src/hotspot/share/c1/c1_RangeCheckElimination.cpp
changeset 47216 71c04702a3d5
parent 38031 e0b822facc03
equal deleted inserted replaced
47215:4ebc2e2fb97c 47216:71c04702a3d5
       
     1 /*
       
     2  * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "c1/c1_ValueStack.hpp"
       
    27 #include "c1/c1_RangeCheckElimination.hpp"
       
    28 #include "c1/c1_IR.hpp"
       
    29 #include "c1/c1_Canonicalizer.hpp"
       
    30 #include "c1/c1_ValueMap.hpp"
       
    31 #include "ci/ciMethodData.hpp"
       
    32 #include "runtime/deoptimization.hpp"
       
    33 
       
    34 // Macros for the Trace and the Assertion flag
       
    35 #ifdef ASSERT
       
    36 #define TRACE_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination) { code; }
       
    37 #define ASSERT_RANGE_CHECK_ELIMINATION(code) if (AssertRangeCheckElimination) { code; }
       
    38 #define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code) if (TraceRangeCheckElimination || AssertRangeCheckElimination) { code; }
       
    39 #else
       
    40 #define TRACE_RANGE_CHECK_ELIMINATION(code)
       
    41 #define ASSERT_RANGE_CHECK_ELIMINATION(code)
       
    42 #define TRACE_OR_ASSERT_RANGE_CHECK_ELIMINATION(code)
       
    43 #endif
       
    44 
       
    45 // Entry point for the optimization
       
    46 void RangeCheckElimination::eliminate(IR *ir) {
       
    47   bool do_elimination = ir->compilation()->has_access_indexed();
       
    48   ASSERT_RANGE_CHECK_ELIMINATION(do_elimination = true);
       
    49   if (do_elimination) {
       
    50     RangeCheckEliminator rce(ir);
       
    51   }
       
    52 }
       
    53 
       
    54 // Constructor
       
    55 RangeCheckEliminator::RangeCheckEliminator(IR *ir) :
       
    56   _bounds(Instruction::number_of_instructions(), Instruction::number_of_instructions(), NULL),
       
    57   _access_indexed_info(Instruction::number_of_instructions(), Instruction::number_of_instructions(), NULL)
       
    58 {
       
    59   _visitor.set_range_check_eliminator(this);
       
    60   _ir = ir;
       
    61   _number_of_instructions = Instruction::number_of_instructions();
       
    62   _optimistic = ir->compilation()->is_optimistic();
       
    63 
       
    64   TRACE_RANGE_CHECK_ELIMINATION(
       
    65     tty->cr();
       
    66     tty->print_cr("Range check elimination");
       
    67     ir->method()->print_name(tty);
       
    68     tty->cr();
       
    69   );
       
    70 
       
    71   TRACE_RANGE_CHECK_ELIMINATION(
       
    72     tty->print_cr("optimistic=%d", (int)_optimistic);
       
    73   );
       
    74 
       
    75 #ifdef ASSERT
       
    76   // Verifies several conditions that must be true on the IR-input. Only used for debugging purposes.
       
    77   TRACE_RANGE_CHECK_ELIMINATION(
       
    78     tty->print_cr("Verification of IR . . .");
       
    79   );
       
    80   Verification verification(ir);
       
    81 #endif
       
    82 
       
    83   // Set process block flags
       
    84   // Optimization so a blocks is only processed if it contains an access indexed instruction or if
       
    85   // one of its children in the dominator tree contains an access indexed instruction.
       
    86   set_process_block_flags(ir->start());
       
    87 
       
    88   // Pass over instructions in the dominator tree
       
    89   TRACE_RANGE_CHECK_ELIMINATION(
       
    90     tty->print_cr("Starting pass over dominator tree . . .")
       
    91   );
       
    92   calc_bounds(ir->start(), NULL);
       
    93 
       
    94   TRACE_RANGE_CHECK_ELIMINATION(
       
    95     tty->print_cr("Finished!")
       
    96   );
       
    97 }
       
    98 
       
    99 // Instruction specific work for some instructions
       
   100 // Constant
       
   101 void RangeCheckEliminator::Visitor::do_Constant(Constant *c) {
       
   102   IntConstant *ic = c->type()->as_IntConstant();
       
   103   if (ic != NULL) {
       
   104     int value = ic->value();
       
   105     _bound = new Bound(value, NULL, value, NULL);
       
   106   }
       
   107 }
       
   108 
       
   109 // LogicOp
       
   110 void RangeCheckEliminator::Visitor::do_LogicOp(LogicOp *lo) {
       
   111   if (lo->type()->as_IntType() && lo->op() == Bytecodes::_iand && (lo->x()->as_Constant() || lo->y()->as_Constant())) {
       
   112     int constant = 0;
       
   113     Constant *c = lo->x()->as_Constant();
       
   114     if (c != NULL) {
       
   115       constant = c->type()->as_IntConstant()->value();
       
   116     } else {
       
   117       constant = lo->y()->as_Constant()->type()->as_IntConstant()->value();
       
   118     }
       
   119     if (constant >= 0) {
       
   120       _bound = new Bound(0, NULL, constant, NULL);
       
   121     }
       
   122   }
       
   123 }
       
   124 
       
   125 // Phi
       
   126 void RangeCheckEliminator::Visitor::do_Phi(Phi *phi) {
       
   127   if (!phi->type()->as_IntType() && !phi->type()->as_ObjectType()) return;
       
   128 
       
   129   BlockBegin *block = phi->block();
       
   130   int op_count = phi->operand_count();
       
   131   bool has_upper = true;
       
   132   bool has_lower = true;
       
   133   assert(phi, "Phi must not be null");
       
   134   Bound *bound = NULL;
       
   135 
       
   136   // TODO: support more difficult phis
       
   137   for (int i=0; i<op_count; i++) {
       
   138     Value v = phi->operand_at(i);
       
   139 
       
   140     if (v == phi) continue;
       
   141 
       
   142     // Check if instruction is connected with phi itself
       
   143     Op2 *op2 = v->as_Op2();
       
   144     if (op2 != NULL) {
       
   145       Value x = op2->x();
       
   146       Value y = op2->y();
       
   147       if ((x == phi || y == phi)) {
       
   148         Value other = x;
       
   149         if (other == phi) {
       
   150           other = y;
       
   151         }
       
   152         ArithmeticOp *ao = v->as_ArithmeticOp();
       
   153         if (ao != NULL && ao->op() == Bytecodes::_iadd) {
       
   154           assert(ao->op() == Bytecodes::_iadd, "Has to be add!");
       
   155           if (ao->type()->as_IntType()) {
       
   156             Constant *c = other->as_Constant();
       
   157             if (c != NULL) {
       
   158               assert(c->type()->as_IntConstant(), "Constant has to be of type integer");
       
   159               int value = c->type()->as_IntConstant()->value();
       
   160               if (value == 1) {
       
   161                 has_upper = false;
       
   162               } else if (value > 1) {
       
   163                 // Overflow not guaranteed
       
   164                 has_upper = false;
       
   165                 has_lower = false;
       
   166               } else if (value < 0) {
       
   167                 has_lower = false;
       
   168               }
       
   169               continue;
       
   170             }
       
   171           }
       
   172         }
       
   173       }
       
   174     }
       
   175 
       
   176     // No connection -> new bound
       
   177     Bound *v_bound = _rce->get_bound(v);
       
   178     Bound *cur_bound;
       
   179     int cur_constant = 0;
       
   180     Value cur_value = v;
       
   181 
       
   182     if (v->type()->as_IntConstant()) {
       
   183       cur_constant = v->type()->as_IntConstant()->value();
       
   184       cur_value = NULL;
       
   185     }
       
   186     if (!v_bound->has_upper() || !v_bound->has_lower()) {
       
   187       cur_bound = new Bound(cur_constant, cur_value, cur_constant, cur_value);
       
   188     } else {
       
   189       cur_bound = v_bound;
       
   190     }
       
   191     if (cur_bound) {
       
   192       if (!bound) {
       
   193         bound = cur_bound->copy();
       
   194       } else {
       
   195         bound->or_op(cur_bound);
       
   196       }
       
   197     } else {
       
   198       // No bound!
       
   199       bound = NULL;
       
   200       break;
       
   201     }
       
   202   }
       
   203 
       
   204   if (bound) {
       
   205     if (!has_upper) {
       
   206       bound->remove_upper();
       
   207     }
       
   208     if (!has_lower) {
       
   209       bound->remove_lower();
       
   210     }
       
   211     _bound = bound;
       
   212   } else {
       
   213     _bound = new Bound();
       
   214   }
       
   215 }
       
   216 
       
   217 
       
   218 // ArithmeticOp
       
   219 void RangeCheckEliminator::Visitor::do_ArithmeticOp(ArithmeticOp *ao) {
       
   220   Value x = ao->x();
       
   221   Value y = ao->y();
       
   222 
       
   223   if (ao->op() == Bytecodes::_irem) {
       
   224     Bound* x_bound = _rce->get_bound(x);
       
   225     Bound* y_bound = _rce->get_bound(y);
       
   226     if (x_bound->lower() >= 0 && x_bound->lower_instr() == NULL && y->as_ArrayLength() != NULL) {
       
   227       _bound = new Bound(0, NULL, -1, y);
       
   228     } else {
       
   229       _bound = new Bound();
       
   230     }
       
   231   } else if (!x->as_Constant() || !y->as_Constant()) {
       
   232     assert(!x->as_Constant() || !y->as_Constant(), "One of the operands must be non-constant!");
       
   233     if (((x->as_Constant() || y->as_Constant()) && (ao->op() == Bytecodes::_iadd)) || (y->as_Constant() && ao->op() == Bytecodes::_isub)) {
       
   234       assert(ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub, "Operand must be iadd or isub");
       
   235 
       
   236       if (y->as_Constant()) {
       
   237         Value tmp = x;
       
   238         x = y;
       
   239         y = tmp;
       
   240       }
       
   241       assert(x->as_Constant()->type()->as_IntConstant(), "Constant must be int constant!");
       
   242 
       
   243       // Constant now in x
       
   244       int const_value = x->as_Constant()->type()->as_IntConstant()->value();
       
   245       if (ao->op() == Bytecodes::_iadd || const_value != min_jint) {
       
   246         if (ao->op() == Bytecodes::_isub) {
       
   247           const_value = -const_value;
       
   248         }
       
   249 
       
   250         Bound * bound = _rce->get_bound(y);
       
   251         if (bound->has_upper() && bound->has_lower()) {
       
   252           int new_lower = bound->lower() + const_value;
       
   253           jlong new_lowerl = ((jlong)bound->lower()) + const_value;
       
   254           int new_upper = bound->upper() + const_value;
       
   255           jlong new_upperl = ((jlong)bound->upper()) + const_value;
       
   256 
       
   257           if (((jlong)new_lower) == new_lowerl && ((jlong)new_upper == new_upperl)) {
       
   258             Bound *newBound = new Bound(new_lower, bound->lower_instr(), new_upper, bound->upper_instr());
       
   259             _bound = newBound;
       
   260           } else {
       
   261             // overflow
       
   262             _bound = new Bound();
       
   263           }
       
   264         } else {
       
   265           _bound = new Bound();
       
   266         }
       
   267       } else {
       
   268         _bound = new Bound();
       
   269       }
       
   270     } else {
       
   271       Bound *bound = _rce->get_bound(x);
       
   272       if (ao->op() == Bytecodes::_isub) {
       
   273         if (bound->lower_instr() == y) {
       
   274           _bound = new Bound(Instruction::geq, NULL, bound->lower());
       
   275         } else {
       
   276           _bound = new Bound();
       
   277         }
       
   278       } else {
       
   279         _bound = new Bound();
       
   280       }
       
   281     }
       
   282   }
       
   283 }
       
   284 
       
   285 // IfOp
       
   286 void RangeCheckEliminator::Visitor::do_IfOp(IfOp *ifOp)
       
   287 {
       
   288   if (ifOp->tval()->type()->as_IntConstant() && ifOp->fval()->type()->as_IntConstant()) {
       
   289     int min = ifOp->tval()->type()->as_IntConstant()->value();
       
   290     int max = ifOp->fval()->type()->as_IntConstant()->value();
       
   291     if (min > max) {
       
   292       // min ^= max ^= min ^= max;
       
   293       int tmp = min;
       
   294       min = max;
       
   295       max = tmp;
       
   296     }
       
   297     _bound = new Bound(min, NULL, max, NULL);
       
   298   }
       
   299 }
       
   300 
       
   301 // Get bound. Returns the current bound on Value v. Normally this is the topmost element on the bound stack.
       
   302 RangeCheckEliminator::Bound *RangeCheckEliminator::get_bound(Value v) {
       
   303   // Wrong type or NULL -> No bound
       
   304   if (!v || (!v->type()->as_IntType() && !v->type()->as_ObjectType())) return NULL;
       
   305 
       
   306   if (!_bounds.at(v->id())) {
       
   307     // First (default) bound is calculated
       
   308     // Create BoundStack
       
   309     _bounds.at_put(v->id(), new BoundStack());
       
   310     _visitor.clear_bound();
       
   311     Value visit_value = v;
       
   312     visit_value->visit(&_visitor);
       
   313     Bound *bound = _visitor.bound();
       
   314     if (bound) {
       
   315       _bounds.at(v->id())->push(bound);
       
   316     }
       
   317     if (_bounds.at(v->id())->length() == 0) {
       
   318       assert(!(v->as_Constant() && v->type()->as_IntConstant()), "constants not handled here");
       
   319       _bounds.at(v->id())->push(new Bound());
       
   320     }
       
   321   } else if (_bounds.at(v->id())->length() == 0) {
       
   322     // To avoid endless loops, bound is currently in calculation -> nothing known about it
       
   323     return new Bound();
       
   324   }
       
   325 
       
   326   // Return bound
       
   327   return _bounds.at(v->id())->top();
       
   328 }
       
   329 
       
   330 // Update bound
       
   331 void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Instruction::Condition cond, Value value, int constant) {
       
   332   if (cond == Instruction::gtr) {
       
   333     cond = Instruction::geq;
       
   334     constant++;
       
   335   } else if (cond == Instruction::lss) {
       
   336     cond = Instruction::leq;
       
   337     constant--;
       
   338   }
       
   339   Bound *bound = new Bound(cond, value, constant);
       
   340   update_bound(pushed, v, bound);
       
   341 }
       
   342 
       
   343 // Checks for loop invariance. Returns true if the instruction is outside of the loop which is identified by loop_header.
       
   344 bool RangeCheckEliminator::loop_invariant(BlockBegin *loop_header, Instruction *instruction) {
       
   345   assert(loop_header, "Loop header must not be null!");
       
   346   if (!instruction) return true;
       
   347   return instruction->dominator_depth() < loop_header->dominator_depth();
       
   348 }
       
   349 
       
   350 // Update bound. Pushes a new bound onto the stack. Tries to do a conjunction with the current bound.
       
   351 void RangeCheckEliminator::update_bound(IntegerStack &pushed, Value v, Bound *bound) {
       
   352   if (v->as_Constant()) {
       
   353     // No bound update for constants
       
   354     return;
       
   355   }
       
   356   if (!_bounds.at(v->id())) {
       
   357     get_bound(v);
       
   358     assert(_bounds.at(v->id()), "Now Stack must exist");
       
   359   }
       
   360   Bound *top = NULL;
       
   361   if (_bounds.at(v->id())->length() > 0) {
       
   362     top = _bounds.at(v->id())->top();
       
   363   }
       
   364   if (top) {
       
   365     bound->and_op(top);
       
   366   }
       
   367   _bounds.at(v->id())->push(bound);
       
   368   pushed.append(v->id());
       
   369 }
       
   370 
       
   371 // Add instruction + idx for in block motion
       
   372 void RangeCheckEliminator::add_access_indexed_info(InstructionList &indices, int idx, Value instruction, AccessIndexed *ai) {
       
   373   int id = instruction->id();
       
   374   AccessIndexedInfo *aii = _access_indexed_info.at(id);
       
   375   if (aii == NULL) {
       
   376     aii = new AccessIndexedInfo();
       
   377     _access_indexed_info.at_put(id, aii);
       
   378     indices.append(instruction);
       
   379     aii->_min = idx;
       
   380     aii->_max = idx;
       
   381     aii->_list = new AccessIndexedList();
       
   382   } else if (idx >= aii->_min && idx <= aii->_max) {
       
   383     remove_range_check(ai);
       
   384     return;
       
   385   }
       
   386   aii->_min = MIN2(aii->_min, idx);
       
   387   aii->_max = MAX2(aii->_max, idx);
       
   388   aii->_list->append(ai);
       
   389 }
       
   390 
       
   391 // In block motion. Tries to reorder checks in order to reduce some of them.
       
   392 // Example:
       
   393 // a[i] = 0;
       
   394 // a[i+2] = 0;
       
   395 // a[i+1] = 0;
       
   396 // In this example the check for a[i+1] would be considered as unnecessary during the first iteration.
       
   397 // After this i is only checked once for i >= 0 and i+2 < a.length before the first array access. If this
       
   398 // check fails, deoptimization is called.
       
   399 void RangeCheckEliminator::in_block_motion(BlockBegin *block, AccessIndexedList &accessIndexed, InstructionList &arrays) {
       
   400   InstructionList indices;
       
   401 
       
   402   // Now iterate over all arrays
       
   403   for (int i=0; i<arrays.length(); i++) {
       
   404     int max_constant = -1;
       
   405     AccessIndexedList list_constant;
       
   406     Value array = arrays.at(i);
       
   407 
       
   408     // For all AccessIndexed-instructions in this block concerning the current array.
       
   409     for(int j=0; j<accessIndexed.length(); j++) {
       
   410       AccessIndexed *ai = accessIndexed.at(j);
       
   411       if (ai->array() != array || !ai->check_flag(Instruction::NeedsRangeCheckFlag)) continue;
       
   412 
       
   413       Value index = ai->index();
       
   414       Constant *c = index->as_Constant();
       
   415       if (c != NULL) {
       
   416         int constant_value = c->type()->as_IntConstant()->value();
       
   417         if (constant_value >= 0) {
       
   418           if (constant_value <= max_constant) {
       
   419             // No range check needed for this
       
   420             remove_range_check(ai);
       
   421           } else {
       
   422             max_constant = constant_value;
       
   423             list_constant.append(ai);
       
   424           }
       
   425         }
       
   426       } else {
       
   427         int last_integer = 0;
       
   428         Instruction *last_instruction = index;
       
   429         int base = 0;
       
   430         ArithmeticOp *ao = index->as_ArithmeticOp();
       
   431 
       
   432         while (ao != NULL && (ao->x()->as_Constant() || ao->y()->as_Constant()) && (ao->op() == Bytecodes::_iadd || ao->op() == Bytecodes::_isub)) {
       
   433           c = ao->y()->as_Constant();
       
   434           Instruction *other = ao->x();
       
   435           if (!c && ao->op() == Bytecodes::_iadd) {
       
   436             c = ao->x()->as_Constant();
       
   437             other = ao->y();
       
   438           }
       
   439 
       
   440           if (c) {
       
   441             int value = c->type()->as_IntConstant()->value();
       
   442             if (value != min_jint) {
       
   443               if (ao->op() == Bytecodes::_isub) {
       
   444                 value = -value;
       
   445               }
       
   446               base += value;
       
   447               last_integer = base;
       
   448               last_instruction = other;
       
   449             }
       
   450             index = other;
       
   451           } else {
       
   452             break;
       
   453           }
       
   454           ao = index->as_ArithmeticOp();
       
   455         }
       
   456         add_access_indexed_info(indices, last_integer, last_instruction, ai);
       
   457       }
       
   458     }
       
   459 
       
   460     // Iterate over all different indices
       
   461     if (_optimistic) {
       
   462       for (int i = 0; i < indices.length(); i++) {
       
   463         Instruction *index_instruction = indices.at(i);
       
   464         AccessIndexedInfo *info = _access_indexed_info.at(index_instruction->id());
       
   465         assert(info != NULL, "Info must not be null");
       
   466 
       
   467         // if idx < 0, max > 0, max + idx may fall between 0 and
       
   468         // length-1 and if min < 0, min + idx may overflow and be >=
       
   469         // 0. The predicate wouldn't trigger but some accesses could
       
   470         // be with a negative index. This test guarantees that for the
       
   471         // min and max value that are kept the predicate can't let
       
   472         // some incorrect accesses happen.
       
   473         bool range_cond = (info->_max < 0 || info->_max + min_jint <= info->_min);
       
   474 
       
   475         // Generate code only if more than 2 range checks can be eliminated because of that.
       
   476         // 2 because at least 2 comparisons are done
       
   477         if (info->_list->length() > 2 && range_cond) {
       
   478           AccessIndexed *first = info->_list->at(0);
       
   479           Instruction *insert_position = first->prev();
       
   480           assert(insert_position->next() == first, "prev was calculated");
       
   481           ValueStack *state = first->state_before();
       
   482 
       
   483           // Load min Constant
       
   484           Constant *min_constant = NULL;
       
   485           if (info->_min != 0) {
       
   486             min_constant = new Constant(new IntConstant(info->_min));
       
   487             NOT_PRODUCT(min_constant->set_printable_bci(first->printable_bci()));
       
   488             insert_position = insert_position->insert_after(min_constant);
       
   489           }
       
   490 
       
   491           // Load max Constant
       
   492           Constant *max_constant = NULL;
       
   493           if (info->_max != 0) {
       
   494             max_constant = new Constant(new IntConstant(info->_max));
       
   495             NOT_PRODUCT(max_constant->set_printable_bci(first->printable_bci()));
       
   496             insert_position = insert_position->insert_after(max_constant);
       
   497           }
       
   498 
       
   499           // Load array length
       
   500           Value length_instr = first->length();
       
   501           if (!length_instr) {
       
   502             ArrayLength *length = new ArrayLength(array, first->state_before()->copy());
       
   503             length->set_exception_state(length->state_before());
       
   504             length->set_flag(Instruction::DeoptimizeOnException, true);
       
   505             insert_position = insert_position->insert_after_same_bci(length);
       
   506             length_instr = length;
       
   507           }
       
   508 
       
   509           // Calculate lower bound
       
   510           Instruction *lower_compare = index_instruction;
       
   511           if (min_constant) {
       
   512             ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, min_constant, lower_compare, false, NULL);
       
   513             insert_position = insert_position->insert_after_same_bci(ao);
       
   514             lower_compare = ao;
       
   515           }
       
   516 
       
   517           // Calculate upper bound
       
   518           Instruction *upper_compare = index_instruction;
       
   519           if (max_constant) {
       
   520             ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, max_constant, upper_compare, false, NULL);
       
   521             insert_position = insert_position->insert_after_same_bci(ao);
       
   522             upper_compare = ao;
       
   523           }
       
   524 
       
   525           // Trick with unsigned compare is done
       
   526           int bci = NOT_PRODUCT(first->printable_bci()) PRODUCT_ONLY(-1);
       
   527           insert_position = predicate(upper_compare, Instruction::aeq, length_instr, state, insert_position, bci);
       
   528           insert_position = predicate_cmp_with_const(lower_compare, Instruction::leq, -1, state, insert_position);
       
   529           for (int j = 0; j<info->_list->length(); j++) {
       
   530             AccessIndexed *ai = info->_list->at(j);
       
   531             remove_range_check(ai);
       
   532           }
       
   533         }
       
   534       }
       
   535 
       
   536       if (list_constant.length() > 1) {
       
   537         AccessIndexed *first = list_constant.at(0);
       
   538         Instruction *insert_position = first->prev();
       
   539         ValueStack *state = first->state_before();
       
   540         // Load max Constant
       
   541         Constant *constant = new Constant(new IntConstant(max_constant));
       
   542         NOT_PRODUCT(constant->set_printable_bci(first->printable_bci()));
       
   543         insert_position = insert_position->insert_after(constant);
       
   544         Instruction *compare_instr = constant;
       
   545         Value length_instr = first->length();
       
   546         if (!length_instr) {
       
   547           ArrayLength *length = new ArrayLength(array, state->copy());
       
   548           length->set_exception_state(length->state_before());
       
   549           length->set_flag(Instruction::DeoptimizeOnException, true);
       
   550           insert_position = insert_position->insert_after_same_bci(length);
       
   551           length_instr = length;
       
   552         }
       
   553         // Compare for greater or equal to array length
       
   554         insert_position = predicate(compare_instr, Instruction::geq, length_instr, state, insert_position);
       
   555         for (int j = 0; j<list_constant.length(); j++) {
       
   556           AccessIndexed *ai = list_constant.at(j);
       
   557           remove_range_check(ai);
       
   558         }
       
   559       }
       
   560     }
       
   561 
       
   562     // Clear data structures for next array
       
   563     for (int i = 0; i < indices.length(); i++) {
       
   564       Instruction *index_instruction = indices.at(i);
       
   565       _access_indexed_info.at_put(index_instruction->id(), NULL);
       
   566     }
       
   567     indices.clear();
       
   568   }
       
   569 }
       
   570 
       
   571 bool RangeCheckEliminator::set_process_block_flags(BlockBegin *block) {
       
   572   Instruction *cur = block;
       
   573   bool process = false;
       
   574 
       
   575   while (cur) {
       
   576     process |= (cur->as_AccessIndexed() != NULL);
       
   577     cur = cur->next();
       
   578   }
       
   579 
       
   580   BlockList *dominates = block->dominates();
       
   581   for (int i=0; i<dominates->length(); i++) {
       
   582     BlockBegin *next = dominates->at(i);
       
   583     process |= set_process_block_flags(next);
       
   584   }
       
   585 
       
   586   if (!process) {
       
   587     block->set(BlockBegin::donot_eliminate_range_checks);
       
   588   }
       
   589   return process;
       
   590 }
       
   591 
       
   592 bool RangeCheckEliminator::is_ok_for_deoptimization(Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper) {
       
   593   bool upper_check = true;
       
   594   assert(lower_instr || lower >= 0, "If no lower_instr present, lower must be greater 0");
       
   595   assert(!lower_instr || lower_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
       
   596   assert(!upper_instr || upper_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
       
   597   assert(array_instr, "Array instruction must exist");
       
   598   assert(array_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
       
   599   assert(!length_instr || length_instr->dominator_depth() <= insert_position->dominator_depth(), "Dominator depth must be smaller");
       
   600 
       
   601   if (upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr) {
       
   602     // static check
       
   603     if (upper >= 0) return false; // would always trigger a deopt:
       
   604                                   // array_length + x >= array_length, x >= 0 is always true
       
   605     upper_check = false;
       
   606   }
       
   607   if (lower_instr && lower_instr->as_ArrayLength() && lower_instr->as_ArrayLength()->array() == array_instr) {
       
   608     if (lower > 0) return false;
       
   609   }
       
   610   // No upper check required -> skip
       
   611   if (upper_check && upper_instr && upper_instr->type()->as_ObjectType() && upper_instr == array_instr) {
       
   612     // upper_instr is object means that the upper bound is the length
       
   613     // of the upper_instr.
       
   614     return false;
       
   615   }
       
   616   return true;
       
   617 }
       
   618 
       
   619 Instruction* RangeCheckEliminator::insert_after(Instruction* insert_position, Instruction* instr, int bci) {
       
   620   if (bci != -1) {
       
   621     NOT_PRODUCT(instr->set_printable_bci(bci));
       
   622     return insert_position->insert_after(instr);
       
   623   } else {
       
   624     return insert_position->insert_after_same_bci(instr);
       
   625   }
       
   626 }
       
   627 
       
   628 Instruction* RangeCheckEliminator::predicate(Instruction* left, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
       
   629   RangeCheckPredicate *deoptimize = new RangeCheckPredicate(left, cond, true, right, state->copy());
       
   630   return insert_after(insert_position, deoptimize, bci);
       
   631 }
       
   632 
       
   633 Instruction* RangeCheckEliminator::predicate_cmp_with_const(Instruction* instr, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
       
   634   Constant *const_instr = new Constant(new IntConstant(constant));
       
   635   insert_position = insert_after(insert_position, const_instr, bci);
       
   636   return predicate(instr, cond, const_instr, state, insert_position);
       
   637 }
       
   638 
       
   639 Instruction* RangeCheckEliminator::predicate_add(Instruction* left, int left_const, Instruction::Condition cond, Instruction* right, ValueStack* state, Instruction *insert_position, int bci) {
       
   640   Constant *constant = new Constant(new IntConstant(left_const));
       
   641   insert_position = insert_after(insert_position, constant, bci);
       
   642   ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, left, false, NULL);
       
   643   insert_position = insert_position->insert_after_same_bci(ao);
       
   644   return predicate(ao, cond, right, state, insert_position);
       
   645 }
       
   646 
       
   647 Instruction* RangeCheckEliminator::predicate_add_cmp_with_const(Instruction* left, int left_const, Instruction::Condition cond, int constant, ValueStack* state, Instruction *insert_position, int bci) {
       
   648   Constant *const_instr = new Constant(new IntConstant(constant));
       
   649   insert_position = insert_after(insert_position, const_instr, bci);
       
   650   return predicate_add(left, left_const, cond, const_instr, state, insert_position);
       
   651 }
       
   652 
       
   653 // Insert deoptimization
       
   654 void RangeCheckEliminator::insert_deoptimization(ValueStack *state, Instruction *insert_position, Instruction *array_instr, Instruction *length_instr, Instruction *lower_instr, int lower, Instruction *upper_instr, int upper, AccessIndexed *ai) {
       
   655   assert(is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, lower, upper_instr, upper), "should have been tested before");
       
   656   bool upper_check = !(upper_instr && upper_instr->as_ArrayLength() && upper_instr->as_ArrayLength()->array() == array_instr);
       
   657 
       
   658   int bci = NOT_PRODUCT(ai->printable_bci()) PRODUCT_ONLY(-1);
       
   659   if (lower_instr) {
       
   660     assert(!lower_instr->type()->as_ObjectType(), "Must not be object type");
       
   661     if (lower == 0) {
       
   662       // Compare for less than 0
       
   663       insert_position = predicate_cmp_with_const(lower_instr, Instruction::lss, 0, state, insert_position, bci);
       
   664     } else if (lower > 0) {
       
   665       // Compare for smaller 0
       
   666       insert_position = predicate_add_cmp_with_const(lower_instr, lower, Instruction::lss, 0, state, insert_position, bci);
       
   667     } else {
       
   668       assert(lower < 0, "");
       
   669       // Add 1
       
   670       lower++;
       
   671       lower = -lower;
       
   672       // Compare for smaller or equal 0
       
   673       insert_position = predicate_cmp_with_const(lower_instr, Instruction::leq, lower, state, insert_position, bci);
       
   674     }
       
   675   }
       
   676 
       
   677   // No upper check required -> skip
       
   678   if (!upper_check) return;
       
   679 
       
   680   // We need to know length of array
       
   681   if (!length_instr) {
       
   682     // Load length if necessary
       
   683     ArrayLength *length = new ArrayLength(array_instr, state->copy());
       
   684     NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
       
   685     length->set_exception_state(length->state_before());
       
   686     length->set_flag(Instruction::DeoptimizeOnException, true);
       
   687     insert_position = insert_position->insert_after(length);
       
   688     length_instr = length;
       
   689   }
       
   690 
       
   691   if (!upper_instr) {
       
   692     // Compare for geq array.length
       
   693     insert_position = predicate_cmp_with_const(length_instr, Instruction::leq, upper, state, insert_position, bci);
       
   694   } else {
       
   695     if (upper_instr->type()->as_ObjectType()) {
       
   696       assert(state, "must not be null");
       
   697       assert(upper_instr != array_instr, "should be");
       
   698       ArrayLength *length = new ArrayLength(upper_instr, state->copy());
       
   699       NOT_PRODUCT(length->set_printable_bci(ai->printable_bci()));
       
   700       length->set_flag(Instruction::DeoptimizeOnException, true);
       
   701       length->set_exception_state(length->state_before());
       
   702       insert_position = insert_position->insert_after(length);
       
   703       upper_instr = length;
       
   704     }
       
   705     assert(upper_instr->type()->as_IntType(), "Must not be object type!");
       
   706 
       
   707     if (upper == 0) {
       
   708       // Compare for geq array.length
       
   709       insert_position = predicate(upper_instr, Instruction::geq, length_instr, state, insert_position, bci);
       
   710     } else if (upper < 0) {
       
   711       // Compare for geq array.length
       
   712       insert_position = predicate_add(upper_instr, upper, Instruction::geq, length_instr, state, insert_position, bci);
       
   713     } else {
       
   714       assert(upper > 0, "");
       
   715       upper = -upper;
       
   716       // Compare for geq array.length
       
   717       insert_position = predicate_add(length_instr, upper, Instruction::leq, upper_instr, state, insert_position, bci);
       
   718     }
       
   719   }
       
   720 }
       
   721 
       
   722 // Add if condition
       
   723 void RangeCheckEliminator::add_if_condition(IntegerStack &pushed, Value x, Value y, Instruction::Condition condition) {
       
   724   if (y->as_Constant()) return;
       
   725 
       
   726   int const_value = 0;
       
   727   Value instr_value = x;
       
   728   Constant *c = x->as_Constant();
       
   729   ArithmeticOp *ao = x->as_ArithmeticOp();
       
   730 
       
   731   if (c != NULL) {
       
   732     const_value = c->type()->as_IntConstant()->value();
       
   733     instr_value = NULL;
       
   734   } else if (ao != NULL &&  (!ao->x()->as_Constant() || !ao->y()->as_Constant()) && ((ao->op() == Bytecodes::_isub && ao->y()->as_Constant()) || ao->op() == Bytecodes::_iadd)) {
       
   735     assert(!ao->x()->as_Constant() || !ao->y()->as_Constant(), "At least one operator must be non-constant!");
       
   736     assert(ao->op() == Bytecodes::_isub || ao->op() == Bytecodes::_iadd, "Operation has to be add or sub!");
       
   737     c = ao->x()->as_Constant();
       
   738     if (c != NULL) {
       
   739       const_value = c->type()->as_IntConstant()->value();
       
   740       instr_value = ao->y();
       
   741     } else {
       
   742       c = ao->y()->as_Constant();
       
   743       if (c != NULL) {
       
   744         const_value = c->type()->as_IntConstant()->value();
       
   745         instr_value = ao->x();
       
   746       }
       
   747     }
       
   748     if (ao->op() == Bytecodes::_isub) {
       
   749       assert(ao->y()->as_Constant(), "1 - x not supported, only x - 1 is valid!");
       
   750       if (const_value > min_jint) {
       
   751         const_value = -const_value;
       
   752       } else {
       
   753         const_value = 0;
       
   754         instr_value = x;
       
   755       }
       
   756     }
       
   757   }
       
   758 
       
   759   update_bound(pushed, y, condition, instr_value, const_value);
       
   760 }
       
   761 
       
   762 // Process If
       
   763 void RangeCheckEliminator::process_if(IntegerStack &pushed, BlockBegin *block, If *cond) {
       
   764   // Only if we are direct true / false successor and NOT both ! (even this may occur)
       
   765   if ((cond->tsux() == block || cond->fsux() == block) && cond->tsux() != cond->fsux()) {
       
   766     Instruction::Condition condition = cond->cond();
       
   767     if (cond->fsux() == block) {
       
   768       condition = Instruction::negate(condition);
       
   769     }
       
   770     Value x = cond->x();
       
   771     Value y = cond->y();
       
   772     if (x->type()->as_IntType() && y->type()->as_IntType()) {
       
   773       add_if_condition(pushed, y, x, condition);
       
   774       add_if_condition(pushed, x, y, Instruction::mirror(condition));
       
   775     }
       
   776   }
       
   777 }
       
   778 
       
   779 // Process access indexed
       
   780 void RangeCheckEliminator::process_access_indexed(BlockBegin *loop_header, BlockBegin *block, AccessIndexed *ai) {
       
   781   TRACE_RANGE_CHECK_ELIMINATION(
       
   782     tty->fill_to(block->dominator_depth()*2)
       
   783   );
       
   784   TRACE_RANGE_CHECK_ELIMINATION(
       
   785     tty->print_cr("Access indexed: index=%d length=%d", ai->index()->id(), (ai->length() != NULL ? ai->length()->id() :-1 ))
       
   786   );
       
   787 
       
   788   if (ai->check_flag(Instruction::NeedsRangeCheckFlag)) {
       
   789     Bound *index_bound = get_bound(ai->index());
       
   790     if (!index_bound->has_lower() || !index_bound->has_upper()) {
       
   791       TRACE_RANGE_CHECK_ELIMINATION(
       
   792         tty->fill_to(block->dominator_depth()*2);
       
   793         tty->print_cr("Index instruction %d has no lower and/or no upper bound!", ai->index()->id())
       
   794       );
       
   795       return;
       
   796     }
       
   797 
       
   798     Bound *array_bound;
       
   799     if (ai->length()) {
       
   800       array_bound = get_bound(ai->length());
       
   801     } else {
       
   802       array_bound = get_bound(ai->array());
       
   803     }
       
   804 
       
   805     if (in_array_bound(index_bound, ai->array()) ||
       
   806       (index_bound && array_bound && index_bound->is_smaller(array_bound) && !index_bound->lower_instr() && index_bound->lower() >= 0)) {
       
   807         TRACE_RANGE_CHECK_ELIMINATION(
       
   808           tty->fill_to(block->dominator_depth()*2);
       
   809           tty->print_cr("Bounds check for instruction %d in block B%d can be fully eliminated!", ai->id(), ai->block()->block_id())
       
   810         );
       
   811 
       
   812         remove_range_check(ai);
       
   813     } else if (_optimistic && loop_header) {
       
   814       assert(ai->array(), "Array must not be null!");
       
   815       assert(ai->index(), "Index must not be null!");
       
   816 
       
   817       // Array instruction
       
   818       Instruction *array_instr = ai->array();
       
   819       if (!loop_invariant(loop_header, array_instr)) {
       
   820         TRACE_RANGE_CHECK_ELIMINATION(
       
   821           tty->fill_to(block->dominator_depth()*2);
       
   822           tty->print_cr("Array %d is not loop invariant to header B%d", ai->array()->id(), loop_header->block_id())
       
   823         );
       
   824         return;
       
   825       }
       
   826 
       
   827       // Lower instruction
       
   828       Value index_instr = ai->index();
       
   829       Value lower_instr = index_bound->lower_instr();
       
   830       if (!loop_invariant(loop_header, lower_instr)) {
       
   831         TRACE_RANGE_CHECK_ELIMINATION(
       
   832           tty->fill_to(block->dominator_depth()*2);
       
   833           tty->print_cr("Lower instruction %d not loop invariant!", lower_instr->id())
       
   834         );
       
   835         return;
       
   836       }
       
   837       if (!lower_instr && index_bound->lower() < 0) {
       
   838         TRACE_RANGE_CHECK_ELIMINATION(
       
   839           tty->fill_to(block->dominator_depth()*2);
       
   840           tty->print_cr("Lower bound smaller than 0 (%d)!", index_bound->lower())
       
   841         );
       
   842         return;
       
   843       }
       
   844 
       
   845       // Upper instruction
       
   846       Value upper_instr = index_bound->upper_instr();
       
   847       if (!loop_invariant(loop_header, upper_instr)) {
       
   848         TRACE_RANGE_CHECK_ELIMINATION(
       
   849           tty->fill_to(block->dominator_depth()*2);
       
   850           tty->print_cr("Upper instruction %d not loop invariant!", upper_instr->id())
       
   851         );
       
   852         return;
       
   853       }
       
   854 
       
   855       // Length instruction
       
   856       Value length_instr = ai->length();
       
   857       if (!loop_invariant(loop_header, length_instr)) {
       
   858         // Generate length instruction yourself!
       
   859         length_instr = NULL;
       
   860       }
       
   861 
       
   862       TRACE_RANGE_CHECK_ELIMINATION(
       
   863         tty->fill_to(block->dominator_depth()*2);
       
   864         tty->print_cr("LOOP INVARIANT access indexed %d found in block B%d!", ai->id(), ai->block()->block_id())
       
   865       );
       
   866 
       
   867       BlockBegin *pred_block = loop_header->dominator();
       
   868       assert(pred_block != NULL, "Every loop header has a dominator!");
       
   869       BlockEnd *pred_block_end = pred_block->end();
       
   870       Instruction *insert_position = pred_block_end->prev();
       
   871       ValueStack *state = pred_block_end->state_before();
       
   872       if (pred_block_end->as_Goto() && state == NULL) state = pred_block_end->state();
       
   873       assert(state, "State must not be null");
       
   874 
       
   875       // Add deoptimization to dominator of loop header
       
   876       TRACE_RANGE_CHECK_ELIMINATION(
       
   877         tty->fill_to(block->dominator_depth()*2);
       
   878         tty->print_cr("Inserting deopt at bci %d in block B%d!", state->bci(), insert_position->block()->block_id())
       
   879       );
       
   880 
       
   881       if (!is_ok_for_deoptimization(insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper())) {
       
   882         TRACE_RANGE_CHECK_ELIMINATION(
       
   883           tty->fill_to(block->dominator_depth()*2);
       
   884           tty->print_cr("Could not eliminate because of static analysis!")
       
   885         );
       
   886         return;
       
   887       }
       
   888 
       
   889       insert_deoptimization(state, insert_position, array_instr, length_instr, lower_instr, index_bound->lower(), upper_instr, index_bound->upper(), ai);
       
   890 
       
   891       // Finally remove the range check!
       
   892       remove_range_check(ai);
       
   893     }
       
   894   }
       
   895 }
       
   896 
       
   897 void RangeCheckEliminator::remove_range_check(AccessIndexed *ai) {
       
   898   ai->set_flag(Instruction::NeedsRangeCheckFlag, false);
       
   899   // no range check, no need for the length instruction anymore
       
   900   ai->clear_length();
       
   901 
       
   902   TRACE_RANGE_CHECK_ELIMINATION(
       
   903     tty->fill_to(ai->dominator_depth()*2);
       
   904     tty->print_cr("Range check for instruction %d eliminated!", ai->id());
       
   905   );
       
   906 
       
   907   ASSERT_RANGE_CHECK_ELIMINATION(
       
   908     Value array_length = ai->length();
       
   909     if (!array_length) {
       
   910       array_length = ai->array();
       
   911       assert(array_length->type()->as_ObjectType(), "Has to be object type!");
       
   912     }
       
   913     int cur_constant = -1;
       
   914     Value cur_value = array_length;
       
   915     if (cur_value->type()->as_IntConstant()) {
       
   916       cur_constant += cur_value->type()->as_IntConstant()->value();
       
   917       cur_value = NULL;
       
   918     }
       
   919     Bound *new_index_bound = new Bound(0, NULL, cur_constant, cur_value);
       
   920     add_assertions(new_index_bound, ai->index(), ai);
       
   921   );
       
   922 }
       
   923 
       
   924 // Calculate bounds for instruction in this block and children blocks in the dominator tree
       
   925 void RangeCheckEliminator::calc_bounds(BlockBegin *block, BlockBegin *loop_header) {
       
   926   // Ensures a valid loop_header
       
   927   assert(!loop_header || loop_header->is_set(BlockBegin::linear_scan_loop_header_flag), "Loop header has to be real !");
       
   928 
       
   929   // Tracing output
       
   930   TRACE_RANGE_CHECK_ELIMINATION(
       
   931     tty->fill_to(block->dominator_depth()*2);
       
   932     tty->print_cr("Block B%d", block->block_id());
       
   933   );
       
   934 
       
   935   // Pushed stack for conditions
       
   936   IntegerStack pushed;
       
   937   // Process If
       
   938   BlockBegin *parent = block->dominator();
       
   939   if (parent != NULL) {
       
   940     If *cond = parent->end()->as_If();
       
   941     if (cond != NULL) {
       
   942       process_if(pushed, block, cond);
       
   943     }
       
   944   }
       
   945 
       
   946   // Interate over current block
       
   947   InstructionList arrays;
       
   948   AccessIndexedList accessIndexed;
       
   949   Instruction *cur = block;
       
   950 
       
   951   while (cur) {
       
   952     // Ensure cur wasn't inserted during the elimination
       
   953     if (cur->id() < this->_bounds.length()) {
       
   954       // Process only if it is an access indexed instruction
       
   955       AccessIndexed *ai = cur->as_AccessIndexed();
       
   956       if (ai != NULL) {
       
   957         process_access_indexed(loop_header, block, ai);
       
   958         accessIndexed.append(ai);
       
   959         if (!arrays.contains(ai->array())) {
       
   960           arrays.append(ai->array());
       
   961         }
       
   962         Bound *b = get_bound(ai->index());
       
   963         if (!b->lower_instr()) {
       
   964           // Lower bound is constant
       
   965           update_bound(pushed, ai->index(), Instruction::geq, NULL, 0);
       
   966         }
       
   967         if (!b->has_upper()) {
       
   968           if (ai->length() && ai->length()->type()->as_IntConstant()) {
       
   969             int value = ai->length()->type()->as_IntConstant()->value();
       
   970             update_bound(pushed, ai->index(), Instruction::lss, NULL, value);
       
   971           } else {
       
   972             // Has no upper bound
       
   973             Instruction *instr = ai->length();
       
   974             if (instr != NULL) instr = ai->array();
       
   975             update_bound(pushed, ai->index(), Instruction::lss, instr, 0);
       
   976           }
       
   977         }
       
   978       }
       
   979     }
       
   980     cur = cur->next();
       
   981   }
       
   982 
       
   983   // Output current condition stack
       
   984   TRACE_RANGE_CHECK_ELIMINATION(dump_condition_stack(block));
       
   985 
       
   986   // Do in block motion of range checks
       
   987   in_block_motion(block, accessIndexed, arrays);
       
   988 
       
   989   // Call all dominated blocks
       
   990   for (int i=0; i<block->dominates()->length(); i++) {
       
   991     BlockBegin *next = block->dominates()->at(i);
       
   992     if (!next->is_set(BlockBegin::donot_eliminate_range_checks)) {
       
   993       // if current block is a loop header and:
       
   994       // - next block belongs to the same loop
       
   995       // or
       
   996       // - next block belongs to an inner loop
       
   997       // then current block is the loop header for next block
       
   998       if (block->is_set(BlockBegin::linear_scan_loop_header_flag) && (block->loop_index() == next->loop_index() || next->loop_depth() > block->loop_depth())) {
       
   999         calc_bounds(next, block);
       
  1000       } else {
       
  1001         calc_bounds(next, loop_header);
       
  1002       }
       
  1003     }
       
  1004   }
       
  1005 
       
  1006   // Reset stack
       
  1007   for (int i=0; i<pushed.length(); i++) {
       
  1008     _bounds.at(pushed.at(i))->pop();
       
  1009   }
       
  1010 }
       
  1011 
       
  1012 #ifndef PRODUCT
       
  1013 // Dump condition stack
       
  1014 void RangeCheckEliminator::dump_condition_stack(BlockBegin *block) {
       
  1015   for (int i=0; i<_ir->linear_scan_order()->length(); i++) {
       
  1016     BlockBegin *cur_block = _ir->linear_scan_order()->at(i);
       
  1017     Instruction *instr = cur_block;
       
  1018     for_each_phi_fun(cur_block, phi,
       
  1019                      BoundStack *bound_stack = _bounds.at(phi->id());
       
  1020                      if (bound_stack && bound_stack->length() > 0) {
       
  1021                        Bound *bound = bound_stack->top();
       
  1022                        if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != phi || bound->upper_instr() != phi || bound->lower() != 0 || bound->upper() != 0)) {
       
  1023                            TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
       
  1024                                                          tty->print("i%d", phi->id());
       
  1025                                                          tty->print(": ");
       
  1026                                                          bound->print();
       
  1027                                                          tty->cr();
       
  1028                            );
       
  1029                          }
       
  1030                      });
       
  1031 
       
  1032     while (!instr->as_BlockEnd()) {
       
  1033       if (instr->id() < _bounds.length()) {
       
  1034         BoundStack *bound_stack = _bounds.at(instr->id());
       
  1035         if (bound_stack && bound_stack->length() > 0) {
       
  1036           Bound *bound = bound_stack->top();
       
  1037           if ((bound->has_lower() || bound->has_upper()) && (bound->lower_instr() != instr || bound->upper_instr() != instr || bound->lower() != 0 || bound->upper() != 0)) {
       
  1038               TRACE_RANGE_CHECK_ELIMINATION(tty->fill_to(2*block->dominator_depth());
       
  1039                                             tty->print("i%d", instr->id());
       
  1040                                             tty->print(": ");
       
  1041                                             bound->print();
       
  1042                                             tty->cr();
       
  1043               );
       
  1044           }
       
  1045         }
       
  1046       }
       
  1047       instr = instr->next();
       
  1048     }
       
  1049   }
       
  1050 }
       
  1051 #endif
       
  1052 
       
  1053 // Verification or the IR
       
  1054 RangeCheckEliminator::Verification::Verification(IR *ir) : _used(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), false) {
       
  1055   this->_ir = ir;
       
  1056   ir->iterate_linear_scan_order(this);
       
  1057 }
       
  1058 
       
  1059 // Verify this block
       
  1060 void RangeCheckEliminator::Verification::block_do(BlockBegin *block) {
       
  1061   If *cond = block->end()->as_If();
       
  1062   // Watch out: tsux and fsux can be the same!
       
  1063   if (block->number_of_sux() > 1) {
       
  1064     for (int i=0; i<block->number_of_sux(); i++) {
       
  1065       BlockBegin *sux = block->sux_at(i);
       
  1066       BlockBegin *pred = NULL;
       
  1067       for (int j=0; j<sux->number_of_preds(); j++) {
       
  1068         BlockBegin *cur = sux->pred_at(j);
       
  1069         assert(cur != NULL, "Predecessor must not be null");
       
  1070         if (!pred) {
       
  1071           pred = cur;
       
  1072         }
       
  1073         assert(cur == pred, "Block must not have more than one predecessor if its predecessor has more than one successor");
       
  1074       }
       
  1075       assert(sux->number_of_preds() >= 1, "Block must have at least one predecessor");
       
  1076       assert(sux->pred_at(0) == block, "Wrong successor");
       
  1077     }
       
  1078   }
       
  1079 
       
  1080   BlockBegin *dominator = block->dominator();
       
  1081   if (dominator) {
       
  1082     assert(block != _ir->start(), "Start block must not have a dominator!");
       
  1083     assert(can_reach(dominator, block), "Dominator can't reach his block !");
       
  1084     assert(can_reach(_ir->start(), dominator), "Dominator is unreachable !");
       
  1085     assert(!can_reach(_ir->start(), block, dominator), "Wrong dominator ! Block can be reached anyway !");
       
  1086     BlockList *all_blocks = _ir->linear_scan_order();
       
  1087     for (int i=0; i<all_blocks->length(); i++) {
       
  1088       BlockBegin *cur = all_blocks->at(i);
       
  1089       if (cur != dominator && cur != block) {
       
  1090         assert(can_reach(dominator, block, cur), "There has to be another dominator!");
       
  1091       }
       
  1092     }
       
  1093   } else {
       
  1094     assert(block == _ir->start(), "Only start block must not have a dominator");
       
  1095   }
       
  1096 
       
  1097   if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
       
  1098     int loop_index = block->loop_index();
       
  1099     BlockList *all_blocks = _ir->linear_scan_order();
       
  1100     assert(block->number_of_preds() >= 1, "Block must have at least one predecessor");
       
  1101     assert(!block->is_set(BlockBegin::exception_entry_flag), "Loop header must not be exception handler!");
       
  1102     // Sometimes, the backbranch comes from an exception handler. In
       
  1103     // this case, loop indexes/loop depths may not appear correct.
       
  1104     bool loop_through_xhandler = false;
       
  1105     for (int i = 0; i < block->number_of_exception_handlers(); i++) {
       
  1106       BlockBegin *xhandler = block->exception_handler_at(i);
       
  1107       for (int j = 0; j < block->number_of_preds(); j++) {
       
  1108         if (dominates(xhandler, block->pred_at(j)) || xhandler == block->pred_at(j)) {
       
  1109           loop_through_xhandler = true;
       
  1110         }
       
  1111       }
       
  1112     }
       
  1113 
       
  1114     for (int i=0; i<block->number_of_sux(); i++) {
       
  1115       BlockBegin *sux = block->sux_at(i);
       
  1116       assert(sux->loop_depth() != block->loop_depth() || sux->loop_index() == block->loop_index() || loop_through_xhandler, "Loop index has to be same");
       
  1117       assert(sux->loop_depth() == block->loop_depth() || sux->loop_index() != block->loop_index(), "Loop index has to be different");
       
  1118     }
       
  1119 
       
  1120     for (int i=0; i<all_blocks->length(); i++) {
       
  1121       BlockBegin *cur = all_blocks->at(i);
       
  1122       if (cur->loop_index() == loop_index && cur != block) {
       
  1123         assert(dominates(block->dominator(), cur), "Dominator of loop header must dominate all loop blocks");
       
  1124       }
       
  1125     }
       
  1126   }
       
  1127 
       
  1128   Instruction *cur = block;
       
  1129   while (cur) {
       
  1130     assert(cur->block() == block, "Block begin has to be set correctly!");
       
  1131     cur = cur->next();
       
  1132   }
       
  1133 }
       
  1134 
       
  1135 // Loop header must dominate all loop blocks
       
  1136 bool RangeCheckEliminator::Verification::dominates(BlockBegin *dominator, BlockBegin *block) {
       
  1137   BlockBegin *cur = block->dominator();
       
  1138   while (cur && cur != dominator) {
       
  1139     cur = cur->dominator();
       
  1140   }
       
  1141   return cur == dominator;
       
  1142 }
       
  1143 
       
  1144 // Try to reach Block end beginning in Block start and not using Block dont_use
       
  1145 bool RangeCheckEliminator::Verification::can_reach(BlockBegin *start, BlockBegin *end, BlockBegin *dont_use /* = NULL */) {
       
  1146   if (start == end) return start != dont_use;
       
  1147   // Simple BSF from start to end
       
  1148   //  BlockBeginList _current;
       
  1149   for (int i=0; i < _used.length(); i++) {
       
  1150     _used.at_put(i, false);
       
  1151   }
       
  1152   _current.trunc_to(0);
       
  1153   _successors.trunc_to(0);
       
  1154   if (start != dont_use) {
       
  1155     _current.push(start);
       
  1156     _used.at_put(start->block_id(), true);
       
  1157   }
       
  1158 
       
  1159   //  BlockBeginList _successors;
       
  1160   while (_current.length() > 0) {
       
  1161     BlockBegin *cur = _current.pop();
       
  1162     // Add exception handlers to list
       
  1163     for (int i=0; i<cur->number_of_exception_handlers(); i++) {
       
  1164       BlockBegin *xhandler = cur->exception_handler_at(i);
       
  1165       _successors.push(xhandler);
       
  1166       // Add exception handlers of _successors to list
       
  1167       for (int j=0; j<xhandler->number_of_exception_handlers(); j++) {
       
  1168         BlockBegin *sux_xhandler = xhandler->exception_handler_at(j);
       
  1169         _successors.push(sux_xhandler);
       
  1170       }
       
  1171     }
       
  1172     // Add normal _successors to list
       
  1173     for (int i=0; i<cur->number_of_sux(); i++) {
       
  1174       BlockBegin *sux = cur->sux_at(i);
       
  1175       _successors.push(sux);
       
  1176       // Add exception handlers of _successors to list
       
  1177       for (int j=0; j<sux->number_of_exception_handlers(); j++) {
       
  1178         BlockBegin *xhandler = sux->exception_handler_at(j);
       
  1179         _successors.push(xhandler);
       
  1180       }
       
  1181     }
       
  1182     for (int i=0; i<_successors.length(); i++) {
       
  1183       BlockBegin *sux = _successors.at(i);
       
  1184       assert(sux != NULL, "Successor must not be NULL!");
       
  1185       if (sux == end) {
       
  1186         return true;
       
  1187       }
       
  1188       if (sux != dont_use && !_used.at(sux->block_id())) {
       
  1189         _used.at_put(sux->block_id(), true);
       
  1190         _current.push(sux);
       
  1191       }
       
  1192     }
       
  1193     _successors.trunc_to(0);
       
  1194   }
       
  1195 
       
  1196   return false;
       
  1197 }
       
  1198 
       
  1199 // Bound
       
  1200 RangeCheckEliminator::Bound::~Bound() {
       
  1201 }
       
  1202 
       
  1203 // Bound constructor
       
  1204 RangeCheckEliminator::Bound::Bound() {
       
  1205   init();
       
  1206   this->_lower = min_jint;
       
  1207   this->_upper = max_jint;
       
  1208   this->_lower_instr = NULL;
       
  1209   this->_upper_instr = NULL;
       
  1210 }
       
  1211 
       
  1212 // Bound constructor
       
  1213 RangeCheckEliminator::Bound::Bound(int lower, Value lower_instr, int upper, Value upper_instr) {
       
  1214   init();
       
  1215   assert(!lower_instr || !lower_instr->as_Constant() || !lower_instr->type()->as_IntConstant(), "Must not be constant!");
       
  1216   assert(!upper_instr || !upper_instr->as_Constant() || !upper_instr->type()->as_IntConstant(), "Must not be constant!");
       
  1217   this->_lower = lower;
       
  1218   this->_upper = upper;
       
  1219   this->_lower_instr = lower_instr;
       
  1220   this->_upper_instr = upper_instr;
       
  1221 }
       
  1222 
       
  1223 // Bound constructor
       
  1224 RangeCheckEliminator::Bound::Bound(Instruction::Condition cond, Value v, int constant) {
       
  1225   assert(!v || (v->type() && (v->type()->as_IntType() || v->type()->as_ObjectType())), "Type must be array or integer!");
       
  1226   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
       
  1227 
       
  1228   init();
       
  1229   if (cond == Instruction::eql) {
       
  1230     _lower = constant;
       
  1231     _lower_instr = v;
       
  1232     _upper = constant;
       
  1233     _upper_instr = v;
       
  1234   } else if (cond == Instruction::neq) {
       
  1235     _lower = min_jint;
       
  1236     _upper = max_jint;
       
  1237     _lower_instr = NULL;
       
  1238     _upper_instr = NULL;
       
  1239     if (v == NULL) {
       
  1240       if (constant == min_jint) {
       
  1241         _lower++;
       
  1242       }
       
  1243       if (constant == max_jint) {
       
  1244         _upper--;
       
  1245       }
       
  1246     }
       
  1247   } else if (cond == Instruction::geq) {
       
  1248     _lower = constant;
       
  1249     _lower_instr = v;
       
  1250     _upper = max_jint;
       
  1251     _upper_instr = NULL;
       
  1252   } else if (cond == Instruction::leq) {
       
  1253     _lower = min_jint;
       
  1254     _lower_instr = NULL;
       
  1255     _upper = constant;
       
  1256     _upper_instr = v;
       
  1257   } else {
       
  1258     ShouldNotReachHere();
       
  1259   }
       
  1260 }
       
  1261 
       
  1262 // Set lower
       
  1263 void RangeCheckEliminator::Bound::set_lower(int value, Value v) {
       
  1264   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
       
  1265   this->_lower = value;
       
  1266   this->_lower_instr = v;
       
  1267 }
       
  1268 
       
  1269 // Set upper
       
  1270 void RangeCheckEliminator::Bound::set_upper(int value, Value v) {
       
  1271   assert(!v || !v->as_Constant() || !v->type()->as_IntConstant(), "Must not be constant!");
       
  1272   this->_upper = value;
       
  1273   this->_upper_instr = v;
       
  1274 }
       
  1275 
       
  1276 // Add constant -> no overflow may occur
       
  1277 void RangeCheckEliminator::Bound::add_constant(int value) {
       
  1278   this->_lower += value;
       
  1279   this->_upper += value;
       
  1280 }
       
  1281 
       
  1282 // Init
       
  1283 void RangeCheckEliminator::Bound::init() {
       
  1284 }
       
  1285 
       
  1286 // or
       
  1287 void RangeCheckEliminator::Bound::or_op(Bound *b) {
       
  1288   // Watch out, bound is not guaranteed not to overflow!
       
  1289   // Update lower bound
       
  1290   if (_lower_instr != b->_lower_instr || (_lower_instr && _lower != b->_lower)) {
       
  1291     _lower_instr = NULL;
       
  1292     _lower = min_jint;
       
  1293   } else {
       
  1294     _lower = MIN2(_lower, b->_lower);
       
  1295   }
       
  1296   // Update upper bound
       
  1297   if (_upper_instr != b->_upper_instr || (_upper_instr && _upper != b->_upper)) {
       
  1298     _upper_instr = NULL;
       
  1299     _upper = max_jint;
       
  1300   } else {
       
  1301     _upper = MAX2(_upper, b->_upper);
       
  1302   }
       
  1303 }
       
  1304 
       
  1305 // and
       
  1306 void RangeCheckEliminator::Bound::and_op(Bound *b) {
       
  1307   // Update lower bound
       
  1308   if (_lower_instr == b->_lower_instr) {
       
  1309     _lower = MAX2(_lower, b->_lower);
       
  1310   }
       
  1311   if (b->has_lower()) {
       
  1312     bool set = true;
       
  1313     if (_lower_instr != NULL && b->_lower_instr != NULL) {
       
  1314       set = (_lower_instr->dominator_depth() > b->_lower_instr->dominator_depth());
       
  1315     }
       
  1316     if (set) {
       
  1317       _lower = b->_lower;
       
  1318       _lower_instr = b->_lower_instr;
       
  1319     }
       
  1320   }
       
  1321   // Update upper bound
       
  1322   if (_upper_instr == b->_upper_instr) {
       
  1323     _upper = MIN2(_upper, b->_upper);
       
  1324   }
       
  1325   if (b->has_upper()) {
       
  1326     bool set = true;
       
  1327     if (_upper_instr != NULL && b->_upper_instr != NULL) {
       
  1328       set = (_upper_instr->dominator_depth() > b->_upper_instr->dominator_depth());
       
  1329     }
       
  1330     if (set) {
       
  1331       _upper = b->_upper;
       
  1332       _upper_instr = b->_upper_instr;
       
  1333     }
       
  1334   }
       
  1335 }
       
  1336 
       
  1337 // has_upper
       
  1338 bool RangeCheckEliminator::Bound::has_upper() {
       
  1339   return _upper_instr != NULL || _upper < max_jint;
       
  1340 }
       
  1341 
       
  1342 // is_smaller
       
  1343 bool RangeCheckEliminator::Bound::is_smaller(Bound *b) {
       
  1344   if (b->_lower_instr != _upper_instr) {
       
  1345     return false;
       
  1346   }
       
  1347   return _upper < b->_lower;
       
  1348 }
       
  1349 
       
  1350 // has_lower
       
  1351 bool RangeCheckEliminator::Bound::has_lower() {
       
  1352   return _lower_instr != NULL || _lower > min_jint;
       
  1353 }
       
  1354 
       
  1355 // in_array_bound
       
  1356 bool RangeCheckEliminator::in_array_bound(Bound *bound, Value array){
       
  1357   if (!bound) return false;
       
  1358   assert(array != NULL, "Must not be null!");
       
  1359   assert(bound != NULL, "Must not be null!");
       
  1360   if (bound->lower() >=0 && bound->lower_instr() == NULL && bound->upper() < 0 && bound->upper_instr() != NULL) {
       
  1361     ArrayLength *len = bound->upper_instr()->as_ArrayLength();
       
  1362     if (bound->upper_instr() == array || (len != NULL && len->array() == array)) {
       
  1363       return true;
       
  1364     }
       
  1365   }
       
  1366   return false;
       
  1367 }
       
  1368 
       
  1369 // remove_lower
       
  1370 void RangeCheckEliminator::Bound::remove_lower() {
       
  1371   _lower = min_jint;
       
  1372   _lower_instr = NULL;
       
  1373 }
       
  1374 
       
  1375 // remove_upper
       
  1376 void RangeCheckEliminator::Bound::remove_upper() {
       
  1377   _upper = max_jint;
       
  1378   _upper_instr = NULL;
       
  1379 }
       
  1380 
       
  1381 // upper
       
  1382 int RangeCheckEliminator::Bound::upper() {
       
  1383   return _upper;
       
  1384 }
       
  1385 
       
  1386 // lower
       
  1387 int RangeCheckEliminator::Bound::lower() {
       
  1388   return _lower;
       
  1389 }
       
  1390 
       
  1391 // upper_instr
       
  1392 Value RangeCheckEliminator::Bound::upper_instr() {
       
  1393   return _upper_instr;
       
  1394 }
       
  1395 
       
  1396 // lower_instr
       
  1397 Value RangeCheckEliminator::Bound::lower_instr() {
       
  1398   return _lower_instr;
       
  1399 }
       
  1400 
       
  1401 // print
       
  1402 void RangeCheckEliminator::Bound::print() {
       
  1403   tty->print("%s", "");
       
  1404   if (this->_lower_instr || this->_lower != min_jint) {
       
  1405     if (this->_lower_instr) {
       
  1406       tty->print("i%d", this->_lower_instr->id());
       
  1407       if (this->_lower > 0) {
       
  1408         tty->print("+%d", _lower);
       
  1409       }
       
  1410       if (this->_lower < 0) {
       
  1411         tty->print("%d", _lower);
       
  1412       }
       
  1413     } else {
       
  1414       tty->print("%d", _lower);
       
  1415     }
       
  1416     tty->print(" <= ");
       
  1417   }
       
  1418   tty->print("x");
       
  1419   if (this->_upper_instr || this->_upper != max_jint) {
       
  1420     tty->print(" <= ");
       
  1421     if (this->_upper_instr) {
       
  1422       tty->print("i%d", this->_upper_instr->id());
       
  1423       if (this->_upper > 0) {
       
  1424         tty->print("+%d", _upper);
       
  1425       }
       
  1426       if (this->_upper < 0) {
       
  1427         tty->print("%d", _upper);
       
  1428       }
       
  1429     } else {
       
  1430       tty->print("%d", _upper);
       
  1431     }
       
  1432   }
       
  1433 }
       
  1434 
       
  1435 // Copy
       
  1436 RangeCheckEliminator::Bound *RangeCheckEliminator::Bound::copy() {
       
  1437   Bound *b = new Bound();
       
  1438   b->_lower = _lower;
       
  1439   b->_lower_instr = _lower_instr;
       
  1440   b->_upper = _upper;
       
  1441   b->_upper_instr = _upper_instr;
       
  1442   return b;
       
  1443 }
       
  1444 
       
  1445 #ifdef ASSERT
       
  1446 // Add assertion
       
  1447 void RangeCheckEliminator::Bound::add_assertion(Instruction *instruction, Instruction *position, int i, Value instr, Instruction::Condition cond) {
       
  1448   Instruction *result = position;
       
  1449   Instruction *compare_with = NULL;
       
  1450   ValueStack *state = position->state_before();
       
  1451   if (position->as_BlockEnd() && !position->as_Goto()) {
       
  1452     state = position->as_BlockEnd()->state_before();
       
  1453   }
       
  1454   Instruction *instruction_before = position->prev();
       
  1455   if (position->as_Return() && Compilation::current()->method()->is_synchronized() && instruction_before->as_MonitorExit()) {
       
  1456     instruction_before = instruction_before->prev();
       
  1457   }
       
  1458   result = instruction_before;
       
  1459   // Load constant only if needed
       
  1460   Constant *constant = NULL;
       
  1461   if (i != 0 || !instr) {
       
  1462     constant = new Constant(new IntConstant(i));
       
  1463     NOT_PRODUCT(constant->set_printable_bci(position->printable_bci()));
       
  1464     result = result->insert_after(constant);
       
  1465     compare_with = constant;
       
  1466   }
       
  1467 
       
  1468   if (instr) {
       
  1469     assert(instr->type()->as_ObjectType() || instr->type()->as_IntType(), "Type must be array or integer!");
       
  1470     compare_with = instr;
       
  1471     // Load array length if necessary
       
  1472     Instruction *op = instr;
       
  1473     if (instr->type()->as_ObjectType()) {
       
  1474       assert(state, "must not be null");
       
  1475       ArrayLength *length = new ArrayLength(instr, state->copy());
       
  1476       NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
       
  1477       length->set_exception_state(length->state_before());
       
  1478       result = result->insert_after(length);
       
  1479       op = length;
       
  1480       compare_with = length;
       
  1481     }
       
  1482     // Add operation only if necessary
       
  1483     if (constant) {
       
  1484       ArithmeticOp *ao = new ArithmeticOp(Bytecodes::_iadd, constant, op, false, NULL);
       
  1485       NOT_PRODUCT(ao->set_printable_bci(position->printable_bci()));
       
  1486       result = result->insert_after(ao);
       
  1487       compare_with = ao;
       
  1488       // TODO: Check that add operation does not overflow!
       
  1489     }
       
  1490   }
       
  1491   assert(compare_with != NULL, "You have to compare with something!");
       
  1492   assert(instruction != NULL, "Instruction must not be null!");
       
  1493 
       
  1494   if (instruction->type()->as_ObjectType()) {
       
  1495     // Load array length if necessary
       
  1496     Instruction *op = instruction;
       
  1497     assert(state, "must not be null");
       
  1498     ArrayLength *length = new ArrayLength(instruction, state->copy());
       
  1499     length->set_exception_state(length->state_before());
       
  1500     NOT_PRODUCT(length->set_printable_bci(position->printable_bci()));
       
  1501     result = result->insert_after(length);
       
  1502     instruction = length;
       
  1503   }
       
  1504 
       
  1505   Assert *assert = new Assert(instruction, cond, false, compare_with);
       
  1506   NOT_PRODUCT(assert->set_printable_bci(position->printable_bci()));
       
  1507   result->insert_after(assert);
       
  1508 }
       
  1509 
       
  1510 // Add assertions
       
  1511 void RangeCheckEliminator::add_assertions(Bound *bound, Instruction *instruction, Instruction *position) {
       
  1512   // Add lower bound assertion
       
  1513   if (bound->has_lower()) {
       
  1514     bound->add_assertion(instruction, position, bound->lower(), bound->lower_instr(), Instruction::geq);
       
  1515   }
       
  1516   // Add upper bound assertion
       
  1517   if (bound->has_upper()) {
       
  1518     bound->add_assertion(instruction, position, bound->upper(), bound->upper_instr(), Instruction::leq);
       
  1519   }
       
  1520 }
       
  1521 #endif
       
  1522