hotspot/src/cpu/sparc/vm/macroAssembler_sparc.cpp
changeset 14631 526804361522
child 14827 8aa0a51a7137
equal deleted inserted replaced
14628:74164bb6ec39 14631:526804361522
       
     1 /*
       
     2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    20  * or visit www.oracle.com if you need additional information or have any
       
    21  * questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "precompiled.hpp"
       
    26 #include "asm/assembler.inline.hpp"
       
    27 #include "compiler/disassembler.hpp"
       
    28 #include "gc_interface/collectedHeap.inline.hpp"
       
    29 #include "interpreter/interpreter.hpp"
       
    30 #include "memory/cardTableModRefBS.hpp"
       
    31 #include "memory/resourceArea.hpp"
       
    32 #include "prims/methodHandles.hpp"
       
    33 #include "runtime/biasedLocking.hpp"
       
    34 #include "runtime/interfaceSupport.hpp"
       
    35 #include "runtime/objectMonitor.hpp"
       
    36 #include "runtime/os.hpp"
       
    37 #include "runtime/sharedRuntime.hpp"
       
    38 #include "runtime/stubRoutines.hpp"
       
    39 #ifndef SERIALGC
       
    40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
       
    41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
       
    42 #include "gc_implementation/g1/heapRegion.hpp"
       
    43 #endif
       
    44 
       
    45 #ifdef PRODUCT
       
    46 #define BLOCK_COMMENT(str) /* nothing */
       
    47 #define STOP(error) stop(error)
       
    48 #else
       
    49 #define BLOCK_COMMENT(str) block_comment(str)
       
    50 #define STOP(error) block_comment(error); stop(error)
       
    51 #endif
       
    52 
       
    53 // Convert the raw encoding form into the form expected by the
       
    54 // constructor for Address.
       
    55 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
       
    56   assert(scale == 0, "not supported");
       
    57   RelocationHolder rspec;
       
    58   if (disp_reloc != relocInfo::none) {
       
    59     rspec = Relocation::spec_simple(disp_reloc);
       
    60   }
       
    61 
       
    62   Register rindex = as_Register(index);
       
    63   if (rindex != G0) {
       
    64     Address madr(as_Register(base), rindex);
       
    65     madr._rspec = rspec;
       
    66     return madr;
       
    67   } else {
       
    68     Address madr(as_Register(base), disp);
       
    69     madr._rspec = rspec;
       
    70     return madr;
       
    71   }
       
    72 }
       
    73 
       
    74 Address Argument::address_in_frame() const {
       
    75   // Warning: In LP64 mode disp will occupy more than 10 bits, but
       
    76   //          op codes such as ld or ldx, only access disp() to get
       
    77   //          their simm13 argument.
       
    78   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
       
    79   if (is_in())
       
    80     return Address(FP, disp); // In argument.
       
    81   else
       
    82     return Address(SP, disp); // Out argument.
       
    83 }
       
    84 
       
    85 static const char* argumentNames[][2] = {
       
    86   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
       
    87   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
       
    88   {"A(n>9)","P(n>9)"}
       
    89 };
       
    90 
       
    91 const char* Argument::name() const {
       
    92   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
       
    93   int num = number();
       
    94   if (num >= nofArgs)  num = nofArgs - 1;
       
    95   return argumentNames[num][is_in() ? 1 : 0];
       
    96 }
       
    97 
       
    98 #ifdef ASSERT
       
    99 // On RISC, there's no benefit to verifying instruction boundaries.
       
   100 bool AbstractAssembler::pd_check_instruction_mark() { return false; }
       
   101 #endif
       
   102 
       
   103 
       
   104 void MacroAssembler::print_instruction(int inst) {
       
   105   const char* s;
       
   106   switch (inv_op(inst)) {
       
   107   default:         s = "????"; break;
       
   108   case call_op:    s = "call"; break;
       
   109   case branch_op:
       
   110     switch (inv_op2(inst)) {
       
   111       case fb_op2:     s = "fb";   break;
       
   112       case fbp_op2:    s = "fbp";  break;
       
   113       case br_op2:     s = "br";   break;
       
   114       case bp_op2:     s = "bp";   break;
       
   115       case cb_op2:     s = "cb";   break;
       
   116       case bpr_op2: {
       
   117         if (is_cbcond(inst)) {
       
   118           s = is_cxb(inst) ? "cxb" : "cwb";
       
   119         } else {
       
   120           s = "bpr";
       
   121         }
       
   122         break;
       
   123       }
       
   124       default:         s = "????"; break;
       
   125     }
       
   126   }
       
   127   ::tty->print("%s", s);
       
   128 }
       
   129 
       
   130 
       
   131 // Patch instruction inst at offset inst_pos to refer to dest_pos
       
   132 // and return the resulting instruction.
       
   133 // We should have pcs, not offsets, but since all is relative, it will work out
       
   134 // OK.
       
   135 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
       
   136   int m; // mask for displacement field
       
   137   int v; // new value for displacement field
       
   138   const int word_aligned_ones = -4;
       
   139   switch (inv_op(inst)) {
       
   140   default: ShouldNotReachHere();
       
   141   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
       
   142   case branch_op:
       
   143     switch (inv_op2(inst)) {
       
   144       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
       
   145       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
       
   146       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
       
   147       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
       
   148       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
       
   149       case bpr_op2: {
       
   150         if (is_cbcond(inst)) {
       
   151           m = wdisp10(word_aligned_ones, 0);
       
   152           v = wdisp10(dest_pos, inst_pos);
       
   153         } else {
       
   154           m = wdisp16(word_aligned_ones, 0);
       
   155           v = wdisp16(dest_pos, inst_pos);
       
   156         }
       
   157         break;
       
   158       }
       
   159       default: ShouldNotReachHere();
       
   160     }
       
   161   }
       
   162   return  inst & ~m  |  v;
       
   163 }
       
   164 
       
   165 // Return the offset of the branch destionation of instruction inst
       
   166 // at offset pos.
       
   167 // Should have pcs, but since all is relative, it works out.
       
   168 int MacroAssembler::branch_destination(int inst, int pos) {
       
   169   int r;
       
   170   switch (inv_op(inst)) {
       
   171   default: ShouldNotReachHere();
       
   172   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
       
   173   case branch_op:
       
   174     switch (inv_op2(inst)) {
       
   175       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
       
   176       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
       
   177       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
       
   178       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
       
   179       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
       
   180       case bpr_op2: {
       
   181         if (is_cbcond(inst)) {
       
   182           r = inv_wdisp10(inst, pos);
       
   183         } else {
       
   184           r = inv_wdisp16(inst, pos);
       
   185         }
       
   186         break;
       
   187       }
       
   188       default: ShouldNotReachHere();
       
   189     }
       
   190   }
       
   191   return r;
       
   192 }
       
   193 
       
   194 void MacroAssembler::null_check(Register reg, int offset) {
       
   195   if (needs_explicit_null_check((intptr_t)offset)) {
       
   196     // provoke OS NULL exception if reg = NULL by
       
   197     // accessing M[reg] w/o changing any registers
       
   198     ld_ptr(reg, 0, G0);
       
   199   }
       
   200   else {
       
   201     // nothing to do, (later) access of M[reg + offset]
       
   202     // will provoke OS NULL exception if reg = NULL
       
   203   }
       
   204 }
       
   205 
       
   206 // Ring buffer jumps
       
   207 
       
   208 #ifndef PRODUCT
       
   209 void MacroAssembler::ret(  bool trace )   { if (trace) {
       
   210                                                     mov(I7, O7); // traceable register
       
   211                                                     JMP(O7, 2 * BytesPerInstWord);
       
   212                                                   } else {
       
   213                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
       
   214                                                   }
       
   215                                                 }
       
   216 
       
   217 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
       
   218                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
       
   219 #endif /* PRODUCT */
       
   220 
       
   221 
       
   222 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
       
   223   assert_not_delayed();
       
   224   // This can only be traceable if r1 & r2 are visible after a window save
       
   225   if (TraceJumps) {
       
   226 #ifndef PRODUCT
       
   227     save_frame(0);
       
   228     verify_thread();
       
   229     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
       
   230     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
       
   231     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
       
   232     add(O2, O1, O1);
       
   233 
       
   234     add(r1->after_save(), r2->after_save(), O2);
       
   235     set((intptr_t)file, O3);
       
   236     set(line, O4);
       
   237     Label L;
       
   238     // get nearby pc, store jmp target
       
   239     call(L, relocInfo::none);  // No relocation for call to pc+0x8
       
   240     delayed()->st(O2, O1, 0);
       
   241     bind(L);
       
   242 
       
   243     // store nearby pc
       
   244     st(O7, O1, sizeof(intptr_t));
       
   245     // store file
       
   246     st(O3, O1, 2*sizeof(intptr_t));
       
   247     // store line
       
   248     st(O4, O1, 3*sizeof(intptr_t));
       
   249     add(O0, 1, O0);
       
   250     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
       
   251     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
       
   252     restore();
       
   253 #endif /* PRODUCT */
       
   254   }
       
   255   jmpl(r1, r2, G0);
       
   256 }
       
   257 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
       
   258   assert_not_delayed();
       
   259   // This can only be traceable if r1 is visible after a window save
       
   260   if (TraceJumps) {
       
   261 #ifndef PRODUCT
       
   262     save_frame(0);
       
   263     verify_thread();
       
   264     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
       
   265     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
       
   266     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
       
   267     add(O2, O1, O1);
       
   268 
       
   269     add(r1->after_save(), offset, O2);
       
   270     set((intptr_t)file, O3);
       
   271     set(line, O4);
       
   272     Label L;
       
   273     // get nearby pc, store jmp target
       
   274     call(L, relocInfo::none);  // No relocation for call to pc+0x8
       
   275     delayed()->st(O2, O1, 0);
       
   276     bind(L);
       
   277 
       
   278     // store nearby pc
       
   279     st(O7, O1, sizeof(intptr_t));
       
   280     // store file
       
   281     st(O3, O1, 2*sizeof(intptr_t));
       
   282     // store line
       
   283     st(O4, O1, 3*sizeof(intptr_t));
       
   284     add(O0, 1, O0);
       
   285     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
       
   286     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
       
   287     restore();
       
   288 #endif /* PRODUCT */
       
   289   }
       
   290   jmp(r1, offset);
       
   291 }
       
   292 
       
   293 // This code sequence is relocatable to any address, even on LP64.
       
   294 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
       
   295   assert_not_delayed();
       
   296   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
       
   297   // variable length instruction streams.
       
   298   patchable_sethi(addrlit, temp);
       
   299   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
       
   300   if (TraceJumps) {
       
   301 #ifndef PRODUCT
       
   302     // Must do the add here so relocation can find the remainder of the
       
   303     // value to be relocated.
       
   304     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
       
   305     save_frame(0);
       
   306     verify_thread();
       
   307     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
       
   308     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
       
   309     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
       
   310     add(O2, O1, O1);
       
   311 
       
   312     set((intptr_t)file, O3);
       
   313     set(line, O4);
       
   314     Label L;
       
   315 
       
   316     // get nearby pc, store jmp target
       
   317     call(L, relocInfo::none);  // No relocation for call to pc+0x8
       
   318     delayed()->st(a.base()->after_save(), O1, 0);
       
   319     bind(L);
       
   320 
       
   321     // store nearby pc
       
   322     st(O7, O1, sizeof(intptr_t));
       
   323     // store file
       
   324     st(O3, O1, 2*sizeof(intptr_t));
       
   325     // store line
       
   326     st(O4, O1, 3*sizeof(intptr_t));
       
   327     add(O0, 1, O0);
       
   328     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
       
   329     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
       
   330     restore();
       
   331     jmpl(a.base(), G0, d);
       
   332 #else
       
   333     jmpl(a.base(), a.disp(), d);
       
   334 #endif /* PRODUCT */
       
   335   } else {
       
   336     jmpl(a.base(), a.disp(), d);
       
   337   }
       
   338 }
       
   339 
       
   340 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
       
   341   jumpl(addrlit, temp, G0, offset, file, line);
       
   342 }
       
   343 
       
   344 
       
   345 // Conditional breakpoint (for assertion checks in assembly code)
       
   346 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
       
   347   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
       
   348 }
       
   349 
       
   350 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
       
   351 void MacroAssembler::breakpoint_trap() {
       
   352   trap(ST_RESERVED_FOR_USER_0);
       
   353 }
       
   354 
       
   355 // flush windows (except current) using flushw instruction if avail.
       
   356 void MacroAssembler::flush_windows() {
       
   357   if (VM_Version::v9_instructions_work())  flushw();
       
   358   else                                     flush_windows_trap();
       
   359 }
       
   360 
       
   361 // Write serialization page so VM thread can do a pseudo remote membar
       
   362 // We use the current thread pointer to calculate a thread specific
       
   363 // offset to write to within the page. This minimizes bus traffic
       
   364 // due to cache line collision.
       
   365 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
       
   366   srl(thread, os::get_serialize_page_shift_count(), tmp2);
       
   367   if (Assembler::is_simm13(os::vm_page_size())) {
       
   368     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
       
   369   }
       
   370   else {
       
   371     set((os::vm_page_size() - sizeof(int)), tmp1);
       
   372     and3(tmp2, tmp1, tmp2);
       
   373   }
       
   374   set(os::get_memory_serialize_page(), tmp1);
       
   375   st(G0, tmp1, tmp2);
       
   376 }
       
   377 
       
   378 
       
   379 
       
   380 void MacroAssembler::enter() {
       
   381   Unimplemented();
       
   382 }
       
   383 
       
   384 void MacroAssembler::leave() {
       
   385   Unimplemented();
       
   386 }
       
   387 
       
   388 void MacroAssembler::mult(Register s1, Register s2, Register d) {
       
   389   if(VM_Version::v9_instructions_work()) {
       
   390     mulx (s1, s2, d);
       
   391   } else {
       
   392     smul (s1, s2, d);
       
   393   }
       
   394 }
       
   395 
       
   396 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
       
   397   if(VM_Version::v9_instructions_work()) {
       
   398     mulx (s1, simm13a, d);
       
   399   } else {
       
   400     smul (s1, simm13a, d);
       
   401   }
       
   402 }
       
   403 
       
   404 
       
   405 #ifdef ASSERT
       
   406 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
       
   407   const Register s1 = G3_scratch;
       
   408   const Register s2 = G4_scratch;
       
   409   Label get_psr_test;
       
   410   // Get the condition codes the V8 way.
       
   411   read_ccr_trap(s1);
       
   412   mov(ccr_save, s2);
       
   413   // This is a test of V8 which has icc but not xcc
       
   414   // so mask off the xcc bits
       
   415   and3(s2, 0xf, s2);
       
   416   // Compare condition codes from the V8 and V9 ways.
       
   417   subcc(s2, s1, G0);
       
   418   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
       
   419   delayed()->breakpoint_trap();
       
   420   bind(get_psr_test);
       
   421 }
       
   422 
       
   423 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
       
   424   const Register s1 = G3_scratch;
       
   425   const Register s2 = G4_scratch;
       
   426   Label set_psr_test;
       
   427   // Write out the saved condition codes the V8 way
       
   428   write_ccr_trap(ccr_save, s1, s2);
       
   429   // Read back the condition codes using the V9 instruction
       
   430   rdccr(s1);
       
   431   mov(ccr_save, s2);
       
   432   // This is a test of V8 which has icc but not xcc
       
   433   // so mask off the xcc bits
       
   434   and3(s2, 0xf, s2);
       
   435   and3(s1, 0xf, s1);
       
   436   // Compare the V8 way with the V9 way.
       
   437   subcc(s2, s1, G0);
       
   438   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
       
   439   delayed()->breakpoint_trap();
       
   440   bind(set_psr_test);
       
   441 }
       
   442 #else
       
   443 #define read_ccr_v8_assert(x)
       
   444 #define write_ccr_v8_assert(x)
       
   445 #endif // ASSERT
       
   446 
       
   447 void MacroAssembler::read_ccr(Register ccr_save) {
       
   448   if (VM_Version::v9_instructions_work()) {
       
   449     rdccr(ccr_save);
       
   450     // Test code sequence used on V8.  Do not move above rdccr.
       
   451     read_ccr_v8_assert(ccr_save);
       
   452   } else {
       
   453     read_ccr_trap(ccr_save);
       
   454   }
       
   455 }
       
   456 
       
   457 void MacroAssembler::write_ccr(Register ccr_save) {
       
   458   if (VM_Version::v9_instructions_work()) {
       
   459     // Test code sequence used on V8.  Do not move below wrccr.
       
   460     write_ccr_v8_assert(ccr_save);
       
   461     wrccr(ccr_save);
       
   462   } else {
       
   463     const Register temp_reg1 = G3_scratch;
       
   464     const Register temp_reg2 = G4_scratch;
       
   465     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
       
   466   }
       
   467 }
       
   468 
       
   469 
       
   470 // Calls to C land
       
   471 
       
   472 #ifdef ASSERT
       
   473 // a hook for debugging
       
   474 static Thread* reinitialize_thread() {
       
   475   return ThreadLocalStorage::thread();
       
   476 }
       
   477 #else
       
   478 #define reinitialize_thread ThreadLocalStorage::thread
       
   479 #endif
       
   480 
       
   481 #ifdef ASSERT
       
   482 address last_get_thread = NULL;
       
   483 #endif
       
   484 
       
   485 // call this when G2_thread is not known to be valid
       
   486 void MacroAssembler::get_thread() {
       
   487   save_frame(0);                // to avoid clobbering O0
       
   488   mov(G1, L0);                  // avoid clobbering G1
       
   489   mov(G5_method, L1);           // avoid clobbering G5
       
   490   mov(G3, L2);                  // avoid clobbering G3 also
       
   491   mov(G4, L5);                  // avoid clobbering G4
       
   492 #ifdef ASSERT
       
   493   AddressLiteral last_get_thread_addrlit(&last_get_thread);
       
   494   set(last_get_thread_addrlit, L3);
       
   495   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
       
   496   st_ptr(L4, L3, 0);
       
   497 #endif
       
   498   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
       
   499   delayed()->nop();
       
   500   mov(L0, G1);
       
   501   mov(L1, G5_method);
       
   502   mov(L2, G3);
       
   503   mov(L5, G4);
       
   504   restore(O0, 0, G2_thread);
       
   505 }
       
   506 
       
   507 static Thread* verify_thread_subroutine(Thread* gthread_value) {
       
   508   Thread* correct_value = ThreadLocalStorage::thread();
       
   509   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
       
   510   return correct_value;
       
   511 }
       
   512 
       
   513 void MacroAssembler::verify_thread() {
       
   514   if (VerifyThread) {
       
   515     // NOTE: this chops off the heads of the 64-bit O registers.
       
   516 #ifdef CC_INTERP
       
   517     save_frame(0);
       
   518 #else
       
   519     // make sure G2_thread contains the right value
       
   520     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
       
   521     mov(G1, L1);                // avoid clobbering G1
       
   522     // G2 saved below
       
   523     mov(G3, L3);                // avoid clobbering G3
       
   524     mov(G4, L4);                // avoid clobbering G4
       
   525     mov(G5_method, L5);         // avoid clobbering G5_method
       
   526 #endif /* CC_INTERP */
       
   527 #if defined(COMPILER2) && !defined(_LP64)
       
   528     // Save & restore possible 64-bit Long arguments in G-regs
       
   529     srlx(G1,32,L0);
       
   530     srlx(G4,32,L6);
       
   531 #endif
       
   532     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
       
   533     delayed()->mov(G2_thread, O0);
       
   534 
       
   535     mov(L1, G1);                // Restore G1
       
   536     // G2 restored below
       
   537     mov(L3, G3);                // restore G3
       
   538     mov(L4, G4);                // restore G4
       
   539     mov(L5, G5_method);         // restore G5_method
       
   540 #if defined(COMPILER2) && !defined(_LP64)
       
   541     // Save & restore possible 64-bit Long arguments in G-regs
       
   542     sllx(L0,32,G2);             // Move old high G1 bits high in G2
       
   543     srl(G1, 0,G1);              // Clear current high G1 bits
       
   544     or3 (G1,G2,G1);             // Recover 64-bit G1
       
   545     sllx(L6,32,G2);             // Move old high G4 bits high in G2
       
   546     srl(G4, 0,G4);              // Clear current high G4 bits
       
   547     or3 (G4,G2,G4);             // Recover 64-bit G4
       
   548 #endif
       
   549     restore(O0, 0, G2_thread);
       
   550   }
       
   551 }
       
   552 
       
   553 
       
   554 void MacroAssembler::save_thread(const Register thread_cache) {
       
   555   verify_thread();
       
   556   if (thread_cache->is_valid()) {
       
   557     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
       
   558     mov(G2_thread, thread_cache);
       
   559   }
       
   560   if (VerifyThread) {
       
   561     // smash G2_thread, as if the VM were about to anyway
       
   562     set(0x67676767, G2_thread);
       
   563   }
       
   564 }
       
   565 
       
   566 
       
   567 void MacroAssembler::restore_thread(const Register thread_cache) {
       
   568   if (thread_cache->is_valid()) {
       
   569     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
       
   570     mov(thread_cache, G2_thread);
       
   571     verify_thread();
       
   572   } else {
       
   573     // do it the slow way
       
   574     get_thread();
       
   575   }
       
   576 }
       
   577 
       
   578 
       
   579 // %%% maybe get rid of [re]set_last_Java_frame
       
   580 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
       
   581   assert_not_delayed();
       
   582   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
       
   583                            JavaFrameAnchor::flags_offset());
       
   584   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
       
   585 
       
   586   // Always set last_Java_pc and flags first because once last_Java_sp is visible
       
   587   // has_last_Java_frame is true and users will look at the rest of the fields.
       
   588   // (Note: flags should always be zero before we get here so doesn't need to be set.)
       
   589 
       
   590 #ifdef ASSERT
       
   591   // Verify that flags was zeroed on return to Java
       
   592   Label PcOk;
       
   593   save_frame(0);                // to avoid clobbering O0
       
   594   ld_ptr(pc_addr, L0);
       
   595   br_null_short(L0, Assembler::pt, PcOk);
       
   596   STOP("last_Java_pc not zeroed before leaving Java");
       
   597   bind(PcOk);
       
   598 
       
   599   // Verify that flags was zeroed on return to Java
       
   600   Label FlagsOk;
       
   601   ld(flags, L0);
       
   602   tst(L0);
       
   603   br(Assembler::zero, false, Assembler::pt, FlagsOk);
       
   604   delayed() -> restore();
       
   605   STOP("flags not zeroed before leaving Java");
       
   606   bind(FlagsOk);
       
   607 #endif /* ASSERT */
       
   608   //
       
   609   // When returning from calling out from Java mode the frame anchor's last_Java_pc
       
   610   // will always be set to NULL. It is set here so that if we are doing a call to
       
   611   // native (not VM) that we capture the known pc and don't have to rely on the
       
   612   // native call having a standard frame linkage where we can find the pc.
       
   613 
       
   614   if (last_Java_pc->is_valid()) {
       
   615     st_ptr(last_Java_pc, pc_addr);
       
   616   }
       
   617 
       
   618 #ifdef _LP64
       
   619 #ifdef ASSERT
       
   620   // Make sure that we have an odd stack
       
   621   Label StackOk;
       
   622   andcc(last_java_sp, 0x01, G0);
       
   623   br(Assembler::notZero, false, Assembler::pt, StackOk);
       
   624   delayed()->nop();
       
   625   STOP("Stack Not Biased in set_last_Java_frame");
       
   626   bind(StackOk);
       
   627 #endif // ASSERT
       
   628   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
       
   629   add( last_java_sp, STACK_BIAS, G4_scratch );
       
   630   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
       
   631 #else
       
   632   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
       
   633 #endif // _LP64
       
   634 }
       
   635 
       
   636 void MacroAssembler::reset_last_Java_frame(void) {
       
   637   assert_not_delayed();
       
   638 
       
   639   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
       
   640   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
       
   641   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
       
   642 
       
   643 #ifdef ASSERT
       
   644   // check that it WAS previously set
       
   645 #ifdef CC_INTERP
       
   646     save_frame(0);
       
   647 #else
       
   648     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
       
   649 #endif /* CC_INTERP */
       
   650     ld_ptr(sp_addr, L0);
       
   651     tst(L0);
       
   652     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
       
   653     restore();
       
   654 #endif // ASSERT
       
   655 
       
   656   st_ptr(G0, sp_addr);
       
   657   // Always return last_Java_pc to zero
       
   658   st_ptr(G0, pc_addr);
       
   659   // Always null flags after return to Java
       
   660   st(G0, flags);
       
   661 }
       
   662 
       
   663 
       
   664 void MacroAssembler::call_VM_base(
       
   665   Register        oop_result,
       
   666   Register        thread_cache,
       
   667   Register        last_java_sp,
       
   668   address         entry_point,
       
   669   int             number_of_arguments,
       
   670   bool            check_exceptions)
       
   671 {
       
   672   assert_not_delayed();
       
   673 
       
   674   // determine last_java_sp register
       
   675   if (!last_java_sp->is_valid()) {
       
   676     last_java_sp = SP;
       
   677   }
       
   678   // debugging support
       
   679   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
       
   680 
       
   681   // 64-bit last_java_sp is biased!
       
   682   set_last_Java_frame(last_java_sp, noreg);
       
   683   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
       
   684   save_thread(thread_cache);
       
   685   // do the call
       
   686   call(entry_point, relocInfo::runtime_call_type);
       
   687   if (!VerifyThread)
       
   688     delayed()->mov(G2_thread, O0);  // pass thread as first argument
       
   689   else
       
   690     delayed()->nop();             // (thread already passed)
       
   691   restore_thread(thread_cache);
       
   692   reset_last_Java_frame();
       
   693 
       
   694   // check for pending exceptions. use Gtemp as scratch register.
       
   695   if (check_exceptions) {
       
   696     check_and_forward_exception(Gtemp);
       
   697   }
       
   698 
       
   699 #ifdef ASSERT
       
   700   set(badHeapWordVal, G3);
       
   701   set(badHeapWordVal, G4);
       
   702   set(badHeapWordVal, G5);
       
   703 #endif
       
   704 
       
   705   // get oop result if there is one and reset the value in the thread
       
   706   if (oop_result->is_valid()) {
       
   707     get_vm_result(oop_result);
       
   708   }
       
   709 }
       
   710 
       
   711 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
       
   712 {
       
   713   Label L;
       
   714 
       
   715   check_and_handle_popframe(scratch_reg);
       
   716   check_and_handle_earlyret(scratch_reg);
       
   717 
       
   718   Address exception_addr(G2_thread, Thread::pending_exception_offset());
       
   719   ld_ptr(exception_addr, scratch_reg);
       
   720   br_null_short(scratch_reg, pt, L);
       
   721   // we use O7 linkage so that forward_exception_entry has the issuing PC
       
   722   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
       
   723   delayed()->nop();
       
   724   bind(L);
       
   725 }
       
   726 
       
   727 
       
   728 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
       
   729 }
       
   730 
       
   731 
       
   732 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
       
   733 }
       
   734 
       
   735 
       
   736 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
       
   737   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
       
   738 }
       
   739 
       
   740 
       
   741 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
       
   742   // O0 is reserved for the thread
       
   743   mov(arg_1, O1);
       
   744   call_VM(oop_result, entry_point, 1, check_exceptions);
       
   745 }
       
   746 
       
   747 
       
   748 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
       
   749   // O0 is reserved for the thread
       
   750   mov(arg_1, O1);
       
   751   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
       
   752   call_VM(oop_result, entry_point, 2, check_exceptions);
       
   753 }
       
   754 
       
   755 
       
   756 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
       
   757   // O0 is reserved for the thread
       
   758   mov(arg_1, O1);
       
   759   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
       
   760   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
       
   761   call_VM(oop_result, entry_point, 3, check_exceptions);
       
   762 }
       
   763 
       
   764 
       
   765 
       
   766 // Note: The following call_VM overloadings are useful when a "save"
       
   767 // has already been performed by a stub, and the last Java frame is
       
   768 // the previous one.  In that case, last_java_sp must be passed as FP
       
   769 // instead of SP.
       
   770 
       
   771 
       
   772 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
       
   773   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
       
   774 }
       
   775 
       
   776 
       
   777 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
       
   778   // O0 is reserved for the thread
       
   779   mov(arg_1, O1);
       
   780   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
       
   781 }
       
   782 
       
   783 
       
   784 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
       
   785   // O0 is reserved for the thread
       
   786   mov(arg_1, O1);
       
   787   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
       
   788   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
       
   789 }
       
   790 
       
   791 
       
   792 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
       
   793   // O0 is reserved for the thread
       
   794   mov(arg_1, O1);
       
   795   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
       
   796   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
       
   797   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
       
   798 }
       
   799 
       
   800 
       
   801 
       
   802 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
       
   803   assert_not_delayed();
       
   804   save_thread(thread_cache);
       
   805   // do the call
       
   806   call(entry_point, relocInfo::runtime_call_type);
       
   807   delayed()->nop();
       
   808   restore_thread(thread_cache);
       
   809 #ifdef ASSERT
       
   810   set(badHeapWordVal, G3);
       
   811   set(badHeapWordVal, G4);
       
   812   set(badHeapWordVal, G5);
       
   813 #endif
       
   814 }
       
   815 
       
   816 
       
   817 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
       
   818   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
       
   819 }
       
   820 
       
   821 
       
   822 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
       
   823   mov(arg_1, O0);
       
   824   call_VM_leaf(thread_cache, entry_point, 1);
       
   825 }
       
   826 
       
   827 
       
   828 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
       
   829   mov(arg_1, O0);
       
   830   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
       
   831   call_VM_leaf(thread_cache, entry_point, 2);
       
   832 }
       
   833 
       
   834 
       
   835 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
       
   836   mov(arg_1, O0);
       
   837   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
       
   838   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
       
   839   call_VM_leaf(thread_cache, entry_point, 3);
       
   840 }
       
   841 
       
   842 
       
   843 void MacroAssembler::get_vm_result(Register oop_result) {
       
   844   verify_thread();
       
   845   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
       
   846   ld_ptr(    vm_result_addr, oop_result);
       
   847   st_ptr(G0, vm_result_addr);
       
   848   verify_oop(oop_result);
       
   849 }
       
   850 
       
   851 
       
   852 void MacroAssembler::get_vm_result_2(Register metadata_result) {
       
   853   verify_thread();
       
   854   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
       
   855   ld_ptr(vm_result_addr_2, metadata_result);
       
   856   st_ptr(G0, vm_result_addr_2);
       
   857 }
       
   858 
       
   859 
       
   860 // We require that C code which does not return a value in vm_result will
       
   861 // leave it undisturbed.
       
   862 void MacroAssembler::set_vm_result(Register oop_result) {
       
   863   verify_thread();
       
   864   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
       
   865   verify_oop(oop_result);
       
   866 
       
   867 # ifdef ASSERT
       
   868     // Check that we are not overwriting any other oop.
       
   869 #ifdef CC_INTERP
       
   870     save_frame(0);
       
   871 #else
       
   872     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
       
   873 #endif /* CC_INTERP */
       
   874     ld_ptr(vm_result_addr, L0);
       
   875     tst(L0);
       
   876     restore();
       
   877     breakpoint_trap(notZero, Assembler::ptr_cc);
       
   878     // }
       
   879 # endif
       
   880 
       
   881   st_ptr(oop_result, vm_result_addr);
       
   882 }
       
   883 
       
   884 
       
   885 void MacroAssembler::ic_call(address entry, bool emit_delay) {
       
   886   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
       
   887   patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
       
   888   relocate(rspec);
       
   889   call(entry, relocInfo::none);
       
   890   if (emit_delay) {
       
   891     delayed()->nop();
       
   892   }
       
   893 }
       
   894 
       
   895 
       
   896 void MacroAssembler::card_table_write(jbyte* byte_map_base,
       
   897                                       Register tmp, Register obj) {
       
   898 #ifdef _LP64
       
   899   srlx(obj, CardTableModRefBS::card_shift, obj);
       
   900 #else
       
   901   srl(obj, CardTableModRefBS::card_shift, obj);
       
   902 #endif
       
   903   assert(tmp != obj, "need separate temp reg");
       
   904   set((address) byte_map_base, tmp);
       
   905   stb(G0, tmp, obj);
       
   906 }
       
   907 
       
   908 
       
   909 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
       
   910   address save_pc;
       
   911   int shiftcnt;
       
   912 #ifdef _LP64
       
   913 # ifdef CHECK_DELAY
       
   914   assert_not_delayed((char*) "cannot put two instructions in delay slot");
       
   915 # endif
       
   916   v9_dep();
       
   917   save_pc = pc();
       
   918 
       
   919   int msb32 = (int) (addrlit.value() >> 32);
       
   920   int lsb32 = (int) (addrlit.value());
       
   921 
       
   922   if (msb32 == 0 && lsb32 >= 0) {
       
   923     Assembler::sethi(lsb32, d, addrlit.rspec());
       
   924   }
       
   925   else if (msb32 == -1) {
       
   926     Assembler::sethi(~lsb32, d, addrlit.rspec());
       
   927     xor3(d, ~low10(~0), d);
       
   928   }
       
   929   else {
       
   930     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
       
   931     if (msb32 & 0x3ff)                            // Any bits?
       
   932       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
       
   933     if (lsb32 & 0xFFFFFC00) {                     // done?
       
   934       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
       
   935         sllx(d, 12, d);                           // Make room for next 12 bits
       
   936         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
       
   937         shiftcnt = 0;                             // We already shifted
       
   938       }
       
   939       else
       
   940         shiftcnt = 12;
       
   941       if ((lsb32 >> 10) & 0x3ff) {
       
   942         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
       
   943         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
       
   944         shiftcnt = 0;
       
   945       }
       
   946       else
       
   947         shiftcnt = 10;
       
   948       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
       
   949     }
       
   950     else
       
   951       sllx(d, 32, d);
       
   952   }
       
   953   // Pad out the instruction sequence so it can be patched later.
       
   954   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
       
   955                            addrlit.rtype() != relocInfo::runtime_call_type)) {
       
   956     while (pc() < (save_pc + (7 * BytesPerInstWord)))
       
   957       nop();
       
   958   }
       
   959 #else
       
   960   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
       
   961 #endif
       
   962 }
       
   963 
       
   964 
       
   965 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
       
   966   internal_sethi(addrlit, d, false);
       
   967 }
       
   968 
       
   969 
       
   970 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
       
   971   internal_sethi(addrlit, d, true);
       
   972 }
       
   973 
       
   974 
       
   975 int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
       
   976 #ifdef _LP64
       
   977   if (worst_case)  return 7;
       
   978   intptr_t iaddr = (intptr_t) a;
       
   979   int msb32 = (int) (iaddr >> 32);
       
   980   int lsb32 = (int) (iaddr);
       
   981   int count;
       
   982   if (msb32 == 0 && lsb32 >= 0)
       
   983     count = 1;
       
   984   else if (msb32 == -1)
       
   985     count = 2;
       
   986   else {
       
   987     count = 2;
       
   988     if (msb32 & 0x3ff)
       
   989       count++;
       
   990     if (lsb32 & 0xFFFFFC00 ) {
       
   991       if ((lsb32 >> 20) & 0xfff)  count += 2;
       
   992       if ((lsb32 >> 10) & 0x3ff)  count += 2;
       
   993     }
       
   994   }
       
   995   return count;
       
   996 #else
       
   997   return 1;
       
   998 #endif
       
   999 }
       
  1000 
       
  1001 int MacroAssembler::worst_case_insts_for_set() {
       
  1002   return insts_for_sethi(NULL, true) + 1;
       
  1003 }
       
  1004 
       
  1005 
       
  1006 // Keep in sync with MacroAssembler::insts_for_internal_set
       
  1007 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
       
  1008   intptr_t value = addrlit.value();
       
  1009 
       
  1010   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
       
  1011     // can optimize
       
  1012     if (-4096 <= value && value <= 4095) {
       
  1013       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
       
  1014       return;
       
  1015     }
       
  1016     if (inv_hi22(hi22(value)) == value) {
       
  1017       sethi(addrlit, d);
       
  1018       return;
       
  1019     }
       
  1020   }
       
  1021   assert_not_delayed((char*) "cannot put two instructions in delay slot");
       
  1022   internal_sethi(addrlit, d, ForceRelocatable);
       
  1023   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
       
  1024     add(d, addrlit.low10(), d, addrlit.rspec());
       
  1025   }
       
  1026 }
       
  1027 
       
  1028 // Keep in sync with MacroAssembler::internal_set
       
  1029 int MacroAssembler::insts_for_internal_set(intptr_t value) {
       
  1030   // can optimize
       
  1031   if (-4096 <= value && value <= 4095) {
       
  1032     return 1;
       
  1033   }
       
  1034   if (inv_hi22(hi22(value)) == value) {
       
  1035     return insts_for_sethi((address) value);
       
  1036   }
       
  1037   int count = insts_for_sethi((address) value);
       
  1038   AddressLiteral al(value);
       
  1039   if (al.low10() != 0) {
       
  1040     count++;
       
  1041   }
       
  1042   return count;
       
  1043 }
       
  1044 
       
  1045 void MacroAssembler::set(const AddressLiteral& al, Register d) {
       
  1046   internal_set(al, d, false);
       
  1047 }
       
  1048 
       
  1049 void MacroAssembler::set(intptr_t value, Register d) {
       
  1050   AddressLiteral al(value);
       
  1051   internal_set(al, d, false);
       
  1052 }
       
  1053 
       
  1054 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
       
  1055   AddressLiteral al(addr, rspec);
       
  1056   internal_set(al, d, false);
       
  1057 }
       
  1058 
       
  1059 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
       
  1060   internal_set(al, d, true);
       
  1061 }
       
  1062 
       
  1063 void MacroAssembler::patchable_set(intptr_t value, Register d) {
       
  1064   AddressLiteral al(value);
       
  1065   internal_set(al, d, true);
       
  1066 }
       
  1067 
       
  1068 
       
  1069 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
       
  1070   assert_not_delayed();
       
  1071   v9_dep();
       
  1072 
       
  1073   int hi = (int)(value >> 32);
       
  1074   int lo = (int)(value & ~0);
       
  1075   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
       
  1076   if (Assembler::is_simm13(lo) && value == lo) {
       
  1077     or3(G0, lo, d);
       
  1078   } else if (hi == 0) {
       
  1079     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
       
  1080     if (low10(lo) != 0)
       
  1081       or3(d, low10(lo), d);
       
  1082   }
       
  1083   else if (hi == -1) {
       
  1084     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
       
  1085     xor3(d, low10(lo) ^ ~low10(~0), d);
       
  1086   }
       
  1087   else if (lo == 0) {
       
  1088     if (Assembler::is_simm13(hi)) {
       
  1089       or3(G0, hi, d);
       
  1090     } else {
       
  1091       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
       
  1092       if (low10(hi) != 0)
       
  1093         or3(d, low10(hi), d);
       
  1094     }
       
  1095     sllx(d, 32, d);
       
  1096   }
       
  1097   else {
       
  1098     Assembler::sethi(hi, tmp);
       
  1099     Assembler::sethi(lo,   d); // macro assembler version sign-extends
       
  1100     if (low10(hi) != 0)
       
  1101       or3 (tmp, low10(hi), tmp);
       
  1102     if (low10(lo) != 0)
       
  1103       or3 (  d, low10(lo),   d);
       
  1104     sllx(tmp, 32, tmp);
       
  1105     or3 (d, tmp, d);
       
  1106   }
       
  1107 }
       
  1108 
       
  1109 int MacroAssembler::insts_for_set64(jlong value) {
       
  1110   v9_dep();
       
  1111 
       
  1112   int hi = (int) (value >> 32);
       
  1113   int lo = (int) (value & ~0);
       
  1114   int count = 0;
       
  1115 
       
  1116   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
       
  1117   if (Assembler::is_simm13(lo) && value == lo) {
       
  1118     count++;
       
  1119   } else if (hi == 0) {
       
  1120     count++;
       
  1121     if (low10(lo) != 0)
       
  1122       count++;
       
  1123   }
       
  1124   else if (hi == -1) {
       
  1125     count += 2;
       
  1126   }
       
  1127   else if (lo == 0) {
       
  1128     if (Assembler::is_simm13(hi)) {
       
  1129       count++;
       
  1130     } else {
       
  1131       count++;
       
  1132       if (low10(hi) != 0)
       
  1133         count++;
       
  1134     }
       
  1135     count++;
       
  1136   }
       
  1137   else {
       
  1138     count += 2;
       
  1139     if (low10(hi) != 0)
       
  1140       count++;
       
  1141     if (low10(lo) != 0)
       
  1142       count++;
       
  1143     count += 2;
       
  1144   }
       
  1145   return count;
       
  1146 }
       
  1147 
       
  1148 // compute size in bytes of sparc frame, given
       
  1149 // number of extraWords
       
  1150 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
       
  1151 
       
  1152   int nWords = frame::memory_parameter_word_sp_offset;
       
  1153 
       
  1154   nWords += extraWords;
       
  1155 
       
  1156   if (nWords & 1) ++nWords; // round up to double-word
       
  1157 
       
  1158   return nWords * BytesPerWord;
       
  1159 }
       
  1160 
       
  1161 
       
  1162 // save_frame: given number of "extra" words in frame,
       
  1163 // issue approp. save instruction (p 200, v8 manual)
       
  1164 
       
  1165 void MacroAssembler::save_frame(int extraWords) {
       
  1166   int delta = -total_frame_size_in_bytes(extraWords);
       
  1167   if (is_simm13(delta)) {
       
  1168     save(SP, delta, SP);
       
  1169   } else {
       
  1170     set(delta, G3_scratch);
       
  1171     save(SP, G3_scratch, SP);
       
  1172   }
       
  1173 }
       
  1174 
       
  1175 
       
  1176 void MacroAssembler::save_frame_c1(int size_in_bytes) {
       
  1177   if (is_simm13(-size_in_bytes)) {
       
  1178     save(SP, -size_in_bytes, SP);
       
  1179   } else {
       
  1180     set(-size_in_bytes, G3_scratch);
       
  1181     save(SP, G3_scratch, SP);
       
  1182   }
       
  1183 }
       
  1184 
       
  1185 
       
  1186 void MacroAssembler::save_frame_and_mov(int extraWords,
       
  1187                                         Register s1, Register d1,
       
  1188                                         Register s2, Register d2) {
       
  1189   assert_not_delayed();
       
  1190 
       
  1191   // The trick here is to use precisely the same memory word
       
  1192   // that trap handlers also use to save the register.
       
  1193   // This word cannot be used for any other purpose, but
       
  1194   // it works fine to save the register's value, whether or not
       
  1195   // an interrupt flushes register windows at any given moment!
       
  1196   Address s1_addr;
       
  1197   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
       
  1198     s1_addr = s1->address_in_saved_window();
       
  1199     st_ptr(s1, s1_addr);
       
  1200   }
       
  1201 
       
  1202   Address s2_addr;
       
  1203   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
       
  1204     s2_addr = s2->address_in_saved_window();
       
  1205     st_ptr(s2, s2_addr);
       
  1206   }
       
  1207 
       
  1208   save_frame(extraWords);
       
  1209 
       
  1210   if (s1_addr.base() == SP) {
       
  1211     ld_ptr(s1_addr.after_save(), d1);
       
  1212   } else if (s1->is_valid()) {
       
  1213     mov(s1->after_save(), d1);
       
  1214   }
       
  1215 
       
  1216   if (s2_addr.base() == SP) {
       
  1217     ld_ptr(s2_addr.after_save(), d2);
       
  1218   } else if (s2->is_valid()) {
       
  1219     mov(s2->after_save(), d2);
       
  1220   }
       
  1221 }
       
  1222 
       
  1223 
       
  1224 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
       
  1225   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
       
  1226   int index = oop_recorder()->allocate_metadata_index(obj);
       
  1227   RelocationHolder rspec = metadata_Relocation::spec(index);
       
  1228   return AddressLiteral((address)obj, rspec);
       
  1229 }
       
  1230 
       
  1231 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
       
  1232   assert(oop_recorder() != NULL, "this assembler needs a Recorder");
       
  1233   int index = oop_recorder()->find_index(obj);
       
  1234   RelocationHolder rspec = metadata_Relocation::spec(index);
       
  1235   return AddressLiteral((address)obj, rspec);
       
  1236 }
       
  1237 
       
  1238 
       
  1239 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
       
  1240   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
       
  1241   assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
       
  1242   int oop_index = oop_recorder()->find_index(obj);
       
  1243   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
       
  1244 }
       
  1245 
       
  1246 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
       
  1247   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
       
  1248   int oop_index = oop_recorder()->find_index(obj);
       
  1249   RelocationHolder rspec = oop_Relocation::spec(oop_index);
       
  1250 
       
  1251   assert_not_delayed();
       
  1252   // Relocation with special format (see relocInfo_sparc.hpp).
       
  1253   relocate(rspec, 1);
       
  1254   // Assembler::sethi(0x3fffff, d);
       
  1255   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
       
  1256   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
       
  1257   add(d, 0x3ff, d);
       
  1258 
       
  1259 }
       
  1260 
       
  1261 void  MacroAssembler::set_narrow_klass(Klass* k, Register d) {
       
  1262   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
       
  1263   int klass_index = oop_recorder()->find_index(k);
       
  1264   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
       
  1265   narrowOop encoded_k = oopDesc::encode_klass(k);
       
  1266 
       
  1267   assert_not_delayed();
       
  1268   // Relocation with special format (see relocInfo_sparc.hpp).
       
  1269   relocate(rspec, 1);
       
  1270   // Assembler::sethi(encoded_k, d);
       
  1271   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
       
  1272   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
       
  1273   add(d, low10(encoded_k), d);
       
  1274 
       
  1275 }
       
  1276 
       
  1277 void MacroAssembler::align(int modulus) {
       
  1278   while (offset() % modulus != 0) nop();
       
  1279 }
       
  1280 
       
  1281 
       
  1282 void MacroAssembler::safepoint() {
       
  1283   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
       
  1284 }
       
  1285 
       
  1286 
       
  1287 void RegistersForDebugging::print(outputStream* s) {
       
  1288   FlagSetting fs(Debugging, true);
       
  1289   int j;
       
  1290   for (j = 0; j < 8; ++j) {
       
  1291     if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
       
  1292     else        { s->print( "fp = "   ); os::print_location(s, i[j]); }
       
  1293   }
       
  1294   s->cr();
       
  1295 
       
  1296   for (j = 0;  j < 8;  ++j) {
       
  1297     s->print("l%d = ", j); os::print_location(s, l[j]);
       
  1298   }
       
  1299   s->cr();
       
  1300 
       
  1301   for (j = 0; j < 8; ++j) {
       
  1302     if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
       
  1303     else        { s->print( "sp = "   ); os::print_location(s, o[j]); }
       
  1304   }
       
  1305   s->cr();
       
  1306 
       
  1307   for (j = 0; j < 8; ++j) {
       
  1308     s->print("g%d = ", j); os::print_location(s, g[j]);
       
  1309   }
       
  1310   s->cr();
       
  1311 
       
  1312   // print out floats with compression
       
  1313   for (j = 0; j < 32; ) {
       
  1314     jfloat val = f[j];
       
  1315     int last = j;
       
  1316     for ( ;  last+1 < 32;  ++last ) {
       
  1317       char b1[1024], b2[1024];
       
  1318       sprintf(b1, "%f", val);
       
  1319       sprintf(b2, "%f", f[last+1]);
       
  1320       if (strcmp(b1, b2))
       
  1321         break;
       
  1322     }
       
  1323     s->print("f%d", j);
       
  1324     if ( j != last )  s->print(" - f%d", last);
       
  1325     s->print(" = %f", val);
       
  1326     s->fill_to(25);
       
  1327     s->print_cr(" (0x%x)", val);
       
  1328     j = last + 1;
       
  1329   }
       
  1330   s->cr();
       
  1331 
       
  1332   // and doubles (evens only)
       
  1333   for (j = 0; j < 32; ) {
       
  1334     jdouble val = d[j];
       
  1335     int last = j;
       
  1336     for ( ;  last+1 < 32;  ++last ) {
       
  1337       char b1[1024], b2[1024];
       
  1338       sprintf(b1, "%f", val);
       
  1339       sprintf(b2, "%f", d[last+1]);
       
  1340       if (strcmp(b1, b2))
       
  1341         break;
       
  1342     }
       
  1343     s->print("d%d", 2 * j);
       
  1344     if ( j != last )  s->print(" - d%d", last);
       
  1345     s->print(" = %f", val);
       
  1346     s->fill_to(30);
       
  1347     s->print("(0x%x)", *(int*)&val);
       
  1348     s->fill_to(42);
       
  1349     s->print_cr("(0x%x)", *(1 + (int*)&val));
       
  1350     j = last + 1;
       
  1351   }
       
  1352   s->cr();
       
  1353 }
       
  1354 
       
  1355 void RegistersForDebugging::save_registers(MacroAssembler* a) {
       
  1356   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
       
  1357   a->flush_windows();
       
  1358   int i;
       
  1359   for (i = 0; i < 8; ++i) {
       
  1360     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
       
  1361     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
       
  1362     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
       
  1363     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
       
  1364   }
       
  1365   for (i = 0;  i < 32; ++i) {
       
  1366     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
       
  1367   }
       
  1368   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
       
  1369     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
       
  1370   }
       
  1371 }
       
  1372 
       
  1373 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
       
  1374   for (int i = 1; i < 8;  ++i) {
       
  1375     a->ld_ptr(r, g_offset(i), as_gRegister(i));
       
  1376   }
       
  1377   for (int j = 0; j < 32; ++j) {
       
  1378     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
       
  1379   }
       
  1380   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
       
  1381     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
       
  1382   }
       
  1383 }
       
  1384 
       
  1385 
       
  1386 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
       
  1387 void MacroAssembler::push_fTOS() {
       
  1388   // %%%%%% need to implement this
       
  1389 }
       
  1390 
       
  1391 // pops double TOS element from CPU stack and pushes on FPU stack
       
  1392 void MacroAssembler::pop_fTOS() {
       
  1393   // %%%%%% need to implement this
       
  1394 }
       
  1395 
       
  1396 void MacroAssembler::empty_FPU_stack() {
       
  1397   // %%%%%% need to implement this
       
  1398 }
       
  1399 
       
  1400 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
       
  1401   // plausibility check for oops
       
  1402   if (!VerifyOops) return;
       
  1403 
       
  1404   if (reg == G0)  return;       // always NULL, which is always an oop
       
  1405 
       
  1406   BLOCK_COMMENT("verify_oop {");
       
  1407   char buffer[64];
       
  1408 #ifdef COMPILER1
       
  1409   if (CommentedAssembly) {
       
  1410     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
       
  1411     block_comment(buffer);
       
  1412   }
       
  1413 #endif
       
  1414 
       
  1415   int len = strlen(file) + strlen(msg) + 1 + 4;
       
  1416   sprintf(buffer, "%d", line);
       
  1417   len += strlen(buffer);
       
  1418   sprintf(buffer, " at offset %d ", offset());
       
  1419   len += strlen(buffer);
       
  1420   char * real_msg = new char[len];
       
  1421   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
       
  1422 
       
  1423   // Call indirectly to solve generation ordering problem
       
  1424   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
       
  1425 
       
  1426   // Make some space on stack above the current register window.
       
  1427   // Enough to hold 8 64-bit registers.
       
  1428   add(SP,-8*8,SP);
       
  1429 
       
  1430   // Save some 64-bit registers; a normal 'save' chops the heads off
       
  1431   // of 64-bit longs in the 32-bit build.
       
  1432   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
       
  1433   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
       
  1434   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
       
  1435   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
       
  1436 
       
  1437   // Size of set() should stay the same
       
  1438   patchable_set((intptr_t)real_msg, O1);
       
  1439   // Load address to call to into O7
       
  1440   load_ptr_contents(a, O7);
       
  1441   // Register call to verify_oop_subroutine
       
  1442   callr(O7, G0);
       
  1443   delayed()->nop();
       
  1444   // recover frame size
       
  1445   add(SP, 8*8,SP);
       
  1446   BLOCK_COMMENT("} verify_oop");
       
  1447 }
       
  1448 
       
  1449 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
       
  1450   // plausibility check for oops
       
  1451   if (!VerifyOops) return;
       
  1452 
       
  1453   char buffer[64];
       
  1454   sprintf(buffer, "%d", line);
       
  1455   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
       
  1456   sprintf(buffer, " at SP+%d ", addr.disp());
       
  1457   len += strlen(buffer);
       
  1458   char * real_msg = new char[len];
       
  1459   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
       
  1460 
       
  1461   // Call indirectly to solve generation ordering problem
       
  1462   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
       
  1463 
       
  1464   // Make some space on stack above the current register window.
       
  1465   // Enough to hold 8 64-bit registers.
       
  1466   add(SP,-8*8,SP);
       
  1467 
       
  1468   // Save some 64-bit registers; a normal 'save' chops the heads off
       
  1469   // of 64-bit longs in the 32-bit build.
       
  1470   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
       
  1471   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
       
  1472   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
       
  1473   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
       
  1474 
       
  1475   // Size of set() should stay the same
       
  1476   patchable_set((intptr_t)real_msg, O1);
       
  1477   // Load address to call to into O7
       
  1478   load_ptr_contents(a, O7);
       
  1479   // Register call to verify_oop_subroutine
       
  1480   callr(O7, G0);
       
  1481   delayed()->nop();
       
  1482   // recover frame size
       
  1483   add(SP, 8*8,SP);
       
  1484 }
       
  1485 
       
  1486 // side-door communication with signalHandler in os_solaris.cpp
       
  1487 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
       
  1488 
       
  1489 // This macro is expanded just once; it creates shared code.  Contract:
       
  1490 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
       
  1491 // registers, including flags.  May not use a register 'save', as this blows
       
  1492 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
       
  1493 // call.
       
  1494 void MacroAssembler::verify_oop_subroutine() {
       
  1495   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
       
  1496 
       
  1497   // Leaf call; no frame.
       
  1498   Label succeed, fail, null_or_fail;
       
  1499 
       
  1500   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
       
  1501   // O0 is now the oop to be checked.  O7 is the return address.
       
  1502   Register O0_obj = O0;
       
  1503 
       
  1504   // Save some more registers for temps.
       
  1505   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
       
  1506   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
       
  1507   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
       
  1508   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
       
  1509 
       
  1510   // Save flags
       
  1511   Register O5_save_flags = O5;
       
  1512   rdccr( O5_save_flags );
       
  1513 
       
  1514   { // count number of verifies
       
  1515     Register O2_adr   = O2;
       
  1516     Register O3_accum = O3;
       
  1517     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
       
  1518   }
       
  1519 
       
  1520   Register O2_mask = O2;
       
  1521   Register O3_bits = O3;
       
  1522   Register O4_temp = O4;
       
  1523 
       
  1524   // mark lower end of faulting range
       
  1525   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
       
  1526   _verify_oop_implicit_branch[0] = pc();
       
  1527 
       
  1528   // We can't check the mark oop because it could be in the process of
       
  1529   // locking or unlocking while this is running.
       
  1530   set(Universe::verify_oop_mask (), O2_mask);
       
  1531   set(Universe::verify_oop_bits (), O3_bits);
       
  1532 
       
  1533   // assert((obj & oop_mask) == oop_bits);
       
  1534   and3(O0_obj, O2_mask, O4_temp);
       
  1535   cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
       
  1536 
       
  1537   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
       
  1538     // the null_or_fail case is useless; must test for null separately
       
  1539     br_null_short(O0_obj, pn, succeed);
       
  1540   }
       
  1541 
       
  1542   // Check the Klass* of this object for being in the right area of memory.
       
  1543   // Cannot do the load in the delay above slot in case O0 is null
       
  1544   load_klass(O0_obj, O0_obj);
       
  1545   // assert((klass != NULL)
       
  1546   br_null_short(O0_obj, pn, fail);
       
  1547   // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers
       
  1548 
       
  1549   wrccr( O5_save_flags ); // Restore CCR's
       
  1550 
       
  1551   // mark upper end of faulting range
       
  1552   _verify_oop_implicit_branch[1] = pc();
       
  1553 
       
  1554   //-----------------------
       
  1555   // all tests pass
       
  1556   bind(succeed);
       
  1557 
       
  1558   // Restore prior 64-bit registers
       
  1559   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
       
  1560   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
       
  1561   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
       
  1562   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
       
  1563   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
       
  1564   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
       
  1565 
       
  1566   retl();                       // Leaf return; restore prior O7 in delay slot
       
  1567   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
       
  1568 
       
  1569   //-----------------------
       
  1570   bind(null_or_fail);           // nulls are less common but OK
       
  1571   br_null(O0_obj, false, pt, succeed);
       
  1572   delayed()->wrccr( O5_save_flags ); // Restore CCR's
       
  1573 
       
  1574   //-----------------------
       
  1575   // report failure:
       
  1576   bind(fail);
       
  1577   _verify_oop_implicit_branch[2] = pc();
       
  1578 
       
  1579   wrccr( O5_save_flags ); // Restore CCR's
       
  1580 
       
  1581   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
       
  1582 
       
  1583   // stop_subroutine expects message pointer in I1.
       
  1584   mov(I1, O1);
       
  1585 
       
  1586   // Restore prior 64-bit registers
       
  1587   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
       
  1588   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
       
  1589   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
       
  1590   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
       
  1591   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
       
  1592   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
       
  1593 
       
  1594   // factor long stop-sequence into subroutine to save space
       
  1595   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
       
  1596 
       
  1597   // call indirectly to solve generation ordering problem
       
  1598   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
       
  1599   load_ptr_contents(al, O5);
       
  1600   jmpl(O5, 0, O7);
       
  1601   delayed()->nop();
       
  1602 }
       
  1603 
       
  1604 
       
  1605 void MacroAssembler::stop(const char* msg) {
       
  1606   // save frame first to get O7 for return address
       
  1607   // add one word to size in case struct is odd number of words long
       
  1608   // It must be doubleword-aligned for storing doubles into it.
       
  1609 
       
  1610     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
       
  1611 
       
  1612     // stop_subroutine expects message pointer in I1.
       
  1613     // Size of set() should stay the same
       
  1614     patchable_set((intptr_t)msg, O1);
       
  1615 
       
  1616     // factor long stop-sequence into subroutine to save space
       
  1617     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
       
  1618 
       
  1619     // call indirectly to solve generation ordering problem
       
  1620     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
       
  1621     load_ptr_contents(a, O5);
       
  1622     jmpl(O5, 0, O7);
       
  1623     delayed()->nop();
       
  1624 
       
  1625     breakpoint_trap();   // make stop actually stop rather than writing
       
  1626                          // unnoticeable results in the output files.
       
  1627 
       
  1628     // restore(); done in callee to save space!
       
  1629 }
       
  1630 
       
  1631 
       
  1632 void MacroAssembler::warn(const char* msg) {
       
  1633   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
       
  1634   RegistersForDebugging::save_registers(this);
       
  1635   mov(O0, L0);
       
  1636   // Size of set() should stay the same
       
  1637   patchable_set((intptr_t)msg, O0);
       
  1638   call( CAST_FROM_FN_PTR(address, warning) );
       
  1639   delayed()->nop();
       
  1640 //  ret();
       
  1641 //  delayed()->restore();
       
  1642   RegistersForDebugging::restore_registers(this, L0);
       
  1643   restore();
       
  1644 }
       
  1645 
       
  1646 
       
  1647 void MacroAssembler::untested(const char* what) {
       
  1648   // We must be able to turn interactive prompting off
       
  1649   // in order to run automated test scripts on the VM
       
  1650   // Use the flag ShowMessageBoxOnError
       
  1651 
       
  1652   char* b = new char[1024];
       
  1653   sprintf(b, "untested: %s", what);
       
  1654 
       
  1655   if (ShowMessageBoxOnError) { STOP(b); }
       
  1656   else                       { warn(b); }
       
  1657 }
       
  1658 
       
  1659 
       
  1660 void MacroAssembler::stop_subroutine() {
       
  1661   RegistersForDebugging::save_registers(this);
       
  1662 
       
  1663   // for the sake of the debugger, stick a PC on the current frame
       
  1664   // (this assumes that the caller has performed an extra "save")
       
  1665   mov(I7, L7);
       
  1666   add(O7, -7 * BytesPerInt, I7);
       
  1667 
       
  1668   save_frame(); // one more save to free up another O7 register
       
  1669   mov(I0, O1); // addr of reg save area
       
  1670 
       
  1671   // We expect pointer to message in I1. Caller must set it up in O1
       
  1672   mov(I1, O0); // get msg
       
  1673   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
       
  1674   delayed()->nop();
       
  1675 
       
  1676   restore();
       
  1677 
       
  1678   RegistersForDebugging::restore_registers(this, O0);
       
  1679 
       
  1680   save_frame(0);
       
  1681   call(CAST_FROM_FN_PTR(address,breakpoint));
       
  1682   delayed()->nop();
       
  1683   restore();
       
  1684 
       
  1685   mov(L7, I7);
       
  1686   retl();
       
  1687   delayed()->restore(); // see stop above
       
  1688 }
       
  1689 
       
  1690 
       
  1691 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
       
  1692   if ( ShowMessageBoxOnError ) {
       
  1693     JavaThread* thread = JavaThread::current();
       
  1694     JavaThreadState saved_state = thread->thread_state();
       
  1695     thread->set_thread_state(_thread_in_vm);
       
  1696       {
       
  1697         // In order to get locks work, we need to fake a in_VM state
       
  1698         ttyLocker ttyl;
       
  1699         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
       
  1700         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
       
  1701         BytecodeCounter::print();
       
  1702         }
       
  1703         if (os::message_box(msg, "Execution stopped, print registers?"))
       
  1704           regs->print(::tty);
       
  1705       }
       
  1706     BREAKPOINT;
       
  1707       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
       
  1708   }
       
  1709   else {
       
  1710      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
       
  1711   }
       
  1712   assert(false, err_msg("DEBUG MESSAGE: %s", msg));
       
  1713 }
       
  1714 
       
  1715 
       
  1716 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
       
  1717   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
       
  1718   Label no_extras;
       
  1719   br( negative, true, pt, no_extras ); // if neg, clear reg
       
  1720   delayed()->set(0, Rresult);          // annuled, so only if taken
       
  1721   bind( no_extras );
       
  1722 }
       
  1723 
       
  1724 
       
  1725 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
       
  1726 #ifdef _LP64
       
  1727   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
       
  1728 #else
       
  1729   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
       
  1730 #endif
       
  1731   bclr(1, Rresult);
       
  1732   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
       
  1733 }
       
  1734 
       
  1735 
       
  1736 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
       
  1737   calc_frame_size(Rextra_words, Rresult);
       
  1738   neg(Rresult);
       
  1739   save(SP, Rresult, SP);
       
  1740 }
       
  1741 
       
  1742 
       
  1743 // ---------------------------------------------------------
       
  1744 Assembler::RCondition cond2rcond(Assembler::Condition c) {
       
  1745   switch (c) {
       
  1746     /*case zero: */
       
  1747     case Assembler::equal:        return Assembler::rc_z;
       
  1748     case Assembler::lessEqual:    return Assembler::rc_lez;
       
  1749     case Assembler::less:         return Assembler::rc_lz;
       
  1750     /*case notZero:*/
       
  1751     case Assembler::notEqual:     return Assembler::rc_nz;
       
  1752     case Assembler::greater:      return Assembler::rc_gz;
       
  1753     case Assembler::greaterEqual: return Assembler::rc_gez;
       
  1754   }
       
  1755   ShouldNotReachHere();
       
  1756   return Assembler::rc_z;
       
  1757 }
       
  1758 
       
  1759 // compares (32 bit) register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
       
  1760 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
       
  1761   tst(s1);
       
  1762   br (c, a, p, L);
       
  1763 }
       
  1764 
       
  1765 // Compares a pointer register with zero and branches on null.
       
  1766 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
       
  1767 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
       
  1768   assert_not_delayed();
       
  1769 #ifdef _LP64
       
  1770   bpr( rc_z, a, p, s1, L );
       
  1771 #else
       
  1772   tst(s1);
       
  1773   br ( zero, a, p, L );
       
  1774 #endif
       
  1775 }
       
  1776 
       
  1777 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
       
  1778   assert_not_delayed();
       
  1779 #ifdef _LP64
       
  1780   bpr( rc_nz, a, p, s1, L );
       
  1781 #else
       
  1782   tst(s1);
       
  1783   br ( notZero, a, p, L );
       
  1784 #endif
       
  1785 }
       
  1786 
       
  1787 // Compare registers and branch with nop in delay slot or cbcond without delay slot.
       
  1788 
       
  1789 // Compare integer (32 bit) values (icc only).
       
  1790 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
       
  1791                                       Predict p, Label& L) {
       
  1792   assert_not_delayed();
       
  1793   if (use_cbcond(L)) {
       
  1794     Assembler::cbcond(c, icc, s1, s2, L);
       
  1795   } else {
       
  1796     cmp(s1, s2);
       
  1797     br(c, false, p, L);
       
  1798     delayed()->nop();
       
  1799   }
       
  1800 }
       
  1801 
       
  1802 // Compare integer (32 bit) values (icc only).
       
  1803 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
       
  1804                                       Predict p, Label& L) {
       
  1805   assert_not_delayed();
       
  1806   if (is_simm(simm13a,5) && use_cbcond(L)) {
       
  1807     Assembler::cbcond(c, icc, s1, simm13a, L);
       
  1808   } else {
       
  1809     cmp(s1, simm13a);
       
  1810     br(c, false, p, L);
       
  1811     delayed()->nop();
       
  1812   }
       
  1813 }
       
  1814 
       
  1815 // Branch that tests xcc in LP64 and icc in !LP64
       
  1816 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
       
  1817                                        Predict p, Label& L) {
       
  1818   assert_not_delayed();
       
  1819   if (use_cbcond(L)) {
       
  1820     Assembler::cbcond(c, ptr_cc, s1, s2, L);
       
  1821   } else {
       
  1822     cmp(s1, s2);
       
  1823     brx(c, false, p, L);
       
  1824     delayed()->nop();
       
  1825   }
       
  1826 }
       
  1827 
       
  1828 // Branch that tests xcc in LP64 and icc in !LP64
       
  1829 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
       
  1830                                        Predict p, Label& L) {
       
  1831   assert_not_delayed();
       
  1832   if (is_simm(simm13a,5) && use_cbcond(L)) {
       
  1833     Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
       
  1834   } else {
       
  1835     cmp(s1, simm13a);
       
  1836     brx(c, false, p, L);
       
  1837     delayed()->nop();
       
  1838   }
       
  1839 }
       
  1840 
       
  1841 // Short branch version for compares a pointer with zero.
       
  1842 
       
  1843 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
       
  1844   assert_not_delayed();
       
  1845   if (use_cbcond(L)) {
       
  1846     Assembler::cbcond(zero, ptr_cc, s1, 0, L);
       
  1847     return;
       
  1848   }
       
  1849   br_null(s1, false, p, L);
       
  1850   delayed()->nop();
       
  1851 }
       
  1852 
       
  1853 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
       
  1854   assert_not_delayed();
       
  1855   if (use_cbcond(L)) {
       
  1856     Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
       
  1857     return;
       
  1858   }
       
  1859   br_notnull(s1, false, p, L);
       
  1860   delayed()->nop();
       
  1861 }
       
  1862 
       
  1863 // Unconditional short branch
       
  1864 void MacroAssembler::ba_short(Label& L) {
       
  1865   if (use_cbcond(L)) {
       
  1866     Assembler::cbcond(equal, icc, G0, G0, L);
       
  1867     return;
       
  1868   }
       
  1869   br(always, false, pt, L);
       
  1870   delayed()->nop();
       
  1871 }
       
  1872 
       
  1873 // instruction sequences factored across compiler & interpreter
       
  1874 
       
  1875 
       
  1876 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
       
  1877                            Register Rb_hi, Register Rb_low,
       
  1878                            Register Rresult) {
       
  1879 
       
  1880   Label check_low_parts, done;
       
  1881 
       
  1882   cmp(Ra_hi, Rb_hi );  // compare hi parts
       
  1883   br(equal, true, pt, check_low_parts);
       
  1884   delayed()->cmp(Ra_low, Rb_low); // test low parts
       
  1885 
       
  1886   // And, with an unsigned comparison, it does not matter if the numbers
       
  1887   // are negative or not.
       
  1888   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
       
  1889   // The second one is bigger (unsignedly).
       
  1890 
       
  1891   // Other notes:  The first move in each triplet can be unconditional
       
  1892   // (and therefore probably prefetchable).
       
  1893   // And the equals case for the high part does not need testing,
       
  1894   // since that triplet is reached only after finding the high halves differ.
       
  1895 
       
  1896   if (VM_Version::v9_instructions_work()) {
       
  1897     mov(-1, Rresult);
       
  1898     ba(done);  delayed()-> movcc(greater, false, icc,  1, Rresult);
       
  1899   } else {
       
  1900     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
       
  1901     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
       
  1902   }
       
  1903 
       
  1904   bind( check_low_parts );
       
  1905 
       
  1906   if (VM_Version::v9_instructions_work()) {
       
  1907     mov(                               -1, Rresult);
       
  1908     movcc(equal,           false, icc,  0, Rresult);
       
  1909     movcc(greaterUnsigned, false, icc,  1, Rresult);
       
  1910   } else {
       
  1911     set(-1, Rresult);
       
  1912     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
       
  1913     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
       
  1914   }
       
  1915   bind( done );
       
  1916 }
       
  1917 
       
  1918 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
       
  1919   subcc(  G0, Rlow, Rlow );
       
  1920   subc(   G0, Rhi,  Rhi  );
       
  1921 }
       
  1922 
       
  1923 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
       
  1924                            Register Rcount,
       
  1925                            Register Rout_high, Register Rout_low,
       
  1926                            Register Rtemp ) {
       
  1927 
       
  1928 
       
  1929   Register Ralt_count = Rtemp;
       
  1930   Register Rxfer_bits = Rtemp;
       
  1931 
       
  1932   assert( Ralt_count != Rin_high
       
  1933       &&  Ralt_count != Rin_low
       
  1934       &&  Ralt_count != Rcount
       
  1935       &&  Rxfer_bits != Rin_low
       
  1936       &&  Rxfer_bits != Rin_high
       
  1937       &&  Rxfer_bits != Rcount
       
  1938       &&  Rxfer_bits != Rout_low
       
  1939       &&  Rout_low   != Rin_high,
       
  1940         "register alias checks");
       
  1941 
       
  1942   Label big_shift, done;
       
  1943 
       
  1944   // This code can be optimized to use the 64 bit shifts in V9.
       
  1945   // Here we use the 32 bit shifts.
       
  1946 
       
  1947   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
       
  1948   subcc(Rcount,   31, Ralt_count);
       
  1949   br(greater, true, pn, big_shift);
       
  1950   delayed()->dec(Ralt_count);
       
  1951 
       
  1952   // shift < 32 bits, Ralt_count = Rcount-31
       
  1953 
       
  1954   // We get the transfer bits by shifting right by 32-count the low
       
  1955   // register. This is done by shifting right by 31-count and then by one
       
  1956   // more to take care of the special (rare) case where count is zero
       
  1957   // (shifting by 32 would not work).
       
  1958 
       
  1959   neg(Ralt_count);
       
  1960 
       
  1961   // The order of the next two instructions is critical in the case where
       
  1962   // Rin and Rout are the same and should not be reversed.
       
  1963 
       
  1964   srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
       
  1965   if (Rcount != Rout_low) {
       
  1966     sll(Rin_low, Rcount, Rout_low); // low half
       
  1967   }
       
  1968   sll(Rin_high, Rcount, Rout_high);
       
  1969   if (Rcount == Rout_low) {
       
  1970     sll(Rin_low, Rcount, Rout_low); // low half
       
  1971   }
       
  1972   srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
       
  1973   ba(done);
       
  1974   delayed()->or3(Rout_high, Rxfer_bits, Rout_high);   // new hi value: or in shifted old hi part and xfer from low
       
  1975 
       
  1976   // shift >= 32 bits, Ralt_count = Rcount-32
       
  1977   bind(big_shift);
       
  1978   sll(Rin_low, Ralt_count, Rout_high  );
       
  1979   clr(Rout_low);
       
  1980 
       
  1981   bind(done);
       
  1982 }
       
  1983 
       
  1984 
       
  1985 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
       
  1986                            Register Rcount,
       
  1987                            Register Rout_high, Register Rout_low,
       
  1988                            Register Rtemp ) {
       
  1989 
       
  1990   Register Ralt_count = Rtemp;
       
  1991   Register Rxfer_bits = Rtemp;
       
  1992 
       
  1993   assert( Ralt_count != Rin_high
       
  1994       &&  Ralt_count != Rin_low
       
  1995       &&  Ralt_count != Rcount
       
  1996       &&  Rxfer_bits != Rin_low
       
  1997       &&  Rxfer_bits != Rin_high
       
  1998       &&  Rxfer_bits != Rcount
       
  1999       &&  Rxfer_bits != Rout_high
       
  2000       &&  Rout_high  != Rin_low,
       
  2001         "register alias checks");
       
  2002 
       
  2003   Label big_shift, done;
       
  2004 
       
  2005   // This code can be optimized to use the 64 bit shifts in V9.
       
  2006   // Here we use the 32 bit shifts.
       
  2007 
       
  2008   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
       
  2009   subcc(Rcount,   31, Ralt_count);
       
  2010   br(greater, true, pn, big_shift);
       
  2011   delayed()->dec(Ralt_count);
       
  2012 
       
  2013   // shift < 32 bits, Ralt_count = Rcount-31
       
  2014 
       
  2015   // We get the transfer bits by shifting left by 32-count the high
       
  2016   // register. This is done by shifting left by 31-count and then by one
       
  2017   // more to take care of the special (rare) case where count is zero
       
  2018   // (shifting by 32 would not work).
       
  2019 
       
  2020   neg(Ralt_count);
       
  2021   if (Rcount != Rout_low) {
       
  2022     srl(Rin_low, Rcount, Rout_low);
       
  2023   }
       
  2024 
       
  2025   // The order of the next two instructions is critical in the case where
       
  2026   // Rin and Rout are the same and should not be reversed.
       
  2027 
       
  2028   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
       
  2029   sra(Rin_high,     Rcount, Rout_high ); // high half
       
  2030   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
       
  2031   if (Rcount == Rout_low) {
       
  2032     srl(Rin_low, Rcount, Rout_low);
       
  2033   }
       
  2034   ba(done);
       
  2035   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
       
  2036 
       
  2037   // shift >= 32 bits, Ralt_count = Rcount-32
       
  2038   bind(big_shift);
       
  2039 
       
  2040   sra(Rin_high, Ralt_count, Rout_low);
       
  2041   sra(Rin_high,         31, Rout_high); // sign into hi
       
  2042 
       
  2043   bind( done );
       
  2044 }
       
  2045 
       
  2046 
       
  2047 
       
  2048 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
       
  2049                             Register Rcount,
       
  2050                             Register Rout_high, Register Rout_low,
       
  2051                             Register Rtemp ) {
       
  2052 
       
  2053   Register Ralt_count = Rtemp;
       
  2054   Register Rxfer_bits = Rtemp;
       
  2055 
       
  2056   assert( Ralt_count != Rin_high
       
  2057       &&  Ralt_count != Rin_low
       
  2058       &&  Ralt_count != Rcount
       
  2059       &&  Rxfer_bits != Rin_low
       
  2060       &&  Rxfer_bits != Rin_high
       
  2061       &&  Rxfer_bits != Rcount
       
  2062       &&  Rxfer_bits != Rout_high
       
  2063       &&  Rout_high  != Rin_low,
       
  2064         "register alias checks");
       
  2065 
       
  2066   Label big_shift, done;
       
  2067 
       
  2068   // This code can be optimized to use the 64 bit shifts in V9.
       
  2069   // Here we use the 32 bit shifts.
       
  2070 
       
  2071   and3( Rcount, 0x3f, Rcount);     // take least significant 6 bits
       
  2072   subcc(Rcount,   31, Ralt_count);
       
  2073   br(greater, true, pn, big_shift);
       
  2074   delayed()->dec(Ralt_count);
       
  2075 
       
  2076   // shift < 32 bits, Ralt_count = Rcount-31
       
  2077 
       
  2078   // We get the transfer bits by shifting left by 32-count the high
       
  2079   // register. This is done by shifting left by 31-count and then by one
       
  2080   // more to take care of the special (rare) case where count is zero
       
  2081   // (shifting by 32 would not work).
       
  2082 
       
  2083   neg(Ralt_count);
       
  2084   if (Rcount != Rout_low) {
       
  2085     srl(Rin_low, Rcount, Rout_low);
       
  2086   }
       
  2087 
       
  2088   // The order of the next two instructions is critical in the case where
       
  2089   // Rin and Rout are the same and should not be reversed.
       
  2090 
       
  2091   sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
       
  2092   srl(Rin_high,     Rcount, Rout_high ); // high half
       
  2093   sll(Rxfer_bits,        1, Rxfer_bits); // shift left by one more
       
  2094   if (Rcount == Rout_low) {
       
  2095     srl(Rin_low, Rcount, Rout_low);
       
  2096   }
       
  2097   ba(done);
       
  2098   delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
       
  2099 
       
  2100   // shift >= 32 bits, Ralt_count = Rcount-32
       
  2101   bind(big_shift);
       
  2102 
       
  2103   srl(Rin_high, Ralt_count, Rout_low);
       
  2104   clr(Rout_high);
       
  2105 
       
  2106   bind( done );
       
  2107 }
       
  2108 
       
  2109 #ifdef _LP64
       
  2110 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
       
  2111   cmp(Ra, Rb);
       
  2112   mov(-1, Rresult);
       
  2113   movcc(equal,   false, xcc,  0, Rresult);
       
  2114   movcc(greater, false, xcc,  1, Rresult);
       
  2115 }
       
  2116 #endif
       
  2117 
       
  2118 
       
  2119 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
       
  2120   switch (size_in_bytes) {
       
  2121   case  8:  ld_long(src, dst); break;
       
  2122   case  4:  ld(     src, dst); break;
       
  2123   case  2:  is_signed ? ldsh(src, dst) : lduh(src, dst); break;
       
  2124   case  1:  is_signed ? ldsb(src, dst) : ldub(src, dst); break;
       
  2125   default:  ShouldNotReachHere();
       
  2126   }
       
  2127 }
       
  2128 
       
  2129 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
       
  2130   switch (size_in_bytes) {
       
  2131   case  8:  st_long(src, dst); break;
       
  2132   case  4:  st(     src, dst); break;
       
  2133   case  2:  sth(    src, dst); break;
       
  2134   case  1:  stb(    src, dst); break;
       
  2135   default:  ShouldNotReachHere();
       
  2136   }
       
  2137 }
       
  2138 
       
  2139 
       
  2140 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
       
  2141                                 FloatRegister Fa, FloatRegister Fb,
       
  2142                                 Register Rresult) {
       
  2143 
       
  2144   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
       
  2145 
       
  2146   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
       
  2147   Condition eq =                          f_equal;
       
  2148   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
       
  2149 
       
  2150   if (VM_Version::v9_instructions_work()) {
       
  2151 
       
  2152     mov(-1, Rresult);
       
  2153     movcc(eq, true, fcc0, 0, Rresult);
       
  2154     movcc(gt, true, fcc0, 1, Rresult);
       
  2155 
       
  2156   } else {
       
  2157     Label done;
       
  2158 
       
  2159     set( -1, Rresult );
       
  2160     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
       
  2161     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
       
  2162     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
       
  2163 
       
  2164     bind (done);
       
  2165   }
       
  2166 }
       
  2167 
       
  2168 
       
  2169 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
       
  2170 {
       
  2171   if (VM_Version::v9_instructions_work()) {
       
  2172     Assembler::fneg(w, s, d);
       
  2173   } else {
       
  2174     if (w == FloatRegisterImpl::S) {
       
  2175       Assembler::fneg(w, s, d);
       
  2176     } else if (w == FloatRegisterImpl::D) {
       
  2177       // number() does a sanity check on the alignment.
       
  2178       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
       
  2179         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
       
  2180 
       
  2181       Assembler::fneg(FloatRegisterImpl::S, s, d);
       
  2182       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
       
  2183     } else {
       
  2184       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
       
  2185 
       
  2186       // number() does a sanity check on the alignment.
       
  2187       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
       
  2188         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
       
  2189 
       
  2190       Assembler::fneg(FloatRegisterImpl::S, s, d);
       
  2191       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
       
  2192       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
       
  2193       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
       
  2194     }
       
  2195   }
       
  2196 }
       
  2197 
       
  2198 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
       
  2199 {
       
  2200   if (VM_Version::v9_instructions_work()) {
       
  2201     Assembler::fmov(w, s, d);
       
  2202   } else {
       
  2203     if (w == FloatRegisterImpl::S) {
       
  2204       Assembler::fmov(w, s, d);
       
  2205     } else if (w == FloatRegisterImpl::D) {
       
  2206       // number() does a sanity check on the alignment.
       
  2207       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
       
  2208         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
       
  2209 
       
  2210       Assembler::fmov(FloatRegisterImpl::S, s, d);
       
  2211       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
       
  2212     } else {
       
  2213       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
       
  2214 
       
  2215       // number() does a sanity check on the alignment.
       
  2216       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
       
  2217         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
       
  2218 
       
  2219       Assembler::fmov(FloatRegisterImpl::S, s, d);
       
  2220       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
       
  2221       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
       
  2222       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
       
  2223     }
       
  2224   }
       
  2225 }
       
  2226 
       
  2227 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
       
  2228 {
       
  2229   if (VM_Version::v9_instructions_work()) {
       
  2230     Assembler::fabs(w, s, d);
       
  2231   } else {
       
  2232     if (w == FloatRegisterImpl::S) {
       
  2233       Assembler::fabs(w, s, d);
       
  2234     } else if (w == FloatRegisterImpl::D) {
       
  2235       // number() does a sanity check on the alignment.
       
  2236       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
       
  2237         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
       
  2238 
       
  2239       Assembler::fabs(FloatRegisterImpl::S, s, d);
       
  2240       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
       
  2241     } else {
       
  2242       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
       
  2243 
       
  2244       // number() does a sanity check on the alignment.
       
  2245       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
       
  2246        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
       
  2247 
       
  2248       Assembler::fabs(FloatRegisterImpl::S, s, d);
       
  2249       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
       
  2250       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
       
  2251       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
       
  2252     }
       
  2253   }
       
  2254 }
       
  2255 
       
  2256 void MacroAssembler::save_all_globals_into_locals() {
       
  2257   mov(G1,L1);
       
  2258   mov(G2,L2);
       
  2259   mov(G3,L3);
       
  2260   mov(G4,L4);
       
  2261   mov(G5,L5);
       
  2262   mov(G6,L6);
       
  2263   mov(G7,L7);
       
  2264 }
       
  2265 
       
  2266 void MacroAssembler::restore_globals_from_locals() {
       
  2267   mov(L1,G1);
       
  2268   mov(L2,G2);
       
  2269   mov(L3,G3);
       
  2270   mov(L4,G4);
       
  2271   mov(L5,G5);
       
  2272   mov(L6,G6);
       
  2273   mov(L7,G7);
       
  2274 }
       
  2275 
       
  2276 // Use for 64 bit operation.
       
  2277 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
       
  2278 {
       
  2279   // store ptr_reg as the new top value
       
  2280 #ifdef _LP64
       
  2281   casx(top_ptr_reg, top_reg, ptr_reg);
       
  2282 #else
       
  2283   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
       
  2284 #endif // _LP64
       
  2285 }
       
  2286 
       
  2287 // [RGV] This routine does not handle 64 bit operations.
       
  2288 //       use casx_under_lock() or casx directly!!!
       
  2289 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
       
  2290 {
       
  2291   // store ptr_reg as the new top value
       
  2292   if (VM_Version::v9_instructions_work()) {
       
  2293     cas(top_ptr_reg, top_reg, ptr_reg);
       
  2294   } else {
       
  2295 
       
  2296     // If the register is not an out nor global, it is not visible
       
  2297     // after the save.  Allocate a register for it, save its
       
  2298     // value in the register save area (the save may not flush
       
  2299     // registers to the save area).
       
  2300 
       
  2301     Register top_ptr_reg_after_save;
       
  2302     Register top_reg_after_save;
       
  2303     Register ptr_reg_after_save;
       
  2304 
       
  2305     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
       
  2306       top_ptr_reg_after_save = top_ptr_reg->after_save();
       
  2307     } else {
       
  2308       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
       
  2309       top_ptr_reg_after_save = L0;
       
  2310       st(top_ptr_reg, reg_save_addr);
       
  2311     }
       
  2312 
       
  2313     if (top_reg->is_out() || top_reg->is_global()) {
       
  2314       top_reg_after_save = top_reg->after_save();
       
  2315     } else {
       
  2316       Address reg_save_addr = top_reg->address_in_saved_window();
       
  2317       top_reg_after_save = L1;
       
  2318       st(top_reg, reg_save_addr);
       
  2319     }
       
  2320 
       
  2321     if (ptr_reg->is_out() || ptr_reg->is_global()) {
       
  2322       ptr_reg_after_save = ptr_reg->after_save();
       
  2323     } else {
       
  2324       Address reg_save_addr = ptr_reg->address_in_saved_window();
       
  2325       ptr_reg_after_save = L2;
       
  2326       st(ptr_reg, reg_save_addr);
       
  2327     }
       
  2328 
       
  2329     const Register& lock_reg = L3;
       
  2330     const Register& lock_ptr_reg = L4;
       
  2331     const Register& value_reg = L5;
       
  2332     const Register& yield_reg = L6;
       
  2333     const Register& yieldall_reg = L7;
       
  2334 
       
  2335     save_frame();
       
  2336 
       
  2337     if (top_ptr_reg_after_save == L0) {
       
  2338       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
       
  2339     }
       
  2340 
       
  2341     if (top_reg_after_save == L1) {
       
  2342       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
       
  2343     }
       
  2344 
       
  2345     if (ptr_reg_after_save == L2) {
       
  2346       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
       
  2347     }
       
  2348 
       
  2349     Label(retry_get_lock);
       
  2350     Label(not_same);
       
  2351     Label(dont_yield);
       
  2352 
       
  2353     assert(lock_addr, "lock_address should be non null for v8");
       
  2354     set((intptr_t)lock_addr, lock_ptr_reg);
       
  2355     // Initialize yield counter
       
  2356     mov(G0,yield_reg);
       
  2357     mov(G0, yieldall_reg);
       
  2358     set(StubRoutines::Sparc::locked, lock_reg);
       
  2359 
       
  2360     bind(retry_get_lock);
       
  2361     cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield);
       
  2362 
       
  2363     if(use_call_vm) {
       
  2364       Untested("Need to verify global reg consistancy");
       
  2365       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
       
  2366     } else {
       
  2367       // Save the regs and make space for a C call
       
  2368       save(SP, -96, SP);
       
  2369       save_all_globals_into_locals();
       
  2370       call(CAST_FROM_FN_PTR(address,os::yield_all));
       
  2371       delayed()->mov(yieldall_reg, O0);
       
  2372       restore_globals_from_locals();
       
  2373       restore();
       
  2374     }
       
  2375 
       
  2376     // reset the counter
       
  2377     mov(G0,yield_reg);
       
  2378     add(yieldall_reg, 1, yieldall_reg);
       
  2379 
       
  2380     bind(dont_yield);
       
  2381     // try to get lock
       
  2382     Assembler::swap(lock_ptr_reg, 0, lock_reg);
       
  2383 
       
  2384     // did we get the lock?
       
  2385     cmp(lock_reg, StubRoutines::Sparc::unlocked);
       
  2386     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
       
  2387     delayed()->add(yield_reg,1,yield_reg);
       
  2388 
       
  2389     // yes, got lock.  do we have the same top?
       
  2390     ld(top_ptr_reg_after_save, 0, value_reg);
       
  2391     cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same);
       
  2392 
       
  2393     // yes, same top.
       
  2394     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
       
  2395     membar(Assembler::StoreStore);
       
  2396 
       
  2397     bind(not_same);
       
  2398     mov(value_reg, ptr_reg_after_save);
       
  2399     st(lock_reg, lock_ptr_reg, 0); // unlock
       
  2400 
       
  2401     restore();
       
  2402   }
       
  2403 }
       
  2404 
       
  2405 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
       
  2406                                                       Register tmp,
       
  2407                                                       int offset) {
       
  2408   intptr_t value = *delayed_value_addr;
       
  2409   if (value != 0)
       
  2410     return RegisterOrConstant(value + offset);
       
  2411 
       
  2412   // load indirectly to solve generation ordering problem
       
  2413   AddressLiteral a(delayed_value_addr);
       
  2414   load_ptr_contents(a, tmp);
       
  2415 
       
  2416 #ifdef ASSERT
       
  2417   tst(tmp);
       
  2418   breakpoint_trap(zero, xcc);
       
  2419 #endif
       
  2420 
       
  2421   if (offset != 0)
       
  2422     add(tmp, offset, tmp);
       
  2423 
       
  2424   return RegisterOrConstant(tmp);
       
  2425 }
       
  2426 
       
  2427 
       
  2428 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
       
  2429   assert(d.register_or_noreg() != G0, "lost side effect");
       
  2430   if ((s2.is_constant() && s2.as_constant() == 0) ||
       
  2431       (s2.is_register() && s2.as_register() == G0)) {
       
  2432     // Do nothing, just move value.
       
  2433     if (s1.is_register()) {
       
  2434       if (d.is_constant())  d = temp;
       
  2435       mov(s1.as_register(), d.as_register());
       
  2436       return d;
       
  2437     } else {
       
  2438       return s1;
       
  2439     }
       
  2440   }
       
  2441 
       
  2442   if (s1.is_register()) {
       
  2443     assert_different_registers(s1.as_register(), temp);
       
  2444     if (d.is_constant())  d = temp;
       
  2445     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
       
  2446     return d;
       
  2447   } else {
       
  2448     if (s2.is_register()) {
       
  2449       assert_different_registers(s2.as_register(), temp);
       
  2450       if (d.is_constant())  d = temp;
       
  2451       set(s1.as_constant(), temp);
       
  2452       andn(temp, s2.as_register(), d.as_register());
       
  2453       return d;
       
  2454     } else {
       
  2455       intptr_t res = s1.as_constant() & ~s2.as_constant();
       
  2456       return res;
       
  2457     }
       
  2458   }
       
  2459 }
       
  2460 
       
  2461 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
       
  2462   assert(d.register_or_noreg() != G0, "lost side effect");
       
  2463   if ((s2.is_constant() && s2.as_constant() == 0) ||
       
  2464       (s2.is_register() && s2.as_register() == G0)) {
       
  2465     // Do nothing, just move value.
       
  2466     if (s1.is_register()) {
       
  2467       if (d.is_constant())  d = temp;
       
  2468       mov(s1.as_register(), d.as_register());
       
  2469       return d;
       
  2470     } else {
       
  2471       return s1;
       
  2472     }
       
  2473   }
       
  2474 
       
  2475   if (s1.is_register()) {
       
  2476     assert_different_registers(s1.as_register(), temp);
       
  2477     if (d.is_constant())  d = temp;
       
  2478     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
       
  2479     return d;
       
  2480   } else {
       
  2481     if (s2.is_register()) {
       
  2482       assert_different_registers(s2.as_register(), temp);
       
  2483       if (d.is_constant())  d = temp;
       
  2484       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
       
  2485       return d;
       
  2486     } else {
       
  2487       intptr_t res = s1.as_constant() + s2.as_constant();
       
  2488       return res;
       
  2489     }
       
  2490   }
       
  2491 }
       
  2492 
       
  2493 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
       
  2494   assert(d.register_or_noreg() != G0, "lost side effect");
       
  2495   if (!is_simm13(s2.constant_or_zero()))
       
  2496     s2 = (s2.as_constant() & 0xFF);
       
  2497   if ((s2.is_constant() && s2.as_constant() == 0) ||
       
  2498       (s2.is_register() && s2.as_register() == G0)) {
       
  2499     // Do nothing, just move value.
       
  2500     if (s1.is_register()) {
       
  2501       if (d.is_constant())  d = temp;
       
  2502       mov(s1.as_register(), d.as_register());
       
  2503       return d;
       
  2504     } else {
       
  2505       return s1;
       
  2506     }
       
  2507   }
       
  2508 
       
  2509   if (s1.is_register()) {
       
  2510     assert_different_registers(s1.as_register(), temp);
       
  2511     if (d.is_constant())  d = temp;
       
  2512     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
       
  2513     return d;
       
  2514   } else {
       
  2515     if (s2.is_register()) {
       
  2516       assert_different_registers(s2.as_register(), temp);
       
  2517       if (d.is_constant())  d = temp;
       
  2518       set(s1.as_constant(), temp);
       
  2519       sll_ptr(temp, s2.as_register(), d.as_register());
       
  2520       return d;
       
  2521     } else {
       
  2522       intptr_t res = s1.as_constant() << s2.as_constant();
       
  2523       return res;
       
  2524     }
       
  2525   }
       
  2526 }
       
  2527 
       
  2528 
       
  2529 // Look up the method for a megamorphic invokeinterface call.
       
  2530 // The target method is determined by <intf_klass, itable_index>.
       
  2531 // The receiver klass is in recv_klass.
       
  2532 // On success, the result will be in method_result, and execution falls through.
       
  2533 // On failure, execution transfers to the given label.
       
  2534 void MacroAssembler::lookup_interface_method(Register recv_klass,
       
  2535                                              Register intf_klass,
       
  2536                                              RegisterOrConstant itable_index,
       
  2537                                              Register method_result,
       
  2538                                              Register scan_temp,
       
  2539                                              Register sethi_temp,
       
  2540                                              Label& L_no_such_interface) {
       
  2541   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
       
  2542   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
       
  2543          "caller must use same register for non-constant itable index as for method");
       
  2544 
       
  2545   Label L_no_such_interface_restore;
       
  2546   bool did_save = false;
       
  2547   if (scan_temp == noreg || sethi_temp == noreg) {
       
  2548     Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
       
  2549     Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
       
  2550     assert(method_result->is_global(), "must be able to return value");
       
  2551     scan_temp  = L2;
       
  2552     sethi_temp = L3;
       
  2553     save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
       
  2554     recv_klass = recv_2;
       
  2555     intf_klass = intf_2;
       
  2556     did_save = true;
       
  2557   }
       
  2558 
       
  2559   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
       
  2560   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
       
  2561   int scan_step   = itableOffsetEntry::size() * wordSize;
       
  2562   int vte_size    = vtableEntry::size() * wordSize;
       
  2563 
       
  2564   lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp);
       
  2565   // %%% We should store the aligned, prescaled offset in the klassoop.
       
  2566   // Then the next several instructions would fold away.
       
  2567 
       
  2568   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
       
  2569   int itb_offset = vtable_base;
       
  2570   if (round_to_unit != 0) {
       
  2571     // hoist first instruction of round_to(scan_temp, BytesPerLong):
       
  2572     itb_offset += round_to_unit - wordSize;
       
  2573   }
       
  2574   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
       
  2575   sll(scan_temp, itb_scale,  scan_temp);
       
  2576   add(scan_temp, itb_offset, scan_temp);
       
  2577   if (round_to_unit != 0) {
       
  2578     // Round up to align_object_offset boundary
       
  2579     // see code for InstanceKlass::start_of_itable!
       
  2580     // Was: round_to(scan_temp, BytesPerLong);
       
  2581     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
       
  2582     and3(scan_temp, -round_to_unit, scan_temp);
       
  2583   }
       
  2584   add(recv_klass, scan_temp, scan_temp);
       
  2585 
       
  2586   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
       
  2587   RegisterOrConstant itable_offset = itable_index;
       
  2588   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
       
  2589   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
       
  2590   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
       
  2591 
       
  2592   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
       
  2593   //   if (scan->interface() == intf) {
       
  2594   //     result = (klass + scan->offset() + itable_index);
       
  2595   //   }
       
  2596   // }
       
  2597   Label L_search, L_found_method;
       
  2598 
       
  2599   for (int peel = 1; peel >= 0; peel--) {
       
  2600     // %%%% Could load both offset and interface in one ldx, if they were
       
  2601     // in the opposite order.  This would save a load.
       
  2602     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
       
  2603 
       
  2604     // Check that this entry is non-null.  A null entry means that
       
  2605     // the receiver class doesn't implement the interface, and wasn't the
       
  2606     // same as when the caller was compiled.
       
  2607     bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
       
  2608     delayed()->cmp(method_result, intf_klass);
       
  2609 
       
  2610     if (peel) {
       
  2611       brx(Assembler::equal,    false, Assembler::pt, L_found_method);
       
  2612     } else {
       
  2613       brx(Assembler::notEqual, false, Assembler::pn, L_search);
       
  2614       // (invert the test to fall through to found_method...)
       
  2615     }
       
  2616     delayed()->add(scan_temp, scan_step, scan_temp);
       
  2617 
       
  2618     if (!peel)  break;
       
  2619 
       
  2620     bind(L_search);
       
  2621   }
       
  2622 
       
  2623   bind(L_found_method);
       
  2624 
       
  2625   // Got a hit.
       
  2626   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
       
  2627   // scan_temp[-scan_step] points to the vtable offset we need
       
  2628   ito_offset -= scan_step;
       
  2629   lduw(scan_temp, ito_offset, scan_temp);
       
  2630   ld_ptr(recv_klass, scan_temp, method_result);
       
  2631 
       
  2632   if (did_save) {
       
  2633     Label L_done;
       
  2634     ba(L_done);
       
  2635     delayed()->restore();
       
  2636 
       
  2637     bind(L_no_such_interface_restore);
       
  2638     ba(L_no_such_interface);
       
  2639     delayed()->restore();
       
  2640 
       
  2641     bind(L_done);
       
  2642   }
       
  2643 }
       
  2644 
       
  2645 
       
  2646 // virtual method calling
       
  2647 void MacroAssembler::lookup_virtual_method(Register recv_klass,
       
  2648                                            RegisterOrConstant vtable_index,
       
  2649                                            Register method_result) {
       
  2650   assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
       
  2651   Register sethi_temp = method_result;
       
  2652   const int base = (InstanceKlass::vtable_start_offset() * wordSize +
       
  2653                     // method pointer offset within the vtable entry:
       
  2654                     vtableEntry::method_offset_in_bytes());
       
  2655   RegisterOrConstant vtable_offset = vtable_index;
       
  2656   // Each of the following three lines potentially generates an instruction.
       
  2657   // But the total number of address formation instructions will always be
       
  2658   // at most two, and will often be zero.  In any case, it will be optimal.
       
  2659   // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
       
  2660   // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
       
  2661   vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset);
       
  2662   vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
       
  2663   Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
       
  2664   ld_ptr(vtable_entry_addr, method_result);
       
  2665 }
       
  2666 
       
  2667 
       
  2668 void MacroAssembler::check_klass_subtype(Register sub_klass,
       
  2669                                          Register super_klass,
       
  2670                                          Register temp_reg,
       
  2671                                          Register temp2_reg,
       
  2672                                          Label& L_success) {
       
  2673   Register sub_2 = sub_klass;
       
  2674   Register sup_2 = super_klass;
       
  2675   if (!sub_2->is_global())  sub_2 = L0;
       
  2676   if (!sup_2->is_global())  sup_2 = L1;
       
  2677   bool did_save = false;
       
  2678   if (temp_reg == noreg || temp2_reg == noreg) {
       
  2679     temp_reg = L2;
       
  2680     temp2_reg = L3;
       
  2681     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
       
  2682     sub_klass = sub_2;
       
  2683     super_klass = sup_2;
       
  2684     did_save = true;
       
  2685   }
       
  2686   Label L_failure, L_pop_to_failure, L_pop_to_success;
       
  2687   check_klass_subtype_fast_path(sub_klass, super_klass,
       
  2688                                 temp_reg, temp2_reg,
       
  2689                                 (did_save ? &L_pop_to_success : &L_success),
       
  2690                                 (did_save ? &L_pop_to_failure : &L_failure), NULL);
       
  2691 
       
  2692   if (!did_save)
       
  2693     save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
       
  2694   check_klass_subtype_slow_path(sub_2, sup_2,
       
  2695                                 L2, L3, L4, L5,
       
  2696                                 NULL, &L_pop_to_failure);
       
  2697 
       
  2698   // on success:
       
  2699   bind(L_pop_to_success);
       
  2700   restore();
       
  2701   ba_short(L_success);
       
  2702 
       
  2703   // on failure:
       
  2704   bind(L_pop_to_failure);
       
  2705   restore();
       
  2706   bind(L_failure);
       
  2707 }
       
  2708 
       
  2709 
       
  2710 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
       
  2711                                                    Register super_klass,
       
  2712                                                    Register temp_reg,
       
  2713                                                    Register temp2_reg,
       
  2714                                                    Label* L_success,
       
  2715                                                    Label* L_failure,
       
  2716                                                    Label* L_slow_path,
       
  2717                                         RegisterOrConstant super_check_offset) {
       
  2718   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
       
  2719   int sco_offset = in_bytes(Klass::super_check_offset_offset());
       
  2720 
       
  2721   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
       
  2722   bool need_slow_path = (must_load_sco ||
       
  2723                          super_check_offset.constant_or_zero() == sco_offset);
       
  2724 
       
  2725   assert_different_registers(sub_klass, super_klass, temp_reg);
       
  2726   if (super_check_offset.is_register()) {
       
  2727     assert_different_registers(sub_klass, super_klass, temp_reg,
       
  2728                                super_check_offset.as_register());
       
  2729   } else if (must_load_sco) {
       
  2730     assert(temp2_reg != noreg, "supply either a temp or a register offset");
       
  2731   }
       
  2732 
       
  2733   Label L_fallthrough;
       
  2734   int label_nulls = 0;
       
  2735   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
       
  2736   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
       
  2737   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
       
  2738   assert(label_nulls <= 1 ||
       
  2739          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
       
  2740          "at most one NULL in the batch, usually");
       
  2741 
       
  2742   // If the pointers are equal, we are done (e.g., String[] elements).
       
  2743   // This self-check enables sharing of secondary supertype arrays among
       
  2744   // non-primary types such as array-of-interface.  Otherwise, each such
       
  2745   // type would need its own customized SSA.
       
  2746   // We move this check to the front of the fast path because many
       
  2747   // type checks are in fact trivially successful in this manner,
       
  2748   // so we get a nicely predicted branch right at the start of the check.
       
  2749   cmp(super_klass, sub_klass);
       
  2750   brx(Assembler::equal, false, Assembler::pn, *L_success);
       
  2751   delayed()->nop();
       
  2752 
       
  2753   // Check the supertype display:
       
  2754   if (must_load_sco) {
       
  2755     // The super check offset is always positive...
       
  2756     lduw(super_klass, sco_offset, temp2_reg);
       
  2757     super_check_offset = RegisterOrConstant(temp2_reg);
       
  2758     // super_check_offset is register.
       
  2759     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
       
  2760   }
       
  2761   ld_ptr(sub_klass, super_check_offset, temp_reg);
       
  2762   cmp(super_klass, temp_reg);
       
  2763 
       
  2764   // This check has worked decisively for primary supers.
       
  2765   // Secondary supers are sought in the super_cache ('super_cache_addr').
       
  2766   // (Secondary supers are interfaces and very deeply nested subtypes.)
       
  2767   // This works in the same check above because of a tricky aliasing
       
  2768   // between the super_cache and the primary super display elements.
       
  2769   // (The 'super_check_addr' can address either, as the case requires.)
       
  2770   // Note that the cache is updated below if it does not help us find
       
  2771   // what we need immediately.
       
  2772   // So if it was a primary super, we can just fail immediately.
       
  2773   // Otherwise, it's the slow path for us (no success at this point).
       
  2774 
       
  2775   // Hacked ba(), which may only be used just before L_fallthrough.
       
  2776 #define FINAL_JUMP(label)            \
       
  2777   if (&(label) != &L_fallthrough) {  \
       
  2778     ba(label);  delayed()->nop();    \
       
  2779   }
       
  2780 
       
  2781   if (super_check_offset.is_register()) {
       
  2782     brx(Assembler::equal, false, Assembler::pn, *L_success);
       
  2783     delayed()->cmp(super_check_offset.as_register(), sc_offset);
       
  2784 
       
  2785     if (L_failure == &L_fallthrough) {
       
  2786       brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
       
  2787       delayed()->nop();
       
  2788     } else {
       
  2789       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
       
  2790       delayed()->nop();
       
  2791       FINAL_JUMP(*L_slow_path);
       
  2792     }
       
  2793   } else if (super_check_offset.as_constant() == sc_offset) {
       
  2794     // Need a slow path; fast failure is impossible.
       
  2795     if (L_slow_path == &L_fallthrough) {
       
  2796       brx(Assembler::equal, false, Assembler::pt, *L_success);
       
  2797       delayed()->nop();
       
  2798     } else {
       
  2799       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
       
  2800       delayed()->nop();
       
  2801       FINAL_JUMP(*L_success);
       
  2802     }
       
  2803   } else {
       
  2804     // No slow path; it's a fast decision.
       
  2805     if (L_failure == &L_fallthrough) {
       
  2806       brx(Assembler::equal, false, Assembler::pt, *L_success);
       
  2807       delayed()->nop();
       
  2808     } else {
       
  2809       brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
       
  2810       delayed()->nop();
       
  2811       FINAL_JUMP(*L_success);
       
  2812     }
       
  2813   }
       
  2814 
       
  2815   bind(L_fallthrough);
       
  2816 
       
  2817 #undef FINAL_JUMP
       
  2818 }
       
  2819 
       
  2820 
       
  2821 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
       
  2822                                                    Register super_klass,
       
  2823                                                    Register count_temp,
       
  2824                                                    Register scan_temp,
       
  2825                                                    Register scratch_reg,
       
  2826                                                    Register coop_reg,
       
  2827                                                    Label* L_success,
       
  2828                                                    Label* L_failure) {
       
  2829   assert_different_registers(sub_klass, super_klass,
       
  2830                              count_temp, scan_temp, scratch_reg, coop_reg);
       
  2831 
       
  2832   Label L_fallthrough, L_loop;
       
  2833   int label_nulls = 0;
       
  2834   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
       
  2835   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
       
  2836   assert(label_nulls <= 1, "at most one NULL in the batch");
       
  2837 
       
  2838   // a couple of useful fields in sub_klass:
       
  2839   int ss_offset = in_bytes(Klass::secondary_supers_offset());
       
  2840   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
       
  2841 
       
  2842   // Do a linear scan of the secondary super-klass chain.
       
  2843   // This code is rarely used, so simplicity is a virtue here.
       
  2844 
       
  2845 #ifndef PRODUCT
       
  2846   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
       
  2847   inc_counter((address) pst_counter, count_temp, scan_temp);
       
  2848 #endif
       
  2849 
       
  2850   // We will consult the secondary-super array.
       
  2851   ld_ptr(sub_klass, ss_offset, scan_temp);
       
  2852 
       
  2853   Register search_key = super_klass;
       
  2854 
       
  2855   // Load the array length.  (Positive movl does right thing on LP64.)
       
  2856   lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
       
  2857 
       
  2858   // Check for empty secondary super list
       
  2859   tst(count_temp);
       
  2860 
       
  2861   // In the array of super classes elements are pointer sized.
       
  2862   int element_size = wordSize;
       
  2863 
       
  2864   // Top of search loop
       
  2865   bind(L_loop);
       
  2866   br(Assembler::equal, false, Assembler::pn, *L_failure);
       
  2867   delayed()->add(scan_temp, element_size, scan_temp);
       
  2868 
       
  2869   // Skip the array header in all array accesses.
       
  2870   int elem_offset = Array<Klass*>::base_offset_in_bytes();
       
  2871   elem_offset -= element_size;   // the scan pointer was pre-incremented also
       
  2872 
       
  2873   // Load next super to check
       
  2874     ld_ptr( scan_temp, elem_offset, scratch_reg );
       
  2875 
       
  2876   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
       
  2877   cmp(scratch_reg, search_key);
       
  2878 
       
  2879   // A miss means we are NOT a subtype and need to keep looping
       
  2880   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
       
  2881   delayed()->deccc(count_temp); // decrement trip counter in delay slot
       
  2882 
       
  2883   // Success.  Cache the super we found and proceed in triumph.
       
  2884   st_ptr(super_klass, sub_klass, sc_offset);
       
  2885 
       
  2886   if (L_success != &L_fallthrough) {
       
  2887     ba(*L_success);
       
  2888     delayed()->nop();
       
  2889   }
       
  2890 
       
  2891   bind(L_fallthrough);
       
  2892 }
       
  2893 
       
  2894 
       
  2895 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
       
  2896                                                    Register temp_reg,
       
  2897                                                    int extra_slot_offset) {
       
  2898   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
       
  2899   int stackElementSize = Interpreter::stackElementSize;
       
  2900   int offset = extra_slot_offset * stackElementSize;
       
  2901   if (arg_slot.is_constant()) {
       
  2902     offset += arg_slot.as_constant() * stackElementSize;
       
  2903     return offset;
       
  2904   } else {
       
  2905     assert(temp_reg != noreg, "must specify");
       
  2906     sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
       
  2907     if (offset != 0)
       
  2908       add(temp_reg, offset, temp_reg);
       
  2909     return temp_reg;
       
  2910   }
       
  2911 }
       
  2912 
       
  2913 
       
  2914 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
       
  2915                                          Register temp_reg,
       
  2916                                          int extra_slot_offset) {
       
  2917   return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
       
  2918 }
       
  2919 
       
  2920 
       
  2921 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
       
  2922                                           Register temp_reg,
       
  2923                                           Label& done, Label* slow_case,
       
  2924                                           BiasedLockingCounters* counters) {
       
  2925   assert(UseBiasedLocking, "why call this otherwise?");
       
  2926 
       
  2927   if (PrintBiasedLockingStatistics) {
       
  2928     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
       
  2929     if (counters == NULL)
       
  2930       counters = BiasedLocking::counters();
       
  2931   }
       
  2932 
       
  2933   Label cas_label;
       
  2934 
       
  2935   // Biased locking
       
  2936   // See whether the lock is currently biased toward our thread and
       
  2937   // whether the epoch is still valid
       
  2938   // Note that the runtime guarantees sufficient alignment of JavaThread
       
  2939   // pointers to allow age to be placed into low bits
       
  2940   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
       
  2941   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
       
  2942   cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
       
  2943 
       
  2944   load_klass(obj_reg, temp_reg);
       
  2945   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
       
  2946   or3(G2_thread, temp_reg, temp_reg);
       
  2947   xor3(mark_reg, temp_reg, temp_reg);
       
  2948   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
       
  2949   if (counters != NULL) {
       
  2950     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
       
  2951     // Reload mark_reg as we may need it later
       
  2952     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
       
  2953   }
       
  2954   brx(Assembler::equal, true, Assembler::pt, done);
       
  2955   delayed()->nop();
       
  2956 
       
  2957   Label try_revoke_bias;
       
  2958   Label try_rebias;
       
  2959   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
       
  2960   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
       
  2961 
       
  2962   // At this point we know that the header has the bias pattern and
       
  2963   // that we are not the bias owner in the current epoch. We need to
       
  2964   // figure out more details about the state of the header in order to
       
  2965   // know what operations can be legally performed on the object's
       
  2966   // header.
       
  2967 
       
  2968   // If the low three bits in the xor result aren't clear, that means
       
  2969   // the prototype header is no longer biased and we have to revoke
       
  2970   // the bias on this object.
       
  2971   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
       
  2972   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
       
  2973 
       
  2974   // Biasing is still enabled for this data type. See whether the
       
  2975   // epoch of the current bias is still valid, meaning that the epoch
       
  2976   // bits of the mark word are equal to the epoch bits of the
       
  2977   // prototype header. (Note that the prototype header's epoch bits
       
  2978   // only change at a safepoint.) If not, attempt to rebias the object
       
  2979   // toward the current thread. Note that we must be absolutely sure
       
  2980   // that the current epoch is invalid in order to do this because
       
  2981   // otherwise the manipulations it performs on the mark word are
       
  2982   // illegal.
       
  2983   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
       
  2984   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
       
  2985 
       
  2986   // The epoch of the current bias is still valid but we know nothing
       
  2987   // about the owner; it might be set or it might be clear. Try to
       
  2988   // acquire the bias of the object using an atomic operation. If this
       
  2989   // fails we will go in to the runtime to revoke the object's bias.
       
  2990   // Note that we first construct the presumed unbiased header so we
       
  2991   // don't accidentally blow away another thread's valid bias.
       
  2992   delayed()->and3(mark_reg,
       
  2993                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
       
  2994                   mark_reg);
       
  2995   or3(G2_thread, mark_reg, temp_reg);
       
  2996   casn(mark_addr.base(), mark_reg, temp_reg);
       
  2997   // If the biasing toward our thread failed, this means that
       
  2998   // another thread succeeded in biasing it toward itself and we
       
  2999   // need to revoke that bias. The revocation will occur in the
       
  3000   // interpreter runtime in the slow case.
       
  3001   cmp(mark_reg, temp_reg);
       
  3002   if (counters != NULL) {
       
  3003     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
       
  3004   }
       
  3005   if (slow_case != NULL) {
       
  3006     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
       
  3007     delayed()->nop();
       
  3008   }
       
  3009   ba_short(done);
       
  3010 
       
  3011   bind(try_rebias);
       
  3012   // At this point we know the epoch has expired, meaning that the
       
  3013   // current "bias owner", if any, is actually invalid. Under these
       
  3014   // circumstances _only_, we are allowed to use the current header's
       
  3015   // value as the comparison value when doing the cas to acquire the
       
  3016   // bias in the current epoch. In other words, we allow transfer of
       
  3017   // the bias from one thread to another directly in this situation.
       
  3018   //
       
  3019   // FIXME: due to a lack of registers we currently blow away the age
       
  3020   // bits in this situation. Should attempt to preserve them.
       
  3021   load_klass(obj_reg, temp_reg);
       
  3022   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
       
  3023   or3(G2_thread, temp_reg, temp_reg);
       
  3024   casn(mark_addr.base(), mark_reg, temp_reg);
       
  3025   // If the biasing toward our thread failed, this means that
       
  3026   // another thread succeeded in biasing it toward itself and we
       
  3027   // need to revoke that bias. The revocation will occur in the
       
  3028   // interpreter runtime in the slow case.
       
  3029   cmp(mark_reg, temp_reg);
       
  3030   if (counters != NULL) {
       
  3031     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
       
  3032   }
       
  3033   if (slow_case != NULL) {
       
  3034     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
       
  3035     delayed()->nop();
       
  3036   }
       
  3037   ba_short(done);
       
  3038 
       
  3039   bind(try_revoke_bias);
       
  3040   // The prototype mark in the klass doesn't have the bias bit set any
       
  3041   // more, indicating that objects of this data type are not supposed
       
  3042   // to be biased any more. We are going to try to reset the mark of
       
  3043   // this object to the prototype value and fall through to the
       
  3044   // CAS-based locking scheme. Note that if our CAS fails, it means
       
  3045   // that another thread raced us for the privilege of revoking the
       
  3046   // bias of this particular object, so it's okay to continue in the
       
  3047   // normal locking code.
       
  3048   //
       
  3049   // FIXME: due to a lack of registers we currently blow away the age
       
  3050   // bits in this situation. Should attempt to preserve them.
       
  3051   load_klass(obj_reg, temp_reg);
       
  3052   ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
       
  3053   casn(mark_addr.base(), mark_reg, temp_reg);
       
  3054   // Fall through to the normal CAS-based lock, because no matter what
       
  3055   // the result of the above CAS, some thread must have succeeded in
       
  3056   // removing the bias bit from the object's header.
       
  3057   if (counters != NULL) {
       
  3058     cmp(mark_reg, temp_reg);
       
  3059     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
       
  3060   }
       
  3061 
       
  3062   bind(cas_label);
       
  3063 }
       
  3064 
       
  3065 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
       
  3066                                           bool allow_delay_slot_filling) {
       
  3067   // Check for biased locking unlock case, which is a no-op
       
  3068   // Note: we do not have to check the thread ID for two reasons.
       
  3069   // First, the interpreter checks for IllegalMonitorStateException at
       
  3070   // a higher level. Second, if the bias was revoked while we held the
       
  3071   // lock, the object could not be rebiased toward another thread, so
       
  3072   // the bias bit would be clear.
       
  3073   ld_ptr(mark_addr, temp_reg);
       
  3074   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
       
  3075   cmp(temp_reg, markOopDesc::biased_lock_pattern);
       
  3076   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
       
  3077   delayed();
       
  3078   if (!allow_delay_slot_filling) {
       
  3079     nop();
       
  3080   }
       
  3081 }
       
  3082 
       
  3083 
       
  3084 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
       
  3085 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
       
  3086 
       
  3087 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
       
  3088   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
       
  3089 }
       
  3090 
       
  3091 
       
  3092 
       
  3093 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
       
  3094 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
       
  3095 // The code could be tightened up considerably.
       
  3096 //
       
  3097 // box->dhw disposition - post-conditions at DONE_LABEL.
       
  3098 // -   Successful inflated lock:  box->dhw != 0.
       
  3099 //     Any non-zero value suffices.
       
  3100 //     Consider G2_thread, rsp, boxReg, or unused_mark()
       
  3101 // -   Successful Stack-lock: box->dhw == mark.
       
  3102 //     box->dhw must contain the displaced mark word value
       
  3103 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
       
  3104 //     The slow-path fast_enter() and slow_enter() operators
       
  3105 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
       
  3106 // -   Biased: box->dhw is undefined
       
  3107 //
       
  3108 // SPARC refworkload performance - specifically jetstream and scimark - are
       
  3109 // extremely sensitive to the size of the code emitted by compiler_lock_object
       
  3110 // and compiler_unlock_object.  Critically, the key factor is code size, not path
       
  3111 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
       
  3112 // effect).
       
  3113 
       
  3114 
       
  3115 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
       
  3116                                           Register Rbox, Register Rscratch,
       
  3117                                           BiasedLockingCounters* counters,
       
  3118                                           bool try_bias) {
       
  3119    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
       
  3120 
       
  3121    verify_oop(Roop);
       
  3122    Label done ;
       
  3123 
       
  3124    if (counters != NULL) {
       
  3125      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
       
  3126    }
       
  3127 
       
  3128    if (EmitSync & 1) {
       
  3129      mov(3, Rscratch);
       
  3130      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3131      cmp(SP, G0);
       
  3132      return ;
       
  3133    }
       
  3134 
       
  3135    if (EmitSync & 2) {
       
  3136 
       
  3137      // Fetch object's markword
       
  3138      ld_ptr(mark_addr, Rmark);
       
  3139 
       
  3140      if (try_bias) {
       
  3141         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
       
  3142      }
       
  3143 
       
  3144      // Save Rbox in Rscratch to be used for the cas operation
       
  3145      mov(Rbox, Rscratch);
       
  3146 
       
  3147      // set Rmark to markOop | markOopDesc::unlocked_value
       
  3148      or3(Rmark, markOopDesc::unlocked_value, Rmark);
       
  3149 
       
  3150      // Initialize the box.  (Must happen before we update the object mark!)
       
  3151      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3152 
       
  3153      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
       
  3154      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
       
  3155      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
       
  3156         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
       
  3157 
       
  3158      // if compare/exchange succeeded we found an unlocked object and we now have locked it
       
  3159      // hence we are done
       
  3160      cmp(Rmark, Rscratch);
       
  3161 #ifdef _LP64
       
  3162      sub(Rscratch, STACK_BIAS, Rscratch);
       
  3163 #endif
       
  3164      brx(Assembler::equal, false, Assembler::pt, done);
       
  3165      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
       
  3166 
       
  3167      // we did not find an unlocked object so see if this is a recursive case
       
  3168      // sub(Rscratch, SP, Rscratch);
       
  3169      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
       
  3170      andcc(Rscratch, 0xfffff003, Rscratch);
       
  3171      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3172      bind (done);
       
  3173      return ;
       
  3174    }
       
  3175 
       
  3176    Label Egress ;
       
  3177 
       
  3178    if (EmitSync & 256) {
       
  3179       Label IsInflated ;
       
  3180 
       
  3181       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
       
  3182       // Triage: biased, stack-locked, neutral, inflated
       
  3183       if (try_bias) {
       
  3184         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
       
  3185         // Invariant: if control reaches this point in the emitted stream
       
  3186         // then Rmark has not been modified.
       
  3187       }
       
  3188 
       
  3189       // Store mark into displaced mark field in the on-stack basic-lock "box"
       
  3190       // Critically, this must happen before the CAS
       
  3191       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
       
  3192       st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3193       andcc(Rmark, 2, G0);
       
  3194       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
       
  3195       delayed()->
       
  3196 
       
  3197       // Try stack-lock acquisition.
       
  3198       // Beware: the 1st instruction is in a delay slot
       
  3199       mov(Rbox,  Rscratch);
       
  3200       or3(Rmark, markOopDesc::unlocked_value, Rmark);
       
  3201       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
       
  3202       casn(mark_addr.base(), Rmark, Rscratch);
       
  3203       cmp(Rmark, Rscratch);
       
  3204       brx(Assembler::equal, false, Assembler::pt, done);
       
  3205       delayed()->sub(Rscratch, SP, Rscratch);
       
  3206 
       
  3207       // Stack-lock attempt failed - check for recursive stack-lock.
       
  3208       // See the comments below about how we might remove this case.
       
  3209 #ifdef _LP64
       
  3210       sub(Rscratch, STACK_BIAS, Rscratch);
       
  3211 #endif
       
  3212       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
       
  3213       andcc(Rscratch, 0xfffff003, Rscratch);
       
  3214       br(Assembler::always, false, Assembler::pt, done);
       
  3215       delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3216 
       
  3217       bind(IsInflated);
       
  3218       if (EmitSync & 64) {
       
  3219          // If m->owner != null goto IsLocked
       
  3220          // Pessimistic form: Test-and-CAS vs CAS
       
  3221          // The optimistic form avoids RTS->RTO cache line upgrades.
       
  3222          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
       
  3223          andcc(Rscratch, Rscratch, G0);
       
  3224          brx(Assembler::notZero, false, Assembler::pn, done);
       
  3225          delayed()->nop();
       
  3226          // m->owner == null : it's unlocked.
       
  3227       }
       
  3228 
       
  3229       // Try to CAS m->owner from null to Self
       
  3230       // Invariant: if we acquire the lock then _recursions should be 0.
       
  3231       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
       
  3232       mov(G2_thread, Rscratch);
       
  3233       casn(Rmark, G0, Rscratch);
       
  3234       cmp(Rscratch, G0);
       
  3235       // Intentional fall-through into done
       
  3236    } else {
       
  3237       // Aggressively avoid the Store-before-CAS penalty
       
  3238       // Defer the store into box->dhw until after the CAS
       
  3239       Label IsInflated, Recursive ;
       
  3240 
       
  3241 // Anticipate CAS -- Avoid RTS->RTO upgrade
       
  3242 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
       
  3243 
       
  3244       ld_ptr(mark_addr, Rmark);           // fetch obj->mark
       
  3245       // Triage: biased, stack-locked, neutral, inflated
       
  3246 
       
  3247       if (try_bias) {
       
  3248         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
       
  3249         // Invariant: if control reaches this point in the emitted stream
       
  3250         // then Rmark has not been modified.
       
  3251       }
       
  3252       andcc(Rmark, 2, G0);
       
  3253       brx(Assembler::notZero, false, Assembler::pn, IsInflated);
       
  3254       delayed()->                         // Beware - dangling delay-slot
       
  3255 
       
  3256       // Try stack-lock acquisition.
       
  3257       // Transiently install BUSY (0) encoding in the mark word.
       
  3258       // if the CAS of 0 into the mark was successful then we execute:
       
  3259       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
       
  3260       //   ST obj->mark = box    -- overwrite transient 0 value
       
  3261       // This presumes TSO, of course.
       
  3262 
       
  3263       mov(0, Rscratch);
       
  3264       or3(Rmark, markOopDesc::unlocked_value, Rmark);
       
  3265       assert(mark_addr.disp() == 0, "cas must take a zero displacement");
       
  3266       casn(mark_addr.base(), Rmark, Rscratch);
       
  3267 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
       
  3268       cmp(Rscratch, Rmark);
       
  3269       brx(Assembler::notZero, false, Assembler::pn, Recursive);
       
  3270       delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3271       if (counters != NULL) {
       
  3272         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
       
  3273       }
       
  3274       ba(done);
       
  3275       delayed()->st_ptr(Rbox, mark_addr);
       
  3276 
       
  3277       bind(Recursive);
       
  3278       // Stack-lock attempt failed - check for recursive stack-lock.
       
  3279       // Tests show that we can remove the recursive case with no impact
       
  3280       // on refworkload 0.83.  If we need to reduce the size of the code
       
  3281       // emitted by compiler_lock_object() the recursive case is perfect
       
  3282       // candidate.
       
  3283       //
       
  3284       // A more extreme idea is to always inflate on stack-lock recursion.
       
  3285       // This lets us eliminate the recursive checks in compiler_lock_object
       
  3286       // and compiler_unlock_object and the (box->dhw == 0) encoding.
       
  3287       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
       
  3288       // and showed a performance *increase*.  In the same experiment I eliminated
       
  3289       // the fast-path stack-lock code from the interpreter and always passed
       
  3290       // control to the "slow" operators in synchronizer.cpp.
       
  3291 
       
  3292       // RScratch contains the fetched obj->mark value from the failed CASN.
       
  3293 #ifdef _LP64
       
  3294       sub(Rscratch, STACK_BIAS, Rscratch);
       
  3295 #endif
       
  3296       sub(Rscratch, SP, Rscratch);
       
  3297       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
       
  3298       andcc(Rscratch, 0xfffff003, Rscratch);
       
  3299       if (counters != NULL) {
       
  3300         // Accounting needs the Rscratch register
       
  3301         st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3302         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
       
  3303         ba_short(done);
       
  3304       } else {
       
  3305         ba(done);
       
  3306         delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3307       }
       
  3308 
       
  3309       bind   (IsInflated);
       
  3310       if (EmitSync & 64) {
       
  3311          // If m->owner != null goto IsLocked
       
  3312          // Test-and-CAS vs CAS
       
  3313          // Pessimistic form avoids futile (doomed) CAS attempts
       
  3314          // The optimistic form avoids RTS->RTO cache line upgrades.
       
  3315          ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
       
  3316          andcc(Rscratch, Rscratch, G0);
       
  3317          brx(Assembler::notZero, false, Assembler::pn, done);
       
  3318          delayed()->nop();
       
  3319          // m->owner == null : it's unlocked.
       
  3320       }
       
  3321 
       
  3322       // Try to CAS m->owner from null to Self
       
  3323       // Invariant: if we acquire the lock then _recursions should be 0.
       
  3324       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
       
  3325       mov(G2_thread, Rscratch);
       
  3326       casn(Rmark, G0, Rscratch);
       
  3327       cmp(Rscratch, G0);
       
  3328       // ST box->displaced_header = NonZero.
       
  3329       // Any non-zero value suffices:
       
  3330       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
       
  3331       st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
       
  3332       // Intentional fall-through into done
       
  3333    }
       
  3334 
       
  3335    bind   (done);
       
  3336 }
       
  3337 
       
  3338 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
       
  3339                                             Register Rbox, Register Rscratch,
       
  3340                                             bool try_bias) {
       
  3341    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
       
  3342 
       
  3343    Label done ;
       
  3344 
       
  3345    if (EmitSync & 4) {
       
  3346      cmp(SP, G0);
       
  3347      return ;
       
  3348    }
       
  3349 
       
  3350    if (EmitSync & 8) {
       
  3351      if (try_bias) {
       
  3352         biased_locking_exit(mark_addr, Rscratch, done);
       
  3353      }
       
  3354 
       
  3355      // Test first if it is a fast recursive unlock
       
  3356      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
       
  3357      br_null_short(Rmark, Assembler::pt, done);
       
  3358 
       
  3359      // Check if it is still a light weight lock, this is is true if we see
       
  3360      // the stack address of the basicLock in the markOop of the object
       
  3361      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
       
  3362      casx_under_lock(mark_addr.base(), Rbox, Rmark,
       
  3363        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
       
  3364      ba(done);
       
  3365      delayed()->cmp(Rbox, Rmark);
       
  3366      bind(done);
       
  3367      return ;
       
  3368    }
       
  3369 
       
  3370    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
       
  3371    // is too large performance rolls abruptly off a cliff.
       
  3372    // This could be related to inlining policies, code cache management, or
       
  3373    // I$ effects.
       
  3374    Label LStacked ;
       
  3375 
       
  3376    if (try_bias) {
       
  3377       // TODO: eliminate redundant LDs of obj->mark
       
  3378       biased_locking_exit(mark_addr, Rscratch, done);
       
  3379    }
       
  3380 
       
  3381    ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
       
  3382    ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
       
  3383    andcc(Rscratch, Rscratch, G0);
       
  3384    brx(Assembler::zero, false, Assembler::pn, done);
       
  3385    delayed()->nop();      // consider: relocate fetch of mark, above, into this DS
       
  3386    andcc(Rmark, 2, G0);
       
  3387    brx(Assembler::zero, false, Assembler::pt, LStacked);
       
  3388    delayed()->nop();
       
  3389 
       
  3390    // It's inflated
       
  3391    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
       
  3392    // the ST of 0 into _owner which releases the lock.  This prevents loads
       
  3393    // and stores within the critical section from reordering (floating)
       
  3394    // past the store that releases the lock.  But TSO is a strong memory model
       
  3395    // and that particular flavor of barrier is a noop, so we can safely elide it.
       
  3396    // Note that we use 1-0 locking by default for the inflated case.  We
       
  3397    // close the resultant (and rare) race by having contented threads in
       
  3398    // monitorenter periodically poll _owner.
       
  3399    ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
       
  3400    ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
       
  3401    xor3(Rscratch, G2_thread, Rscratch);
       
  3402    orcc(Rbox, Rscratch, Rbox);
       
  3403    brx(Assembler::notZero, false, Assembler::pn, done);
       
  3404    delayed()->
       
  3405    ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
       
  3406    ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
       
  3407    orcc(Rbox, Rscratch, G0);
       
  3408    if (EmitSync & 65536) {
       
  3409       Label LSucc ;
       
  3410       brx(Assembler::notZero, false, Assembler::pn, LSucc);
       
  3411       delayed()->nop();
       
  3412       ba(done);
       
  3413       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
       
  3414 
       
  3415       bind(LSucc);
       
  3416       st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
       
  3417       if (os::is_MP()) { membar (StoreLoad); }
       
  3418       ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
       
  3419       andcc(Rscratch, Rscratch, G0);
       
  3420       brx(Assembler::notZero, false, Assembler::pt, done);
       
  3421       delayed()->andcc(G0, G0, G0);
       
  3422       add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark);
       
  3423       mov(G2_thread, Rscratch);
       
  3424       casn(Rmark, G0, Rscratch);
       
  3425       // invert icc.zf and goto done
       
  3426       br_notnull(Rscratch, false, Assembler::pt, done);
       
  3427       delayed()->cmp(G0, G0);
       
  3428       ba(done);
       
  3429       delayed()->cmp(G0, 1);
       
  3430    } else {
       
  3431       brx(Assembler::notZero, false, Assembler::pn, done);
       
  3432       delayed()->nop();
       
  3433       ba(done);
       
  3434       delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
       
  3435    }
       
  3436 
       
  3437    bind   (LStacked);
       
  3438    // Consider: we could replace the expensive CAS in the exit
       
  3439    // path with a simple ST of the displaced mark value fetched from
       
  3440    // the on-stack basiclock box.  That admits a race where a thread T2
       
  3441    // in the slow lock path -- inflating with monitor M -- could race a
       
  3442    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
       
  3443    // More precisely T1 in the stack-lock unlock path could "stomp" the
       
  3444    // inflated mark value M installed by T2, resulting in an orphan
       
  3445    // object monitor M and T2 becoming stranded.  We can remedy that situation
       
  3446    // by having T2 periodically poll the object's mark word using timed wait
       
  3447    // operations.  If T2 discovers that a stomp has occurred it vacates
       
  3448    // the monitor M and wakes any other threads stranded on the now-orphan M.
       
  3449    // In addition the monitor scavenger, which performs deflation,
       
  3450    // would also need to check for orpan monitors and stranded threads.
       
  3451    //
       
  3452    // Finally, inflation is also used when T2 needs to assign a hashCode
       
  3453    // to O and O is stack-locked by T1.  The "stomp" race could cause
       
  3454    // an assigned hashCode value to be lost.  We can avoid that condition
       
  3455    // and provide the necessary hashCode stability invariants by ensuring
       
  3456    // that hashCode generation is idempotent between copying GCs.
       
  3457    // For example we could compute the hashCode of an object O as
       
  3458    // O's heap address XOR some high quality RNG value that is refreshed
       
  3459    // at GC-time.  The monitor scavenger would install the hashCode
       
  3460    // found in any orphan monitors.  Again, the mechanism admits a
       
  3461    // lost-update "stomp" WAW race but detects and recovers as needed.
       
  3462    //
       
  3463    // A prototype implementation showed excellent results, although
       
  3464    // the scavenger and timeout code was rather involved.
       
  3465 
       
  3466    casn(mark_addr.base(), Rbox, Rscratch);
       
  3467    cmp(Rbox, Rscratch);
       
  3468    // Intentional fall through into done ...
       
  3469 
       
  3470    bind(done);
       
  3471 }
       
  3472 
       
  3473 
       
  3474 
       
  3475 void MacroAssembler::print_CPU_state() {
       
  3476   // %%%%% need to implement this
       
  3477 }
       
  3478 
       
  3479 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
       
  3480   // %%%%% need to implement this
       
  3481 }
       
  3482 
       
  3483 void MacroAssembler::push_IU_state() {
       
  3484   // %%%%% need to implement this
       
  3485 }
       
  3486 
       
  3487 
       
  3488 void MacroAssembler::pop_IU_state() {
       
  3489   // %%%%% need to implement this
       
  3490 }
       
  3491 
       
  3492 
       
  3493 void MacroAssembler::push_FPU_state() {
       
  3494   // %%%%% need to implement this
       
  3495 }
       
  3496 
       
  3497 
       
  3498 void MacroAssembler::pop_FPU_state() {
       
  3499   // %%%%% need to implement this
       
  3500 }
       
  3501 
       
  3502 
       
  3503 void MacroAssembler::push_CPU_state() {
       
  3504   // %%%%% need to implement this
       
  3505 }
       
  3506 
       
  3507 
       
  3508 void MacroAssembler::pop_CPU_state() {
       
  3509   // %%%%% need to implement this
       
  3510 }
       
  3511 
       
  3512 
       
  3513 
       
  3514 void MacroAssembler::verify_tlab() {
       
  3515 #ifdef ASSERT
       
  3516   if (UseTLAB && VerifyOops) {
       
  3517     Label next, next2, ok;
       
  3518     Register t1 = L0;
       
  3519     Register t2 = L1;
       
  3520     Register t3 = L2;
       
  3521 
       
  3522     save_frame(0);
       
  3523     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
       
  3524     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
       
  3525     or3(t1, t2, t3);
       
  3526     cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
       
  3527     STOP("assert(top >= start)");
       
  3528     should_not_reach_here();
       
  3529 
       
  3530     bind(next);
       
  3531     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
       
  3532     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
       
  3533     or3(t3, t2, t3);
       
  3534     cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
       
  3535     STOP("assert(top <= end)");
       
  3536     should_not_reach_here();
       
  3537 
       
  3538     bind(next2);
       
  3539     and3(t3, MinObjAlignmentInBytesMask, t3);
       
  3540     cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
       
  3541     STOP("assert(aligned)");
       
  3542     should_not_reach_here();
       
  3543 
       
  3544     bind(ok);
       
  3545     restore();
       
  3546   }
       
  3547 #endif
       
  3548 }
       
  3549 
       
  3550 
       
  3551 void MacroAssembler::eden_allocate(
       
  3552   Register obj,                        // result: pointer to object after successful allocation
       
  3553   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
       
  3554   int      con_size_in_bytes,          // object size in bytes if   known at compile time
       
  3555   Register t1,                         // temp register
       
  3556   Register t2,                         // temp register
       
  3557   Label&   slow_case                   // continuation point if fast allocation fails
       
  3558 ){
       
  3559   // make sure arguments make sense
       
  3560   assert_different_registers(obj, var_size_in_bytes, t1, t2);
       
  3561   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
       
  3562   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
       
  3563 
       
  3564   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
       
  3565     // No allocation in the shared eden.
       
  3566     ba_short(slow_case);
       
  3567   } else {
       
  3568     // get eden boundaries
       
  3569     // note: we need both top & top_addr!
       
  3570     const Register top_addr = t1;
       
  3571     const Register end      = t2;
       
  3572 
       
  3573     CollectedHeap* ch = Universe::heap();
       
  3574     set((intx)ch->top_addr(), top_addr);
       
  3575     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
       
  3576     ld_ptr(top_addr, delta, end);
       
  3577     ld_ptr(top_addr, 0, obj);
       
  3578 
       
  3579     // try to allocate
       
  3580     Label retry;
       
  3581     bind(retry);
       
  3582 #ifdef ASSERT
       
  3583     // make sure eden top is properly aligned
       
  3584     {
       
  3585       Label L;
       
  3586       btst(MinObjAlignmentInBytesMask, obj);
       
  3587       br(Assembler::zero, false, Assembler::pt, L);
       
  3588       delayed()->nop();
       
  3589       STOP("eden top is not properly aligned");
       
  3590       bind(L);
       
  3591     }
       
  3592 #endif // ASSERT
       
  3593     const Register free = end;
       
  3594     sub(end, obj, free);                                   // compute amount of free space
       
  3595     if (var_size_in_bytes->is_valid()) {
       
  3596       // size is unknown at compile time
       
  3597       cmp(free, var_size_in_bytes);
       
  3598       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
       
  3599       delayed()->add(obj, var_size_in_bytes, end);
       
  3600     } else {
       
  3601       // size is known at compile time
       
  3602       cmp(free, con_size_in_bytes);
       
  3603       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
       
  3604       delayed()->add(obj, con_size_in_bytes, end);
       
  3605     }
       
  3606     // Compare obj with the value at top_addr; if still equal, swap the value of
       
  3607     // end with the value at top_addr. If not equal, read the value at top_addr
       
  3608     // into end.
       
  3609     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
       
  3610     // if someone beat us on the allocation, try again, otherwise continue
       
  3611     cmp(obj, end);
       
  3612     brx(Assembler::notEqual, false, Assembler::pn, retry);
       
  3613     delayed()->mov(end, obj);                              // nop if successfull since obj == end
       
  3614 
       
  3615 #ifdef ASSERT
       
  3616     // make sure eden top is properly aligned
       
  3617     {
       
  3618       Label L;
       
  3619       const Register top_addr = t1;
       
  3620 
       
  3621       set((intx)ch->top_addr(), top_addr);
       
  3622       ld_ptr(top_addr, 0, top_addr);
       
  3623       btst(MinObjAlignmentInBytesMask, top_addr);
       
  3624       br(Assembler::zero, false, Assembler::pt, L);
       
  3625       delayed()->nop();
       
  3626       STOP("eden top is not properly aligned");
       
  3627       bind(L);
       
  3628     }
       
  3629 #endif // ASSERT
       
  3630   }
       
  3631 }
       
  3632 
       
  3633 
       
  3634 void MacroAssembler::tlab_allocate(
       
  3635   Register obj,                        // result: pointer to object after successful allocation
       
  3636   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
       
  3637   int      con_size_in_bytes,          // object size in bytes if   known at compile time
       
  3638   Register t1,                         // temp register
       
  3639   Label&   slow_case                   // continuation point if fast allocation fails
       
  3640 ){
       
  3641   // make sure arguments make sense
       
  3642   assert_different_registers(obj, var_size_in_bytes, t1);
       
  3643   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
       
  3644   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
       
  3645 
       
  3646   const Register free  = t1;
       
  3647 
       
  3648   verify_tlab();
       
  3649 
       
  3650   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
       
  3651 
       
  3652   // calculate amount of free space
       
  3653   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
       
  3654   sub(free, obj, free);
       
  3655 
       
  3656   Label done;
       
  3657   if (var_size_in_bytes == noreg) {
       
  3658     cmp(free, con_size_in_bytes);
       
  3659   } else {
       
  3660     cmp(free, var_size_in_bytes);
       
  3661   }
       
  3662   br(Assembler::less, false, Assembler::pn, slow_case);
       
  3663   // calculate the new top pointer
       
  3664   if (var_size_in_bytes == noreg) {
       
  3665     delayed()->add(obj, con_size_in_bytes, free);
       
  3666   } else {
       
  3667     delayed()->add(obj, var_size_in_bytes, free);
       
  3668   }
       
  3669 
       
  3670   bind(done);
       
  3671 
       
  3672 #ifdef ASSERT
       
  3673   // make sure new free pointer is properly aligned
       
  3674   {
       
  3675     Label L;
       
  3676     btst(MinObjAlignmentInBytesMask, free);
       
  3677     br(Assembler::zero, false, Assembler::pt, L);
       
  3678     delayed()->nop();
       
  3679     STOP("updated TLAB free is not properly aligned");
       
  3680     bind(L);
       
  3681   }
       
  3682 #endif // ASSERT
       
  3683 
       
  3684   // update the tlab top pointer
       
  3685   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
       
  3686   verify_tlab();
       
  3687 }
       
  3688 
       
  3689 
       
  3690 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
       
  3691   Register top = O0;
       
  3692   Register t1 = G1;
       
  3693   Register t2 = G3;
       
  3694   Register t3 = O1;
       
  3695   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
       
  3696   Label do_refill, discard_tlab;
       
  3697 
       
  3698   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
       
  3699     // No allocation in the shared eden.
       
  3700     ba_short(slow_case);
       
  3701   }
       
  3702 
       
  3703   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
       
  3704   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
       
  3705   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
       
  3706 
       
  3707   // calculate amount of free space
       
  3708   sub(t1, top, t1);
       
  3709   srl_ptr(t1, LogHeapWordSize, t1);
       
  3710 
       
  3711   // Retain tlab and allocate object in shared space if
       
  3712   // the amount free in the tlab is too large to discard.
       
  3713   cmp(t1, t2);
       
  3714   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
       
  3715 
       
  3716   // increment waste limit to prevent getting stuck on this slow path
       
  3717   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
       
  3718   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
       
  3719   if (TLABStats) {
       
  3720     // increment number of slow_allocations
       
  3721     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
       
  3722     add(t2, 1, t2);
       
  3723     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
       
  3724   }
       
  3725   ba_short(try_eden);
       
  3726 
       
  3727   bind(discard_tlab);
       
  3728   if (TLABStats) {
       
  3729     // increment number of refills
       
  3730     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
       
  3731     add(t2, 1, t2);
       
  3732     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
       
  3733     // accumulate wastage
       
  3734     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
       
  3735     add(t2, t1, t2);
       
  3736     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
       
  3737   }
       
  3738 
       
  3739   // if tlab is currently allocated (top or end != null) then
       
  3740   // fill [top, end + alignment_reserve) with array object
       
  3741   br_null_short(top, Assembler::pn, do_refill);
       
  3742 
       
  3743   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
       
  3744   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
       
  3745   // set klass to intArrayKlass
       
  3746   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
       
  3747   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
       
  3748   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
       
  3749   st(t1, top, arrayOopDesc::length_offset_in_bytes());
       
  3750   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
       
  3751   ld_ptr(t2, 0, t2);
       
  3752   // store klass last.  concurrent gcs assumes klass length is valid if
       
  3753   // klass field is not null.
       
  3754   store_klass(t2, top);
       
  3755   verify_oop(top);
       
  3756 
       
  3757   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1);
       
  3758   sub(top, t1, t1); // size of tlab's allocated portion
       
  3759   incr_allocated_bytes(t1, t2, t3);
       
  3760 
       
  3761   // refill the tlab with an eden allocation
       
  3762   bind(do_refill);
       
  3763   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
       
  3764   sll_ptr(t1, LogHeapWordSize, t1);
       
  3765   // allocate new tlab, address returned in top
       
  3766   eden_allocate(top, t1, 0, t2, t3, slow_case);
       
  3767 
       
  3768   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
       
  3769   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
       
  3770 #ifdef ASSERT
       
  3771   // check that tlab_size (t1) is still valid
       
  3772   {
       
  3773     Label ok;
       
  3774     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
       
  3775     sll_ptr(t2, LogHeapWordSize, t2);
       
  3776     cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok);
       
  3777     STOP("assert(t1 == tlab_size)");
       
  3778     should_not_reach_here();
       
  3779 
       
  3780     bind(ok);
       
  3781   }
       
  3782 #endif // ASSERT
       
  3783   add(top, t1, top); // t1 is tlab_size
       
  3784   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
       
  3785   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
       
  3786   verify_tlab();
       
  3787   ba_short(retry);
       
  3788 }
       
  3789 
       
  3790 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
       
  3791                                           Register t1, Register t2) {
       
  3792   // Bump total bytes allocated by this thread
       
  3793   assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
       
  3794   assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
       
  3795   // v8 support has gone the way of the dodo
       
  3796   ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
       
  3797   add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
       
  3798   stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
       
  3799 }
       
  3800 
       
  3801 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
       
  3802   switch (cond) {
       
  3803     // Note some conditions are synonyms for others
       
  3804     case Assembler::never:                return Assembler::always;
       
  3805     case Assembler::zero:                 return Assembler::notZero;
       
  3806     case Assembler::lessEqual:            return Assembler::greater;
       
  3807     case Assembler::less:                 return Assembler::greaterEqual;
       
  3808     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
       
  3809     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
       
  3810     case Assembler::negative:             return Assembler::positive;
       
  3811     case Assembler::overflowSet:          return Assembler::overflowClear;
       
  3812     case Assembler::always:               return Assembler::never;
       
  3813     case Assembler::notZero:              return Assembler::zero;
       
  3814     case Assembler::greater:              return Assembler::lessEqual;
       
  3815     case Assembler::greaterEqual:         return Assembler::less;
       
  3816     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
       
  3817     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
       
  3818     case Assembler::positive:             return Assembler::negative;
       
  3819     case Assembler::overflowClear:        return Assembler::overflowSet;
       
  3820   }
       
  3821 
       
  3822   ShouldNotReachHere(); return Assembler::overflowClear;
       
  3823 }
       
  3824 
       
  3825 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
       
  3826                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
       
  3827   Condition negated_cond = negate_condition(cond);
       
  3828   Label L;
       
  3829   brx(negated_cond, false, Assembler::pt, L);
       
  3830   delayed()->nop();
       
  3831   inc_counter(counter_ptr, Rtmp1, Rtmp2);
       
  3832   bind(L);
       
  3833 }
       
  3834 
       
  3835 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
       
  3836   AddressLiteral addrlit(counter_addr);
       
  3837   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
       
  3838   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
       
  3839   ld(addr, Rtmp2);
       
  3840   inc(Rtmp2);
       
  3841   st(Rtmp2, addr);
       
  3842 }
       
  3843 
       
  3844 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
       
  3845   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
       
  3846 }
       
  3847 
       
  3848 SkipIfEqual::SkipIfEqual(
       
  3849     MacroAssembler* masm, Register temp, const bool* flag_addr,
       
  3850     Assembler::Condition condition) {
       
  3851   _masm = masm;
       
  3852   AddressLiteral flag(flag_addr);
       
  3853   _masm->sethi(flag, temp);
       
  3854   _masm->ldub(temp, flag.low10(), temp);
       
  3855   _masm->tst(temp);
       
  3856   _masm->br(condition, false, Assembler::pt, _label);
       
  3857   _masm->delayed()->nop();
       
  3858 }
       
  3859 
       
  3860 SkipIfEqual::~SkipIfEqual() {
       
  3861   _masm->bind(_label);
       
  3862 }
       
  3863 
       
  3864 
       
  3865 // Writes to stack successive pages until offset reached to check for
       
  3866 // stack overflow + shadow pages.  This clobbers tsp and scratch.
       
  3867 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
       
  3868                                      Register Rscratch) {
       
  3869   // Use stack pointer in temp stack pointer
       
  3870   mov(SP, Rtsp);
       
  3871 
       
  3872   // Bang stack for total size given plus stack shadow page size.
       
  3873   // Bang one page at a time because a large size can overflow yellow and
       
  3874   // red zones (the bang will fail but stack overflow handling can't tell that
       
  3875   // it was a stack overflow bang vs a regular segv).
       
  3876   int offset = os::vm_page_size();
       
  3877   Register Roffset = Rscratch;
       
  3878 
       
  3879   Label loop;
       
  3880   bind(loop);
       
  3881   set((-offset)+STACK_BIAS, Rscratch);
       
  3882   st(G0, Rtsp, Rscratch);
       
  3883   set(offset, Roffset);
       
  3884   sub(Rsize, Roffset, Rsize);
       
  3885   cmp(Rsize, G0);
       
  3886   br(Assembler::greater, false, Assembler::pn, loop);
       
  3887   delayed()->sub(Rtsp, Roffset, Rtsp);
       
  3888 
       
  3889   // Bang down shadow pages too.
       
  3890   // The -1 because we already subtracted 1 page.
       
  3891   for (int i = 0; i< StackShadowPages-1; i++) {
       
  3892     set((-i*offset)+STACK_BIAS, Rscratch);
       
  3893     st(G0, Rtsp, Rscratch);
       
  3894   }
       
  3895 }
       
  3896 
       
  3897 ///////////////////////////////////////////////////////////////////////////////////
       
  3898 #ifndef SERIALGC
       
  3899 
       
  3900 static address satb_log_enqueue_with_frame = NULL;
       
  3901 static u_char* satb_log_enqueue_with_frame_end = NULL;
       
  3902 
       
  3903 static address satb_log_enqueue_frameless = NULL;
       
  3904 static u_char* satb_log_enqueue_frameless_end = NULL;
       
  3905 
       
  3906 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
       
  3907 
       
  3908 static void generate_satb_log_enqueue(bool with_frame) {
       
  3909   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
       
  3910   CodeBuffer buf(bb);
       
  3911   MacroAssembler masm(&buf);
       
  3912 
       
  3913 #define __ masm.
       
  3914 
       
  3915   address start = __ pc();
       
  3916   Register pre_val;
       
  3917 
       
  3918   Label refill, restart;
       
  3919   if (with_frame) {
       
  3920     __ save_frame(0);
       
  3921     pre_val = I0;  // Was O0 before the save.
       
  3922   } else {
       
  3923     pre_val = O0;
       
  3924   }
       
  3925 
       
  3926   int satb_q_index_byte_offset =
       
  3927     in_bytes(JavaThread::satb_mark_queue_offset() +
       
  3928              PtrQueue::byte_offset_of_index());
       
  3929 
       
  3930   int satb_q_buf_byte_offset =
       
  3931     in_bytes(JavaThread::satb_mark_queue_offset() +
       
  3932              PtrQueue::byte_offset_of_buf());
       
  3933 
       
  3934   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
       
  3935          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
       
  3936          "check sizes in assembly below");
       
  3937 
       
  3938   __ bind(restart);
       
  3939 
       
  3940   // Load the index into the SATB buffer. PtrQueue::_index is a size_t
       
  3941   // so ld_ptr is appropriate.
       
  3942   __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
       
  3943 
       
  3944   // index == 0?
       
  3945   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
       
  3946 
       
  3947   __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
       
  3948   __ sub(L0, oopSize, L0);
       
  3949 
       
  3950   __ st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
       
  3951   if (!with_frame) {
       
  3952     // Use return-from-leaf
       
  3953     __ retl();
       
  3954     __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
       
  3955   } else {
       
  3956     // Not delayed.
       
  3957     __ st_ptr(L0, G2_thread, satb_q_index_byte_offset);
       
  3958   }
       
  3959   if (with_frame) {
       
  3960     __ ret();
       
  3961     __ delayed()->restore();
       
  3962   }
       
  3963   __ bind(refill);
       
  3964 
       
  3965   address handle_zero =
       
  3966     CAST_FROM_FN_PTR(address,
       
  3967                      &SATBMarkQueueSet::handle_zero_index_for_thread);
       
  3968   // This should be rare enough that we can afford to save all the
       
  3969   // scratch registers that the calling context might be using.
       
  3970   __ mov(G1_scratch, L0);
       
  3971   __ mov(G3_scratch, L1);
       
  3972   __ mov(G4, L2);
       
  3973   // We need the value of O0 above (for the write into the buffer), so we
       
  3974   // save and restore it.
       
  3975   __ mov(O0, L3);
       
  3976   // Since the call will overwrite O7, we save and restore that, as well.
       
  3977   __ mov(O7, L4);
       
  3978   __ call_VM_leaf(L5, handle_zero, G2_thread);
       
  3979   __ mov(L0, G1_scratch);
       
  3980   __ mov(L1, G3_scratch);
       
  3981   __ mov(L2, G4);
       
  3982   __ mov(L3, O0);
       
  3983   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
       
  3984   __ delayed()->mov(L4, O7);
       
  3985 
       
  3986   if (with_frame) {
       
  3987     satb_log_enqueue_with_frame = start;
       
  3988     satb_log_enqueue_with_frame_end = __ pc();
       
  3989   } else {
       
  3990     satb_log_enqueue_frameless = start;
       
  3991     satb_log_enqueue_frameless_end = __ pc();
       
  3992   }
       
  3993 
       
  3994 #undef __
       
  3995 }
       
  3996 
       
  3997 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
       
  3998   if (with_frame) {
       
  3999     if (satb_log_enqueue_with_frame == 0) {
       
  4000       generate_satb_log_enqueue(with_frame);
       
  4001       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
       
  4002       if (G1SATBPrintStubs) {
       
  4003         tty->print_cr("Generated with-frame satb enqueue:");
       
  4004         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
       
  4005                              satb_log_enqueue_with_frame_end,
       
  4006                              tty);
       
  4007       }
       
  4008     }
       
  4009   } else {
       
  4010     if (satb_log_enqueue_frameless == 0) {
       
  4011       generate_satb_log_enqueue(with_frame);
       
  4012       assert(satb_log_enqueue_frameless != 0, "postcondition.");
       
  4013       if (G1SATBPrintStubs) {
       
  4014         tty->print_cr("Generated frameless satb enqueue:");
       
  4015         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
       
  4016                              satb_log_enqueue_frameless_end,
       
  4017                              tty);
       
  4018       }
       
  4019     }
       
  4020   }
       
  4021 }
       
  4022 
       
  4023 void MacroAssembler::g1_write_barrier_pre(Register obj,
       
  4024                                           Register index,
       
  4025                                           int offset,
       
  4026                                           Register pre_val,
       
  4027                                           Register tmp,
       
  4028                                           bool preserve_o_regs) {
       
  4029   Label filtered;
       
  4030 
       
  4031   if (obj == noreg) {
       
  4032     // We are not loading the previous value so make
       
  4033     // sure that we don't trash the value in pre_val
       
  4034     // with the code below.
       
  4035     assert_different_registers(pre_val, tmp);
       
  4036   } else {
       
  4037     // We will be loading the previous value
       
  4038     // in this code so...
       
  4039     assert(offset == 0 || index == noreg, "choose one");
       
  4040     assert(pre_val == noreg, "check this code");
       
  4041   }
       
  4042 
       
  4043   // Is marking active?
       
  4044   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
       
  4045     ld(G2,
       
  4046        in_bytes(JavaThread::satb_mark_queue_offset() +
       
  4047                 PtrQueue::byte_offset_of_active()),
       
  4048        tmp);
       
  4049   } else {
       
  4050     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
       
  4051               "Assumption");
       
  4052     ldsb(G2,
       
  4053          in_bytes(JavaThread::satb_mark_queue_offset() +
       
  4054                   PtrQueue::byte_offset_of_active()),
       
  4055          tmp);
       
  4056   }
       
  4057 
       
  4058   // Is marking active?
       
  4059   cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
       
  4060 
       
  4061   // Do we need to load the previous value?
       
  4062   if (obj != noreg) {
       
  4063     // Load the previous value...
       
  4064     if (index == noreg) {
       
  4065       if (Assembler::is_simm13(offset)) {
       
  4066         load_heap_oop(obj, offset, tmp);
       
  4067       } else {
       
  4068         set(offset, tmp);
       
  4069         load_heap_oop(obj, tmp, tmp);
       
  4070       }
       
  4071     } else {
       
  4072       load_heap_oop(obj, index, tmp);
       
  4073     }
       
  4074     // Previous value has been loaded into tmp
       
  4075     pre_val = tmp;
       
  4076   }
       
  4077 
       
  4078   assert(pre_val != noreg, "must have a real register");
       
  4079 
       
  4080   // Is the previous value null?
       
  4081   cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered);
       
  4082 
       
  4083   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
       
  4084   // case, pre_val will be a scratch G-reg, but there are some cases in
       
  4085   // which it's an O-reg.  In the first case, do a normal call.  In the
       
  4086   // latter, do a save here and call the frameless version.
       
  4087 
       
  4088   guarantee(pre_val->is_global() || pre_val->is_out(),
       
  4089             "Or we need to think harder.");
       
  4090 
       
  4091   if (pre_val->is_global() && !preserve_o_regs) {
       
  4092     generate_satb_log_enqueue_if_necessary(true); // with frame
       
  4093 
       
  4094     call(satb_log_enqueue_with_frame);
       
  4095     delayed()->mov(pre_val, O0);
       
  4096   } else {
       
  4097     generate_satb_log_enqueue_if_necessary(false); // frameless
       
  4098 
       
  4099     save_frame(0);
       
  4100     call(satb_log_enqueue_frameless);
       
  4101     delayed()->mov(pre_val->after_save(), O0);
       
  4102     restore();
       
  4103   }
       
  4104 
       
  4105   bind(filtered);
       
  4106 }
       
  4107 
       
  4108 static address dirty_card_log_enqueue = 0;
       
  4109 static u_char* dirty_card_log_enqueue_end = 0;
       
  4110 
       
  4111 // This gets to assume that o0 contains the object address.
       
  4112 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
       
  4113   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
       
  4114   CodeBuffer buf(bb);
       
  4115   MacroAssembler masm(&buf);
       
  4116 #define __ masm.
       
  4117   address start = __ pc();
       
  4118 
       
  4119   Label not_already_dirty, restart, refill;
       
  4120 
       
  4121 #ifdef _LP64
       
  4122   __ srlx(O0, CardTableModRefBS::card_shift, O0);
       
  4123 #else
       
  4124   __ srl(O0, CardTableModRefBS::card_shift, O0);
       
  4125 #endif
       
  4126   AddressLiteral addrlit(byte_map_base);
       
  4127   __ set(addrlit, O1); // O1 := <card table base>
       
  4128   __ ldub(O0, O1, O2); // O2 := [O0 + O1]
       
  4129 
       
  4130   assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code");
       
  4131   __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty);
       
  4132 
       
  4133   // We didn't take the branch, so we're already dirty: return.
       
  4134   // Use return-from-leaf
       
  4135   __ retl();
       
  4136   __ delayed()->nop();
       
  4137 
       
  4138   // Not dirty.
       
  4139   __ bind(not_already_dirty);
       
  4140 
       
  4141   // Get O0 + O1 into a reg by itself
       
  4142   __ add(O0, O1, O3);
       
  4143 
       
  4144   // First, dirty it.
       
  4145   __ stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
       
  4146 
       
  4147   int dirty_card_q_index_byte_offset =
       
  4148     in_bytes(JavaThread::dirty_card_queue_offset() +
       
  4149              PtrQueue::byte_offset_of_index());
       
  4150   int dirty_card_q_buf_byte_offset =
       
  4151     in_bytes(JavaThread::dirty_card_queue_offset() +
       
  4152              PtrQueue::byte_offset_of_buf());
       
  4153   __ bind(restart);
       
  4154 
       
  4155   // Load the index into the update buffer. PtrQueue::_index is
       
  4156   // a size_t so ld_ptr is appropriate here.
       
  4157   __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
       
  4158 
       
  4159   // index == 0?
       
  4160   __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill);
       
  4161 
       
  4162   __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
       
  4163   __ sub(L0, oopSize, L0);
       
  4164 
       
  4165   __ st_ptr(O3, L1, L0);  // [_buf + index] := I0
       
  4166   // Use return-from-leaf
       
  4167   __ retl();
       
  4168   __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
       
  4169 
       
  4170   __ bind(refill);
       
  4171   address handle_zero =
       
  4172     CAST_FROM_FN_PTR(address,
       
  4173                      &DirtyCardQueueSet::handle_zero_index_for_thread);
       
  4174   // This should be rare enough that we can afford to save all the
       
  4175   // scratch registers that the calling context might be using.
       
  4176   __ mov(G1_scratch, L3);
       
  4177   __ mov(G3_scratch, L5);
       
  4178   // We need the value of O3 above (for the write into the buffer), so we
       
  4179   // save and restore it.
       
  4180   __ mov(O3, L6);
       
  4181   // Since the call will overwrite O7, we save and restore that, as well.
       
  4182   __ mov(O7, L4);
       
  4183 
       
  4184   __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
       
  4185   __ mov(L3, G1_scratch);
       
  4186   __ mov(L5, G3_scratch);
       
  4187   __ mov(L6, O3);
       
  4188   __ br(Assembler::always, /*annul*/false, Assembler::pt, restart);
       
  4189   __ delayed()->mov(L4, O7);
       
  4190 
       
  4191   dirty_card_log_enqueue = start;
       
  4192   dirty_card_log_enqueue_end = __ pc();
       
  4193   // XXX Should have a guarantee here about not going off the end!
       
  4194   // Does it already do so?  Do an experiment...
       
  4195 
       
  4196 #undef __
       
  4197 
       
  4198 }
       
  4199 
       
  4200 static inline void
       
  4201 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
       
  4202   if (dirty_card_log_enqueue == 0) {
       
  4203     generate_dirty_card_log_enqueue(byte_map_base);
       
  4204     assert(dirty_card_log_enqueue != 0, "postcondition.");
       
  4205     if (G1SATBPrintStubs) {
       
  4206       tty->print_cr("Generated dirty_card enqueue:");
       
  4207       Disassembler::decode((u_char*)dirty_card_log_enqueue,
       
  4208                            dirty_card_log_enqueue_end,
       
  4209                            tty);
       
  4210     }
       
  4211   }
       
  4212 }
       
  4213 
       
  4214 
       
  4215 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
       
  4216 
       
  4217   Label filtered;
       
  4218   MacroAssembler* post_filter_masm = this;
       
  4219 
       
  4220   if (new_val == G0) return;
       
  4221 
       
  4222   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
       
  4223   assert(bs->kind() == BarrierSet::G1SATBCT ||
       
  4224          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
       
  4225 
       
  4226   if (G1RSBarrierRegionFilter) {
       
  4227     xor3(store_addr, new_val, tmp);
       
  4228 #ifdef _LP64
       
  4229     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
       
  4230 #else
       
  4231     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
       
  4232 #endif
       
  4233 
       
  4234     // XXX Should I predict this taken or not?  Does it matter?
       
  4235     cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered);
       
  4236   }
       
  4237 
       
  4238   // If the "store_addr" register is an "in" or "local" register, move it to
       
  4239   // a scratch reg so we can pass it as an argument.
       
  4240   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
       
  4241   // Pick a scratch register different from "tmp".
       
  4242   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
       
  4243   // Make sure we use up the delay slot!
       
  4244   if (use_scr) {
       
  4245     post_filter_masm->mov(store_addr, scr);
       
  4246   } else {
       
  4247     post_filter_masm->nop();
       
  4248   }
       
  4249   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
       
  4250   save_frame(0);
       
  4251   call(dirty_card_log_enqueue);
       
  4252   if (use_scr) {
       
  4253     delayed()->mov(scr, O0);
       
  4254   } else {
       
  4255     delayed()->mov(store_addr->after_save(), O0);
       
  4256   }
       
  4257   restore();
       
  4258 
       
  4259   bind(filtered);
       
  4260 }
       
  4261 
       
  4262 #endif  // SERIALGC
       
  4263 ///////////////////////////////////////////////////////////////////////////////////
       
  4264 
       
  4265 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
       
  4266   // If we're writing constant NULL, we can skip the write barrier.
       
  4267   if (new_val == G0) return;
       
  4268   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
       
  4269   assert(bs->kind() == BarrierSet::CardTableModRef ||
       
  4270          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
       
  4271   card_table_write(bs->byte_map_base, tmp, store_addr);
       
  4272 }
       
  4273 
       
  4274 void MacroAssembler::load_klass(Register src_oop, Register klass) {
       
  4275   // The number of bytes in this code is used by
       
  4276   // MachCallDynamicJavaNode::ret_addr_offset()
       
  4277   // if this changes, change that.
       
  4278   if (UseCompressedKlassPointers) {
       
  4279     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
       
  4280     decode_klass_not_null(klass);
       
  4281   } else {
       
  4282     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
       
  4283   }
       
  4284 }
       
  4285 
       
  4286 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
       
  4287   if (UseCompressedKlassPointers) {
       
  4288     assert(dst_oop != klass, "not enough registers");
       
  4289     encode_klass_not_null(klass);
       
  4290     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
       
  4291   } else {
       
  4292     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
       
  4293   }
       
  4294 }
       
  4295 
       
  4296 void MacroAssembler::store_klass_gap(Register s, Register d) {
       
  4297   if (UseCompressedKlassPointers) {
       
  4298     assert(s != d, "not enough registers");
       
  4299     st(s, d, oopDesc::klass_gap_offset_in_bytes());
       
  4300   }
       
  4301 }
       
  4302 
       
  4303 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
       
  4304   if (UseCompressedOops) {
       
  4305     lduw(s, d);
       
  4306     decode_heap_oop(d);
       
  4307   } else {
       
  4308     ld_ptr(s, d);
       
  4309   }
       
  4310 }
       
  4311 
       
  4312 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
       
  4313    if (UseCompressedOops) {
       
  4314     lduw(s1, s2, d);
       
  4315     decode_heap_oop(d, d);
       
  4316   } else {
       
  4317     ld_ptr(s1, s2, d);
       
  4318   }
       
  4319 }
       
  4320 
       
  4321 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
       
  4322    if (UseCompressedOops) {
       
  4323     lduw(s1, simm13a, d);
       
  4324     decode_heap_oop(d, d);
       
  4325   } else {
       
  4326     ld_ptr(s1, simm13a, d);
       
  4327   }
       
  4328 }
       
  4329 
       
  4330 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
       
  4331   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
       
  4332   else                   load_heap_oop(s1, s2.as_register(), d);
       
  4333 }
       
  4334 
       
  4335 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
       
  4336   if (UseCompressedOops) {
       
  4337     assert(s1 != d && s2 != d, "not enough registers");
       
  4338     encode_heap_oop(d);
       
  4339     st(d, s1, s2);
       
  4340   } else {
       
  4341     st_ptr(d, s1, s2);
       
  4342   }
       
  4343 }
       
  4344 
       
  4345 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
       
  4346   if (UseCompressedOops) {
       
  4347     assert(s1 != d, "not enough registers");
       
  4348     encode_heap_oop(d);
       
  4349     st(d, s1, simm13a);
       
  4350   } else {
       
  4351     st_ptr(d, s1, simm13a);
       
  4352   }
       
  4353 }
       
  4354 
       
  4355 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
       
  4356   if (UseCompressedOops) {
       
  4357     assert(a.base() != d, "not enough registers");
       
  4358     encode_heap_oop(d);
       
  4359     st(d, a, offset);
       
  4360   } else {
       
  4361     st_ptr(d, a, offset);
       
  4362   }
       
  4363 }
       
  4364 
       
  4365 
       
  4366 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
       
  4367   assert (UseCompressedOops, "must be compressed");
       
  4368   assert (Universe::heap() != NULL, "java heap should be initialized");
       
  4369   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
       
  4370   verify_oop(src);
       
  4371   if (Universe::narrow_oop_base() == NULL) {
       
  4372     srlx(src, LogMinObjAlignmentInBytes, dst);
       
  4373     return;
       
  4374   }
       
  4375   Label done;
       
  4376   if (src == dst) {
       
  4377     // optimize for frequent case src == dst
       
  4378     bpr(rc_nz, true, Assembler::pt, src, done);
       
  4379     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
       
  4380     bind(done);
       
  4381     srlx(src, LogMinObjAlignmentInBytes, dst);
       
  4382   } else {
       
  4383     bpr(rc_z, false, Assembler::pn, src, done);
       
  4384     delayed() -> mov(G0, dst);
       
  4385     // could be moved before branch, and annulate delay,
       
  4386     // but may add some unneeded work decoding null
       
  4387     sub(src, G6_heapbase, dst);
       
  4388     srlx(dst, LogMinObjAlignmentInBytes, dst);
       
  4389     bind(done);
       
  4390   }
       
  4391 }
       
  4392 
       
  4393 
       
  4394 void MacroAssembler::encode_heap_oop_not_null(Register r) {
       
  4395   assert (UseCompressedOops, "must be compressed");
       
  4396   assert (Universe::heap() != NULL, "java heap should be initialized");
       
  4397   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
       
  4398   verify_oop(r);
       
  4399   if (Universe::narrow_oop_base() != NULL)
       
  4400     sub(r, G6_heapbase, r);
       
  4401   srlx(r, LogMinObjAlignmentInBytes, r);
       
  4402 }
       
  4403 
       
  4404 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
       
  4405   assert (UseCompressedOops, "must be compressed");
       
  4406   assert (Universe::heap() != NULL, "java heap should be initialized");
       
  4407   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
       
  4408   verify_oop(src);
       
  4409   if (Universe::narrow_oop_base() == NULL) {
       
  4410     srlx(src, LogMinObjAlignmentInBytes, dst);
       
  4411   } else {
       
  4412     sub(src, G6_heapbase, dst);
       
  4413     srlx(dst, LogMinObjAlignmentInBytes, dst);
       
  4414   }
       
  4415 }
       
  4416 
       
  4417 // Same algorithm as oops.inline.hpp decode_heap_oop.
       
  4418 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
       
  4419   assert (UseCompressedOops, "must be compressed");
       
  4420   assert (Universe::heap() != NULL, "java heap should be initialized");
       
  4421   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
       
  4422   sllx(src, LogMinObjAlignmentInBytes, dst);
       
  4423   if (Universe::narrow_oop_base() != NULL) {
       
  4424     Label done;
       
  4425     bpr(rc_nz, true, Assembler::pt, dst, done);
       
  4426     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
       
  4427     bind(done);
       
  4428   }
       
  4429   verify_oop(dst);
       
  4430 }
       
  4431 
       
  4432 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
       
  4433   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
       
  4434   // pd_code_size_limit.
       
  4435   // Also do not verify_oop as this is called by verify_oop.
       
  4436   assert (UseCompressedOops, "must be compressed");
       
  4437   assert (Universe::heap() != NULL, "java heap should be initialized");
       
  4438   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
       
  4439   sllx(r, LogMinObjAlignmentInBytes, r);
       
  4440   if (Universe::narrow_oop_base() != NULL)
       
  4441     add(r, G6_heapbase, r);
       
  4442 }
       
  4443 
       
  4444 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
       
  4445   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
       
  4446   // pd_code_size_limit.
       
  4447   // Also do not verify_oop as this is called by verify_oop.
       
  4448   assert (UseCompressedOops, "must be compressed");
       
  4449   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
       
  4450   sllx(src, LogMinObjAlignmentInBytes, dst);
       
  4451   if (Universe::narrow_oop_base() != NULL)
       
  4452     add(dst, G6_heapbase, dst);
       
  4453 }
       
  4454 
       
  4455 void MacroAssembler::encode_klass_not_null(Register r) {
       
  4456   assert(Metaspace::is_initialized(), "metaspace should be initialized");
       
  4457   assert (UseCompressedKlassPointers, "must be compressed");
       
  4458   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
       
  4459   if (Universe::narrow_klass_base() != NULL)
       
  4460     sub(r, G6_heapbase, r);
       
  4461   srlx(r, LogKlassAlignmentInBytes, r);
       
  4462 }
       
  4463 
       
  4464 void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
       
  4465   assert(Metaspace::is_initialized(), "metaspace should be initialized");
       
  4466   assert (UseCompressedKlassPointers, "must be compressed");
       
  4467   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
       
  4468   if (Universe::narrow_klass_base() == NULL) {
       
  4469     srlx(src, LogKlassAlignmentInBytes, dst);
       
  4470   } else {
       
  4471     sub(src, G6_heapbase, dst);
       
  4472     srlx(dst, LogKlassAlignmentInBytes, dst);
       
  4473   }
       
  4474 }
       
  4475 
       
  4476 void  MacroAssembler::decode_klass_not_null(Register r) {
       
  4477   assert(Metaspace::is_initialized(), "metaspace should be initialized");
       
  4478   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
       
  4479   // pd_code_size_limit.
       
  4480   assert (UseCompressedKlassPointers, "must be compressed");
       
  4481   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
       
  4482   sllx(r, LogKlassAlignmentInBytes, r);
       
  4483   if (Universe::narrow_klass_base() != NULL)
       
  4484     add(r, G6_heapbase, r);
       
  4485 }
       
  4486 
       
  4487 void  MacroAssembler::decode_klass_not_null(Register src, Register dst) {
       
  4488   assert(Metaspace::is_initialized(), "metaspace should be initialized");
       
  4489   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
       
  4490   // pd_code_size_limit.
       
  4491   assert (UseCompressedKlassPointers, "must be compressed");
       
  4492   assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
       
  4493   sllx(src, LogKlassAlignmentInBytes, dst);
       
  4494   if (Universe::narrow_klass_base() != NULL)
       
  4495     add(dst, G6_heapbase, dst);
       
  4496 }
       
  4497 
       
  4498 void MacroAssembler::reinit_heapbase() {
       
  4499   if (UseCompressedOops || UseCompressedKlassPointers) {
       
  4500     AddressLiteral base(Universe::narrow_ptrs_base_addr());
       
  4501     load_ptr_contents(base, G6_heapbase);
       
  4502   }
       
  4503 }
       
  4504 
       
  4505 // Compare char[] arrays aligned to 4 bytes.
       
  4506 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
       
  4507                                         Register limit, Register result,
       
  4508                                         Register chr1, Register chr2, Label& Ldone) {
       
  4509   Label Lvector, Lloop;
       
  4510   assert(chr1 == result, "should be the same");
       
  4511 
       
  4512   // Note: limit contains number of bytes (2*char_elements) != 0.
       
  4513   andcc(limit, 0x2, chr1); // trailing character ?
       
  4514   br(Assembler::zero, false, Assembler::pt, Lvector);
       
  4515   delayed()->nop();
       
  4516 
       
  4517   // compare the trailing char
       
  4518   sub(limit, sizeof(jchar), limit);
       
  4519   lduh(ary1, limit, chr1);
       
  4520   lduh(ary2, limit, chr2);
       
  4521   cmp(chr1, chr2);
       
  4522   br(Assembler::notEqual, true, Assembler::pt, Ldone);
       
  4523   delayed()->mov(G0, result);     // not equal
       
  4524 
       
  4525   // only one char ?
       
  4526   cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn);
       
  4527   delayed()->add(G0, 1, result); // zero-length arrays are equal
       
  4528 
       
  4529   // word by word compare, dont't need alignment check
       
  4530   bind(Lvector);
       
  4531   // Shift ary1 and ary2 to the end of the arrays, negate limit
       
  4532   add(ary1, limit, ary1);
       
  4533   add(ary2, limit, ary2);
       
  4534   neg(limit, limit);
       
  4535 
       
  4536   lduw(ary1, limit, chr1);
       
  4537   bind(Lloop);
       
  4538   lduw(ary2, limit, chr2);
       
  4539   cmp(chr1, chr2);
       
  4540   br(Assembler::notEqual, true, Assembler::pt, Ldone);
       
  4541   delayed()->mov(G0, result);     // not equal
       
  4542   inccc(limit, 2*sizeof(jchar));
       
  4543   // annul LDUW if branch is not taken to prevent access past end of array
       
  4544   br(Assembler::notZero, true, Assembler::pt, Lloop);
       
  4545   delayed()->lduw(ary1, limit, chr1); // hoisted
       
  4546 
       
  4547   // Caller should set it:
       
  4548   // add(G0, 1, result); // equals
       
  4549 }
       
  4550 
       
  4551 // Use BIS for zeroing (count is in bytes).
       
  4552 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
       
  4553   assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing");
       
  4554   Register end = count;
       
  4555   int cache_line_size = VM_Version::prefetch_data_size();
       
  4556   // Minimum count when BIS zeroing can be used since
       
  4557   // it needs membar which is expensive.
       
  4558   int block_zero_size  = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
       
  4559 
       
  4560   Label small_loop;
       
  4561   // Check if count is negative (dead code) or zero.
       
  4562   // Note, count uses 64bit in 64 bit VM.
       
  4563   cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
       
  4564 
       
  4565   // Use BIS zeroing only for big arrays since it requires membar.
       
  4566   if (Assembler::is_simm13(block_zero_size)) { // < 4096
       
  4567     cmp(count, block_zero_size);
       
  4568   } else {
       
  4569     set(block_zero_size, temp);
       
  4570     cmp(count, temp);
       
  4571   }
       
  4572   br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
       
  4573   delayed()->add(to, count, end);
       
  4574 
       
  4575   // Note: size is >= three (32 bytes) cache lines.
       
  4576 
       
  4577   // Clean the beginning of space up to next cache line.
       
  4578   for (int offs = 0; offs < cache_line_size; offs += 8) {
       
  4579     stx(G0, to, offs);
       
  4580   }
       
  4581 
       
  4582   // align to next cache line
       
  4583   add(to, cache_line_size, to);
       
  4584   and3(to, -cache_line_size, to);
       
  4585 
       
  4586   // Note: size left >= two (32 bytes) cache lines.
       
  4587 
       
  4588   // BIS should not be used to zero tail (64 bytes)
       
  4589   // to avoid zeroing a header of the following object.
       
  4590   sub(end, (cache_line_size*2)-8, end);
       
  4591 
       
  4592   Label bis_loop;
       
  4593   bind(bis_loop);
       
  4594   stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
       
  4595   add(to, cache_line_size, to);
       
  4596   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
       
  4597 
       
  4598   // BIS needs membar.
       
  4599   membar(Assembler::StoreLoad);
       
  4600 
       
  4601   add(end, (cache_line_size*2)-8, end); // restore end
       
  4602   cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
       
  4603 
       
  4604   // Clean the tail.
       
  4605   bind(small_loop);
       
  4606   stx(G0, to, 0);
       
  4607   add(to, 8, to);
       
  4608   cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
       
  4609   nop(); // Separate short branches
       
  4610 }