|
1 /* |
|
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Oracle designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Oracle in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
22 * or visit www.oracle.com if you need additional information or have any |
|
23 * questions. |
|
24 */ |
|
25 |
|
26 package java.lang; |
|
27 import java.lang.ref.*; |
|
28 import java.util.Objects; |
|
29 import java.util.concurrent.atomic.AtomicInteger; |
|
30 import java.util.function.Supplier; |
|
31 |
|
32 /** |
|
33 * This class provides thread-local variables. These variables differ from |
|
34 * their normal counterparts in that each thread that accesses one (via its |
|
35 * {@code get} or {@code set} method) has its own, independently initialized |
|
36 * copy of the variable. {@code ThreadLocal} instances are typically private |
|
37 * static fields in classes that wish to associate state with a thread (e.g., |
|
38 * a user ID or Transaction ID). |
|
39 * |
|
40 * <p>For example, the class below generates unique identifiers local to each |
|
41 * thread. |
|
42 * A thread's id is assigned the first time it invokes {@code ThreadId.get()} |
|
43 * and remains unchanged on subsequent calls. |
|
44 * <pre> |
|
45 * import java.util.concurrent.atomic.AtomicInteger; |
|
46 * |
|
47 * public class ThreadId { |
|
48 * // Atomic integer containing the next thread ID to be assigned |
|
49 * private static final AtomicInteger nextId = new AtomicInteger(0); |
|
50 * |
|
51 * // Thread local variable containing each thread's ID |
|
52 * private static final ThreadLocal<Integer> threadId = |
|
53 * new ThreadLocal<Integer>() { |
|
54 * @Override protected Integer initialValue() { |
|
55 * return nextId.getAndIncrement(); |
|
56 * } |
|
57 * }; |
|
58 * |
|
59 * // Returns the current thread's unique ID, assigning it if necessary |
|
60 * public static int get() { |
|
61 * return threadId.get(); |
|
62 * } |
|
63 * } |
|
64 * </pre> |
|
65 * <p>Each thread holds an implicit reference to its copy of a thread-local |
|
66 * variable as long as the thread is alive and the {@code ThreadLocal} |
|
67 * instance is accessible; after a thread goes away, all of its copies of |
|
68 * thread-local instances are subject to garbage collection (unless other |
|
69 * references to these copies exist). |
|
70 * |
|
71 * @author Josh Bloch and Doug Lea |
|
72 * @since 1.2 |
|
73 */ |
|
74 public class ThreadLocal<T> { |
|
75 /** |
|
76 * ThreadLocals rely on per-thread linear-probe hash maps attached |
|
77 * to each thread (Thread.threadLocals and |
|
78 * inheritableThreadLocals). The ThreadLocal objects act as keys, |
|
79 * searched via threadLocalHashCode. This is a custom hash code |
|
80 * (useful only within ThreadLocalMaps) that eliminates collisions |
|
81 * in the common case where consecutively constructed ThreadLocals |
|
82 * are used by the same threads, while remaining well-behaved in |
|
83 * less common cases. |
|
84 */ |
|
85 private final int threadLocalHashCode = nextHashCode(); |
|
86 |
|
87 /** |
|
88 * The next hash code to be given out. Updated atomically. Starts at |
|
89 * zero. |
|
90 */ |
|
91 private static AtomicInteger nextHashCode = |
|
92 new AtomicInteger(); |
|
93 |
|
94 /** |
|
95 * The difference between successively generated hash codes - turns |
|
96 * implicit sequential thread-local IDs into near-optimally spread |
|
97 * multiplicative hash values for power-of-two-sized tables. |
|
98 */ |
|
99 private static final int HASH_INCREMENT = 0x61c88647; |
|
100 |
|
101 /** |
|
102 * Returns the next hash code. |
|
103 */ |
|
104 private static int nextHashCode() { |
|
105 return nextHashCode.getAndAdd(HASH_INCREMENT); |
|
106 } |
|
107 |
|
108 /** |
|
109 * Returns the current thread's "initial value" for this |
|
110 * thread-local variable. This method will be invoked the first |
|
111 * time a thread accesses the variable with the {@link #get} |
|
112 * method, unless the thread previously invoked the {@link #set} |
|
113 * method, in which case the {@code initialValue} method will not |
|
114 * be invoked for the thread. Normally, this method is invoked at |
|
115 * most once per thread, but it may be invoked again in case of |
|
116 * subsequent invocations of {@link #remove} followed by {@link #get}. |
|
117 * |
|
118 * <p>This implementation simply returns {@code null}; if the |
|
119 * programmer desires thread-local variables to have an initial |
|
120 * value other than {@code null}, {@code ThreadLocal} must be |
|
121 * subclassed, and this method overridden. Typically, an |
|
122 * anonymous inner class will be used. |
|
123 * |
|
124 * @return the initial value for this thread-local |
|
125 */ |
|
126 protected T initialValue() { |
|
127 return null; |
|
128 } |
|
129 |
|
130 /** |
|
131 * Creates a thread local variable. The initial value of the variable is |
|
132 * determined by invoking the {@code get} method on the {@code Supplier}. |
|
133 * |
|
134 * @param <S> the type of the thread local's value |
|
135 * @param supplier the supplier to be used to determine the initial value |
|
136 * @return a new thread local variable |
|
137 * @throws NullPointerException if the specified supplier is null |
|
138 * @since 1.8 |
|
139 */ |
|
140 public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) { |
|
141 return new SuppliedThreadLocal<>(supplier); |
|
142 } |
|
143 |
|
144 /** |
|
145 * Creates a thread local variable. |
|
146 * @see #withInitial(java.util.function.Supplier) |
|
147 */ |
|
148 public ThreadLocal() { |
|
149 } |
|
150 |
|
151 /** |
|
152 * Returns the value in the current thread's copy of this |
|
153 * thread-local variable. If the variable has no value for the |
|
154 * current thread, it is first initialized to the value returned |
|
155 * by an invocation of the {@link #initialValue} method. |
|
156 * |
|
157 * @return the current thread's value of this thread-local |
|
158 */ |
|
159 public T get() { |
|
160 Thread t = Thread.currentThread(); |
|
161 ThreadLocalMap map = getMap(t); |
|
162 if (map != null) { |
|
163 ThreadLocalMap.Entry e = map.getEntry(this); |
|
164 if (e != null) { |
|
165 @SuppressWarnings("unchecked") |
|
166 T result = (T)e.value; |
|
167 return result; |
|
168 } |
|
169 } |
|
170 return setInitialValue(); |
|
171 } |
|
172 |
|
173 /** |
|
174 * Variant of set() to establish initialValue. Used instead |
|
175 * of set() in case user has overridden the set() method. |
|
176 * |
|
177 * @return the initial value |
|
178 */ |
|
179 private T setInitialValue() { |
|
180 T value = initialValue(); |
|
181 Thread t = Thread.currentThread(); |
|
182 ThreadLocalMap map = getMap(t); |
|
183 if (map != null) |
|
184 map.set(this, value); |
|
185 else |
|
186 createMap(t, value); |
|
187 return value; |
|
188 } |
|
189 |
|
190 /** |
|
191 * Sets the current thread's copy of this thread-local variable |
|
192 * to the specified value. Most subclasses will have no need to |
|
193 * override this method, relying solely on the {@link #initialValue} |
|
194 * method to set the values of thread-locals. |
|
195 * |
|
196 * @param value the value to be stored in the current thread's copy of |
|
197 * this thread-local. |
|
198 */ |
|
199 public void set(T value) { |
|
200 Thread t = Thread.currentThread(); |
|
201 ThreadLocalMap map = getMap(t); |
|
202 if (map != null) |
|
203 map.set(this, value); |
|
204 else |
|
205 createMap(t, value); |
|
206 } |
|
207 |
|
208 /** |
|
209 * Removes the current thread's value for this thread-local |
|
210 * variable. If this thread-local variable is subsequently |
|
211 * {@linkplain #get read} by the current thread, its value will be |
|
212 * reinitialized by invoking its {@link #initialValue} method, |
|
213 * unless its value is {@linkplain #set set} by the current thread |
|
214 * in the interim. This may result in multiple invocations of the |
|
215 * {@code initialValue} method in the current thread. |
|
216 * |
|
217 * @since 1.5 |
|
218 */ |
|
219 public void remove() { |
|
220 ThreadLocalMap m = getMap(Thread.currentThread()); |
|
221 if (m != null) |
|
222 m.remove(this); |
|
223 } |
|
224 |
|
225 /** |
|
226 * Get the map associated with a ThreadLocal. Overridden in |
|
227 * InheritableThreadLocal. |
|
228 * |
|
229 * @param t the current thread |
|
230 * @return the map |
|
231 */ |
|
232 ThreadLocalMap getMap(Thread t) { |
|
233 return t.threadLocals; |
|
234 } |
|
235 |
|
236 /** |
|
237 * Create the map associated with a ThreadLocal. Overridden in |
|
238 * InheritableThreadLocal. |
|
239 * |
|
240 * @param t the current thread |
|
241 * @param firstValue value for the initial entry of the map |
|
242 */ |
|
243 void createMap(Thread t, T firstValue) { |
|
244 t.threadLocals = new ThreadLocalMap(this, firstValue); |
|
245 } |
|
246 |
|
247 /** |
|
248 * Factory method to create map of inherited thread locals. |
|
249 * Designed to be called only from Thread constructor. |
|
250 * |
|
251 * @param parentMap the map associated with parent thread |
|
252 * @return a map containing the parent's inheritable bindings |
|
253 */ |
|
254 static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) { |
|
255 return new ThreadLocalMap(parentMap); |
|
256 } |
|
257 |
|
258 /** |
|
259 * Method childValue is visibly defined in subclass |
|
260 * InheritableThreadLocal, but is internally defined here for the |
|
261 * sake of providing createInheritedMap factory method without |
|
262 * needing to subclass the map class in InheritableThreadLocal. |
|
263 * This technique is preferable to the alternative of embedding |
|
264 * instanceof tests in methods. |
|
265 */ |
|
266 T childValue(T parentValue) { |
|
267 throw new UnsupportedOperationException(); |
|
268 } |
|
269 |
|
270 /** |
|
271 * An extension of ThreadLocal that obtains its initial value from |
|
272 * the specified {@code Supplier}. |
|
273 */ |
|
274 static final class SuppliedThreadLocal<T> extends ThreadLocal<T> { |
|
275 |
|
276 private final Supplier<? extends T> supplier; |
|
277 |
|
278 SuppliedThreadLocal(Supplier<? extends T> supplier) { |
|
279 this.supplier = Objects.requireNonNull(supplier); |
|
280 } |
|
281 |
|
282 @Override |
|
283 protected T initialValue() { |
|
284 return supplier.get(); |
|
285 } |
|
286 } |
|
287 |
|
288 /** |
|
289 * ThreadLocalMap is a customized hash map suitable only for |
|
290 * maintaining thread local values. No operations are exported |
|
291 * outside of the ThreadLocal class. The class is package private to |
|
292 * allow declaration of fields in class Thread. To help deal with |
|
293 * very large and long-lived usages, the hash table entries use |
|
294 * WeakReferences for keys. However, since reference queues are not |
|
295 * used, stale entries are guaranteed to be removed only when |
|
296 * the table starts running out of space. |
|
297 */ |
|
298 static class ThreadLocalMap { |
|
299 |
|
300 /** |
|
301 * The entries in this hash map extend WeakReference, using |
|
302 * its main ref field as the key (which is always a |
|
303 * ThreadLocal object). Note that null keys (i.e. entry.get() |
|
304 * == null) mean that the key is no longer referenced, so the |
|
305 * entry can be expunged from table. Such entries are referred to |
|
306 * as "stale entries" in the code that follows. |
|
307 */ |
|
308 static class Entry extends WeakReference<ThreadLocal<?>> { |
|
309 /** The value associated with this ThreadLocal. */ |
|
310 Object value; |
|
311 |
|
312 Entry(ThreadLocal<?> k, Object v) { |
|
313 super(k); |
|
314 value = v; |
|
315 } |
|
316 } |
|
317 |
|
318 /** |
|
319 * The initial capacity -- MUST be a power of two. |
|
320 */ |
|
321 private static final int INITIAL_CAPACITY = 16; |
|
322 |
|
323 /** |
|
324 * The table, resized as necessary. |
|
325 * table.length MUST always be a power of two. |
|
326 */ |
|
327 private Entry[] table; |
|
328 |
|
329 /** |
|
330 * The number of entries in the table. |
|
331 */ |
|
332 private int size = 0; |
|
333 |
|
334 /** |
|
335 * The next size value at which to resize. |
|
336 */ |
|
337 private int threshold; // Default to 0 |
|
338 |
|
339 /** |
|
340 * Set the resize threshold to maintain at worst a 2/3 load factor. |
|
341 */ |
|
342 private void setThreshold(int len) { |
|
343 threshold = len * 2 / 3; |
|
344 } |
|
345 |
|
346 /** |
|
347 * Increment i modulo len. |
|
348 */ |
|
349 private static int nextIndex(int i, int len) { |
|
350 return ((i + 1 < len) ? i + 1 : 0); |
|
351 } |
|
352 |
|
353 /** |
|
354 * Decrement i modulo len. |
|
355 */ |
|
356 private static int prevIndex(int i, int len) { |
|
357 return ((i - 1 >= 0) ? i - 1 : len - 1); |
|
358 } |
|
359 |
|
360 /** |
|
361 * Construct a new map initially containing (firstKey, firstValue). |
|
362 * ThreadLocalMaps are constructed lazily, so we only create |
|
363 * one when we have at least one entry to put in it. |
|
364 */ |
|
365 ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) { |
|
366 table = new Entry[INITIAL_CAPACITY]; |
|
367 int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1); |
|
368 table[i] = new Entry(firstKey, firstValue); |
|
369 size = 1; |
|
370 setThreshold(INITIAL_CAPACITY); |
|
371 } |
|
372 |
|
373 /** |
|
374 * Construct a new map including all Inheritable ThreadLocals |
|
375 * from given parent map. Called only by createInheritedMap. |
|
376 * |
|
377 * @param parentMap the map associated with parent thread. |
|
378 */ |
|
379 private ThreadLocalMap(ThreadLocalMap parentMap) { |
|
380 Entry[] parentTable = parentMap.table; |
|
381 int len = parentTable.length; |
|
382 setThreshold(len); |
|
383 table = new Entry[len]; |
|
384 |
|
385 for (Entry e : parentTable) { |
|
386 if (e != null) { |
|
387 @SuppressWarnings("unchecked") |
|
388 ThreadLocal<Object> key = (ThreadLocal<Object>) e.get(); |
|
389 if (key != null) { |
|
390 Object value = key.childValue(e.value); |
|
391 Entry c = new Entry(key, value); |
|
392 int h = key.threadLocalHashCode & (len - 1); |
|
393 while (table[h] != null) |
|
394 h = nextIndex(h, len); |
|
395 table[h] = c; |
|
396 size++; |
|
397 } |
|
398 } |
|
399 } |
|
400 } |
|
401 |
|
402 /** |
|
403 * Get the entry associated with key. This method |
|
404 * itself handles only the fast path: a direct hit of existing |
|
405 * key. It otherwise relays to getEntryAfterMiss. This is |
|
406 * designed to maximize performance for direct hits, in part |
|
407 * by making this method readily inlinable. |
|
408 * |
|
409 * @param key the thread local object |
|
410 * @return the entry associated with key, or null if no such |
|
411 */ |
|
412 private Entry getEntry(ThreadLocal<?> key) { |
|
413 int i = key.threadLocalHashCode & (table.length - 1); |
|
414 Entry e = table[i]; |
|
415 if (e != null && e.get() == key) |
|
416 return e; |
|
417 else |
|
418 return getEntryAfterMiss(key, i, e); |
|
419 } |
|
420 |
|
421 /** |
|
422 * Version of getEntry method for use when key is not found in |
|
423 * its direct hash slot. |
|
424 * |
|
425 * @param key the thread local object |
|
426 * @param i the table index for key's hash code |
|
427 * @param e the entry at table[i] |
|
428 * @return the entry associated with key, or null if no such |
|
429 */ |
|
430 private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) { |
|
431 Entry[] tab = table; |
|
432 int len = tab.length; |
|
433 |
|
434 while (e != null) { |
|
435 ThreadLocal<?> k = e.get(); |
|
436 if (k == key) |
|
437 return e; |
|
438 if (k == null) |
|
439 expungeStaleEntry(i); |
|
440 else |
|
441 i = nextIndex(i, len); |
|
442 e = tab[i]; |
|
443 } |
|
444 return null; |
|
445 } |
|
446 |
|
447 /** |
|
448 * Set the value associated with key. |
|
449 * |
|
450 * @param key the thread local object |
|
451 * @param value the value to be set |
|
452 */ |
|
453 private void set(ThreadLocal<?> key, Object value) { |
|
454 |
|
455 // We don't use a fast path as with get() because it is at |
|
456 // least as common to use set() to create new entries as |
|
457 // it is to replace existing ones, in which case, a fast |
|
458 // path would fail more often than not. |
|
459 |
|
460 Entry[] tab = table; |
|
461 int len = tab.length; |
|
462 int i = key.threadLocalHashCode & (len-1); |
|
463 |
|
464 for (Entry e = tab[i]; |
|
465 e != null; |
|
466 e = tab[i = nextIndex(i, len)]) { |
|
467 ThreadLocal<?> k = e.get(); |
|
468 |
|
469 if (k == key) { |
|
470 e.value = value; |
|
471 return; |
|
472 } |
|
473 |
|
474 if (k == null) { |
|
475 replaceStaleEntry(key, value, i); |
|
476 return; |
|
477 } |
|
478 } |
|
479 |
|
480 tab[i] = new Entry(key, value); |
|
481 int sz = ++size; |
|
482 if (!cleanSomeSlots(i, sz) && sz >= threshold) |
|
483 rehash(); |
|
484 } |
|
485 |
|
486 /** |
|
487 * Remove the entry for key. |
|
488 */ |
|
489 private void remove(ThreadLocal<?> key) { |
|
490 Entry[] tab = table; |
|
491 int len = tab.length; |
|
492 int i = key.threadLocalHashCode & (len-1); |
|
493 for (Entry e = tab[i]; |
|
494 e != null; |
|
495 e = tab[i = nextIndex(i, len)]) { |
|
496 if (e.get() == key) { |
|
497 e.clear(); |
|
498 expungeStaleEntry(i); |
|
499 return; |
|
500 } |
|
501 } |
|
502 } |
|
503 |
|
504 /** |
|
505 * Replace a stale entry encountered during a set operation |
|
506 * with an entry for the specified key. The value passed in |
|
507 * the value parameter is stored in the entry, whether or not |
|
508 * an entry already exists for the specified key. |
|
509 * |
|
510 * As a side effect, this method expunges all stale entries in the |
|
511 * "run" containing the stale entry. (A run is a sequence of entries |
|
512 * between two null slots.) |
|
513 * |
|
514 * @param key the key |
|
515 * @param value the value to be associated with key |
|
516 * @param staleSlot index of the first stale entry encountered while |
|
517 * searching for key. |
|
518 */ |
|
519 private void replaceStaleEntry(ThreadLocal<?> key, Object value, |
|
520 int staleSlot) { |
|
521 Entry[] tab = table; |
|
522 int len = tab.length; |
|
523 Entry e; |
|
524 |
|
525 // Back up to check for prior stale entry in current run. |
|
526 // We clean out whole runs at a time to avoid continual |
|
527 // incremental rehashing due to garbage collector freeing |
|
528 // up refs in bunches (i.e., whenever the collector runs). |
|
529 int slotToExpunge = staleSlot; |
|
530 for (int i = prevIndex(staleSlot, len); |
|
531 (e = tab[i]) != null; |
|
532 i = prevIndex(i, len)) |
|
533 if (e.get() == null) |
|
534 slotToExpunge = i; |
|
535 |
|
536 // Find either the key or trailing null slot of run, whichever |
|
537 // occurs first |
|
538 for (int i = nextIndex(staleSlot, len); |
|
539 (e = tab[i]) != null; |
|
540 i = nextIndex(i, len)) { |
|
541 ThreadLocal<?> k = e.get(); |
|
542 |
|
543 // If we find key, then we need to swap it |
|
544 // with the stale entry to maintain hash table order. |
|
545 // The newly stale slot, or any other stale slot |
|
546 // encountered above it, can then be sent to expungeStaleEntry |
|
547 // to remove or rehash all of the other entries in run. |
|
548 if (k == key) { |
|
549 e.value = value; |
|
550 |
|
551 tab[i] = tab[staleSlot]; |
|
552 tab[staleSlot] = e; |
|
553 |
|
554 // Start expunge at preceding stale entry if it exists |
|
555 if (slotToExpunge == staleSlot) |
|
556 slotToExpunge = i; |
|
557 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); |
|
558 return; |
|
559 } |
|
560 |
|
561 // If we didn't find stale entry on backward scan, the |
|
562 // first stale entry seen while scanning for key is the |
|
563 // first still present in the run. |
|
564 if (k == null && slotToExpunge == staleSlot) |
|
565 slotToExpunge = i; |
|
566 } |
|
567 |
|
568 // If key not found, put new entry in stale slot |
|
569 tab[staleSlot].value = null; |
|
570 tab[staleSlot] = new Entry(key, value); |
|
571 |
|
572 // If there are any other stale entries in run, expunge them |
|
573 if (slotToExpunge != staleSlot) |
|
574 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len); |
|
575 } |
|
576 |
|
577 /** |
|
578 * Expunge a stale entry by rehashing any possibly colliding entries |
|
579 * lying between staleSlot and the next null slot. This also expunges |
|
580 * any other stale entries encountered before the trailing null. See |
|
581 * Knuth, Section 6.4 |
|
582 * |
|
583 * @param staleSlot index of slot known to have null key |
|
584 * @return the index of the next null slot after staleSlot |
|
585 * (all between staleSlot and this slot will have been checked |
|
586 * for expunging). |
|
587 */ |
|
588 private int expungeStaleEntry(int staleSlot) { |
|
589 Entry[] tab = table; |
|
590 int len = tab.length; |
|
591 |
|
592 // expunge entry at staleSlot |
|
593 tab[staleSlot].value = null; |
|
594 tab[staleSlot] = null; |
|
595 size--; |
|
596 |
|
597 // Rehash until we encounter null |
|
598 Entry e; |
|
599 int i; |
|
600 for (i = nextIndex(staleSlot, len); |
|
601 (e = tab[i]) != null; |
|
602 i = nextIndex(i, len)) { |
|
603 ThreadLocal<?> k = e.get(); |
|
604 if (k == null) { |
|
605 e.value = null; |
|
606 tab[i] = null; |
|
607 size--; |
|
608 } else { |
|
609 int h = k.threadLocalHashCode & (len - 1); |
|
610 if (h != i) { |
|
611 tab[i] = null; |
|
612 |
|
613 // Unlike Knuth 6.4 Algorithm R, we must scan until |
|
614 // null because multiple entries could have been stale. |
|
615 while (tab[h] != null) |
|
616 h = nextIndex(h, len); |
|
617 tab[h] = e; |
|
618 } |
|
619 } |
|
620 } |
|
621 return i; |
|
622 } |
|
623 |
|
624 /** |
|
625 * Heuristically scan some cells looking for stale entries. |
|
626 * This is invoked when either a new element is added, or |
|
627 * another stale one has been expunged. It performs a |
|
628 * logarithmic number of scans, as a balance between no |
|
629 * scanning (fast but retains garbage) and a number of scans |
|
630 * proportional to number of elements, that would find all |
|
631 * garbage but would cause some insertions to take O(n) time. |
|
632 * |
|
633 * @param i a position known NOT to hold a stale entry. The |
|
634 * scan starts at the element after i. |
|
635 * |
|
636 * @param n scan control: {@code log2(n)} cells are scanned, |
|
637 * unless a stale entry is found, in which case |
|
638 * {@code log2(table.length)-1} additional cells are scanned. |
|
639 * When called from insertions, this parameter is the number |
|
640 * of elements, but when from replaceStaleEntry, it is the |
|
641 * table length. (Note: all this could be changed to be either |
|
642 * more or less aggressive by weighting n instead of just |
|
643 * using straight log n. But this version is simple, fast, and |
|
644 * seems to work well.) |
|
645 * |
|
646 * @return true if any stale entries have been removed. |
|
647 */ |
|
648 private boolean cleanSomeSlots(int i, int n) { |
|
649 boolean removed = false; |
|
650 Entry[] tab = table; |
|
651 int len = tab.length; |
|
652 do { |
|
653 i = nextIndex(i, len); |
|
654 Entry e = tab[i]; |
|
655 if (e != null && e.get() == null) { |
|
656 n = len; |
|
657 removed = true; |
|
658 i = expungeStaleEntry(i); |
|
659 } |
|
660 } while ( (n >>>= 1) != 0); |
|
661 return removed; |
|
662 } |
|
663 |
|
664 /** |
|
665 * Re-pack and/or re-size the table. First scan the entire |
|
666 * table removing stale entries. If this doesn't sufficiently |
|
667 * shrink the size of the table, double the table size. |
|
668 */ |
|
669 private void rehash() { |
|
670 expungeStaleEntries(); |
|
671 |
|
672 // Use lower threshold for doubling to avoid hysteresis |
|
673 if (size >= threshold - threshold / 4) |
|
674 resize(); |
|
675 } |
|
676 |
|
677 /** |
|
678 * Double the capacity of the table. |
|
679 */ |
|
680 private void resize() { |
|
681 Entry[] oldTab = table; |
|
682 int oldLen = oldTab.length; |
|
683 int newLen = oldLen * 2; |
|
684 Entry[] newTab = new Entry[newLen]; |
|
685 int count = 0; |
|
686 |
|
687 for (Entry e : oldTab) { |
|
688 if (e != null) { |
|
689 ThreadLocal<?> k = e.get(); |
|
690 if (k == null) { |
|
691 e.value = null; // Help the GC |
|
692 } else { |
|
693 int h = k.threadLocalHashCode & (newLen - 1); |
|
694 while (newTab[h] != null) |
|
695 h = nextIndex(h, newLen); |
|
696 newTab[h] = e; |
|
697 count++; |
|
698 } |
|
699 } |
|
700 } |
|
701 |
|
702 setThreshold(newLen); |
|
703 size = count; |
|
704 table = newTab; |
|
705 } |
|
706 |
|
707 /** |
|
708 * Expunge all stale entries in the table. |
|
709 */ |
|
710 private void expungeStaleEntries() { |
|
711 Entry[] tab = table; |
|
712 int len = tab.length; |
|
713 for (int j = 0; j < len; j++) { |
|
714 Entry e = tab[j]; |
|
715 if (e != null && e.get() == null) |
|
716 expungeStaleEntry(j); |
|
717 } |
|
718 } |
|
719 } |
|
720 } |