src/hotspot/share/libadt/dict.cpp
changeset 47216 71c04702a3d5
parent 46630 75aa3e39d02c
child 51050 96ea37459ca7
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "libadt/dict.hpp"
       
    27 
       
    28 // Dictionaries - An Abstract Data Type
       
    29 
       
    30 // %%%%% includes not needed with AVM framework - Ungar
       
    31 
       
    32 #include <assert.h>
       
    33 
       
    34 //------------------------------data-----------------------------------------
       
    35 // String hash tables
       
    36 #define MAXID 20
       
    37 static uint8_t initflag = 0;       // True after 1st initialization
       
    38 static const char shft[MAXID] = {1,2,3,4,5,6,7,1,2,3,4,5,6,7,1,2,3,4,5,6};
       
    39 static short xsum[MAXID];
       
    40 
       
    41 //------------------------------bucket---------------------------------------
       
    42 class bucket : public ResourceObj {
       
    43 public:
       
    44   uint _cnt, _max;              // Size of bucket
       
    45   void **_keyvals;              // Array of keys and values
       
    46 };
       
    47 
       
    48 //------------------------------Dict-----------------------------------------
       
    49 // The dictionary is kept has a hash table.  The hash table is a even power
       
    50 // of two, for nice modulo operations.  Each bucket in the hash table points
       
    51 // to a linear list of key-value pairs; each key & value is just a (void *).
       
    52 // The list starts with a count.  A hash lookup finds the list head, then a
       
    53 // simple linear scan finds the key.  If the table gets too full, it's
       
    54 // doubled in size; the total amount of EXTRA times all hash functions are
       
    55 // computed for the doubling is no more than the current size - thus the
       
    56 // doubling in size costs no more than a constant factor in speed.
       
    57 Dict::Dict(CmpKey initcmp, Hash inithash) : _hash(inithash), _cmp(initcmp),
       
    58   _arena(Thread::current()->resource_area()) {
       
    59   int i;
       
    60 
       
    61   // Precompute table of null character hashes
       
    62   if( !initflag ) {             // Not initializated yet?
       
    63     xsum[0] = (1<<shft[0])+1;   // Initialize
       
    64     for(i=1; i<MAXID; i++) {
       
    65       xsum[i] = (1<<shft[i])+1+xsum[i-1];
       
    66     }
       
    67     initflag = 1;               // Never again
       
    68   }
       
    69 
       
    70   _size = 16;                   // Size is a power of 2
       
    71   _cnt = 0;                     // Dictionary is empty
       
    72   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
       
    73   memset((void*)_bin,0,sizeof(bucket)*_size);
       
    74 }
       
    75 
       
    76 Dict::Dict(CmpKey initcmp, Hash inithash, Arena *arena, int size)
       
    77 : _hash(inithash), _cmp(initcmp), _arena(arena) {
       
    78   int i;
       
    79 
       
    80   // Precompute table of null character hashes
       
    81   if( !initflag ) {             // Not initializated yet?
       
    82     xsum[0] = (1<<shft[0])+1;   // Initialize
       
    83     for(i=1; i<MAXID; i++) {
       
    84       xsum[i] = (1<<shft[i])+1+xsum[i-1];
       
    85     }
       
    86     initflag = 1;               // Never again
       
    87   }
       
    88 
       
    89   i=16;
       
    90   while( i < size ) i <<= 1;
       
    91   _size = i;                    // Size is a power of 2
       
    92   _cnt = 0;                     // Dictionary is empty
       
    93   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
       
    94   memset((void*)_bin,0,sizeof(bucket)*_size);
       
    95 }
       
    96 
       
    97 //------------------------------~Dict------------------------------------------
       
    98 // Delete an existing dictionary.
       
    99 Dict::~Dict() {
       
   100   /*
       
   101   tty->print("~Dict %d/%d: ",_cnt,_size);
       
   102   for( uint i=0; i < _size; i++) // For complete new table do
       
   103     tty->print("%d ",_bin[i]._cnt);
       
   104   tty->print("\n");*/
       
   105   /*for( uint i=0; i<_size; i++ ) {
       
   106     FREE_FAST( _bin[i]._keyvals );
       
   107     } */
       
   108 }
       
   109 
       
   110 //------------------------------Clear----------------------------------------
       
   111 // Zap to empty; ready for re-use
       
   112 void Dict::Clear() {
       
   113   _cnt = 0;                     // Empty contents
       
   114   for( uint i=0; i<_size; i++ )
       
   115     _bin[i]._cnt = 0;           // Empty buckets, but leave allocated
       
   116   // Leave _size & _bin alone, under the assumption that dictionary will
       
   117   // grow to this size again.
       
   118 }
       
   119 
       
   120 //------------------------------doubhash---------------------------------------
       
   121 // Double hash table size.  If can't do so, just suffer.  If can, then run
       
   122 // thru old hash table, moving things to new table.  Note that since hash
       
   123 // table doubled, exactly 1 new bit is exposed in the mask - so everything
       
   124 // in the old table ends up on 1 of two lists in the new table; a hi and a
       
   125 // lo list depending on the value of the bit.
       
   126 void Dict::doubhash(void) {
       
   127   uint oldsize = _size;
       
   128   _size <<= 1;                  // Double in size
       
   129   _bin = (bucket*)_arena->Arealloc(_bin, sizeof(bucket) * oldsize, sizeof(bucket) * _size);
       
   130   memset((void*)(&_bin[oldsize]), 0, oldsize * sizeof(bucket));
       
   131   // Rehash things to spread into new table
       
   132   for (uint i = 0; i < oldsize; i++) { // For complete OLD table do
       
   133     bucket *b = &_bin[i];              // Handy shortcut for _bin[i]
       
   134     if (!b->_keyvals) continue;        // Skip empties fast
       
   135 
       
   136     bucket *nb = &_bin[i+oldsize];     // New bucket shortcut
       
   137     uint j = b->_max;                  // Trim new bucket to nearest power of 2
       
   138     while (j > b->_cnt) { j >>= 1; }   // above old bucket _cnt
       
   139     if (!j) { j = 1; }                 // Handle zero-sized buckets
       
   140     nb->_max = j << 1;
       
   141     // Allocate worst case space for key-value pairs
       
   142     nb->_keyvals = (void**)_arena->Amalloc_4(sizeof(void *) * nb->_max * 2);
       
   143     uint nbcnt = 0;
       
   144 
       
   145     for (j = 0; j < b->_cnt; ) {           // Rehash all keys in this bucket
       
   146       void *key = b->_keyvals[j + j];
       
   147       if ((_hash(key) & (_size-1)) != i) { // Moving to hi bucket?
       
   148         nb->_keyvals[nbcnt + nbcnt] = key;
       
   149         nb->_keyvals[nbcnt + nbcnt + 1] = b->_keyvals[j + j + 1];
       
   150         nb->_cnt = nbcnt = nbcnt + 1;
       
   151         b->_cnt--;                         // Remove key/value from lo bucket
       
   152         b->_keyvals[j + j] = b->_keyvals[b->_cnt + b->_cnt];
       
   153         b->_keyvals[j + j + 1] = b->_keyvals[b->_cnt + b->_cnt + 1];
       
   154         // Don't increment j, hash compacted element also.
       
   155       } else {
       
   156         j++; // Iterate.
       
   157       }
       
   158     } // End of for all key-value pairs in bucket
       
   159   } // End of for all buckets
       
   160 }
       
   161 
       
   162 //------------------------------Dict-----------------------------------------
       
   163 // Deep copy a dictionary.
       
   164 Dict::Dict( const Dict &d ) : _size(d._size), _cnt(d._cnt), _hash(d._hash),_cmp(d._cmp), _arena(d._arena) {
       
   165   _bin = (bucket*)_arena->Amalloc_4(sizeof(bucket)*_size);
       
   166   memcpy( (void*)_bin, (void*)d._bin, sizeof(bucket)*_size );
       
   167   for( uint i=0; i<_size; i++ ) {
       
   168     if( !_bin[i]._keyvals ) continue;
       
   169     _bin[i]._keyvals=(void**)_arena->Amalloc_4( sizeof(void *)*_bin[i]._max*2);
       
   170     memcpy( _bin[i]._keyvals, d._bin[i]._keyvals,_bin[i]._cnt*2*sizeof(void*));
       
   171   }
       
   172 }
       
   173 
       
   174 //------------------------------Dict-----------------------------------------
       
   175 // Deep copy a dictionary.
       
   176 Dict &Dict::operator =( const Dict &d ) {
       
   177   if( _size < d._size ) {       // If must have more buckets
       
   178     _arena = d._arena;
       
   179     _bin = (bucket*)_arena->Arealloc( _bin, sizeof(bucket)*_size, sizeof(bucket)*d._size );
       
   180     memset( (void*)(&_bin[_size]), 0, (d._size-_size)*sizeof(bucket) );
       
   181     _size = d._size;
       
   182   }
       
   183   uint i;
       
   184   for( i=0; i<_size; i++ ) // All buckets are empty
       
   185     _bin[i]._cnt = 0;           // But leave bucket allocations alone
       
   186   _cnt = d._cnt;
       
   187   *(Hash*)(&_hash) = d._hash;
       
   188   *(CmpKey*)(&_cmp) = d._cmp;
       
   189   for( i=0; i<_size; i++ ) {
       
   190     bucket *b = &d._bin[i];     // Shortcut to source bucket
       
   191     for( uint j=0; j<b->_cnt; j++ )
       
   192       Insert( b->_keyvals[j+j], b->_keyvals[j+j+1] );
       
   193   }
       
   194   return *this;
       
   195 }
       
   196 
       
   197 //------------------------------Insert----------------------------------------
       
   198 // Insert or replace a key/value pair in the given dictionary.  If the
       
   199 // dictionary is too full, it's size is doubled.  The prior value being
       
   200 // replaced is returned (NULL if this is a 1st insertion of that key).  If
       
   201 // an old value is found, it's swapped with the prior key-value pair on the
       
   202 // list.  This moves a commonly searched-for value towards the list head.
       
   203 void *Dict::Insert(void *key, void *val, bool replace) {
       
   204   uint hash = _hash( key );     // Get hash key
       
   205   uint i = hash & (_size-1);    // Get hash key, corrected for size
       
   206   bucket *b = &_bin[i];         // Handy shortcut
       
   207   for( uint j=0; j<b->_cnt; j++ ) {
       
   208     if( !_cmp(key,b->_keyvals[j+j]) ) {
       
   209       if (!replace) {
       
   210         return b->_keyvals[j+j+1];
       
   211       } else {
       
   212         void *prior = b->_keyvals[j+j+1];
       
   213         b->_keyvals[j+j  ] = key;       // Insert current key-value
       
   214         b->_keyvals[j+j+1] = val;
       
   215         return prior;           // Return prior
       
   216       }
       
   217     }
       
   218   }
       
   219   if( ++_cnt > _size ) {        // Hash table is full
       
   220     doubhash();                 // Grow whole table if too full
       
   221     i = hash & (_size-1);       // Rehash
       
   222     b = &_bin[i];               // Handy shortcut
       
   223   }
       
   224   if( b->_cnt == b->_max ) {    // Must grow bucket?
       
   225     if( !b->_keyvals ) {
       
   226       b->_max = 2;              // Initial bucket size
       
   227       b->_keyvals = (void**)_arena->Amalloc_4(sizeof(void*) * b->_max * 2);
       
   228     } else {
       
   229       b->_keyvals = (void**)_arena->Arealloc(b->_keyvals, sizeof(void*) * b->_max * 2, sizeof(void*) * b->_max * 4);
       
   230       b->_max <<= 1;            // Double bucket
       
   231     }
       
   232   }
       
   233   b->_keyvals[b->_cnt+b->_cnt  ] = key;
       
   234   b->_keyvals[b->_cnt+b->_cnt+1] = val;
       
   235   b->_cnt++;
       
   236   return NULL;                  // Nothing found prior
       
   237 }
       
   238 
       
   239 //------------------------------Delete---------------------------------------
       
   240 // Find & remove a value from dictionary. Return old value.
       
   241 void *Dict::Delete(void *key) {
       
   242   uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
       
   243   bucket *b = &_bin[i];         // Handy shortcut
       
   244   for( uint j=0; j<b->_cnt; j++ )
       
   245     if( !_cmp(key,b->_keyvals[j+j]) ) {
       
   246       void *prior = b->_keyvals[j+j+1];
       
   247       b->_cnt--;                // Remove key/value from lo bucket
       
   248       b->_keyvals[j+j  ] = b->_keyvals[b->_cnt+b->_cnt  ];
       
   249       b->_keyvals[j+j+1] = b->_keyvals[b->_cnt+b->_cnt+1];
       
   250       _cnt--;                   // One less thing in table
       
   251       return prior;
       
   252     }
       
   253   return NULL;
       
   254 }
       
   255 
       
   256 //------------------------------FindDict-------------------------------------
       
   257 // Find a key-value pair in the given dictionary.  If not found, return NULL.
       
   258 // If found, move key-value pair towards head of list.
       
   259 void *Dict::operator [](const void *key) const {
       
   260   uint i = _hash( key ) & (_size-1);    // Get hash key, corrected for size
       
   261   bucket *b = &_bin[i];         // Handy shortcut
       
   262   for( uint j=0; j<b->_cnt; j++ )
       
   263     if( !_cmp(key,b->_keyvals[j+j]) )
       
   264       return b->_keyvals[j+j+1];
       
   265   return NULL;
       
   266 }
       
   267 
       
   268 //------------------------------CmpDict--------------------------------------
       
   269 // CmpDict compares two dictionaries; they must have the same keys (their
       
   270 // keys must match using CmpKey) and they must have the same values (pointer
       
   271 // comparison).  If so 1 is returned, if not 0 is returned.
       
   272 int32_t Dict::operator ==(const Dict &d2) const {
       
   273   if( _cnt != d2._cnt ) return 0;
       
   274   if( _hash != d2._hash ) return 0;
       
   275   if( _cmp != d2._cmp ) return 0;
       
   276   for( uint i=0; i < _size; i++) {      // For complete hash table do
       
   277     bucket *b = &_bin[i];       // Handy shortcut
       
   278     if( b->_cnt != d2._bin[i]._cnt ) return 0;
       
   279     if( memcmp(b->_keyvals, d2._bin[i]._keyvals, b->_cnt*2*sizeof(void*) ) )
       
   280       return 0;                 // Key-value pairs must match
       
   281   }
       
   282   return 1;                     // All match, is OK
       
   283 }
       
   284 
       
   285 //------------------------------print------------------------------------------
       
   286 // Handier print routine
       
   287 void Dict::print() {
       
   288   DictI i(this); // Moved definition in iterator here because of g++.
       
   289   tty->print("Dict@" INTPTR_FORMAT "[%d] = {", p2i(this), _cnt);
       
   290   for( ; i.test(); ++i ) {
       
   291     tty->print("(" INTPTR_FORMAT "," INTPTR_FORMAT "),", p2i(i._key), p2i(i._value));
       
   292   }
       
   293   tty->print_cr("}");
       
   294 }
       
   295 
       
   296 //------------------------------Hashing Functions----------------------------
       
   297 // Convert string to hash key.  This algorithm implements a universal hash
       
   298 // function with the multipliers frozen (ok, so it's not universal).  The
       
   299 // multipliers (and allowable characters) are all odd, so the resultant sum
       
   300 // is odd - guaranteed not divisible by any power of two, so the hash tables
       
   301 // can be any power of two with good results.  Also, I choose multipliers
       
   302 // that have only 2 bits set (the low is always set to be odd) so
       
   303 // multiplication requires only shifts and adds.  Characters are required to
       
   304 // be in the range 0-127 (I double & add 1 to force oddness).  Keys are
       
   305 // limited to MAXID characters in length.  Experimental evidence on 150K of
       
   306 // C text shows excellent spreading of values for any size hash table.
       
   307 int hashstr(const void *t) {
       
   308   register char c, k = 0;
       
   309   register int32_t sum = 0;
       
   310   register const char *s = (const char *)t;
       
   311 
       
   312   while( ((c = *s++) != '\0') && (k < MAXID-1) ) { // Get characters till null or MAXID-1
       
   313     c = (c<<1)+1;               // Characters are always odd!
       
   314     sum += c + (c<<shft[k++]);  // Universal hash function
       
   315   }
       
   316   return (int)((sum+xsum[k]) >> 1); // Hash key, un-modulo'd table size
       
   317 }
       
   318 
       
   319 //------------------------------hashptr--------------------------------------
       
   320 // Slimey cheap hash function; no guaranteed performance.  Better than the
       
   321 // default for pointers, especially on MS-DOS machines.
       
   322 int hashptr(const void *key) {
       
   323   return ((intptr_t)key >> 2);
       
   324 }
       
   325 
       
   326 // Slimey cheap hash function; no guaranteed performance.
       
   327 int hashkey(const void *key) {
       
   328   return (intptr_t)key;
       
   329 }
       
   330 
       
   331 //------------------------------Key Comparator Functions---------------------
       
   332 int32_t cmpstr(const void *k1, const void *k2) {
       
   333   return strcmp((const char *)k1,(const char *)k2);
       
   334 }
       
   335 
       
   336 // Cheap key comparator.
       
   337 int32_t cmpkey(const void *key1, const void *key2) {
       
   338   if (key1 == key2) return 0;
       
   339   intptr_t delta = (intptr_t)key1 - (intptr_t)key2;
       
   340   if (delta > 0) return 1;
       
   341   return -1;
       
   342 }
       
   343 
       
   344 //=============================================================================
       
   345 //------------------------------reset------------------------------------------
       
   346 // Create an iterator and initialize the first variables.
       
   347 void DictI::reset( const Dict *dict ) {
       
   348   _d = dict;                    // The dictionary
       
   349   _i = (uint)-1;                // Before the first bin
       
   350   _j = 0;                       // Nothing left in the current bin
       
   351   ++(*this);                    // Step to first real value
       
   352 }
       
   353 
       
   354 //------------------------------next-------------------------------------------
       
   355 // Find the next key-value pair in the dictionary, or return a NULL key and
       
   356 // value.
       
   357 void DictI::operator ++(void) {
       
   358   if( _j-- ) {                  // Still working in current bin?
       
   359     _key   = _d->_bin[_i]._keyvals[_j+_j];
       
   360     _value = _d->_bin[_i]._keyvals[_j+_j+1];
       
   361     return;
       
   362   }
       
   363 
       
   364   while( ++_i < _d->_size ) {   // Else scan for non-zero bucket
       
   365     _j = _d->_bin[_i]._cnt;
       
   366     if( !_j ) continue;
       
   367     _j--;
       
   368     _key   = _d->_bin[_i]._keyvals[_j+_j];
       
   369     _value = _d->_bin[_i]._keyvals[_j+_j+1];
       
   370     return;
       
   371   }
       
   372   _key = _value = NULL;
       
   373 }