOKEN, field, isSetter, lookupClassOrNull()); |
|
1114 return restrictProtectedReceiver(field, mh); |
|
1115 } |
|
1116 } |
|
1117 |
|
1118 /** |
|
1119 * Produces a method handle giving read access to elements of an array. |
|
1120 * The type of the method handle will have a return type of the array's |
|
1121 * element type. Its first argument will be the array type, |
|
1122 * and the second will be {@code int}. |
|
1123 * @param arrayClass an array type |
|
1124 * @return a method handle which can load values from the given array type |
|
1125 * @throws NullPointerException if the argument is null |
|
1126 * @throws IllegalArgumentException if arrayClass is not an array type |
|
1127 */ |
|
1128 public static |
|
1129 MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException { |
|
1130 return MethodHandleImpl.accessArrayElement(IMPL_TOKEN, arrayClass, false); |
|
1131 } |
|
1132 |
|
1133 /** |
|
1134 * Produces a method handle giving write access to elements of an array. |
|
1135 * The type of the method handle will have a void return type. |
|
1136 * Its last argument will be the array's element type. |
|
1137 * The first and second arguments will be the array type and int. |
|
1138 * @return a method handle which can store values into the array type |
|
1139 * @throws NullPointerException if the argument is null |
|
1140 * @throws IllegalArgumentException if arrayClass is not an array type |
|
1141 */ |
|
1142 public static |
|
1143 MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException { |
|
1144 return MethodHandleImpl.accessArrayElement(IMPL_TOKEN, arrayClass, true); |
|
1145 } |
|
1146 |
|
1147 /// method handle invocation (reflective style) |
|
1148 |
|
1149 /** |
|
1150 * Produces a method handle which will invoke any method handle of the |
|
1151 * given {@code type} on a standard set of {@code Object} type arguments |
|
1152 * and a single trailing {@code Object[]} array. |
|
1153 * The resulting invoker will be a method handle with the following |
|
1154 * arguments: |
|
1155 * <ul> |
|
1156 * <li>a single {@code MethodHandle} target |
|
1157 * <li>zero or more {@code Object} values (counted by {@code objectArgCount}) |
|
1158 * <li>an {@code Object[]} array containing more arguments |
|
1159 * </ul> |
|
1160 * <p> |
|
1161 * The invoker will behave like a call to {@link MethodHandle#invokeGeneric invokeGeneric} with |
|
1162 * the indicated {@code type}. |
|
1163 * That is, if the target is exactly of the given {@code type}, it will behave |
|
1164 * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType} |
|
1165 * is used to convert the target to the required {@code type}. |
|
1166 * <p> |
|
1167 * The type of the returned invoker will not be the given {@code type}, but rather |
|
1168 * will have all parameter and return types replaced by {@code Object}, except for |
|
1169 * the last parameter type, which will be the array type {@code Object[]}. |
|
1170 * <p> |
|
1171 * Before invoking its target, the invoker will spread the varargs array, apply |
|
1172 * reference casts as necessary, and unbox and widen primitive arguments. |
|
1173 * The return value of the invoker will be an {@code Object} reference, |
|
1174 * boxing a primitive value if the original type returns a primitive, |
|
1175 * and always null if the original type returns void. |
|
1176 * <p> |
|
1177 * This method is equivalent to the following code (though it may be more efficient): |
|
1178 * <p><blockquote><pre> |
|
1179 MethodHandle invoker = MethodHandles.genericInvoker(type); |
|
1180 int spreadArgCount = type.parameterCount - objectArgCount; |
|
1181 invoker = invoker.asSpreader(Object[].class, spreadArgCount); |
|
1182 return invoker; |
|
1183 * </pre></blockquote> |
|
1184 * <p> |
|
1185 * This method throws no reflective or security exceptions. |
|
1186 * @param type the desired target type |
|
1187 * @param objectArgCount number of fixed (non-varargs) {@code Object} arguments |
|
1188 * @return a method handle suitable for invoking any method handle of the given type |
|
1189 */ |
|
1190 static public |
|
1191 MethodHandle spreadInvoker(MethodType type, int objectArgCount) { |
|
1192 if (objectArgCount < 0 || objectArgCount > type.parameterCount()) |
|
1193 throw new IllegalArgumentException("bad argument count "+objectArgCount); |
|
1194 return invokers(type).spreadInvoker(objectArgCount); |
|
1195 } |
|
1196 |
|
1197 /** |
|
1198 * Produces a special <em>invoker method handle</em> which can be used to |
|
1199 * invoke any method handle of the given type, as if by {@code invokeExact}. |
|
1200 * The resulting invoker will have a type which is |
|
1201 * exactly equal to the desired type, except that it will accept |
|
1202 * an additional leading argument of type {@code MethodHandle}. |
|
1203 * <p> |
|
1204 * This method is equivalent to the following code (though it may be more efficient): |
|
1205 * <p><blockquote><pre> |
|
1206 publicLookup().findVirtual(MethodHandle.class, "invokeExact", type) |
|
1207 * </pre></blockquote> |
|
1208 * |
|
1209 * <p style="font-size:smaller;"> |
|
1210 * <em>Discussion:</em> |
|
1211 * Invoker method handles can be useful when working with variable method handles |
|
1212 * of unknown types. |
|
1213 * For example, to emulate an {@code invokeExact} call to a variable method |
|
1214 * handle {@code M}, extract its type {@code T}, |
|
1215 * look up the invoker method {@code X} for {@code T}, |
|
1216 * and call the invoker method, as {@code X.invokeGeneric(T, A...)}. |
|
1217 * (It would not work to call {@code X.invokeExact}, since the type {@code T} |
|
1218 * is unknown.) |
|
1219 * If spreading, collecting, or other argument transformations are required, |
|
1220 * they can be applied once to the invoker {@code X} and reused on many {@code M} |
|
1221 * method handle values, as long as they are compatible with the type of {@code X}. |
|
1222 * <p> |
|
1223 * <em>(Note: The invoker method is not available via the Core Reflection API. |
|
1224 * An attempt to call {@linkplain java.lang.reflect.Method#invoke Method.invoke} |
|
1225 * on the declared {@code invokeExact} or {@code invokeGeneric} method will raise an |
|
1226 * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em> |
|
1227 * <p> |
|
1228 * This method throws no reflective or security exceptions. |
|
1229 * @param type the desired target type |
|
1230 * @return a method handle suitable for invoking any method handle of the given type |
|
1231 */ |
|
1232 static public |
|
1233 MethodHandle exactInvoker(MethodType type) { |
|
1234 return invokers(type).exactInvoker(); |
|
1235 } |
|
1236 |
|
1237 /** |
|
1238 * Produces a special <em>invoker method handle</em> which can be used to |
|
1239 * invoke any method handle of the given type, as if by {@code invokeGeneric}. |
|
1240 * The resulting invoker will have a type which is |
|
1241 * exactly equal to the desired type, except that it will accept |
|
1242 * an additional leading argument of type {@code MethodHandle}. |
|
1243 * <p> |
|
1244 * Before invoking its target, the invoker will apply reference casts as |
|
1245 * necessary and unbox and widen primitive arguments, as if by {@link #convertArguments convertArguments}. |
|
1246 * The return value of the invoker will be an {@code Object} reference, |
|
1247 * boxing a primitive value if the original type returns a primitive, |
|
1248 * and always null if the original type returns void. |
|
1249 * <p> |
|
1250 * This method is equivalent to the following code (though it may be more efficient): |
|
1251 * <p><blockquote><pre> |
|
1252 publicLookup().findVirtual(MethodHandle.class, "invokeGeneric", type) |
|
1253 * </pre></blockquote> |
|
1254 * <p> |
|
1255 * This method throws no reflective or security exceptions. |
|
1256 * @param type the desired target type |
|
1257 * @return a method handle suitable for invoking any method handle convertible to the given type |
|
1258 */ |
|
1259 static public |
|
1260 MethodHandle genericInvoker(MethodType type) { |
|
1261 return invokers(type).genericInvoker(); |
|
1262 } |
|
1263 |
|
1264 static Invokers invokers(MethodType type) { |
|
1265 return MethodTypeImpl.invokers(IMPL_TOKEN, type); |
|
1266 } |
|
1267 |
|
1268 /** |
|
1269 * Perform value checking, exactly as if for an adapted method handle. |
|
1270 * It is assumed that the given value is either null, of type T0, |
|
1271 * or (if T0 is primitive) of the wrapper type corresponding to T0. |
|
1272 * The following checks and conversions are made: |
|
1273 * <ul> |
|
1274 * <li>If T0 and T1 are references, then a cast to T1 is applied. |
|
1275 * (The types do not need to be related in any particular way.) |
|
1276 * <li>If T0 and T1 are primitives, then a widening or narrowing |
|
1277 * conversion is applied, if one exists. |
|
1278 * <li>If T0 is a primitive and T1 a reference, and |
|
1279 * T0 has a wrapper type TW, a boxing conversion to TW is applied, |
|
1280 * possibly followed by a reference conversion. |
|
1281 * T1 must be TW or a supertype. |
|
1282 * <li>If T0 is a reference and T1 a primitive, and |
|
1283 * T1 has a wrapper type TW, an unboxing conversion is applied, |
|
1284 * possibly preceded by a reference conversion. |
|
1285 * T0 must be TW or a supertype. |
|
1286 * <li>If T1 is void, the return value is discarded |
|
1287 * <li>If T0 is void and T1 a reference, a null value is introduced. |
|
1288 * <li>If T0 is void and T1 a primitive, a zero value is introduced. |
|
1289 * </ul> |
|
1290 * If the value is discarded, null will be returned. |
|
1291 * @param valueType |
|
1292 * @param value |
|
1293 * @return the value, converted if necessary |
|
1294 * @throws java.lang.ClassCastException if a cast fails |
|
1295 */ |
|
1296 static |
|
1297 <T0, T1> T1 checkValue(Class<T0> t0, Class<T1> t1, Object value) |
|
1298 throws ClassCastException |
|
1299 { |
|
1300 if (t0 == t1) { |
|
1301 // no conversion needed; just reassert the same type |
|
1302 if (t0.isPrimitive()) |
|
1303 return Wrapper.asPrimitiveType(t1).cast(value); |
|
1304 else |
|
1305 return Wrapper.OBJECT.convert(value, t1); |
|
1306 } |
|
1307 boolean prim0 = t0.isPrimitive(), prim1 = t1.isPrimitive(); |
|
1308 if (!prim0) { |
|
1309 // check contract with caller |
|
1310 Wrapper.OBJECT.convert(value, t0); |
|
1311 if (!prim1) { |
|
1312 return Wrapper.OBJECT.convert(value, t1); |
|
1313 } |
|
1314 // convert reference to primitive by unboxing |
|
1315 Wrapper w1 = Wrapper.forPrimitiveType(t1); |
|
1316 return w1.convert(value, t1); |
|
1317 } |
|
1318 // check contract with caller: |
|
1319 Wrapper.asWrapperType(t0).cast(value); |
|
1320 Wrapper w1 = Wrapper.forPrimitiveType(t1); |
|
1321 return w1.convert(value, t1); |
|
1322 } |
|
1323 |
|
1324 static |
|
1325 Object checkValue(Class<?> T1, Object value) |
|
1326 throws ClassCastException |
|
1327 { |
|
1328 Class<?> T0; |
|
1329 if (value == null) |
|
1330 T0 = Object.class; |
|
1331 else |
|
1332 T0 = value.getClass(); |
|
1333 return checkValue(T0, T1, value); |
|
1334 } |
|
1335 |
|
1336 /// method handle modification (creation from other method handles) |
|
1337 |
|
1338 /** |
|
1339 * Produces a method handle which adapts the type of the |
|
1340 * given method handle to a new type by pairwise argument conversion. |
|
1341 * The original type and new type must have the same number of arguments. |
|
1342 * The resulting method handle is guaranteed to report a type |
|
1343 * which is equal to the desired new type. |
|
1344 * <p> |
|
1345 * If the original type and new type are equal, returns target. |
|
1346 * <p> |
|
1347 * The following conversions are applied as needed both to |
|
1348 * arguments and return types. Let T0 and T1 be the differing |
|
1349 * new and old parameter types (or old and new return types) |
|
1350 * for corresponding values passed by the new and old method types. |
|
1351 * Given those types T0, T1, one of the following conversions is applied |
|
1352 * if possible: |
|
1353 * <ul> |
|
1354 * <li>If T0 and T1 are references, then a cast to T1 is applied. |
|
1355 * (The types do not need to be related in any particular way.) |
|
1356 * <li>If T0 and T1 are primitives, then a Java method invocation |
|
1357 * conversion (JLS 5.3) is applied, if one exists. |
|
1358 * <li>If T0 is a primitive and T1 a reference, a boxing |
|
1359 * conversion is applied if one exists, possibly followed by |
|
1360 * a reference conversion to a superclass. |
|
1361 * T1 must be a wrapper class or a supertype of one. |
|
1362 * <li>If T0 is a reference and T1 a primitive, an unboxing |
|
1363 * conversion will be applied at runtime, possibly followed |
|
1364 * by a Java method invocation conversion (JLS 5.3) |
|
1365 * on the primitive value. (These are the widening conversions.) |
|
1366 * T0 must be a wrapper class or a supertype of one. |
|
1367 * (In the case where T0 is Object, these are the conversions |
|
1368 * allowed by java.lang.reflect.Method.invoke.) |
|
1369 * <li>If the return type T1 is void, any returned value is discarded |
|
1370 * <li>If the return type T0 is void and T1 a reference, a null value is introduced. |
|
1371 * <li>If the return type T0 is void and T1 a primitive, a zero value is introduced. |
|
1372 * </ul> |
|
1373 * @param target the method handle to invoke after arguments are retyped |
|
1374 * @param newType the expected type of the new method handle |
|
1375 * @return a method handle which delegates to {@code target} after performing |
|
1376 * any necessary argument conversions, and arranges for any |
|
1377 * necessary return value conversions |
|
1378 * @throws NullPointerException if either argument is null |
|
1379 * @throws WrongMethodTypeException if the conversion cannot be made |
|
1380 * @see MethodHandle#asType |
|
1381 * @see MethodHandles#explicitCastArguments |
|
1382 */ |
|
1383 public static |
|
1384 MethodHandle convertArguments(MethodHandle target, MethodType newType) { |
|
1385 MethodType oldType = target.type(); |
|
1386 if (oldType.equals(newType)) |
|
1387 return target; |
|
1388 MethodHandle res = null; |
|
1389 try { |
|
1390 res = MethodHandleImpl.convertArguments(IMPL_TOKEN, target, |
|
1391 newType, oldType, null); |
|
1392 } catch (IllegalArgumentException ex) { |
|
1393 } |
|
1394 if (res == null) |
|
1395 throw new WrongMethodTypeException("cannot convert to "+newType+": "+target); |
|
1396 return res; |
|
1397 } |
|
1398 |
|
1399 /** |
|
1400 * Produces a method handle which adapts the type of the |
|
1401 * given method handle to a new type by pairwise argument conversion. |
|
1402 * The original type and new type must have the same number of arguments. |
|
1403 * The resulting method handle is guaranteed to report a type |
|
1404 * which is equal to the desired new type. |
|
1405 * <p> |
|
1406 * If the original type and new type are equal, returns target. |
|
1407 * <p> |
|
1408 * The same conversions are allowed as for {@link #convertArguments convertArguments}, |
|
1409 * and some additional conversions are also applied if those conversions fail. |
|
1410 * Given types T0, T1, one of the following conversions is applied |
|
1411 * in addition, if the conversions specified for {@code convertArguments} |
|
1412 * would be insufficient: |
|
1413 * <ul> |
|
1414 * <li>If T0 and T1 are references, and T1 is an interface type, |
|
1415 * then the value of type T0 is passed as a T1 without a cast. |
|
1416 * (This treatment of interfaces follows the usage of the bytecode verifier.) |
|
1417 * <li>If T0 and T1 are primitives and one is boolean, |
|
1418 * the boolean is treated as a one-bit unsigned integer. |
|
1419 * (This treatment follows the usage of the bytecode verifier.) |
|
1420 * A conversion from another primitive type behaves as if |
|
1421 * it first converts to byte, and then masks all but the low bit. |
|
1422 * <li>If a primitive value would be converted by {@code convertArguments} |
|
1423 * using Java method invocation conversion (JLS 5.3), |
|
1424 * Java casting conversion (JLS 5.5) may be used also. |
|
1425 * This allows primitives to be narrowed as well as widened. |
|
1426 * </ul> |
|
1427 * @param target the method handle to invoke after arguments are retyped |
|
1428 * @param newType the expected type of the new method handle |
|
1429 * @return a method handle which delegates to {@code target} after performing |
|
1430 * any necessary argument conversions, and arranges for any |
|
1431 * necessary return value conversions |
|
1432 * @throws NullPointerException if either argument is null |
|
1433 * @throws WrongMethodTypeException if the conversion cannot be made |
|
1434 * @see MethodHandle#asType |
|
1435 * @see MethodHandles#convertArguments |
|
1436 */ |
|
1437 public static |
|
1438 MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) { |
|
1439 return convertArguments(target, newType); // FIXME! |
|
1440 } |
|
1441 |
|
1442 /* |
|
1443 FIXME: Reconcile javadoc with 10/22/2010 EG notes on conversion: |
|
1444 |
|
1445 Both converters arrange for their method handles to convert arguments |
|
1446 and return values. The conversion rules are the same for arguments |
|
1447 and return values, and depend only on source and target types, S and |
|
1448 T. The conversions allowed by castConvertArguments are a strict |
|
1449 superset of those performed by convertArguments. |
|
1450 |
|
1451 In all cases, if S and T are references, a simple checkcast is done. |
|
1452 If neither S nor T is a primitive, no attempt is made to unbox and |
|
1453 box. A failed conversion throws ClassCastException. |
|
1454 |
|
1455 If T is void, the value is dropped. |
|
1456 |
|
1457 For compatibility with reflection, if S is void and T is a reference, |
|
1458 a null value is produced. |
|
1459 |
|
1460 For compatibility with reflection, if S is a reference and T is a |
|
1461 primitive, S is first unboxed and then undergoes primitive conversion. |
|
1462 In the case of 'convertArguments', only assignment conversion is |
|
1463 performed (no narrowing primitive conversion). |
|
1464 |
|
1465 If S is a primitive, S is boxed, and then the above rules are applied. |
|
1466 If S and T are both primitives, the boxing will be undetectable; only |
|
1467 the primitive conversions will be apparent to the user. The key point |
|
1468 is that if S is a primitive type, the implementation may box it and |
|
1469 treat is as Object, without loss of information, or it may use a "fast |
|
1470 path" which does not use boxing. |
|
1471 |
|
1472 Notwithstanding the rules above, for compatibility with the verifier, |
|
1473 if T is an interface, it is treated as if it were Object. [KEEP THIS?] |
|
1474 |
|
1475 Also, for compatibility with the verifier, a boolean may be undergo |
|
1476 widening or narrowing conversion to any other primitive type. [KEEP THIS?] |
|
1477 */ |
|
1478 |
|
1479 /** |
|
1480 * Produces a method handle which adapts the calling sequence of the |
|
1481 * given method handle to a new type, by reordering the arguments. |
|
1482 * The resulting method handle is guaranteed to report a type |
|
1483 * which is equal to the desired new type. |
|
1484 * <p> |
|
1485 * The given array controls the reordering. |
|
1486 * Call {@code #I} the number of incoming parameters (the value |
|
1487 * {@code newType.parameterCount()}, and call {@code #O} the number |
|
1488 * of outgoing parameters (the value {@code target.type().parameterCount()}). |
|
1489 * Then the length of the reordering array must be {@code #O}, |
|
1490 * and each element must be a non-negative number less than {@code #I}. |
|
1491 * For every {@code N} less than {@code #O}, the {@code N}-th |
|
1492 * outgoing argument will be taken from the {@code I}-th incoming |
|
1493 * argument, where {@code I} is {@code reorder[N]}. |
|
1494 * <p> |
|
1495 * No argument or return value conversions are applied. |
|
1496 * The type of each incoming argument, as determined by {@code newType}, |
|
1497 * must be identical to the type of the corresponding outgoing argument |
|
1498 * or arguments in the target method handle. |
|
1499 * The return type of {@code newType} must be identical to the return |
|
1500 * type of the original target. |
|
1501 * <p> |
|
1502 * The reordering array need not specify an actual permutation. |
|
1503 * An incoming argument will be duplicated if its index appears |
|
1504 * more than once in the array, and an incoming argument will be dropped |
|
1505 * if its index does not appear in the array. |
|
1506 * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments}, |
|
1507 * incoming arguments which are not mentioned in the reordering array |
|
1508 * are may be any type, as determined only by {@code newType}. |
|
1509 * <blockquote><pre> |
|
1510 MethodType intfn1 = MethodType.methodType(int.class, int.class); |
|
1511 MethodType intfn2 = MethodType.methodType(int.class, int.class, int.class); |
|
1512 MethodHandle sub = ... {int x, int y => x-y} ...; |
|
1513 assert(sub.type().equals(intfn2)); |
|
1514 MethodHandle sub1 = MethodHandles.permuteArguments(sub, intfn2, 0, 1); |
|
1515 MethodHandle rsub = MethodHandles.permuteArguments(sub, intfn2, 1, 0); |
|
1516 assert((int)rsub.invokeExact(1, 100) == 99); |
|
1517 MethodHandle add = ... {int x, int y => x+y} ...; |
|
1518 assert(add.type().equals(intfn2)); |
|
1519 MethodHandle twice = MethodHandles.permuteArguments(add, intfn1, 0, 0); |
|
1520 assert(twice.type().equals(intfn1)); |
|
1521 assert((int)twice.invokeExact(21) == 42); |
|
1522 * </pre></blockquote> |
|
1523 * @param target the method handle to invoke after arguments are reordered |
|
1524 * @param newType the expected type of the new method handle |
|
1525 * @param reorder a string which controls the reordering |
|
1526 * @return a method handle which delegates to {@code target} after it |
|
1527 * drops unused arguments and moves and/or duplicates the other arguments |
|
1528 * @throws NullPointerException if any argument is null |
|
1529 */ |
|
1530 public static |
|
1531 MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) { |
|
1532 MethodType oldType = target.type(); |
|
1533 checkReorder(reorder, newType, oldType); |
|
1534 return MethodHandleImpl.convertArguments(IMPL_TOKEN, target, |
|
1535 newType, oldType, |
|
1536 reorder); |
|
1537 } |
|
1538 |
|
1539 private static void checkReorder(int[] reorder, MethodType newType, MethodType oldType) { |
|
1540 if (reorder.length == oldType.parameterCount()) { |
|
1541 int limit = newType.parameterCount(); |
|
1542 boolean bad = false; |
|
1543 for (int i : reorder) { |
|
1544 if (i < 0 || i >= limit) { |
|
1545 bad = true; break; |
|
1546 } |
|
1547 } |
|
1548 if (!bad) return; |
|
1549 } |
|
1550 throw newIllegalArgumentException("bad reorder array"); |
|
1551 } |
|
1552 |
|
1553 /** |
|
1554 * Equivalent to the following code: |
|
1555 * <p><blockquote><pre> |
|
1556 * int spreadPos = newType.parameterCount() - 1; |
|
1557 * Class<?> spreadType = newType.parameterType(spreadPos); |
|
1558 * int spreadCount = target.type().parameterCount() - spreadPos; |
|
1559 * MethodHandle adapter = target.asSpreader(spreadType, spreadCount); |
|
1560 * adapter = adapter.asType(newType); |
|
1561 * return adapter; |
|
1562 * </pre></blockquote> |
|
1563 * @param target the method handle to invoke after argument spreading |
|
1564 * @param newType the expected type of the new method handle |
|
1565 * @return a method handle which spreads its final argument, |
|
1566 * before calling the original method handle |
|
1567 */ |
|
1568 /*non-public*/ static |
|
1569 MethodHandle spreadArguments(MethodHandle target, MethodType newType) { |
|
1570 MethodType oldType = target.type(); |
|
1571 int inargs = newType.parameterCount(); |
|
1572 int outargs = oldType.parameterCount(); |
|
1573 int spreadPos = inargs - 1; |
|
1574 int numSpread = (outargs - spreadPos); |
|
1575 MethodHandle res = null; |
|
1576 if (spreadPos >= 0 && numSpread >= 0) { |
|
1577 res = MethodHandleImpl.spreadArguments(IMPL_TOKEN, target, newType, spreadPos); |
|
1578 } |
|
1579 if (res == null) { |
|
1580 throw newIllegalArgumentException("cannot spread "+newType+" to " +oldType); |
|
1581 } |
|
1582 return res; |
|
1583 } |
|
1584 |
|
1585 /** |
|
1586 * Equivalent to the following code: |
|
1587 * <p><blockquote><pre> |
|
1588 * int collectPos = target.type().parameterCount() - 1; |
|
1589 * Class<?> collectType = target.type().parameterType(collectPos); |
|
1590 * if (!collectType.isArray()) collectType = Object[].class; |
|
1591 * int collectCount = newType.parameterCount() - collectPos; |
|
1592 * MethodHandle adapter = target.asCollector(collectType, collectCount); |
|
1593 * adapter = adapter.asType(newType); |
|
1594 * return adapter; |
|
1595 * </pre></blockquote> |
|
1596 * @param target the method handle to invoke after argument collection |
|
1597 * @param newType the expected type of the new method handle |
|
1598 * @return a method handle which collects some trailing argument |
|
1599 * into an array, before calling the original method handle |
|
1600 */ |
|
1601 /*non-public*/ static |
|
1602 MethodHandle collectArguments(MethodHandle target, MethodType newType) { |
|
1603 MethodType oldType = target.type(); |
|
1604 int inargs = newType.parameterCount(); |
|
1605 int outargs = oldType.parameterCount(); |
|
1606 int collectPos = outargs - 1; |
|
1607 int numCollect = (inargs - collectPos); |
|
1608 if (collectPos < 0 || numCollect < 0) |
|
1609 throw newIllegalArgumentException("wrong number of arguments"); |
|
1610 MethodHandle res = MethodHandleImpl.collectArguments(IMPL_TOKEN, target, newType, collectPos, null); |
|
1611 if (res == null) { |
|
1612 throw newIllegalArgumentException("cannot collect from "+newType+" to " +oldType); |
|
1613 } |
|
1614 return res; |
|
1615 } |
|
1616 |
|
1617 /** |
|
1618 * Produces a method handle of the requested return type which returns the given |
|
1619 * constant value every time it is invoked. |
|
1620 * <p> |
|
1621 * Before the method handle is returned, the passed-in value is converted to the requested type. |
|
1622 * If the requested type is primitive, widening primitive conversions are attempted, |
|
1623 * else reference conversions are attempted. |
|
1624 * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}, |
|
1625 * unless the type is {@code void}, in which case it is {@code identity(type)}. |
|
1626 * @param type the return type of the desired method handle |
|
1627 * @param value the value to return |
|
1628 * @return a method handle of the given return type and no arguments, which always returns the given value |
|
1629 * @throws NullPointerException if the {@code type} argument is null |
|
1630 * @throws ClassCastException if the value cannot be converted to the required return type |
|
1631 * @throws IllegalArgumentException if the given type is {@code void.class} |
|
1632 */ |
|
1633 public static |
|
1634 MethodHandle constant(Class<?> type, Object value) { |
|
1635 if (type.isPrimitive()) { |
|
1636 if (type == void.class) |
|
1637 throw newIllegalArgumentException("void type"); |
|
1638 Wrapper w = Wrapper.forPrimitiveType(type); |
|
1639 return identity(type).bindTo(w.convert(value, type)); |
|
1640 } else { |
|
1641 return identity(type).bindTo(type.cast(value)); |
|
1642 } |
|
1643 } |
|
1644 |
|
1645 /** |
|
1646 * Produces a method handle which returns its sole argument when invoked. |
|
1647 * <p>The identity function for {@code void} takes no arguments and returns no values. |
|
1648 * @param type the type of the sole parameter and return value of the desired method handle |
|
1649 * @return a unary method handle which accepts and returns the given type |
|
1650 * @throws NullPointerException if the argument is null |
|
1651 * @throws IllegalArgumentException if the given type is {@code void.class} |
|
1652 */ |
|
1653 public static |
|
1654 MethodHandle identity(Class<?> type) { |
|
1655 if (type == void.class) |
|
1656 throw newIllegalArgumentException("void type"); |
|
1657 return ValueConversions.identity(type); |
|
1658 } |
|
1659 |
|
1660 /** |
|
1661 * Produces a method handle which calls the original method handle {@code target}, |
|
1662 * after inserting the given argument(s) at the given position. |
|
1663 * The formal parameters to {@code target} which will be supplied by those |
|
1664 * arguments are called <em>bound parameters</em>, because the new method |
|
1665 * will contain bindings for those parameters take from {@code values}. |
|
1666 * The type of the new method handle will drop the types for the bound |
|
1667 * parameters from the original target type, since the new method handle |
|
1668 * will no longer require those arguments to be supplied by its callers. |
|
1669 * <p> |
|
1670 * Each given argument object must match the corresponding bound parameter type. |
|
1671 * If a bound parameter type is a primitive, the argument object |
|
1672 * must be a wrapper, and will be unboxed to produce the primitive value. |
|
1673 * <p> |
|
1674 * The <i>pos</i> may range between zero and <i>N</i> (inclusively), |
|
1675 * where <i>N</i> is the number of argument types in resulting method handle |
|
1676 * (after bound parameter types are dropped). |
|
1677 * @param target the method handle to invoke after the argument is inserted |
|
1678 * @param pos where to insert the argument (zero for the first) |
|
1679 * @param values the series of arguments to insert |
|
1680 * @return a method handle which inserts an additional argument, |
|
1681 * before calling the original method handle |
|
1682 * @throws NullPointerException if the {@code target} argument or the {@code values} array is null |
|
1683 * @see MethodHandle#bindTo |
|
1684 */ |
|
1685 public static |
|
1686 MethodHandle insertArguments(MethodHandle target, int pos, Object... values) { |
|
1687 int insCount = values.length; |
|
1688 MethodType oldType = target.type(); |
|
1689 ArrayList<Class<?>> ptypes = |
|
1690 new ArrayList<Class<?>>(oldType.parameterList()); |
|
1691 int outargs = oldType.parameterCount(); |
|
1692 int inargs = outargs - insCount; |
|
1693 if (inargs < 0) |
|
1694 throw newIllegalArgumentException("too many values to insert"); |
|
1695 if (pos < 0 || pos > inargs) |
|
1696 throw newIllegalArgumentException("no argument type to append"); |
|
1697 MethodHandle result = target; |
|
1698 for (int i = 0; i < insCount; i++) { |
|
1699 Object value = values[i]; |
|
1700 Class<?> valueType = oldType.parameterType(pos+i); |
|
1701 value = checkValue(valueType, value); |
|
1702 if (pos == 0 && !valueType.isPrimitive()) { |
|
1703 // At least for now, make bound method handles a special case. |
|
1704 MethodHandle bmh = MethodHandleImpl.bindReceiver(IMPL_TOKEN, result, value); |
|
1705 if (bmh != null) { |
|
1706 result = bmh; |
|
1707 continue; |
|
1708 } |
|
1709 // else fall through to general adapter machinery |
|
1710 } |
|
1711 result = MethodHandleImpl.bindArgument(IMPL_TOKEN, result, pos, value); |
|
1712 } |
|
1713 return result; |
|
1714 } |
|
1715 |
|
1716 /** |
|
1717 * Produces a method handle which calls the original method handle, |
|
1718 * after dropping the given argument(s) at the given position. |
|
1719 * The type of the new method handle will insert the given argument |
|
1720 * type(s), at that position, into the original handle's type. |
|
1721 * <p> |
|
1722 * The <i>pos</i> may range between zero and <i>N</i>, |
|
1723 * where <i>N</i> is the number of argument types in <i>target</i>, |
|
1724 * meaning to drop the first or last argument (respectively), |
|
1725 * or an argument somewhere in between. |
|
1726 * <p> |
|
1727 * <b>Example:</b> |
|
1728 * <p><blockquote><pre> |
|
1729 import static java.dyn.MethodHandles.*; |
|
1730 import static java.dyn.MethodType.*; |
|
1731 ... |
|
1732 MethodHandle cat = lookup().findVirtual(String.class, |
|
1733 "concat", methodType(String.class, String.class)); |
|
1734 assertEquals("xy", (String) cat.invokeExact("x", "y")); |
|
1735 MethodHandle d0 = dropArguments(cat, 0, String.class); |
|
1736 assertEquals("yz", (String) d0.invokeExact("x", "y", "z")); |
|
1737 MethodHandle d1 = dropArguments(cat, 1, String.class); |
|
1738 assertEquals("xz", (String) d1.invokeExact("x", "y", "z")); |
|
1739 MethodHandle d2 = dropArguments(cat, 2, String.class); |
|
1740 assertEquals("xy", (String) d2.invokeExact("x", "y", "z")); |
|
1741 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class); |
|
1742 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z")); |
|
1743 * </pre></blockquote> |
|
1744 * @param target the method handle to invoke after the arguments are dropped |
|
1745 * @param valueTypes the type(s) of the argument(s) to drop |
|
1746 * @param pos position of first argument to drop (zero for the leftmost) |
|
1747 * @return a method handle which drops arguments of the given types, |
|
1748 * before calling the original method handle |
|
1749 * @throws NullPointerException if the {@code target} argument is null, |
|
1750 * or if the {@code valueTypes} list or any of its elements is null |
|
1751 * @throws IllegalArgumentException if any of the {@code valueTypes} is {@code void.class} |
|
1752 */ |
|
1753 public static |
|
1754 MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) { |
|
1755 if (valueTypes.size() == 0) return target; |
|
1756 MethodType oldType = target.type(); |
|
1757 int outargs = oldType.parameterCount(); |
|
1758 int inargs = outargs + valueTypes.size(); |
|
1759 if (pos < 0 || pos >= inargs) |
|
1760 throw newIllegalArgumentException("no argument type to remove"); |
|
1761 ArrayList<Class<?>> ptypes = |
|
1762 new ArrayList<Class<?>>(oldType.parameterList()); |
|
1763 ptypes.addAll(pos, valueTypes); |
|
1764 MethodType newType = MethodType.methodType(oldType.returnType(), ptypes); |
|
1765 return MethodHandleImpl.dropArguments(IMPL_TOKEN, target, newType, pos); |
|
1766 } |
|
1767 |
|
1768 /** |
|
1769 * Produces a method handle which calls the original method handle, |
|
1770 * after dropping the given argument(s) at the given position. |
|
1771 * The type of the new method handle will insert the given argument |
|
1772 * type(s), at that position, into the original handle's type. |
|
1773 * This method is equivalent to the following code: |
|
1774 * <code> |
|
1775 * {@link #dropArguments(MethodHandle,int,List) dropArguments}(target, pos, Arrays.asList(valueTypes)) |
|
1776 * </code> |
|
1777 * @param target the method handle to invoke after the arguments are dropped |
|
1778 * @param valueTypes the type(s) of the argument(s) to drop |
|
1779 * @param pos position of first argument to drop (zero for the leftmost) |
|
1780 * @return a method handle which drops arguments of the given types, |
|
1781 * before calling the original method handle |
|
1782 * @throws NullPointerException if the {@code target} argument is null, |
|
1783 * or if the {@code valueTypes} array or any of its elements is null |
|
1784 * @throws IllegalArgumentException if any of the {@code valueTypes} is {@code void.class} |
|
1785 */ |
|
1786 public static |
|
1787 MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) { |
|
1788 return dropArguments(target, pos, Arrays.asList(valueTypes)); |
|
1789 } |
|
1790 |
|
1791 /** |
|
1792 * Adapt a target method handle {@code target} by pre-processing |
|
1793 * one or more of its arguments, each with its own unary filter function, |
|
1794 * and then calling the target with each pre-processed argument |
|
1795 * replaced by the result of its corresponding filter function. |
|
1796 * <p> |
|
1797 * The pre-processing is performed by one or more method handles, |
|
1798 * specified in the elements of the {@code filters} array. |
|
1799 * Null arguments in the array are ignored, and the corresponding arguments left unchanged. |
|
1800 * (If there are no non-null elements in the array, the original target is returned.) |
|
1801 * Each filter is applied to the corresponding argument of the adapter. |
|
1802 * <p> |
|
1803 * If a filter {@code F} applies to the {@code N}th argument of |
|
1804 * the method handle, then {@code F} must be a method handle which |
|
1805 * takes exactly one argument. The type of {@code F}'s sole argument |
|
1806 * replaces the corresponding argument type of the target |
|
1807 * in the resulting adapted method handle. |
|
1808 * The return type of {@code F} must be identical to the corresponding |
|
1809 * parameter type of the target. |
|
1810 * <p> |
|
1811 * It is an error if there are elements of {@code filters} |
|
1812 * which do not correspond to argument positions in the target. |
|
1813 * <b>Example:</b> |
|
1814 * <p><blockquote><pre> |
|
1815 import static java.dyn.MethodHandles.*; |
|
1816 import static java.dyn.MethodType.*; |
|
1817 ... |
|
1818 MethodHandle cat = lookup().findVirtual(String.class, |
|
1819 "concat", methodType(String.class, String.class)); |
|
1820 MethodHandle upcase = lookup().findVirtual(String.class, |
|
1821 "toUpperCase", methodType(String.class)); |
|
1822 assertEquals("xy", (String) cat.invokeExact("x", "y")); |
|
1823 MethodHandle f0 = filterArguments(cat, 0, upcase); |
|
1824 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy |
|
1825 MethodHandle f1 = filterArguments(cat, 1, upcase); |
|
1826 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY |
|
1827 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase); |
|
1828 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY |
|
1829 * </pre></blockquote> |
|
1830 * |
|
1831 * @param target the method handle to invoke after arguments are filtered |
|
1832 * @param pos the position of the first argument to filter |
|
1833 * @param filters method handles to call initially on filtered arguments |
|
1834 * @return method handle which incorporates the specified argument filtering logic |
|
1835 * @throws NullPointerException if the {@code target} argument is null |
|
1836 * or if the {@code filters} array is null |
|
1837 * @throws IllegalArgumentException if a non-null element of {@code filters} |
|
1838 * does not match a corresponding argument type of {@code target} as described above, |
|
1839 * or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()} |
|
1840 */ |
|
1841 public static |
|
1842 MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) { |
|
1843 MethodType targetType = target.type(); |
|
1844 MethodHandle adapter = target; |
|
1845 MethodType adapterType = targetType; |
|
1846 int maxPos = targetType.parameterCount(); |
|
1847 if (pos + filters.length > maxPos) |
|
1848 throw newIllegalArgumentException("too many filters"); |
|
1849 int curPos = pos-1; // pre-incremented |
|
1850 for (MethodHandle filter : filters) { |
|
1851 curPos += 1; |
|
1852 if (filter == null) continue; // ignore null elements of filters |
|
1853 MethodType filterType = filter.type(); |
|
1854 if (filterType.parameterCount() != 1 |
|
1855 || filterType.returnType() != targetType.parameterType(curPos)) |
|
1856 throw newIllegalArgumentException("target and filter types do not match"); |
|
1857 adapterType = adapterType.changeParameterType(curPos, filterType.parameterType(0)); |
|
1858 adapter = MethodHandleImpl.filterArgument(IMPL_TOKEN, adapter, curPos, filter); |
|
1859 } |
|
1860 MethodType midType = adapter.type(); |
|
1861 if (midType != adapterType) |
|
1862 adapter = MethodHandleImpl.convertArguments(IMPL_TOKEN, adapter, adapterType, midType, null); |
|
1863 return adapter; |
|
1864 } |
|
1865 |
|
1866 /** |
|
1867 * Adapt a target method handle {@code target} by post-processing |
|
1868 * its return value with a unary filter function. |
|
1869 * <p> |
|
1870 * If a filter {@code F} applies to the return value of |
|
1871 * the target method handle, then {@code F} must be a method handle which |
|
1872 * takes exactly one argument. The return type of {@code F} |
|
1873 * replaces the return type of the target |
|
1874 * in the resulting adapted method handle. |
|
1875 * The argument type of {@code F} must be identical to the |
|
1876 * return type of the target. |
|
1877 * <b>Example:</b> |
|
1878 * <p><blockquote><pre> |
|
1879 import static java.dyn.MethodHandles.*; |
|
1880 import static java.dyn.MethodType.*; |
|
1881 ... |
|
1882 MethodHandle cat = lookup().findVirtual(String.class, |
|
1883 "concat", methodType(String.class, String.class)); |
|
1884 MethodHandle length = lookup().findVirtual(String.class, |
|
1885 "length", methodType(int.class)); |
|
1886 System.out.println((String) cat.invokeExact("x", "y")); // xy |
|
1887 MethodHandle f0 = filterReturnValue(cat, length); |
|
1888 System.out.println((int) f0.invokeExact("x", "y")); // 2 |
|
1889 * </pre></blockquote> |
|
1890 * @param target the method handle to invoke before filtering the return value |
|
1891 * @param filter method handle to call on the return value |
|
1892 * @return method handle which incorporates the specified return value filtering logic |
|
1893 * @throws NullPointerException if either argument is null |
|
1894 * @throws IllegalArgumentException if {@code filter} |
|
1895 * does not match the return type of {@code target} as described above |
|
1896 */ |
|
1897 public static |
|
1898 MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) { |
|
1899 MethodType targetType = target.type(); |
|
1900 MethodType filterType = filter.type(); |
|
1901 if (filterType.parameterCount() != 1 |
|
1902 || filterType.parameterType(0) != targetType.returnType()) |
|
1903 throw newIllegalArgumentException("target and filter types do not match"); |
|
1904 // result = fold( lambda(retval, arg...) { filter(retval) }, |
|
1905 // lambda( arg...) { target(arg...) } ) |
|
1906 // FIXME: Too many nodes here. |
|
1907 MethodHandle returner = dropArguments(filter, 1, targetType.parameterList()); |
|
1908 return foldArguments(returner, target); |
|
1909 } |
|
1910 |
|
1911 /** |
|
1912 * Adapt a target method handle {@code target} by pre-processing |
|
1913 * some of its arguments, and then calling the target with |
|
1914 * the result of the pre-processing, plus all original arguments. |
|
1915 * <p> |
|
1916 * The pre-processing is performed by a second method handle, the {@code combiner}. |
|
1917 * The first {@code N} arguments passed to the adapter, |
|
1918 * are copied to the combiner, which then produces a result. |
|
1919 * (Here, {@code N} is defined as the parameter count of the adapter.) |
|
1920 * After this, control passes to the {@code target}, with both the result |
|
1921 * of the combiner, and all the original incoming arguments. |
|
1922 * <p> |
|
1923 * The first argument type of the target must be identical with the |
|
1924 * return type of the combiner. |
|
1925 * The resulting adapter is the same type as the target, except that the |
|
1926 * initial argument type of the target is dropped. |
|
1927 * <p> |
|
1928 * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments |
|
1929 * that either the {@code combiner} or {@code target} does not wish to receive. |
|
1930 * If some of the incoming arguments are destined only for the combiner, |
|
1931 * consider using {@link MethodHandle#asCollector asCollector} instead, since those |
|
1932 * arguments will not need to be live on the stack on entry to the |
|
1933 * target.) |
|
1934 * <p> |
|
1935 * The first argument of the target must be identical with the |
|
1936 * return value of the combiner. |
|
1937 * <p> Here is pseudocode for the resulting adapter: |
|
1938 * <blockquote><pre> |
|
1939 * // there are N arguments in the A sequence |
|
1940 * T target(V, A[N]..., B...); |
|
1941 * V combiner(A...); |
|
1942 * T adapter(A... a, B... b) { |
|
1943 * V v = combiner(a...); |
|
1944 * return target(v, a..., b...); |
|
1945 * } |
|
1946 * </pre></blockquote> |
|
1947 * @param target the method handle to invoke after arguments are combined |
|
1948 * @param combiner method handle to call initially on the incoming arguments |
|
1949 * @return method handle which incorporates the specified argument folding logic |
|
1950 * @throws NullPointerException if either argument is null |
|
1951 * @throws IllegalArgumentException if the first argument type of |
|
1952 * {@code target} is not the same as {@code combiner}'s return type, |
|
1953 * or if the following argument types of {@code target} |
|
1954 * are not identical with the argument types of {@code combiner} |
|
1955 */ |
|
1956 public static |
|
1957 MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) { |
|
1958 MethodType targetType = target.type(); |
|
1959 MethodType combinerType = combiner.type(); |
|
1960 int foldArgs = combinerType.parameterCount(); |
|
1961 boolean ok = (targetType.parameterCount() >= 1 + foldArgs); |
|
1962 if (ok && !combinerType.parameterList().equals(targetType.parameterList().subList(1, foldArgs+1))) |
|
1963 ok = false; |
|
1964 if (ok && !combinerType.returnType().equals(targetType.parameterType(0))) |
|
1965 ok = false; |
|
1966 if (!ok) |
|
1967 throw misMatchedTypes("target and combiner types", targetType, combinerType); |
|
1968 MethodType newType = targetType.dropParameterTypes(0, 1); |
|
1969 return MethodHandleImpl.foldArguments(IMPL_TOKEN, target, newType, combiner); |
|
1970 } |
|
1971 |
|
1972 /** |
|
1973 * Make a method handle which adapts a target method handle, |
|
1974 * by guarding it with a test, a boolean-valued method handle. |
|
1975 * If the guard fails, a fallback handle is called instead. |
|
1976 * All three method handles must have the same corresponding |
|
1977 * argument and return types, except that the return type |
|
1978 * of the test must be boolean, and the test is allowed |
|
1979 * to have fewer arguments than the other two method handles. |
|
1980 * <p> Here is pseudocode for the resulting adapter: |
|
1981 * <blockquote><pre> |
|
1982 * boolean test(A...); |
|
1983 * T target(A...,B...); |
|
1984 * T fallback(A...,B...); |
|
1985 * T adapter(A... a,B... b) { |
|
1986 * if (test(a...)) |
|
1987 * return target(a..., b...); |
|
1988 * else |
|
1989 * return fallback(a..., b...); |
|
1990 * } |
|
1991 * </pre></blockquote> |
|
1992 * Note that the test arguments ({@code a...} in the pseudocode) cannot |
|
1993 * be modified by execution of the test, and so are passed unchanged |
|
1994 * from the caller to the target or fallback as appropriate. |
|
1995 * @param test method handle used for test, must return boolean |
|
1996 * @param target method handle to call if test passes |
|
1997 * @param fallback method handle to call if test fails |
|
1998 * @return method handle which incorporates the specified if/then/else logic |
|
1999 * @throws NullPointerException if any argument is null |
|
2000 * @throws IllegalArgumentException if {@code test} does not return boolean, |
|
2001 * or if all three method types do not match (with the return |
|
2002 * type of {@code test} changed to match that of {@code target}). |
|
2003 */ |
|
2004 public static |
|
2005 MethodHandle guardWithTest(MethodHandle test, |
|
2006 MethodHandle target, |
|
2007 MethodHandle fallback) { |
|
2008 MethodType gtype = test.type(); |
|
2009 MethodType ttype = target.type(); |
|
2010 MethodType ftype = fallback.type(); |
|
2011 if (!ttype.equals(ftype)) |
|
2012 throw misMatchedTypes("target and fallback types", ttype, ftype); |
|
2013 if (gtype.returnType() != boolean.class) |
|
2014 throw newIllegalArgumentException("guard type is not a predicate "+gtype); |
|
2015 List<Class<?>> targs = ttype.parameterList(); |
|
2016 List<Class<?>> gargs = gtype.parameterList(); |
|
2017 if (!targs.equals(gargs)) { |
|
2018 int gpc = gargs.size(), tpc = targs.size(); |
|
2019 if (gpc >= tpc || !targs.subList(0, gpc).equals(gargs)) |
|
2020 throw misMatchedTypes("target and test types", ttype, gtype); |
|
2021 test = dropArguments(test, gpc, targs.subList(gpc, tpc)); |
|
2022 gtype = test.type(); |
|
2023 } |
|
2024 return MethodHandleImpl.makeGuardWithTest(IMPL_TOKEN, test, target, fallback); |
|
2025 } |
|
2026 |
|
2027 static RuntimeException misMatchedTypes(String what, MethodType t1, MethodType t2) { |
|
2028 return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2); |
|
2029 } |
|
2030 |
|
2031 /** |
|
2032 * Make a method handle which adapts a target method handle, |
|
2033 * by running it inside an exception handler. |
|
2034 * If the target returns normally, the adapter returns that value. |
|
2035 * If an exception matching the specified type is thrown, the fallback |
|
2036 * handle is called instead on the exception, plus the original arguments. |
|
2037 * <p> |
|
2038 * The target and handler must have the same corresponding |
|
2039 * argument and return types, except that handler may omit trailing arguments |
|
2040 * (similarly to the predicate in {@link #guardWithTest guardWithTest}). |
|
2041 * Also, the handler must have an extra leading parameter of {@code exType} or a supertype. |
|
2042 * <p> Here is pseudocode for the resulting adapter: |
|
2043 * <blockquote><pre> |
|
2044 * T target(A..., B...); |
|
2045 * T handler(ExType, A...); |
|
2046 * T adapter(A... a, B... b) { |
|
2047 * try { |
|
2048 * return target(a..., b...); |
|
2049 * } catch (ExType ex) { |
|
2050 * return handler(ex, a...); |
|
2051 * } |
|
2052 * } |
|
2053 * </pre></blockquote> |
|
2054 * Note that the saved arguments ({@code a...} in the pseudocode) cannot |
|
2055 * be modified by execution of the target, and so are passed unchanged |
|
2056 * from the caller to the handler, if the handler is invoked. |
|
2057 * <p> |
|
2058 * The target and handler must return the same type, even if the handler |
|
2059 * always throws. (This might happen, for instance, because the handler |
|
2060 * is simulating a {@code finally} clause). |
|
2061 * To create such a throwing handler, compose the handler creation logic |
|
2062 * with {@link #throwException throwException}, |
|
2063 * in order to create a method handle of the correct return type. |
|
2064 * @param target method handle to call |
|
2065 * @param exType the type of exception which the handler will catch |
|
2066 * @param handler method handle to call if a matching exception is thrown |
|
2067 * @return method handle which incorporates the specified try/catch logic |
|
2068 * @throws NullPointerException if any argument is null |
|
2069 * @throws IllegalArgumentException if {@code handler} does not accept |
|
2070 * the given exception type, or if the method handle types do |
|
2071 * not match in their return types and their |
|
2072 * corresponding parameters |
|
2073 */ |
|
2074 public static |
|
2075 MethodHandle catchException(MethodHandle target, |
|
2076 Class<? extends Throwable> exType, |
|
2077 MethodHandle handler) { |
|
2078 MethodType ttype = target.type(); |
|
2079 MethodType htype = handler.type(); |
|
2080 if (htype.parameterCount() < 1 || |
|
2081 !htype.parameterType(0).isAssignableFrom(exType)) |
|
2082 throw newIllegalArgumentException("handler does not accept exception type "+exType); |
|
2083 if (htype.returnType() != ttype.returnType()) |
|
2084 throw misMatchedTypes("target and handler return types", ttype, htype); |
|
2085 List<Class<?>> targs = ttype.parameterList(); |
|
2086 List<Class<?>> hargs = htype.parameterList(); |
|
2087 hargs = hargs.subList(1, hargs.size()); // omit leading parameter from handler |
|
2088 if (!targs.equals(hargs)) { |
|
2089 int hpc = hargs.size(), tpc = targs.size(); |
|
2090 if (hpc >= tpc || !targs.subList(0, hpc).equals(hargs)) |
|
2091 throw misMatchedTypes("target and handler types", ttype, htype); |
|
2092 handler = dropArguments(handler, hpc, hargs.subList(hpc, tpc)); |
|
2093 htype = handler.type(); |
|
2094 } |
|
2095 return MethodHandleImpl.makeGuardWithCatch(IMPL_TOKEN, target, exType, handler); |
|
2096 } |
|
2097 |
|
2098 /** |
|
2099 * Produces a method handle which will throw exceptions of the given {@code exType}. |
|
2100 * The method handle will accept a single argument of {@code exType}, |
|
2101 * and immediately throw it as an exception. |
|
2102 * The method type will nominally specify a return of {@code returnType}. |
|
2103 * The return type may be anything convenient: It doesn't matter to the |
|
2104 * method handle's behavior, since it will never return normally. |
|
2105 * @return method handle which can throw the given exceptions |
|
2106 * @throws NullPointerException if either argument is null |
|
2107 */ |
|
2108 public static |
|
2109 MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) { |
|
2110 return MethodHandleImpl.throwException(IMPL_TOKEN, MethodType.methodType(returnType, exType)); |
|
2111 } |
|
2112 |
|
2113 /** |
|
2114 * Produces an instance of the given "SAM" interface which redirects |
|
2115 * its calls to the given method handle. |
|
2116 * <p> |
|
2117 * A SAM interface is an interface which declares a single abstract method. |
|
2118 * When determining the unique abstract method of a SAM interface, |
|
2119 * the public {@code Object} methods ({@code toString}, {@code equals}, {@code hashCode}) |
|
2120 * are disregarded. For example, {@link java.util.Comparator} is a SAM interface, |
|
2121 * even though it re-declares the {@code Object.equals} method. |
|
2122 * Also, if the SAM interface has a supertype, |
|
2123 * the SAM interface may override an inherited method. |
|
2124 * Any such overrides are respected, and the method handle will be accessible |
|
2125 * by either the inherited method or the SAM method. |
|
2126 * In particular, a {@linkplain java.lang.reflect.Method#isBridge bridge method} |
|
2127 * may be created if the methods have different return types. |
|
2128 * <p> |
|
2129 * The type must be public. No additional access checks are performed. |
|
2130 * <p> |
|
2131 * The resulting instance of the required SAM type will respond to |
|
2132 * invocation of the SAM type's single abstract method by calling |
|
2133 * the given {@code target} on the incoming arguments, |
|
2134 * and returning or throwing whatever the {@code target} |
|
2135 * returns or throws. The invocation will be as if by |
|
2136 * {@code target.invokeGeneric}. |
|
2137 * The target's type will be checked before the SAM |
|
2138 * instance is created, as if by a call to {@code asType}, |
|
2139 * which may result in a {@code WrongMethodTypeException}. |
|
2140 * <p> |
|
2141 * The wrapper instance will implement the requested SAM interface |
|
2142 * and its super-types, but no other SAM types. |
|
2143 * This means that the SAM instance will not unexpectedly |
|
2144 * pass an {@code instanceof} test for any unrequested type. |
|
2145 * <p style="font-size:smaller;"> |
|
2146 * <em>Implementation Note:</em> |
|
2147 * Therefore, each SAM instance must implement a unique SAM type. |
|
2148 * Implementations may not bundle together |
|
2149 * multiple SAM types onto single implementation classes |
|
2150 * in the style of {@link java.awt.AWTEventMulticaster}. |
|
2151 * <p> |
|
2152 * The method handle may throw an <em>undeclared exception</em>, |
|
2153 * which means any checked exception (or other checked throwable) |
|
2154 * not declared by the SAM type's single abstract method. |
|
2155 * If this happens, the throwable will be wrapped in an instance of |
|
2156 * {@link java.lang.reflect.UndeclaredThrowableException UndeclaredThrowableException} |
|
2157 * and thrown in that wrapped form. |
|
2158 * <p> |
|
2159 * Like {@link java.lang.Integer#valueOf Integer.valueOf}, |
|
2160 * {@code asInstance} is a factory method whose results are defined |
|
2161 * by their behavior. |
|
2162 * It is not guaranteed to return a new instance for every call. |
|
2163 * <p> |
|
2164 * Future versions of this API may accept additional types, |
|
2165 * such as abstract classes with single abstract methods. |
|
2166 * Future versions of this API may also equip wrapper instances |
|
2167 * with one or more additional public "marker" interfaces. |
|
2168 * |
|
2169 * @param target the method handle to invoke from the wrapper |
|
2170 * @param samType the desired type of the wrapper, a SAM type |
|
2171 * @return a correctly-typed wrapper for the given {@code target} |
|
2172 * @throws NullPointerException if either argument is null |
|
2173 * @throws IllegalArgumentException if the {@code samType} is not a |
|
2174 * valid argument to this method |
|
2175 * @throws WrongMethodTypeException if the {@code target} cannot |
|
2176 * be converted to the type required by the SAM type |
|
2177 */ |
|
2178 // Other notes to implementors: |
|
2179 // <p> |
|
2180 // No stable mapping is promised between the SAM type and |
|
2181 // the implementation class C. Over time, several implementation |
|
2182 // classes might be used for the same SAM type. |
|
2183 // <p> |
|
2184 // If the implementation is able |
|
2185 // to prove that a wrapper of the required SAM type |
|
2186 // has already been created for a given |
|
2187 // method handle, or for another method handle with the |
|
2188 // same behavior, the implementation may return that wrapper in place of |
|
2189 // a new wrapper. |
|
2190 // <p> |
|
2191 // This method is designed to apply to common use cases |
|
2192 // where a single method handle must interoperate with |
|
2193 // an interface that implements a function-like |
|
2194 // API. Additional variations, such as SAM classes with |
|
2195 // private constructors, or interfaces with multiple but related |
|
2196 // entry points, must be covered by hand-written or automatically |
|
2197 // generated adapter classes. |
|
2198 // |
|
2199 public static |
|
2200 <T> T asInstance(final MethodHandle target, final Class<T> samType) { |
|
2201 // POC implementation only; violates the above contract several ways |
|
2202 final Method sam = getSamMethod(samType); |
|
2203 if (sam == null) |
|
2204 throw new IllegalArgumentException("not a SAM type: "+samType.getName()); |
|
2205 MethodType samMT = MethodType.methodType(sam.getReturnType(), sam.getParameterTypes()); |
|
2206 MethodHandle checkTarget = target.asType(samMT); // make throw WMT |
|
2207 checkTarget = checkTarget.asType(checkTarget.type().changeReturnType(Object.class)); |
|
2208 final MethodHandle vaTarget = checkTarget.asSpreader(Object[].class, samMT.parameterCount()); |
|
2209 return samType.cast(Proxy.newProxyInstance( |
|
2210 samType.getClassLoader(), |
|
2211 new Class[]{ samType, WrapperInstance.class }, |
|
2212 new InvocationHandler() { |
|
2213 private Object getArg(String name) { |
|
2214 if ((Object)name == "getWrapperInstanceTarget") return target; |
|
2215 if ((Object)name == "getWrapperInstanceType") return samType; |
|
2216 throw new AssertionError(); |
|
2217 } |
|
2218 public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { |
|
2219 if (method.getDeclaringClass() == WrapperInstance.class) |
|
2220 return getArg(method.getName()); |
|
2221 if (method.equals(sam)) |
|
2222 return vaTarget.invokeExact(args); |
|
2223 if (isObjectMethod(method)) |
|
2224 return callObjectMethod(this, method, args); |
|
2225 throw new InternalError(); |
|
2226 } |
|
2227 })); |
|
2228 } |
|
2229 |
|
2230 /** |
|
2231 * Determine if the given object was produced by a call to {@link #asInstance asInstance}. |
|
2232 * @param x any reference |
|
2233 * @return true if the reference is not null and points to an object produced by {@code asInstance} |
|
2234 */ |
|
2235 public static |
|
2236 boolean isWrapperInstance(Object x) { |
|
2237 return x instanceof WrapperInstance; |
|
2238 } |
|
2239 |
|
2240 private static WrapperInstance asWrapperInstance(Object x) { |
|
2241 try { |
|
2242 if (x != null) |
|
2243 return (WrapperInstance) x; |
|
2244 } catch (ClassCastException ex) { |
|
2245 } |
|
2246 throw new IllegalArgumentException("not a wrapper instance"); |
|
2247 } |
|
2248 |
|
2249 /** |
|
2250 * Produces or recovers a target method handle which is behaviorally |
|
2251 * equivalent to the SAM method of this wrapper instance. |
|
2252 * The object {@code x} must have been produced by a call to {@link #asInstance asInstance}. |
|
2253 * This requirement may be tested via {@link #isWrapperInstance isWrapperInstance}. |
|
2254 * @param x any reference |
|
2255 * @return a method handle implementing the SAM method |
|
2256 * @throws IllegalArgumentException if the reference x is not to a wrapper instance |
|
2257 */ |
|
2258 public static |
|
2259 MethodHandle wrapperInstanceTarget(Object x) { |
|
2260 return asWrapperInstance(x).getWrapperInstanceTarget(); |
|
2261 } |
|
2262 |
|
2263 /** |
|
2264 * Recover the SAM type for which this wrapper instance was created. |
|
2265 * The object {@code x} must have been produced by a call to {@link #asInstance asInstance}. |
|
2266 * This requirement may be tested via {@link #isWrapperInstance isWrapperInstance}. |
|
2267 * @param x any reference |
|
2268 * @return the SAM type for which the wrapper was created |
|
2269 * @throws IllegalArgumentException if the reference x is not to a wrapper instance |
|
2270 */ |
|
2271 public static |
|
2272 Class<?> wrapperInstanceType(Object x) { |
|
2273 return asWrapperInstance(x).getWrapperInstanceType(); |
|
2274 } |
|
2275 |
|
2276 private static |
|
2277 boolean isObjectMethod(Method m) { |
|
2278 switch (m.getName()) { |
|
2279 case "toString": |
|
2280 return (m.getReturnType() == String.class |
|
2281 && m.getParameterTypes().length == 0); |
|
2282 case "hashCode": |
|
2283 return (m.getReturnType() == int.class |
|
2284 && m.getParameterTypes().length == 0); |
|
2285 case "equals": |
|
2286 return (m.getReturnType() == boolean.class |
|
2287 && m.getParameterTypes().length == 1 |
|
2288 && m.getParameterTypes()[0] == Object.class); |
|
2289 } |
|
2290 return false; |
|
2291 } |
|
2292 |
|
2293 private static |
|
2294 Object callObjectMethod(Object self, Method m, Object[] args) { |
|
2295 assert(isObjectMethod(m)) : m; |
|
2296 switch (m.getName()) { |
|
2297 case "toString": |
|
2298 return self.getClass().getName() + "@" + Integer.toHexString(self.hashCode()); |
|
2299 case "hashCode": |
|
2300 return System.identityHashCode(self); |
|
2301 case "equals": |
|
2302 return (self == args[0]); |
|
2303 } |
|
2304 return null; |
|
2305 } |
|
2306 |
|
2307 private static |
|
2308 Method getSamMethod(Class<?> samType) { |
|
2309 Method sam = null; |
|
2310 for (Method m : samType.getMethods()) { |
|
2311 int mod = m.getModifiers(); |
|
2312 if (Modifier.isAbstract(mod)) { |
|
2313 if (sam != null && !isObjectMethod(sam)) |
|
2314 return null; // too many abstract methods |
|
2315 sam = m; |
|
2316 } |
|
2317 } |
|
2318 if (!samType.isInterface() && getSamConstructor(samType) == null) |
|
2319 return null; // wrong kind of constructor |
|
2320 return sam; |
|
2321 } |
|
2322 |
|
2323 private static |
|
2324 Constructor getSamConstructor(Class<?> samType) { |
|
2325 for (Constructor c : samType.getDeclaredConstructors()) { |
|
2326 if (c.getParameterTypes().length == 0) { |
|
2327 int mod = c.getModifiers(); |
|
2328 if (Modifier.isPublic(mod) || Modifier.isProtected(mod)) |
|
2329 return c; |
|
2330 } |
|
2331 } |
|
2332 return null; |
|
2333 } |
|
2334 |
|
2335 /*non-public*/ |
|
2336 static MethodHandle asVarargsCollector(MethodHandle target, Class<?> arrayType) { |
|
2337 return MethodHandleImpl.asVarargsCollector(IMPL_TOKEN, target, arrayType); |
|
2338 } |
|
2339 } |
|