|
1 /* |
|
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
20 * or visit www.oracle.com if you need additional information or have any |
|
21 * questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 #include "precompiled.hpp" |
|
26 #include "asm/assembler.inline.hpp" |
|
27 #include "compiler/disassembler.hpp" |
|
28 #include "gc_interface/collectedHeap.inline.hpp" |
|
29 #include "interpreter/interpreter.hpp" |
|
30 #include "memory/cardTableModRefBS.hpp" |
|
31 #include "memory/resourceArea.hpp" |
|
32 #include "prims/methodHandles.hpp" |
|
33 #include "runtime/biasedLocking.hpp" |
|
34 #include "runtime/interfaceSupport.hpp" |
|
35 #include "runtime/objectMonitor.hpp" |
|
36 #include "runtime/os.hpp" |
|
37 #include "runtime/sharedRuntime.hpp" |
|
38 #include "runtime/stubRoutines.hpp" |
|
39 #ifndef SERIALGC |
|
40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp" |
|
41 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp" |
|
42 #include "gc_implementation/g1/heapRegion.hpp" |
|
43 #endif |
|
44 |
|
45 #ifdef PRODUCT |
|
46 #define BLOCK_COMMENT(str) /* nothing */ |
|
47 #define STOP(error) stop(error) |
|
48 #else |
|
49 #define BLOCK_COMMENT(str) block_comment(str) |
|
50 #define STOP(error) block_comment(error); stop(error) |
|
51 #endif |
|
52 |
|
53 // Convert the raw encoding form into the form expected by the |
|
54 // constructor for Address. |
|
55 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) { |
|
56 assert(scale == 0, "not supported"); |
|
57 RelocationHolder rspec; |
|
58 if (disp_reloc != relocInfo::none) { |
|
59 rspec = Relocation::spec_simple(disp_reloc); |
|
60 } |
|
61 |
|
62 Register rindex = as_Register(index); |
|
63 if (rindex != G0) { |
|
64 Address madr(as_Register(base), rindex); |
|
65 madr._rspec = rspec; |
|
66 return madr; |
|
67 } else { |
|
68 Address madr(as_Register(base), disp); |
|
69 madr._rspec = rspec; |
|
70 return madr; |
|
71 } |
|
72 } |
|
73 |
|
74 Address Argument::address_in_frame() const { |
|
75 // Warning: In LP64 mode disp will occupy more than 10 bits, but |
|
76 // op codes such as ld or ldx, only access disp() to get |
|
77 // their simm13 argument. |
|
78 int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS; |
|
79 if (is_in()) |
|
80 return Address(FP, disp); // In argument. |
|
81 else |
|
82 return Address(SP, disp); // Out argument. |
|
83 } |
|
84 |
|
85 static const char* argumentNames[][2] = { |
|
86 {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"}, |
|
87 {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"}, |
|
88 {"A(n>9)","P(n>9)"} |
|
89 }; |
|
90 |
|
91 const char* Argument::name() const { |
|
92 int nofArgs = sizeof argumentNames / sizeof argumentNames[0]; |
|
93 int num = number(); |
|
94 if (num >= nofArgs) num = nofArgs - 1; |
|
95 return argumentNames[num][is_in() ? 1 : 0]; |
|
96 } |
|
97 |
|
98 #ifdef ASSERT |
|
99 // On RISC, there's no benefit to verifying instruction boundaries. |
|
100 bool AbstractAssembler::pd_check_instruction_mark() { return false; } |
|
101 #endif |
|
102 |
|
103 |
|
104 void MacroAssembler::print_instruction(int inst) { |
|
105 const char* s; |
|
106 switch (inv_op(inst)) { |
|
107 default: s = "????"; break; |
|
108 case call_op: s = "call"; break; |
|
109 case branch_op: |
|
110 switch (inv_op2(inst)) { |
|
111 case fb_op2: s = "fb"; break; |
|
112 case fbp_op2: s = "fbp"; break; |
|
113 case br_op2: s = "br"; break; |
|
114 case bp_op2: s = "bp"; break; |
|
115 case cb_op2: s = "cb"; break; |
|
116 case bpr_op2: { |
|
117 if (is_cbcond(inst)) { |
|
118 s = is_cxb(inst) ? "cxb" : "cwb"; |
|
119 } else { |
|
120 s = "bpr"; |
|
121 } |
|
122 break; |
|
123 } |
|
124 default: s = "????"; break; |
|
125 } |
|
126 } |
|
127 ::tty->print("%s", s); |
|
128 } |
|
129 |
|
130 |
|
131 // Patch instruction inst at offset inst_pos to refer to dest_pos |
|
132 // and return the resulting instruction. |
|
133 // We should have pcs, not offsets, but since all is relative, it will work out |
|
134 // OK. |
|
135 int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) { |
|
136 int m; // mask for displacement field |
|
137 int v; // new value for displacement field |
|
138 const int word_aligned_ones = -4; |
|
139 switch (inv_op(inst)) { |
|
140 default: ShouldNotReachHere(); |
|
141 case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break; |
|
142 case branch_op: |
|
143 switch (inv_op2(inst)) { |
|
144 case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break; |
|
145 case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break; |
|
146 case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break; |
|
147 case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break; |
|
148 case cb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break; |
|
149 case bpr_op2: { |
|
150 if (is_cbcond(inst)) { |
|
151 m = wdisp10(word_aligned_ones, 0); |
|
152 v = wdisp10(dest_pos, inst_pos); |
|
153 } else { |
|
154 m = wdisp16(word_aligned_ones, 0); |
|
155 v = wdisp16(dest_pos, inst_pos); |
|
156 } |
|
157 break; |
|
158 } |
|
159 default: ShouldNotReachHere(); |
|
160 } |
|
161 } |
|
162 return inst & ~m | v; |
|
163 } |
|
164 |
|
165 // Return the offset of the branch destionation of instruction inst |
|
166 // at offset pos. |
|
167 // Should have pcs, but since all is relative, it works out. |
|
168 int MacroAssembler::branch_destination(int inst, int pos) { |
|
169 int r; |
|
170 switch (inv_op(inst)) { |
|
171 default: ShouldNotReachHere(); |
|
172 case call_op: r = inv_wdisp(inst, pos, 30); break; |
|
173 case branch_op: |
|
174 switch (inv_op2(inst)) { |
|
175 case fbp_op2: r = inv_wdisp( inst, pos, 19); break; |
|
176 case bp_op2: r = inv_wdisp( inst, pos, 19); break; |
|
177 case fb_op2: r = inv_wdisp( inst, pos, 22); break; |
|
178 case br_op2: r = inv_wdisp( inst, pos, 22); break; |
|
179 case cb_op2: r = inv_wdisp( inst, pos, 22); break; |
|
180 case bpr_op2: { |
|
181 if (is_cbcond(inst)) { |
|
182 r = inv_wdisp10(inst, pos); |
|
183 } else { |
|
184 r = inv_wdisp16(inst, pos); |
|
185 } |
|
186 break; |
|
187 } |
|
188 default: ShouldNotReachHere(); |
|
189 } |
|
190 } |
|
191 return r; |
|
192 } |
|
193 |
|
194 void MacroAssembler::null_check(Register reg, int offset) { |
|
195 if (needs_explicit_null_check((intptr_t)offset)) { |
|
196 // provoke OS NULL exception if reg = NULL by |
|
197 // accessing M[reg] w/o changing any registers |
|
198 ld_ptr(reg, 0, G0); |
|
199 } |
|
200 else { |
|
201 // nothing to do, (later) access of M[reg + offset] |
|
202 // will provoke OS NULL exception if reg = NULL |
|
203 } |
|
204 } |
|
205 |
|
206 // Ring buffer jumps |
|
207 |
|
208 #ifndef PRODUCT |
|
209 void MacroAssembler::ret( bool trace ) { if (trace) { |
|
210 mov(I7, O7); // traceable register |
|
211 JMP(O7, 2 * BytesPerInstWord); |
|
212 } else { |
|
213 jmpl( I7, 2 * BytesPerInstWord, G0 ); |
|
214 } |
|
215 } |
|
216 |
|
217 void MacroAssembler::retl( bool trace ) { if (trace) JMP(O7, 2 * BytesPerInstWord); |
|
218 else jmpl( O7, 2 * BytesPerInstWord, G0 ); } |
|
219 #endif /* PRODUCT */ |
|
220 |
|
221 |
|
222 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) { |
|
223 assert_not_delayed(); |
|
224 // This can only be traceable if r1 & r2 are visible after a window save |
|
225 if (TraceJumps) { |
|
226 #ifndef PRODUCT |
|
227 save_frame(0); |
|
228 verify_thread(); |
|
229 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0); |
|
230 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1); |
|
231 sll(O0, exact_log2(4*sizeof(intptr_t)), O2); |
|
232 add(O2, O1, O1); |
|
233 |
|
234 add(r1->after_save(), r2->after_save(), O2); |
|
235 set((intptr_t)file, O3); |
|
236 set(line, O4); |
|
237 Label L; |
|
238 // get nearby pc, store jmp target |
|
239 call(L, relocInfo::none); // No relocation for call to pc+0x8 |
|
240 delayed()->st(O2, O1, 0); |
|
241 bind(L); |
|
242 |
|
243 // store nearby pc |
|
244 st(O7, O1, sizeof(intptr_t)); |
|
245 // store file |
|
246 st(O3, O1, 2*sizeof(intptr_t)); |
|
247 // store line |
|
248 st(O4, O1, 3*sizeof(intptr_t)); |
|
249 add(O0, 1, O0); |
|
250 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0); |
|
251 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset())); |
|
252 restore(); |
|
253 #endif /* PRODUCT */ |
|
254 } |
|
255 jmpl(r1, r2, G0); |
|
256 } |
|
257 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) { |
|
258 assert_not_delayed(); |
|
259 // This can only be traceable if r1 is visible after a window save |
|
260 if (TraceJumps) { |
|
261 #ifndef PRODUCT |
|
262 save_frame(0); |
|
263 verify_thread(); |
|
264 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0); |
|
265 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1); |
|
266 sll(O0, exact_log2(4*sizeof(intptr_t)), O2); |
|
267 add(O2, O1, O1); |
|
268 |
|
269 add(r1->after_save(), offset, O2); |
|
270 set((intptr_t)file, O3); |
|
271 set(line, O4); |
|
272 Label L; |
|
273 // get nearby pc, store jmp target |
|
274 call(L, relocInfo::none); // No relocation for call to pc+0x8 |
|
275 delayed()->st(O2, O1, 0); |
|
276 bind(L); |
|
277 |
|
278 // store nearby pc |
|
279 st(O7, O1, sizeof(intptr_t)); |
|
280 // store file |
|
281 st(O3, O1, 2*sizeof(intptr_t)); |
|
282 // store line |
|
283 st(O4, O1, 3*sizeof(intptr_t)); |
|
284 add(O0, 1, O0); |
|
285 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0); |
|
286 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset())); |
|
287 restore(); |
|
288 #endif /* PRODUCT */ |
|
289 } |
|
290 jmp(r1, offset); |
|
291 } |
|
292 |
|
293 // This code sequence is relocatable to any address, even on LP64. |
|
294 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) { |
|
295 assert_not_delayed(); |
|
296 // Force fixed length sethi because NativeJump and NativeFarCall don't handle |
|
297 // variable length instruction streams. |
|
298 patchable_sethi(addrlit, temp); |
|
299 Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement. |
|
300 if (TraceJumps) { |
|
301 #ifndef PRODUCT |
|
302 // Must do the add here so relocation can find the remainder of the |
|
303 // value to be relocated. |
|
304 add(a.base(), a.disp(), a.base(), addrlit.rspec(offset)); |
|
305 save_frame(0); |
|
306 verify_thread(); |
|
307 ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0); |
|
308 add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1); |
|
309 sll(O0, exact_log2(4*sizeof(intptr_t)), O2); |
|
310 add(O2, O1, O1); |
|
311 |
|
312 set((intptr_t)file, O3); |
|
313 set(line, O4); |
|
314 Label L; |
|
315 |
|
316 // get nearby pc, store jmp target |
|
317 call(L, relocInfo::none); // No relocation for call to pc+0x8 |
|
318 delayed()->st(a.base()->after_save(), O1, 0); |
|
319 bind(L); |
|
320 |
|
321 // store nearby pc |
|
322 st(O7, O1, sizeof(intptr_t)); |
|
323 // store file |
|
324 st(O3, O1, 2*sizeof(intptr_t)); |
|
325 // store line |
|
326 st(O4, O1, 3*sizeof(intptr_t)); |
|
327 add(O0, 1, O0); |
|
328 and3(O0, JavaThread::jump_ring_buffer_size - 1, O0); |
|
329 st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset())); |
|
330 restore(); |
|
331 jmpl(a.base(), G0, d); |
|
332 #else |
|
333 jmpl(a.base(), a.disp(), d); |
|
334 #endif /* PRODUCT */ |
|
335 } else { |
|
336 jmpl(a.base(), a.disp(), d); |
|
337 } |
|
338 } |
|
339 |
|
340 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) { |
|
341 jumpl(addrlit, temp, G0, offset, file, line); |
|
342 } |
|
343 |
|
344 |
|
345 // Conditional breakpoint (for assertion checks in assembly code) |
|
346 void MacroAssembler::breakpoint_trap(Condition c, CC cc) { |
|
347 trap(c, cc, G0, ST_RESERVED_FOR_USER_0); |
|
348 } |
|
349 |
|
350 // We want to use ST_BREAKPOINT here, but the debugger is confused by it. |
|
351 void MacroAssembler::breakpoint_trap() { |
|
352 trap(ST_RESERVED_FOR_USER_0); |
|
353 } |
|
354 |
|
355 // flush windows (except current) using flushw instruction if avail. |
|
356 void MacroAssembler::flush_windows() { |
|
357 if (VM_Version::v9_instructions_work()) flushw(); |
|
358 else flush_windows_trap(); |
|
359 } |
|
360 |
|
361 // Write serialization page so VM thread can do a pseudo remote membar |
|
362 // We use the current thread pointer to calculate a thread specific |
|
363 // offset to write to within the page. This minimizes bus traffic |
|
364 // due to cache line collision. |
|
365 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) { |
|
366 srl(thread, os::get_serialize_page_shift_count(), tmp2); |
|
367 if (Assembler::is_simm13(os::vm_page_size())) { |
|
368 and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2); |
|
369 } |
|
370 else { |
|
371 set((os::vm_page_size() - sizeof(int)), tmp1); |
|
372 and3(tmp2, tmp1, tmp2); |
|
373 } |
|
374 set(os::get_memory_serialize_page(), tmp1); |
|
375 st(G0, tmp1, tmp2); |
|
376 } |
|
377 |
|
378 |
|
379 |
|
380 void MacroAssembler::enter() { |
|
381 Unimplemented(); |
|
382 } |
|
383 |
|
384 void MacroAssembler::leave() { |
|
385 Unimplemented(); |
|
386 } |
|
387 |
|
388 void MacroAssembler::mult(Register s1, Register s2, Register d) { |
|
389 if(VM_Version::v9_instructions_work()) { |
|
390 mulx (s1, s2, d); |
|
391 } else { |
|
392 smul (s1, s2, d); |
|
393 } |
|
394 } |
|
395 |
|
396 void MacroAssembler::mult(Register s1, int simm13a, Register d) { |
|
397 if(VM_Version::v9_instructions_work()) { |
|
398 mulx (s1, simm13a, d); |
|
399 } else { |
|
400 smul (s1, simm13a, d); |
|
401 } |
|
402 } |
|
403 |
|
404 |
|
405 #ifdef ASSERT |
|
406 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) { |
|
407 const Register s1 = G3_scratch; |
|
408 const Register s2 = G4_scratch; |
|
409 Label get_psr_test; |
|
410 // Get the condition codes the V8 way. |
|
411 read_ccr_trap(s1); |
|
412 mov(ccr_save, s2); |
|
413 // This is a test of V8 which has icc but not xcc |
|
414 // so mask off the xcc bits |
|
415 and3(s2, 0xf, s2); |
|
416 // Compare condition codes from the V8 and V9 ways. |
|
417 subcc(s2, s1, G0); |
|
418 br(Assembler::notEqual, true, Assembler::pt, get_psr_test); |
|
419 delayed()->breakpoint_trap(); |
|
420 bind(get_psr_test); |
|
421 } |
|
422 |
|
423 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) { |
|
424 const Register s1 = G3_scratch; |
|
425 const Register s2 = G4_scratch; |
|
426 Label set_psr_test; |
|
427 // Write out the saved condition codes the V8 way |
|
428 write_ccr_trap(ccr_save, s1, s2); |
|
429 // Read back the condition codes using the V9 instruction |
|
430 rdccr(s1); |
|
431 mov(ccr_save, s2); |
|
432 // This is a test of V8 which has icc but not xcc |
|
433 // so mask off the xcc bits |
|
434 and3(s2, 0xf, s2); |
|
435 and3(s1, 0xf, s1); |
|
436 // Compare the V8 way with the V9 way. |
|
437 subcc(s2, s1, G0); |
|
438 br(Assembler::notEqual, true, Assembler::pt, set_psr_test); |
|
439 delayed()->breakpoint_trap(); |
|
440 bind(set_psr_test); |
|
441 } |
|
442 #else |
|
443 #define read_ccr_v8_assert(x) |
|
444 #define write_ccr_v8_assert(x) |
|
445 #endif // ASSERT |
|
446 |
|
447 void MacroAssembler::read_ccr(Register ccr_save) { |
|
448 if (VM_Version::v9_instructions_work()) { |
|
449 rdccr(ccr_save); |
|
450 // Test code sequence used on V8. Do not move above rdccr. |
|
451 read_ccr_v8_assert(ccr_save); |
|
452 } else { |
|
453 read_ccr_trap(ccr_save); |
|
454 } |
|
455 } |
|
456 |
|
457 void MacroAssembler::write_ccr(Register ccr_save) { |
|
458 if (VM_Version::v9_instructions_work()) { |
|
459 // Test code sequence used on V8. Do not move below wrccr. |
|
460 write_ccr_v8_assert(ccr_save); |
|
461 wrccr(ccr_save); |
|
462 } else { |
|
463 const Register temp_reg1 = G3_scratch; |
|
464 const Register temp_reg2 = G4_scratch; |
|
465 write_ccr_trap(ccr_save, temp_reg1, temp_reg2); |
|
466 } |
|
467 } |
|
468 |
|
469 |
|
470 // Calls to C land |
|
471 |
|
472 #ifdef ASSERT |
|
473 // a hook for debugging |
|
474 static Thread* reinitialize_thread() { |
|
475 return ThreadLocalStorage::thread(); |
|
476 } |
|
477 #else |
|
478 #define reinitialize_thread ThreadLocalStorage::thread |
|
479 #endif |
|
480 |
|
481 #ifdef ASSERT |
|
482 address last_get_thread = NULL; |
|
483 #endif |
|
484 |
|
485 // call this when G2_thread is not known to be valid |
|
486 void MacroAssembler::get_thread() { |
|
487 save_frame(0); // to avoid clobbering O0 |
|
488 mov(G1, L0); // avoid clobbering G1 |
|
489 mov(G5_method, L1); // avoid clobbering G5 |
|
490 mov(G3, L2); // avoid clobbering G3 also |
|
491 mov(G4, L5); // avoid clobbering G4 |
|
492 #ifdef ASSERT |
|
493 AddressLiteral last_get_thread_addrlit(&last_get_thread); |
|
494 set(last_get_thread_addrlit, L3); |
|
495 inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call |
|
496 st_ptr(L4, L3, 0); |
|
497 #endif |
|
498 call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type); |
|
499 delayed()->nop(); |
|
500 mov(L0, G1); |
|
501 mov(L1, G5_method); |
|
502 mov(L2, G3); |
|
503 mov(L5, G4); |
|
504 restore(O0, 0, G2_thread); |
|
505 } |
|
506 |
|
507 static Thread* verify_thread_subroutine(Thread* gthread_value) { |
|
508 Thread* correct_value = ThreadLocalStorage::thread(); |
|
509 guarantee(gthread_value == correct_value, "G2_thread value must be the thread"); |
|
510 return correct_value; |
|
511 } |
|
512 |
|
513 void MacroAssembler::verify_thread() { |
|
514 if (VerifyThread) { |
|
515 // NOTE: this chops off the heads of the 64-bit O registers. |
|
516 #ifdef CC_INTERP |
|
517 save_frame(0); |
|
518 #else |
|
519 // make sure G2_thread contains the right value |
|
520 save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod for -Xprof) |
|
521 mov(G1, L1); // avoid clobbering G1 |
|
522 // G2 saved below |
|
523 mov(G3, L3); // avoid clobbering G3 |
|
524 mov(G4, L4); // avoid clobbering G4 |
|
525 mov(G5_method, L5); // avoid clobbering G5_method |
|
526 #endif /* CC_INTERP */ |
|
527 #if defined(COMPILER2) && !defined(_LP64) |
|
528 // Save & restore possible 64-bit Long arguments in G-regs |
|
529 srlx(G1,32,L0); |
|
530 srlx(G4,32,L6); |
|
531 #endif |
|
532 call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type); |
|
533 delayed()->mov(G2_thread, O0); |
|
534 |
|
535 mov(L1, G1); // Restore G1 |
|
536 // G2 restored below |
|
537 mov(L3, G3); // restore G3 |
|
538 mov(L4, G4); // restore G4 |
|
539 mov(L5, G5_method); // restore G5_method |
|
540 #if defined(COMPILER2) && !defined(_LP64) |
|
541 // Save & restore possible 64-bit Long arguments in G-regs |
|
542 sllx(L0,32,G2); // Move old high G1 bits high in G2 |
|
543 srl(G1, 0,G1); // Clear current high G1 bits |
|
544 or3 (G1,G2,G1); // Recover 64-bit G1 |
|
545 sllx(L6,32,G2); // Move old high G4 bits high in G2 |
|
546 srl(G4, 0,G4); // Clear current high G4 bits |
|
547 or3 (G4,G2,G4); // Recover 64-bit G4 |
|
548 #endif |
|
549 restore(O0, 0, G2_thread); |
|
550 } |
|
551 } |
|
552 |
|
553 |
|
554 void MacroAssembler::save_thread(const Register thread_cache) { |
|
555 verify_thread(); |
|
556 if (thread_cache->is_valid()) { |
|
557 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile"); |
|
558 mov(G2_thread, thread_cache); |
|
559 } |
|
560 if (VerifyThread) { |
|
561 // smash G2_thread, as if the VM were about to anyway |
|
562 set(0x67676767, G2_thread); |
|
563 } |
|
564 } |
|
565 |
|
566 |
|
567 void MacroAssembler::restore_thread(const Register thread_cache) { |
|
568 if (thread_cache->is_valid()) { |
|
569 assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile"); |
|
570 mov(thread_cache, G2_thread); |
|
571 verify_thread(); |
|
572 } else { |
|
573 // do it the slow way |
|
574 get_thread(); |
|
575 } |
|
576 } |
|
577 |
|
578 |
|
579 // %%% maybe get rid of [re]set_last_Java_frame |
|
580 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) { |
|
581 assert_not_delayed(); |
|
582 Address flags(G2_thread, JavaThread::frame_anchor_offset() + |
|
583 JavaFrameAnchor::flags_offset()); |
|
584 Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset()); |
|
585 |
|
586 // Always set last_Java_pc and flags first because once last_Java_sp is visible |
|
587 // has_last_Java_frame is true and users will look at the rest of the fields. |
|
588 // (Note: flags should always be zero before we get here so doesn't need to be set.) |
|
589 |
|
590 #ifdef ASSERT |
|
591 // Verify that flags was zeroed on return to Java |
|
592 Label PcOk; |
|
593 save_frame(0); // to avoid clobbering O0 |
|
594 ld_ptr(pc_addr, L0); |
|
595 br_null_short(L0, Assembler::pt, PcOk); |
|
596 STOP("last_Java_pc not zeroed before leaving Java"); |
|
597 bind(PcOk); |
|
598 |
|
599 // Verify that flags was zeroed on return to Java |
|
600 Label FlagsOk; |
|
601 ld(flags, L0); |
|
602 tst(L0); |
|
603 br(Assembler::zero, false, Assembler::pt, FlagsOk); |
|
604 delayed() -> restore(); |
|
605 STOP("flags not zeroed before leaving Java"); |
|
606 bind(FlagsOk); |
|
607 #endif /* ASSERT */ |
|
608 // |
|
609 // When returning from calling out from Java mode the frame anchor's last_Java_pc |
|
610 // will always be set to NULL. It is set here so that if we are doing a call to |
|
611 // native (not VM) that we capture the known pc and don't have to rely on the |
|
612 // native call having a standard frame linkage where we can find the pc. |
|
613 |
|
614 if (last_Java_pc->is_valid()) { |
|
615 st_ptr(last_Java_pc, pc_addr); |
|
616 } |
|
617 |
|
618 #ifdef _LP64 |
|
619 #ifdef ASSERT |
|
620 // Make sure that we have an odd stack |
|
621 Label StackOk; |
|
622 andcc(last_java_sp, 0x01, G0); |
|
623 br(Assembler::notZero, false, Assembler::pt, StackOk); |
|
624 delayed()->nop(); |
|
625 STOP("Stack Not Biased in set_last_Java_frame"); |
|
626 bind(StackOk); |
|
627 #endif // ASSERT |
|
628 assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame"); |
|
629 add( last_java_sp, STACK_BIAS, G4_scratch ); |
|
630 st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset()); |
|
631 #else |
|
632 st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset()); |
|
633 #endif // _LP64 |
|
634 } |
|
635 |
|
636 void MacroAssembler::reset_last_Java_frame(void) { |
|
637 assert_not_delayed(); |
|
638 |
|
639 Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset()); |
|
640 Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); |
|
641 Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset()); |
|
642 |
|
643 #ifdef ASSERT |
|
644 // check that it WAS previously set |
|
645 #ifdef CC_INTERP |
|
646 save_frame(0); |
|
647 #else |
|
648 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame for -Xprof |
|
649 #endif /* CC_INTERP */ |
|
650 ld_ptr(sp_addr, L0); |
|
651 tst(L0); |
|
652 breakpoint_trap(Assembler::zero, Assembler::ptr_cc); |
|
653 restore(); |
|
654 #endif // ASSERT |
|
655 |
|
656 st_ptr(G0, sp_addr); |
|
657 // Always return last_Java_pc to zero |
|
658 st_ptr(G0, pc_addr); |
|
659 // Always null flags after return to Java |
|
660 st(G0, flags); |
|
661 } |
|
662 |
|
663 |
|
664 void MacroAssembler::call_VM_base( |
|
665 Register oop_result, |
|
666 Register thread_cache, |
|
667 Register last_java_sp, |
|
668 address entry_point, |
|
669 int number_of_arguments, |
|
670 bool check_exceptions) |
|
671 { |
|
672 assert_not_delayed(); |
|
673 |
|
674 // determine last_java_sp register |
|
675 if (!last_java_sp->is_valid()) { |
|
676 last_java_sp = SP; |
|
677 } |
|
678 // debugging support |
|
679 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); |
|
680 |
|
681 // 64-bit last_java_sp is biased! |
|
682 set_last_Java_frame(last_java_sp, noreg); |
|
683 if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early |
|
684 save_thread(thread_cache); |
|
685 // do the call |
|
686 call(entry_point, relocInfo::runtime_call_type); |
|
687 if (!VerifyThread) |
|
688 delayed()->mov(G2_thread, O0); // pass thread as first argument |
|
689 else |
|
690 delayed()->nop(); // (thread already passed) |
|
691 restore_thread(thread_cache); |
|
692 reset_last_Java_frame(); |
|
693 |
|
694 // check for pending exceptions. use Gtemp as scratch register. |
|
695 if (check_exceptions) { |
|
696 check_and_forward_exception(Gtemp); |
|
697 } |
|
698 |
|
699 #ifdef ASSERT |
|
700 set(badHeapWordVal, G3); |
|
701 set(badHeapWordVal, G4); |
|
702 set(badHeapWordVal, G5); |
|
703 #endif |
|
704 |
|
705 // get oop result if there is one and reset the value in the thread |
|
706 if (oop_result->is_valid()) { |
|
707 get_vm_result(oop_result); |
|
708 } |
|
709 } |
|
710 |
|
711 void MacroAssembler::check_and_forward_exception(Register scratch_reg) |
|
712 { |
|
713 Label L; |
|
714 |
|
715 check_and_handle_popframe(scratch_reg); |
|
716 check_and_handle_earlyret(scratch_reg); |
|
717 |
|
718 Address exception_addr(G2_thread, Thread::pending_exception_offset()); |
|
719 ld_ptr(exception_addr, scratch_reg); |
|
720 br_null_short(scratch_reg, pt, L); |
|
721 // we use O7 linkage so that forward_exception_entry has the issuing PC |
|
722 call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); |
|
723 delayed()->nop(); |
|
724 bind(L); |
|
725 } |
|
726 |
|
727 |
|
728 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) { |
|
729 } |
|
730 |
|
731 |
|
732 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) { |
|
733 } |
|
734 |
|
735 |
|
736 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { |
|
737 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); |
|
738 } |
|
739 |
|
740 |
|
741 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) { |
|
742 // O0 is reserved for the thread |
|
743 mov(arg_1, O1); |
|
744 call_VM(oop_result, entry_point, 1, check_exceptions); |
|
745 } |
|
746 |
|
747 |
|
748 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { |
|
749 // O0 is reserved for the thread |
|
750 mov(arg_1, O1); |
|
751 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument"); |
|
752 call_VM(oop_result, entry_point, 2, check_exceptions); |
|
753 } |
|
754 |
|
755 |
|
756 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { |
|
757 // O0 is reserved for the thread |
|
758 mov(arg_1, O1); |
|
759 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument"); |
|
760 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument"); |
|
761 call_VM(oop_result, entry_point, 3, check_exceptions); |
|
762 } |
|
763 |
|
764 |
|
765 |
|
766 // Note: The following call_VM overloadings are useful when a "save" |
|
767 // has already been performed by a stub, and the last Java frame is |
|
768 // the previous one. In that case, last_java_sp must be passed as FP |
|
769 // instead of SP. |
|
770 |
|
771 |
|
772 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) { |
|
773 call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions); |
|
774 } |
|
775 |
|
776 |
|
777 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) { |
|
778 // O0 is reserved for the thread |
|
779 mov(arg_1, O1); |
|
780 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); |
|
781 } |
|
782 |
|
783 |
|
784 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) { |
|
785 // O0 is reserved for the thread |
|
786 mov(arg_1, O1); |
|
787 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument"); |
|
788 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); |
|
789 } |
|
790 |
|
791 |
|
792 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) { |
|
793 // O0 is reserved for the thread |
|
794 mov(arg_1, O1); |
|
795 mov(arg_2, O2); assert(arg_2 != O1, "smashed argument"); |
|
796 mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument"); |
|
797 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); |
|
798 } |
|
799 |
|
800 |
|
801 |
|
802 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) { |
|
803 assert_not_delayed(); |
|
804 save_thread(thread_cache); |
|
805 // do the call |
|
806 call(entry_point, relocInfo::runtime_call_type); |
|
807 delayed()->nop(); |
|
808 restore_thread(thread_cache); |
|
809 #ifdef ASSERT |
|
810 set(badHeapWordVal, G3); |
|
811 set(badHeapWordVal, G4); |
|
812 set(badHeapWordVal, G5); |
|
813 #endif |
|
814 } |
|
815 |
|
816 |
|
817 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) { |
|
818 call_VM_leaf_base(thread_cache, entry_point, number_of_arguments); |
|
819 } |
|
820 |
|
821 |
|
822 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) { |
|
823 mov(arg_1, O0); |
|
824 call_VM_leaf(thread_cache, entry_point, 1); |
|
825 } |
|
826 |
|
827 |
|
828 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) { |
|
829 mov(arg_1, O0); |
|
830 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument"); |
|
831 call_VM_leaf(thread_cache, entry_point, 2); |
|
832 } |
|
833 |
|
834 |
|
835 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) { |
|
836 mov(arg_1, O0); |
|
837 mov(arg_2, O1); assert(arg_2 != O0, "smashed argument"); |
|
838 mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument"); |
|
839 call_VM_leaf(thread_cache, entry_point, 3); |
|
840 } |
|
841 |
|
842 |
|
843 void MacroAssembler::get_vm_result(Register oop_result) { |
|
844 verify_thread(); |
|
845 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset()); |
|
846 ld_ptr( vm_result_addr, oop_result); |
|
847 st_ptr(G0, vm_result_addr); |
|
848 verify_oop(oop_result); |
|
849 } |
|
850 |
|
851 |
|
852 void MacroAssembler::get_vm_result_2(Register metadata_result) { |
|
853 verify_thread(); |
|
854 Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset()); |
|
855 ld_ptr(vm_result_addr_2, metadata_result); |
|
856 st_ptr(G0, vm_result_addr_2); |
|
857 } |
|
858 |
|
859 |
|
860 // We require that C code which does not return a value in vm_result will |
|
861 // leave it undisturbed. |
|
862 void MacroAssembler::set_vm_result(Register oop_result) { |
|
863 verify_thread(); |
|
864 Address vm_result_addr(G2_thread, JavaThread::vm_result_offset()); |
|
865 verify_oop(oop_result); |
|
866 |
|
867 # ifdef ASSERT |
|
868 // Check that we are not overwriting any other oop. |
|
869 #ifdef CC_INTERP |
|
870 save_frame(0); |
|
871 #else |
|
872 save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod for -Xprof |
|
873 #endif /* CC_INTERP */ |
|
874 ld_ptr(vm_result_addr, L0); |
|
875 tst(L0); |
|
876 restore(); |
|
877 breakpoint_trap(notZero, Assembler::ptr_cc); |
|
878 // } |
|
879 # endif |
|
880 |
|
881 st_ptr(oop_result, vm_result_addr); |
|
882 } |
|
883 |
|
884 |
|
885 void MacroAssembler::ic_call(address entry, bool emit_delay) { |
|
886 RelocationHolder rspec = virtual_call_Relocation::spec(pc()); |
|
887 patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg); |
|
888 relocate(rspec); |
|
889 call(entry, relocInfo::none); |
|
890 if (emit_delay) { |
|
891 delayed()->nop(); |
|
892 } |
|
893 } |
|
894 |
|
895 |
|
896 void MacroAssembler::card_table_write(jbyte* byte_map_base, |
|
897 Register tmp, Register obj) { |
|
898 #ifdef _LP64 |
|
899 srlx(obj, CardTableModRefBS::card_shift, obj); |
|
900 #else |
|
901 srl(obj, CardTableModRefBS::card_shift, obj); |
|
902 #endif |
|
903 assert(tmp != obj, "need separate temp reg"); |
|
904 set((address) byte_map_base, tmp); |
|
905 stb(G0, tmp, obj); |
|
906 } |
|
907 |
|
908 |
|
909 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) { |
|
910 address save_pc; |
|
911 int shiftcnt; |
|
912 #ifdef _LP64 |
|
913 # ifdef CHECK_DELAY |
|
914 assert_not_delayed((char*) "cannot put two instructions in delay slot"); |
|
915 # endif |
|
916 v9_dep(); |
|
917 save_pc = pc(); |
|
918 |
|
919 int msb32 = (int) (addrlit.value() >> 32); |
|
920 int lsb32 = (int) (addrlit.value()); |
|
921 |
|
922 if (msb32 == 0 && lsb32 >= 0) { |
|
923 Assembler::sethi(lsb32, d, addrlit.rspec()); |
|
924 } |
|
925 else if (msb32 == -1) { |
|
926 Assembler::sethi(~lsb32, d, addrlit.rspec()); |
|
927 xor3(d, ~low10(~0), d); |
|
928 } |
|
929 else { |
|
930 Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits |
|
931 if (msb32 & 0x3ff) // Any bits? |
|
932 or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32 |
|
933 if (lsb32 & 0xFFFFFC00) { // done? |
|
934 if ((lsb32 >> 20) & 0xfff) { // Any bits set? |
|
935 sllx(d, 12, d); // Make room for next 12 bits |
|
936 or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12 |
|
937 shiftcnt = 0; // We already shifted |
|
938 } |
|
939 else |
|
940 shiftcnt = 12; |
|
941 if ((lsb32 >> 10) & 0x3ff) { |
|
942 sllx(d, shiftcnt + 10, d); // Make room for last 10 bits |
|
943 or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10 |
|
944 shiftcnt = 0; |
|
945 } |
|
946 else |
|
947 shiftcnt = 10; |
|
948 sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd |
|
949 } |
|
950 else |
|
951 sllx(d, 32, d); |
|
952 } |
|
953 // Pad out the instruction sequence so it can be patched later. |
|
954 if (ForceRelocatable || (addrlit.rtype() != relocInfo::none && |
|
955 addrlit.rtype() != relocInfo::runtime_call_type)) { |
|
956 while (pc() < (save_pc + (7 * BytesPerInstWord))) |
|
957 nop(); |
|
958 } |
|
959 #else |
|
960 Assembler::sethi(addrlit.value(), d, addrlit.rspec()); |
|
961 #endif |
|
962 } |
|
963 |
|
964 |
|
965 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) { |
|
966 internal_sethi(addrlit, d, false); |
|
967 } |
|
968 |
|
969 |
|
970 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) { |
|
971 internal_sethi(addrlit, d, true); |
|
972 } |
|
973 |
|
974 |
|
975 int MacroAssembler::insts_for_sethi(address a, bool worst_case) { |
|
976 #ifdef _LP64 |
|
977 if (worst_case) return 7; |
|
978 intptr_t iaddr = (intptr_t) a; |
|
979 int msb32 = (int) (iaddr >> 32); |
|
980 int lsb32 = (int) (iaddr); |
|
981 int count; |
|
982 if (msb32 == 0 && lsb32 >= 0) |
|
983 count = 1; |
|
984 else if (msb32 == -1) |
|
985 count = 2; |
|
986 else { |
|
987 count = 2; |
|
988 if (msb32 & 0x3ff) |
|
989 count++; |
|
990 if (lsb32 & 0xFFFFFC00 ) { |
|
991 if ((lsb32 >> 20) & 0xfff) count += 2; |
|
992 if ((lsb32 >> 10) & 0x3ff) count += 2; |
|
993 } |
|
994 } |
|
995 return count; |
|
996 #else |
|
997 return 1; |
|
998 #endif |
|
999 } |
|
1000 |
|
1001 int MacroAssembler::worst_case_insts_for_set() { |
|
1002 return insts_for_sethi(NULL, true) + 1; |
|
1003 } |
|
1004 |
|
1005 |
|
1006 // Keep in sync with MacroAssembler::insts_for_internal_set |
|
1007 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) { |
|
1008 intptr_t value = addrlit.value(); |
|
1009 |
|
1010 if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) { |
|
1011 // can optimize |
|
1012 if (-4096 <= value && value <= 4095) { |
|
1013 or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended) |
|
1014 return; |
|
1015 } |
|
1016 if (inv_hi22(hi22(value)) == value) { |
|
1017 sethi(addrlit, d); |
|
1018 return; |
|
1019 } |
|
1020 } |
|
1021 assert_not_delayed((char*) "cannot put two instructions in delay slot"); |
|
1022 internal_sethi(addrlit, d, ForceRelocatable); |
|
1023 if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) { |
|
1024 add(d, addrlit.low10(), d, addrlit.rspec()); |
|
1025 } |
|
1026 } |
|
1027 |
|
1028 // Keep in sync with MacroAssembler::internal_set |
|
1029 int MacroAssembler::insts_for_internal_set(intptr_t value) { |
|
1030 // can optimize |
|
1031 if (-4096 <= value && value <= 4095) { |
|
1032 return 1; |
|
1033 } |
|
1034 if (inv_hi22(hi22(value)) == value) { |
|
1035 return insts_for_sethi((address) value); |
|
1036 } |
|
1037 int count = insts_for_sethi((address) value); |
|
1038 AddressLiteral al(value); |
|
1039 if (al.low10() != 0) { |
|
1040 count++; |
|
1041 } |
|
1042 return count; |
|
1043 } |
|
1044 |
|
1045 void MacroAssembler::set(const AddressLiteral& al, Register d) { |
|
1046 internal_set(al, d, false); |
|
1047 } |
|
1048 |
|
1049 void MacroAssembler::set(intptr_t value, Register d) { |
|
1050 AddressLiteral al(value); |
|
1051 internal_set(al, d, false); |
|
1052 } |
|
1053 |
|
1054 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) { |
|
1055 AddressLiteral al(addr, rspec); |
|
1056 internal_set(al, d, false); |
|
1057 } |
|
1058 |
|
1059 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) { |
|
1060 internal_set(al, d, true); |
|
1061 } |
|
1062 |
|
1063 void MacroAssembler::patchable_set(intptr_t value, Register d) { |
|
1064 AddressLiteral al(value); |
|
1065 internal_set(al, d, true); |
|
1066 } |
|
1067 |
|
1068 |
|
1069 void MacroAssembler::set64(jlong value, Register d, Register tmp) { |
|
1070 assert_not_delayed(); |
|
1071 v9_dep(); |
|
1072 |
|
1073 int hi = (int)(value >> 32); |
|
1074 int lo = (int)(value & ~0); |
|
1075 // (Matcher::isSimpleConstant64 knows about the following optimizations.) |
|
1076 if (Assembler::is_simm13(lo) && value == lo) { |
|
1077 or3(G0, lo, d); |
|
1078 } else if (hi == 0) { |
|
1079 Assembler::sethi(lo, d); // hardware version zero-extends to upper 32 |
|
1080 if (low10(lo) != 0) |
|
1081 or3(d, low10(lo), d); |
|
1082 } |
|
1083 else if (hi == -1) { |
|
1084 Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32 |
|
1085 xor3(d, low10(lo) ^ ~low10(~0), d); |
|
1086 } |
|
1087 else if (lo == 0) { |
|
1088 if (Assembler::is_simm13(hi)) { |
|
1089 or3(G0, hi, d); |
|
1090 } else { |
|
1091 Assembler::sethi(hi, d); // hardware version zero-extends to upper 32 |
|
1092 if (low10(hi) != 0) |
|
1093 or3(d, low10(hi), d); |
|
1094 } |
|
1095 sllx(d, 32, d); |
|
1096 } |
|
1097 else { |
|
1098 Assembler::sethi(hi, tmp); |
|
1099 Assembler::sethi(lo, d); // macro assembler version sign-extends |
|
1100 if (low10(hi) != 0) |
|
1101 or3 (tmp, low10(hi), tmp); |
|
1102 if (low10(lo) != 0) |
|
1103 or3 ( d, low10(lo), d); |
|
1104 sllx(tmp, 32, tmp); |
|
1105 or3 (d, tmp, d); |
|
1106 } |
|
1107 } |
|
1108 |
|
1109 int MacroAssembler::insts_for_set64(jlong value) { |
|
1110 v9_dep(); |
|
1111 |
|
1112 int hi = (int) (value >> 32); |
|
1113 int lo = (int) (value & ~0); |
|
1114 int count = 0; |
|
1115 |
|
1116 // (Matcher::isSimpleConstant64 knows about the following optimizations.) |
|
1117 if (Assembler::is_simm13(lo) && value == lo) { |
|
1118 count++; |
|
1119 } else if (hi == 0) { |
|
1120 count++; |
|
1121 if (low10(lo) != 0) |
|
1122 count++; |
|
1123 } |
|
1124 else if (hi == -1) { |
|
1125 count += 2; |
|
1126 } |
|
1127 else if (lo == 0) { |
|
1128 if (Assembler::is_simm13(hi)) { |
|
1129 count++; |
|
1130 } else { |
|
1131 count++; |
|
1132 if (low10(hi) != 0) |
|
1133 count++; |
|
1134 } |
|
1135 count++; |
|
1136 } |
|
1137 else { |
|
1138 count += 2; |
|
1139 if (low10(hi) != 0) |
|
1140 count++; |
|
1141 if (low10(lo) != 0) |
|
1142 count++; |
|
1143 count += 2; |
|
1144 } |
|
1145 return count; |
|
1146 } |
|
1147 |
|
1148 // compute size in bytes of sparc frame, given |
|
1149 // number of extraWords |
|
1150 int MacroAssembler::total_frame_size_in_bytes(int extraWords) { |
|
1151 |
|
1152 int nWords = frame::memory_parameter_word_sp_offset; |
|
1153 |
|
1154 nWords += extraWords; |
|
1155 |
|
1156 if (nWords & 1) ++nWords; // round up to double-word |
|
1157 |
|
1158 return nWords * BytesPerWord; |
|
1159 } |
|
1160 |
|
1161 |
|
1162 // save_frame: given number of "extra" words in frame, |
|
1163 // issue approp. save instruction (p 200, v8 manual) |
|
1164 |
|
1165 void MacroAssembler::save_frame(int extraWords) { |
|
1166 int delta = -total_frame_size_in_bytes(extraWords); |
|
1167 if (is_simm13(delta)) { |
|
1168 save(SP, delta, SP); |
|
1169 } else { |
|
1170 set(delta, G3_scratch); |
|
1171 save(SP, G3_scratch, SP); |
|
1172 } |
|
1173 } |
|
1174 |
|
1175 |
|
1176 void MacroAssembler::save_frame_c1(int size_in_bytes) { |
|
1177 if (is_simm13(-size_in_bytes)) { |
|
1178 save(SP, -size_in_bytes, SP); |
|
1179 } else { |
|
1180 set(-size_in_bytes, G3_scratch); |
|
1181 save(SP, G3_scratch, SP); |
|
1182 } |
|
1183 } |
|
1184 |
|
1185 |
|
1186 void MacroAssembler::save_frame_and_mov(int extraWords, |
|
1187 Register s1, Register d1, |
|
1188 Register s2, Register d2) { |
|
1189 assert_not_delayed(); |
|
1190 |
|
1191 // The trick here is to use precisely the same memory word |
|
1192 // that trap handlers also use to save the register. |
|
1193 // This word cannot be used for any other purpose, but |
|
1194 // it works fine to save the register's value, whether or not |
|
1195 // an interrupt flushes register windows at any given moment! |
|
1196 Address s1_addr; |
|
1197 if (s1->is_valid() && (s1->is_in() || s1->is_local())) { |
|
1198 s1_addr = s1->address_in_saved_window(); |
|
1199 st_ptr(s1, s1_addr); |
|
1200 } |
|
1201 |
|
1202 Address s2_addr; |
|
1203 if (s2->is_valid() && (s2->is_in() || s2->is_local())) { |
|
1204 s2_addr = s2->address_in_saved_window(); |
|
1205 st_ptr(s2, s2_addr); |
|
1206 } |
|
1207 |
|
1208 save_frame(extraWords); |
|
1209 |
|
1210 if (s1_addr.base() == SP) { |
|
1211 ld_ptr(s1_addr.after_save(), d1); |
|
1212 } else if (s1->is_valid()) { |
|
1213 mov(s1->after_save(), d1); |
|
1214 } |
|
1215 |
|
1216 if (s2_addr.base() == SP) { |
|
1217 ld_ptr(s2_addr.after_save(), d2); |
|
1218 } else if (s2->is_valid()) { |
|
1219 mov(s2->after_save(), d2); |
|
1220 } |
|
1221 } |
|
1222 |
|
1223 |
|
1224 AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) { |
|
1225 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); |
|
1226 int index = oop_recorder()->allocate_metadata_index(obj); |
|
1227 RelocationHolder rspec = metadata_Relocation::spec(index); |
|
1228 return AddressLiteral((address)obj, rspec); |
|
1229 } |
|
1230 |
|
1231 AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) { |
|
1232 assert(oop_recorder() != NULL, "this assembler needs a Recorder"); |
|
1233 int index = oop_recorder()->find_index(obj); |
|
1234 RelocationHolder rspec = metadata_Relocation::spec(index); |
|
1235 return AddressLiteral((address)obj, rspec); |
|
1236 } |
|
1237 |
|
1238 |
|
1239 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) { |
|
1240 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); |
|
1241 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop"); |
|
1242 int oop_index = oop_recorder()->find_index(obj); |
|
1243 return AddressLiteral(obj, oop_Relocation::spec(oop_index)); |
|
1244 } |
|
1245 |
|
1246 void MacroAssembler::set_narrow_oop(jobject obj, Register d) { |
|
1247 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); |
|
1248 int oop_index = oop_recorder()->find_index(obj); |
|
1249 RelocationHolder rspec = oop_Relocation::spec(oop_index); |
|
1250 |
|
1251 assert_not_delayed(); |
|
1252 // Relocation with special format (see relocInfo_sparc.hpp). |
|
1253 relocate(rspec, 1); |
|
1254 // Assembler::sethi(0x3fffff, d); |
|
1255 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) ); |
|
1256 // Don't add relocation for 'add'. Do patching during 'sethi' processing. |
|
1257 add(d, 0x3ff, d); |
|
1258 |
|
1259 } |
|
1260 |
|
1261 void MacroAssembler::set_narrow_klass(Klass* k, Register d) { |
|
1262 assert(oop_recorder() != NULL, "this assembler needs an OopRecorder"); |
|
1263 int klass_index = oop_recorder()->find_index(k); |
|
1264 RelocationHolder rspec = metadata_Relocation::spec(klass_index); |
|
1265 narrowOop encoded_k = oopDesc::encode_klass(k); |
|
1266 |
|
1267 assert_not_delayed(); |
|
1268 // Relocation with special format (see relocInfo_sparc.hpp). |
|
1269 relocate(rspec, 1); |
|
1270 // Assembler::sethi(encoded_k, d); |
|
1271 emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) ); |
|
1272 // Don't add relocation for 'add'. Do patching during 'sethi' processing. |
|
1273 add(d, low10(encoded_k), d); |
|
1274 |
|
1275 } |
|
1276 |
|
1277 void MacroAssembler::align(int modulus) { |
|
1278 while (offset() % modulus != 0) nop(); |
|
1279 } |
|
1280 |
|
1281 |
|
1282 void MacroAssembler::safepoint() { |
|
1283 relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint)); |
|
1284 } |
|
1285 |
|
1286 |
|
1287 void RegistersForDebugging::print(outputStream* s) { |
|
1288 FlagSetting fs(Debugging, true); |
|
1289 int j; |
|
1290 for (j = 0; j < 8; ++j) { |
|
1291 if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); } |
|
1292 else { s->print( "fp = " ); os::print_location(s, i[j]); } |
|
1293 } |
|
1294 s->cr(); |
|
1295 |
|
1296 for (j = 0; j < 8; ++j) { |
|
1297 s->print("l%d = ", j); os::print_location(s, l[j]); |
|
1298 } |
|
1299 s->cr(); |
|
1300 |
|
1301 for (j = 0; j < 8; ++j) { |
|
1302 if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); } |
|
1303 else { s->print( "sp = " ); os::print_location(s, o[j]); } |
|
1304 } |
|
1305 s->cr(); |
|
1306 |
|
1307 for (j = 0; j < 8; ++j) { |
|
1308 s->print("g%d = ", j); os::print_location(s, g[j]); |
|
1309 } |
|
1310 s->cr(); |
|
1311 |
|
1312 // print out floats with compression |
|
1313 for (j = 0; j < 32; ) { |
|
1314 jfloat val = f[j]; |
|
1315 int last = j; |
|
1316 for ( ; last+1 < 32; ++last ) { |
|
1317 char b1[1024], b2[1024]; |
|
1318 sprintf(b1, "%f", val); |
|
1319 sprintf(b2, "%f", f[last+1]); |
|
1320 if (strcmp(b1, b2)) |
|
1321 break; |
|
1322 } |
|
1323 s->print("f%d", j); |
|
1324 if ( j != last ) s->print(" - f%d", last); |
|
1325 s->print(" = %f", val); |
|
1326 s->fill_to(25); |
|
1327 s->print_cr(" (0x%x)", val); |
|
1328 j = last + 1; |
|
1329 } |
|
1330 s->cr(); |
|
1331 |
|
1332 // and doubles (evens only) |
|
1333 for (j = 0; j < 32; ) { |
|
1334 jdouble val = d[j]; |
|
1335 int last = j; |
|
1336 for ( ; last+1 < 32; ++last ) { |
|
1337 char b1[1024], b2[1024]; |
|
1338 sprintf(b1, "%f", val); |
|
1339 sprintf(b2, "%f", d[last+1]); |
|
1340 if (strcmp(b1, b2)) |
|
1341 break; |
|
1342 } |
|
1343 s->print("d%d", 2 * j); |
|
1344 if ( j != last ) s->print(" - d%d", last); |
|
1345 s->print(" = %f", val); |
|
1346 s->fill_to(30); |
|
1347 s->print("(0x%x)", *(int*)&val); |
|
1348 s->fill_to(42); |
|
1349 s->print_cr("(0x%x)", *(1 + (int*)&val)); |
|
1350 j = last + 1; |
|
1351 } |
|
1352 s->cr(); |
|
1353 } |
|
1354 |
|
1355 void RegistersForDebugging::save_registers(MacroAssembler* a) { |
|
1356 a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0); |
|
1357 a->flush_windows(); |
|
1358 int i; |
|
1359 for (i = 0; i < 8; ++i) { |
|
1360 a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i)); |
|
1361 a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i)); |
|
1362 a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i)); |
|
1363 a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i)); |
|
1364 } |
|
1365 for (i = 0; i < 32; ++i) { |
|
1366 a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i)); |
|
1367 } |
|
1368 for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) { |
|
1369 a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i)); |
|
1370 } |
|
1371 } |
|
1372 |
|
1373 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) { |
|
1374 for (int i = 1; i < 8; ++i) { |
|
1375 a->ld_ptr(r, g_offset(i), as_gRegister(i)); |
|
1376 } |
|
1377 for (int j = 0; j < 32; ++j) { |
|
1378 a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j)); |
|
1379 } |
|
1380 for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) { |
|
1381 a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k)); |
|
1382 } |
|
1383 } |
|
1384 |
|
1385 |
|
1386 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack |
|
1387 void MacroAssembler::push_fTOS() { |
|
1388 // %%%%%% need to implement this |
|
1389 } |
|
1390 |
|
1391 // pops double TOS element from CPU stack and pushes on FPU stack |
|
1392 void MacroAssembler::pop_fTOS() { |
|
1393 // %%%%%% need to implement this |
|
1394 } |
|
1395 |
|
1396 void MacroAssembler::empty_FPU_stack() { |
|
1397 // %%%%%% need to implement this |
|
1398 } |
|
1399 |
|
1400 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) { |
|
1401 // plausibility check for oops |
|
1402 if (!VerifyOops) return; |
|
1403 |
|
1404 if (reg == G0) return; // always NULL, which is always an oop |
|
1405 |
|
1406 BLOCK_COMMENT("verify_oop {"); |
|
1407 char buffer[64]; |
|
1408 #ifdef COMPILER1 |
|
1409 if (CommentedAssembly) { |
|
1410 snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset()); |
|
1411 block_comment(buffer); |
|
1412 } |
|
1413 #endif |
|
1414 |
|
1415 int len = strlen(file) + strlen(msg) + 1 + 4; |
|
1416 sprintf(buffer, "%d", line); |
|
1417 len += strlen(buffer); |
|
1418 sprintf(buffer, " at offset %d ", offset()); |
|
1419 len += strlen(buffer); |
|
1420 char * real_msg = new char[len]; |
|
1421 sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line); |
|
1422 |
|
1423 // Call indirectly to solve generation ordering problem |
|
1424 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address()); |
|
1425 |
|
1426 // Make some space on stack above the current register window. |
|
1427 // Enough to hold 8 64-bit registers. |
|
1428 add(SP,-8*8,SP); |
|
1429 |
|
1430 // Save some 64-bit registers; a normal 'save' chops the heads off |
|
1431 // of 64-bit longs in the 32-bit build. |
|
1432 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8); |
|
1433 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8); |
|
1434 mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed |
|
1435 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8); |
|
1436 |
|
1437 // Size of set() should stay the same |
|
1438 patchable_set((intptr_t)real_msg, O1); |
|
1439 // Load address to call to into O7 |
|
1440 load_ptr_contents(a, O7); |
|
1441 // Register call to verify_oop_subroutine |
|
1442 callr(O7, G0); |
|
1443 delayed()->nop(); |
|
1444 // recover frame size |
|
1445 add(SP, 8*8,SP); |
|
1446 BLOCK_COMMENT("} verify_oop"); |
|
1447 } |
|
1448 |
|
1449 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) { |
|
1450 // plausibility check for oops |
|
1451 if (!VerifyOops) return; |
|
1452 |
|
1453 char buffer[64]; |
|
1454 sprintf(buffer, "%d", line); |
|
1455 int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer); |
|
1456 sprintf(buffer, " at SP+%d ", addr.disp()); |
|
1457 len += strlen(buffer); |
|
1458 char * real_msg = new char[len]; |
|
1459 sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line); |
|
1460 |
|
1461 // Call indirectly to solve generation ordering problem |
|
1462 AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address()); |
|
1463 |
|
1464 // Make some space on stack above the current register window. |
|
1465 // Enough to hold 8 64-bit registers. |
|
1466 add(SP,-8*8,SP); |
|
1467 |
|
1468 // Save some 64-bit registers; a normal 'save' chops the heads off |
|
1469 // of 64-bit longs in the 32-bit build. |
|
1470 stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8); |
|
1471 stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8); |
|
1472 ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed |
|
1473 stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8); |
|
1474 |
|
1475 // Size of set() should stay the same |
|
1476 patchable_set((intptr_t)real_msg, O1); |
|
1477 // Load address to call to into O7 |
|
1478 load_ptr_contents(a, O7); |
|
1479 // Register call to verify_oop_subroutine |
|
1480 callr(O7, G0); |
|
1481 delayed()->nop(); |
|
1482 // recover frame size |
|
1483 add(SP, 8*8,SP); |
|
1484 } |
|
1485 |
|
1486 // side-door communication with signalHandler in os_solaris.cpp |
|
1487 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL }; |
|
1488 |
|
1489 // This macro is expanded just once; it creates shared code. Contract: |
|
1490 // receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY |
|
1491 // registers, including flags. May not use a register 'save', as this blows |
|
1492 // the high bits of the O-regs if they contain Long values. Acts as a 'leaf' |
|
1493 // call. |
|
1494 void MacroAssembler::verify_oop_subroutine() { |
|
1495 assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" ); |
|
1496 |
|
1497 // Leaf call; no frame. |
|
1498 Label succeed, fail, null_or_fail; |
|
1499 |
|
1500 // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home). |
|
1501 // O0 is now the oop to be checked. O7 is the return address. |
|
1502 Register O0_obj = O0; |
|
1503 |
|
1504 // Save some more registers for temps. |
|
1505 stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8); |
|
1506 stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8); |
|
1507 stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8); |
|
1508 stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8); |
|
1509 |
|
1510 // Save flags |
|
1511 Register O5_save_flags = O5; |
|
1512 rdccr( O5_save_flags ); |
|
1513 |
|
1514 { // count number of verifies |
|
1515 Register O2_adr = O2; |
|
1516 Register O3_accum = O3; |
|
1517 inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum); |
|
1518 } |
|
1519 |
|
1520 Register O2_mask = O2; |
|
1521 Register O3_bits = O3; |
|
1522 Register O4_temp = O4; |
|
1523 |
|
1524 // mark lower end of faulting range |
|
1525 assert(_verify_oop_implicit_branch[0] == NULL, "set once"); |
|
1526 _verify_oop_implicit_branch[0] = pc(); |
|
1527 |
|
1528 // We can't check the mark oop because it could be in the process of |
|
1529 // locking or unlocking while this is running. |
|
1530 set(Universe::verify_oop_mask (), O2_mask); |
|
1531 set(Universe::verify_oop_bits (), O3_bits); |
|
1532 |
|
1533 // assert((obj & oop_mask) == oop_bits); |
|
1534 and3(O0_obj, O2_mask, O4_temp); |
|
1535 cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail); |
|
1536 |
|
1537 if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) { |
|
1538 // the null_or_fail case is useless; must test for null separately |
|
1539 br_null_short(O0_obj, pn, succeed); |
|
1540 } |
|
1541 |
|
1542 // Check the Klass* of this object for being in the right area of memory. |
|
1543 // Cannot do the load in the delay above slot in case O0 is null |
|
1544 load_klass(O0_obj, O0_obj); |
|
1545 // assert((klass != NULL) |
|
1546 br_null_short(O0_obj, pn, fail); |
|
1547 // TODO: Future assert that klass is lower 4g memory for UseCompressedKlassPointers |
|
1548 |
|
1549 wrccr( O5_save_flags ); // Restore CCR's |
|
1550 |
|
1551 // mark upper end of faulting range |
|
1552 _verify_oop_implicit_branch[1] = pc(); |
|
1553 |
|
1554 //----------------------- |
|
1555 // all tests pass |
|
1556 bind(succeed); |
|
1557 |
|
1558 // Restore prior 64-bit registers |
|
1559 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0); |
|
1560 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1); |
|
1561 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2); |
|
1562 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3); |
|
1563 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4); |
|
1564 ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5); |
|
1565 |
|
1566 retl(); // Leaf return; restore prior O7 in delay slot |
|
1567 delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7); |
|
1568 |
|
1569 //----------------------- |
|
1570 bind(null_or_fail); // nulls are less common but OK |
|
1571 br_null(O0_obj, false, pt, succeed); |
|
1572 delayed()->wrccr( O5_save_flags ); // Restore CCR's |
|
1573 |
|
1574 //----------------------- |
|
1575 // report failure: |
|
1576 bind(fail); |
|
1577 _verify_oop_implicit_branch[2] = pc(); |
|
1578 |
|
1579 wrccr( O5_save_flags ); // Restore CCR's |
|
1580 |
|
1581 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2)); |
|
1582 |
|
1583 // stop_subroutine expects message pointer in I1. |
|
1584 mov(I1, O1); |
|
1585 |
|
1586 // Restore prior 64-bit registers |
|
1587 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0); |
|
1588 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1); |
|
1589 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2); |
|
1590 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3); |
|
1591 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4); |
|
1592 ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5); |
|
1593 |
|
1594 // factor long stop-sequence into subroutine to save space |
|
1595 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet"); |
|
1596 |
|
1597 // call indirectly to solve generation ordering problem |
|
1598 AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address()); |
|
1599 load_ptr_contents(al, O5); |
|
1600 jmpl(O5, 0, O7); |
|
1601 delayed()->nop(); |
|
1602 } |
|
1603 |
|
1604 |
|
1605 void MacroAssembler::stop(const char* msg) { |
|
1606 // save frame first to get O7 for return address |
|
1607 // add one word to size in case struct is odd number of words long |
|
1608 // It must be doubleword-aligned for storing doubles into it. |
|
1609 |
|
1610 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2)); |
|
1611 |
|
1612 // stop_subroutine expects message pointer in I1. |
|
1613 // Size of set() should stay the same |
|
1614 patchable_set((intptr_t)msg, O1); |
|
1615 |
|
1616 // factor long stop-sequence into subroutine to save space |
|
1617 assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet"); |
|
1618 |
|
1619 // call indirectly to solve generation ordering problem |
|
1620 AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address()); |
|
1621 load_ptr_contents(a, O5); |
|
1622 jmpl(O5, 0, O7); |
|
1623 delayed()->nop(); |
|
1624 |
|
1625 breakpoint_trap(); // make stop actually stop rather than writing |
|
1626 // unnoticeable results in the output files. |
|
1627 |
|
1628 // restore(); done in callee to save space! |
|
1629 } |
|
1630 |
|
1631 |
|
1632 void MacroAssembler::warn(const char* msg) { |
|
1633 save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2)); |
|
1634 RegistersForDebugging::save_registers(this); |
|
1635 mov(O0, L0); |
|
1636 // Size of set() should stay the same |
|
1637 patchable_set((intptr_t)msg, O0); |
|
1638 call( CAST_FROM_FN_PTR(address, warning) ); |
|
1639 delayed()->nop(); |
|
1640 // ret(); |
|
1641 // delayed()->restore(); |
|
1642 RegistersForDebugging::restore_registers(this, L0); |
|
1643 restore(); |
|
1644 } |
|
1645 |
|
1646 |
|
1647 void MacroAssembler::untested(const char* what) { |
|
1648 // We must be able to turn interactive prompting off |
|
1649 // in order to run automated test scripts on the VM |
|
1650 // Use the flag ShowMessageBoxOnError |
|
1651 |
|
1652 char* b = new char[1024]; |
|
1653 sprintf(b, "untested: %s", what); |
|
1654 |
|
1655 if (ShowMessageBoxOnError) { STOP(b); } |
|
1656 else { warn(b); } |
|
1657 } |
|
1658 |
|
1659 |
|
1660 void MacroAssembler::stop_subroutine() { |
|
1661 RegistersForDebugging::save_registers(this); |
|
1662 |
|
1663 // for the sake of the debugger, stick a PC on the current frame |
|
1664 // (this assumes that the caller has performed an extra "save") |
|
1665 mov(I7, L7); |
|
1666 add(O7, -7 * BytesPerInt, I7); |
|
1667 |
|
1668 save_frame(); // one more save to free up another O7 register |
|
1669 mov(I0, O1); // addr of reg save area |
|
1670 |
|
1671 // We expect pointer to message in I1. Caller must set it up in O1 |
|
1672 mov(I1, O0); // get msg |
|
1673 call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type); |
|
1674 delayed()->nop(); |
|
1675 |
|
1676 restore(); |
|
1677 |
|
1678 RegistersForDebugging::restore_registers(this, O0); |
|
1679 |
|
1680 save_frame(0); |
|
1681 call(CAST_FROM_FN_PTR(address,breakpoint)); |
|
1682 delayed()->nop(); |
|
1683 restore(); |
|
1684 |
|
1685 mov(L7, I7); |
|
1686 retl(); |
|
1687 delayed()->restore(); // see stop above |
|
1688 } |
|
1689 |
|
1690 |
|
1691 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) { |
|
1692 if ( ShowMessageBoxOnError ) { |
|
1693 JavaThread* thread = JavaThread::current(); |
|
1694 JavaThreadState saved_state = thread->thread_state(); |
|
1695 thread->set_thread_state(_thread_in_vm); |
|
1696 { |
|
1697 // In order to get locks work, we need to fake a in_VM state |
|
1698 ttyLocker ttyl; |
|
1699 ::tty->print_cr("EXECUTION STOPPED: %s\n", msg); |
|
1700 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { |
|
1701 BytecodeCounter::print(); |
|
1702 } |
|
1703 if (os::message_box(msg, "Execution stopped, print registers?")) |
|
1704 regs->print(::tty); |
|
1705 } |
|
1706 BREAKPOINT; |
|
1707 ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state); |
|
1708 } |
|
1709 else { |
|
1710 ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg); |
|
1711 } |
|
1712 assert(false, err_msg("DEBUG MESSAGE: %s", msg)); |
|
1713 } |
|
1714 |
|
1715 |
|
1716 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) { |
|
1717 subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words? |
|
1718 Label no_extras; |
|
1719 br( negative, true, pt, no_extras ); // if neg, clear reg |
|
1720 delayed()->set(0, Rresult); // annuled, so only if taken |
|
1721 bind( no_extras ); |
|
1722 } |
|
1723 |
|
1724 |
|
1725 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) { |
|
1726 #ifdef _LP64 |
|
1727 add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult); |
|
1728 #else |
|
1729 add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult); |
|
1730 #endif |
|
1731 bclr(1, Rresult); |
|
1732 sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes |
|
1733 } |
|
1734 |
|
1735 |
|
1736 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) { |
|
1737 calc_frame_size(Rextra_words, Rresult); |
|
1738 neg(Rresult); |
|
1739 save(SP, Rresult, SP); |
|
1740 } |
|
1741 |
|
1742 |
|
1743 // --------------------------------------------------------- |
|
1744 Assembler::RCondition cond2rcond(Assembler::Condition c) { |
|
1745 switch (c) { |
|
1746 /*case zero: */ |
|
1747 case Assembler::equal: return Assembler::rc_z; |
|
1748 case Assembler::lessEqual: return Assembler::rc_lez; |
|
1749 case Assembler::less: return Assembler::rc_lz; |
|
1750 /*case notZero:*/ |
|
1751 case Assembler::notEqual: return Assembler::rc_nz; |
|
1752 case Assembler::greater: return Assembler::rc_gz; |
|
1753 case Assembler::greaterEqual: return Assembler::rc_gez; |
|
1754 } |
|
1755 ShouldNotReachHere(); |
|
1756 return Assembler::rc_z; |
|
1757 } |
|
1758 |
|
1759 // compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS |
|
1760 void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) { |
|
1761 tst(s1); |
|
1762 br (c, a, p, L); |
|
1763 } |
|
1764 |
|
1765 // Compares a pointer register with zero and branches on null. |
|
1766 // Does a test & branch on 32-bit systems and a register-branch on 64-bit. |
|
1767 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) { |
|
1768 assert_not_delayed(); |
|
1769 #ifdef _LP64 |
|
1770 bpr( rc_z, a, p, s1, L ); |
|
1771 #else |
|
1772 tst(s1); |
|
1773 br ( zero, a, p, L ); |
|
1774 #endif |
|
1775 } |
|
1776 |
|
1777 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) { |
|
1778 assert_not_delayed(); |
|
1779 #ifdef _LP64 |
|
1780 bpr( rc_nz, a, p, s1, L ); |
|
1781 #else |
|
1782 tst(s1); |
|
1783 br ( notZero, a, p, L ); |
|
1784 #endif |
|
1785 } |
|
1786 |
|
1787 // Compare registers and branch with nop in delay slot or cbcond without delay slot. |
|
1788 |
|
1789 // Compare integer (32 bit) values (icc only). |
|
1790 void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c, |
|
1791 Predict p, Label& L) { |
|
1792 assert_not_delayed(); |
|
1793 if (use_cbcond(L)) { |
|
1794 Assembler::cbcond(c, icc, s1, s2, L); |
|
1795 } else { |
|
1796 cmp(s1, s2); |
|
1797 br(c, false, p, L); |
|
1798 delayed()->nop(); |
|
1799 } |
|
1800 } |
|
1801 |
|
1802 // Compare integer (32 bit) values (icc only). |
|
1803 void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c, |
|
1804 Predict p, Label& L) { |
|
1805 assert_not_delayed(); |
|
1806 if (is_simm(simm13a,5) && use_cbcond(L)) { |
|
1807 Assembler::cbcond(c, icc, s1, simm13a, L); |
|
1808 } else { |
|
1809 cmp(s1, simm13a); |
|
1810 br(c, false, p, L); |
|
1811 delayed()->nop(); |
|
1812 } |
|
1813 } |
|
1814 |
|
1815 // Branch that tests xcc in LP64 and icc in !LP64 |
|
1816 void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c, |
|
1817 Predict p, Label& L) { |
|
1818 assert_not_delayed(); |
|
1819 if (use_cbcond(L)) { |
|
1820 Assembler::cbcond(c, ptr_cc, s1, s2, L); |
|
1821 } else { |
|
1822 cmp(s1, s2); |
|
1823 brx(c, false, p, L); |
|
1824 delayed()->nop(); |
|
1825 } |
|
1826 } |
|
1827 |
|
1828 // Branch that tests xcc in LP64 and icc in !LP64 |
|
1829 void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c, |
|
1830 Predict p, Label& L) { |
|
1831 assert_not_delayed(); |
|
1832 if (is_simm(simm13a,5) && use_cbcond(L)) { |
|
1833 Assembler::cbcond(c, ptr_cc, s1, simm13a, L); |
|
1834 } else { |
|
1835 cmp(s1, simm13a); |
|
1836 brx(c, false, p, L); |
|
1837 delayed()->nop(); |
|
1838 } |
|
1839 } |
|
1840 |
|
1841 // Short branch version for compares a pointer with zero. |
|
1842 |
|
1843 void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) { |
|
1844 assert_not_delayed(); |
|
1845 if (use_cbcond(L)) { |
|
1846 Assembler::cbcond(zero, ptr_cc, s1, 0, L); |
|
1847 return; |
|
1848 } |
|
1849 br_null(s1, false, p, L); |
|
1850 delayed()->nop(); |
|
1851 } |
|
1852 |
|
1853 void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) { |
|
1854 assert_not_delayed(); |
|
1855 if (use_cbcond(L)) { |
|
1856 Assembler::cbcond(notZero, ptr_cc, s1, 0, L); |
|
1857 return; |
|
1858 } |
|
1859 br_notnull(s1, false, p, L); |
|
1860 delayed()->nop(); |
|
1861 } |
|
1862 |
|
1863 // Unconditional short branch |
|
1864 void MacroAssembler::ba_short(Label& L) { |
|
1865 if (use_cbcond(L)) { |
|
1866 Assembler::cbcond(equal, icc, G0, G0, L); |
|
1867 return; |
|
1868 } |
|
1869 br(always, false, pt, L); |
|
1870 delayed()->nop(); |
|
1871 } |
|
1872 |
|
1873 // instruction sequences factored across compiler & interpreter |
|
1874 |
|
1875 |
|
1876 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low, |
|
1877 Register Rb_hi, Register Rb_low, |
|
1878 Register Rresult) { |
|
1879 |
|
1880 Label check_low_parts, done; |
|
1881 |
|
1882 cmp(Ra_hi, Rb_hi ); // compare hi parts |
|
1883 br(equal, true, pt, check_low_parts); |
|
1884 delayed()->cmp(Ra_low, Rb_low); // test low parts |
|
1885 |
|
1886 // And, with an unsigned comparison, it does not matter if the numbers |
|
1887 // are negative or not. |
|
1888 // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff. |
|
1889 // The second one is bigger (unsignedly). |
|
1890 |
|
1891 // Other notes: The first move in each triplet can be unconditional |
|
1892 // (and therefore probably prefetchable). |
|
1893 // And the equals case for the high part does not need testing, |
|
1894 // since that triplet is reached only after finding the high halves differ. |
|
1895 |
|
1896 if (VM_Version::v9_instructions_work()) { |
|
1897 mov(-1, Rresult); |
|
1898 ba(done); delayed()-> movcc(greater, false, icc, 1, Rresult); |
|
1899 } else { |
|
1900 br(less, true, pt, done); delayed()-> set(-1, Rresult); |
|
1901 br(greater, true, pt, done); delayed()-> set( 1, Rresult); |
|
1902 } |
|
1903 |
|
1904 bind( check_low_parts ); |
|
1905 |
|
1906 if (VM_Version::v9_instructions_work()) { |
|
1907 mov( -1, Rresult); |
|
1908 movcc(equal, false, icc, 0, Rresult); |
|
1909 movcc(greaterUnsigned, false, icc, 1, Rresult); |
|
1910 } else { |
|
1911 set(-1, Rresult); |
|
1912 br(equal, true, pt, done); delayed()->set( 0, Rresult); |
|
1913 br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult); |
|
1914 } |
|
1915 bind( done ); |
|
1916 } |
|
1917 |
|
1918 void MacroAssembler::lneg( Register Rhi, Register Rlow ) { |
|
1919 subcc( G0, Rlow, Rlow ); |
|
1920 subc( G0, Rhi, Rhi ); |
|
1921 } |
|
1922 |
|
1923 void MacroAssembler::lshl( Register Rin_high, Register Rin_low, |
|
1924 Register Rcount, |
|
1925 Register Rout_high, Register Rout_low, |
|
1926 Register Rtemp ) { |
|
1927 |
|
1928 |
|
1929 Register Ralt_count = Rtemp; |
|
1930 Register Rxfer_bits = Rtemp; |
|
1931 |
|
1932 assert( Ralt_count != Rin_high |
|
1933 && Ralt_count != Rin_low |
|
1934 && Ralt_count != Rcount |
|
1935 && Rxfer_bits != Rin_low |
|
1936 && Rxfer_bits != Rin_high |
|
1937 && Rxfer_bits != Rcount |
|
1938 && Rxfer_bits != Rout_low |
|
1939 && Rout_low != Rin_high, |
|
1940 "register alias checks"); |
|
1941 |
|
1942 Label big_shift, done; |
|
1943 |
|
1944 // This code can be optimized to use the 64 bit shifts in V9. |
|
1945 // Here we use the 32 bit shifts. |
|
1946 |
|
1947 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits |
|
1948 subcc(Rcount, 31, Ralt_count); |
|
1949 br(greater, true, pn, big_shift); |
|
1950 delayed()->dec(Ralt_count); |
|
1951 |
|
1952 // shift < 32 bits, Ralt_count = Rcount-31 |
|
1953 |
|
1954 // We get the transfer bits by shifting right by 32-count the low |
|
1955 // register. This is done by shifting right by 31-count and then by one |
|
1956 // more to take care of the special (rare) case where count is zero |
|
1957 // (shifting by 32 would not work). |
|
1958 |
|
1959 neg(Ralt_count); |
|
1960 |
|
1961 // The order of the next two instructions is critical in the case where |
|
1962 // Rin and Rout are the same and should not be reversed. |
|
1963 |
|
1964 srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count |
|
1965 if (Rcount != Rout_low) { |
|
1966 sll(Rin_low, Rcount, Rout_low); // low half |
|
1967 } |
|
1968 sll(Rin_high, Rcount, Rout_high); |
|
1969 if (Rcount == Rout_low) { |
|
1970 sll(Rin_low, Rcount, Rout_low); // low half |
|
1971 } |
|
1972 srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more |
|
1973 ba(done); |
|
1974 delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low |
|
1975 |
|
1976 // shift >= 32 bits, Ralt_count = Rcount-32 |
|
1977 bind(big_shift); |
|
1978 sll(Rin_low, Ralt_count, Rout_high ); |
|
1979 clr(Rout_low); |
|
1980 |
|
1981 bind(done); |
|
1982 } |
|
1983 |
|
1984 |
|
1985 void MacroAssembler::lshr( Register Rin_high, Register Rin_low, |
|
1986 Register Rcount, |
|
1987 Register Rout_high, Register Rout_low, |
|
1988 Register Rtemp ) { |
|
1989 |
|
1990 Register Ralt_count = Rtemp; |
|
1991 Register Rxfer_bits = Rtemp; |
|
1992 |
|
1993 assert( Ralt_count != Rin_high |
|
1994 && Ralt_count != Rin_low |
|
1995 && Ralt_count != Rcount |
|
1996 && Rxfer_bits != Rin_low |
|
1997 && Rxfer_bits != Rin_high |
|
1998 && Rxfer_bits != Rcount |
|
1999 && Rxfer_bits != Rout_high |
|
2000 && Rout_high != Rin_low, |
|
2001 "register alias checks"); |
|
2002 |
|
2003 Label big_shift, done; |
|
2004 |
|
2005 // This code can be optimized to use the 64 bit shifts in V9. |
|
2006 // Here we use the 32 bit shifts. |
|
2007 |
|
2008 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits |
|
2009 subcc(Rcount, 31, Ralt_count); |
|
2010 br(greater, true, pn, big_shift); |
|
2011 delayed()->dec(Ralt_count); |
|
2012 |
|
2013 // shift < 32 bits, Ralt_count = Rcount-31 |
|
2014 |
|
2015 // We get the transfer bits by shifting left by 32-count the high |
|
2016 // register. This is done by shifting left by 31-count and then by one |
|
2017 // more to take care of the special (rare) case where count is zero |
|
2018 // (shifting by 32 would not work). |
|
2019 |
|
2020 neg(Ralt_count); |
|
2021 if (Rcount != Rout_low) { |
|
2022 srl(Rin_low, Rcount, Rout_low); |
|
2023 } |
|
2024 |
|
2025 // The order of the next two instructions is critical in the case where |
|
2026 // Rin and Rout are the same and should not be reversed. |
|
2027 |
|
2028 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count |
|
2029 sra(Rin_high, Rcount, Rout_high ); // high half |
|
2030 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more |
|
2031 if (Rcount == Rout_low) { |
|
2032 srl(Rin_low, Rcount, Rout_low); |
|
2033 } |
|
2034 ba(done); |
|
2035 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high |
|
2036 |
|
2037 // shift >= 32 bits, Ralt_count = Rcount-32 |
|
2038 bind(big_shift); |
|
2039 |
|
2040 sra(Rin_high, Ralt_count, Rout_low); |
|
2041 sra(Rin_high, 31, Rout_high); // sign into hi |
|
2042 |
|
2043 bind( done ); |
|
2044 } |
|
2045 |
|
2046 |
|
2047 |
|
2048 void MacroAssembler::lushr( Register Rin_high, Register Rin_low, |
|
2049 Register Rcount, |
|
2050 Register Rout_high, Register Rout_low, |
|
2051 Register Rtemp ) { |
|
2052 |
|
2053 Register Ralt_count = Rtemp; |
|
2054 Register Rxfer_bits = Rtemp; |
|
2055 |
|
2056 assert( Ralt_count != Rin_high |
|
2057 && Ralt_count != Rin_low |
|
2058 && Ralt_count != Rcount |
|
2059 && Rxfer_bits != Rin_low |
|
2060 && Rxfer_bits != Rin_high |
|
2061 && Rxfer_bits != Rcount |
|
2062 && Rxfer_bits != Rout_high |
|
2063 && Rout_high != Rin_low, |
|
2064 "register alias checks"); |
|
2065 |
|
2066 Label big_shift, done; |
|
2067 |
|
2068 // This code can be optimized to use the 64 bit shifts in V9. |
|
2069 // Here we use the 32 bit shifts. |
|
2070 |
|
2071 and3( Rcount, 0x3f, Rcount); // take least significant 6 bits |
|
2072 subcc(Rcount, 31, Ralt_count); |
|
2073 br(greater, true, pn, big_shift); |
|
2074 delayed()->dec(Ralt_count); |
|
2075 |
|
2076 // shift < 32 bits, Ralt_count = Rcount-31 |
|
2077 |
|
2078 // We get the transfer bits by shifting left by 32-count the high |
|
2079 // register. This is done by shifting left by 31-count and then by one |
|
2080 // more to take care of the special (rare) case where count is zero |
|
2081 // (shifting by 32 would not work). |
|
2082 |
|
2083 neg(Ralt_count); |
|
2084 if (Rcount != Rout_low) { |
|
2085 srl(Rin_low, Rcount, Rout_low); |
|
2086 } |
|
2087 |
|
2088 // The order of the next two instructions is critical in the case where |
|
2089 // Rin and Rout are the same and should not be reversed. |
|
2090 |
|
2091 sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count |
|
2092 srl(Rin_high, Rcount, Rout_high ); // high half |
|
2093 sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more |
|
2094 if (Rcount == Rout_low) { |
|
2095 srl(Rin_low, Rcount, Rout_low); |
|
2096 } |
|
2097 ba(done); |
|
2098 delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high |
|
2099 |
|
2100 // shift >= 32 bits, Ralt_count = Rcount-32 |
|
2101 bind(big_shift); |
|
2102 |
|
2103 srl(Rin_high, Ralt_count, Rout_low); |
|
2104 clr(Rout_high); |
|
2105 |
|
2106 bind( done ); |
|
2107 } |
|
2108 |
|
2109 #ifdef _LP64 |
|
2110 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) { |
|
2111 cmp(Ra, Rb); |
|
2112 mov(-1, Rresult); |
|
2113 movcc(equal, false, xcc, 0, Rresult); |
|
2114 movcc(greater, false, xcc, 1, Rresult); |
|
2115 } |
|
2116 #endif |
|
2117 |
|
2118 |
|
2119 void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) { |
|
2120 switch (size_in_bytes) { |
|
2121 case 8: ld_long(src, dst); break; |
|
2122 case 4: ld( src, dst); break; |
|
2123 case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break; |
|
2124 case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break; |
|
2125 default: ShouldNotReachHere(); |
|
2126 } |
|
2127 } |
|
2128 |
|
2129 void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) { |
|
2130 switch (size_in_bytes) { |
|
2131 case 8: st_long(src, dst); break; |
|
2132 case 4: st( src, dst); break; |
|
2133 case 2: sth( src, dst); break; |
|
2134 case 1: stb( src, dst); break; |
|
2135 default: ShouldNotReachHere(); |
|
2136 } |
|
2137 } |
|
2138 |
|
2139 |
|
2140 void MacroAssembler::float_cmp( bool is_float, int unordered_result, |
|
2141 FloatRegister Fa, FloatRegister Fb, |
|
2142 Register Rresult) { |
|
2143 |
|
2144 fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb); |
|
2145 |
|
2146 Condition lt = unordered_result == -1 ? f_unorderedOrLess : f_less; |
|
2147 Condition eq = f_equal; |
|
2148 Condition gt = unordered_result == 1 ? f_unorderedOrGreater : f_greater; |
|
2149 |
|
2150 if (VM_Version::v9_instructions_work()) { |
|
2151 |
|
2152 mov(-1, Rresult); |
|
2153 movcc(eq, true, fcc0, 0, Rresult); |
|
2154 movcc(gt, true, fcc0, 1, Rresult); |
|
2155 |
|
2156 } else { |
|
2157 Label done; |
|
2158 |
|
2159 set( -1, Rresult ); |
|
2160 //fb(lt, true, pn, done); delayed()->set( -1, Rresult ); |
|
2161 fb( eq, true, pn, done); delayed()->set( 0, Rresult ); |
|
2162 fb( gt, true, pn, done); delayed()->set( 1, Rresult ); |
|
2163 |
|
2164 bind (done); |
|
2165 } |
|
2166 } |
|
2167 |
|
2168 |
|
2169 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d) |
|
2170 { |
|
2171 if (VM_Version::v9_instructions_work()) { |
|
2172 Assembler::fneg(w, s, d); |
|
2173 } else { |
|
2174 if (w == FloatRegisterImpl::S) { |
|
2175 Assembler::fneg(w, s, d); |
|
2176 } else if (w == FloatRegisterImpl::D) { |
|
2177 // number() does a sanity check on the alignment. |
|
2178 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) && |
|
2179 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check"); |
|
2180 |
|
2181 Assembler::fneg(FloatRegisterImpl::S, s, d); |
|
2182 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor()); |
|
2183 } else { |
|
2184 assert(w == FloatRegisterImpl::Q, "Invalid float register width"); |
|
2185 |
|
2186 // number() does a sanity check on the alignment. |
|
2187 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) && |
|
2188 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check"); |
|
2189 |
|
2190 Assembler::fneg(FloatRegisterImpl::S, s, d); |
|
2191 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor()); |
|
2192 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor()); |
|
2193 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor()); |
|
2194 } |
|
2195 } |
|
2196 } |
|
2197 |
|
2198 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d) |
|
2199 { |
|
2200 if (VM_Version::v9_instructions_work()) { |
|
2201 Assembler::fmov(w, s, d); |
|
2202 } else { |
|
2203 if (w == FloatRegisterImpl::S) { |
|
2204 Assembler::fmov(w, s, d); |
|
2205 } else if (w == FloatRegisterImpl::D) { |
|
2206 // number() does a sanity check on the alignment. |
|
2207 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) && |
|
2208 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check"); |
|
2209 |
|
2210 Assembler::fmov(FloatRegisterImpl::S, s, d); |
|
2211 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor()); |
|
2212 } else { |
|
2213 assert(w == FloatRegisterImpl::Q, "Invalid float register width"); |
|
2214 |
|
2215 // number() does a sanity check on the alignment. |
|
2216 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) && |
|
2217 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check"); |
|
2218 |
|
2219 Assembler::fmov(FloatRegisterImpl::S, s, d); |
|
2220 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor()); |
|
2221 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor()); |
|
2222 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor()); |
|
2223 } |
|
2224 } |
|
2225 } |
|
2226 |
|
2227 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d) |
|
2228 { |
|
2229 if (VM_Version::v9_instructions_work()) { |
|
2230 Assembler::fabs(w, s, d); |
|
2231 } else { |
|
2232 if (w == FloatRegisterImpl::S) { |
|
2233 Assembler::fabs(w, s, d); |
|
2234 } else if (w == FloatRegisterImpl::D) { |
|
2235 // number() does a sanity check on the alignment. |
|
2236 assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) && |
|
2237 ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check"); |
|
2238 |
|
2239 Assembler::fabs(FloatRegisterImpl::S, s, d); |
|
2240 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor()); |
|
2241 } else { |
|
2242 assert(w == FloatRegisterImpl::Q, "Invalid float register width"); |
|
2243 |
|
2244 // number() does a sanity check on the alignment. |
|
2245 assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) && |
|
2246 ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check"); |
|
2247 |
|
2248 Assembler::fabs(FloatRegisterImpl::S, s, d); |
|
2249 Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor()); |
|
2250 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor()); |
|
2251 Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor()); |
|
2252 } |
|
2253 } |
|
2254 } |
|
2255 |
|
2256 void MacroAssembler::save_all_globals_into_locals() { |
|
2257 mov(G1,L1); |
|
2258 mov(G2,L2); |
|
2259 mov(G3,L3); |
|
2260 mov(G4,L4); |
|
2261 mov(G5,L5); |
|
2262 mov(G6,L6); |
|
2263 mov(G7,L7); |
|
2264 } |
|
2265 |
|
2266 void MacroAssembler::restore_globals_from_locals() { |
|
2267 mov(L1,G1); |
|
2268 mov(L2,G2); |
|
2269 mov(L3,G3); |
|
2270 mov(L4,G4); |
|
2271 mov(L5,G5); |
|
2272 mov(L6,G6); |
|
2273 mov(L7,G7); |
|
2274 } |
|
2275 |
|
2276 // Use for 64 bit operation. |
|
2277 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm) |
|
2278 { |
|
2279 // store ptr_reg as the new top value |
|
2280 #ifdef _LP64 |
|
2281 casx(top_ptr_reg, top_reg, ptr_reg); |
|
2282 #else |
|
2283 cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm); |
|
2284 #endif // _LP64 |
|
2285 } |
|
2286 |
|
2287 // [RGV] This routine does not handle 64 bit operations. |
|
2288 // use casx_under_lock() or casx directly!!! |
|
2289 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm) |
|
2290 { |
|
2291 // store ptr_reg as the new top value |
|
2292 if (VM_Version::v9_instructions_work()) { |
|
2293 cas(top_ptr_reg, top_reg, ptr_reg); |
|
2294 } else { |
|
2295 |
|
2296 // If the register is not an out nor global, it is not visible |
|
2297 // after the save. Allocate a register for it, save its |
|
2298 // value in the register save area (the save may not flush |
|
2299 // registers to the save area). |
|
2300 |
|
2301 Register top_ptr_reg_after_save; |
|
2302 Register top_reg_after_save; |
|
2303 Register ptr_reg_after_save; |
|
2304 |
|
2305 if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) { |
|
2306 top_ptr_reg_after_save = top_ptr_reg->after_save(); |
|
2307 } else { |
|
2308 Address reg_save_addr = top_ptr_reg->address_in_saved_window(); |
|
2309 top_ptr_reg_after_save = L0; |
|
2310 st(top_ptr_reg, reg_save_addr); |
|
2311 } |
|
2312 |
|
2313 if (top_reg->is_out() || top_reg->is_global()) { |
|
2314 top_reg_after_save = top_reg->after_save(); |
|
2315 } else { |
|
2316 Address reg_save_addr = top_reg->address_in_saved_window(); |
|
2317 top_reg_after_save = L1; |
|
2318 st(top_reg, reg_save_addr); |
|
2319 } |
|
2320 |
|
2321 if (ptr_reg->is_out() || ptr_reg->is_global()) { |
|
2322 ptr_reg_after_save = ptr_reg->after_save(); |
|
2323 } else { |
|
2324 Address reg_save_addr = ptr_reg->address_in_saved_window(); |
|
2325 ptr_reg_after_save = L2; |
|
2326 st(ptr_reg, reg_save_addr); |
|
2327 } |
|
2328 |
|
2329 const Register& lock_reg = L3; |
|
2330 const Register& lock_ptr_reg = L4; |
|
2331 const Register& value_reg = L5; |
|
2332 const Register& yield_reg = L6; |
|
2333 const Register& yieldall_reg = L7; |
|
2334 |
|
2335 save_frame(); |
|
2336 |
|
2337 if (top_ptr_reg_after_save == L0) { |
|
2338 ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save); |
|
2339 } |
|
2340 |
|
2341 if (top_reg_after_save == L1) { |
|
2342 ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save); |
|
2343 } |
|
2344 |
|
2345 if (ptr_reg_after_save == L2) { |
|
2346 ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save); |
|
2347 } |
|
2348 |
|
2349 Label(retry_get_lock); |
|
2350 Label(not_same); |
|
2351 Label(dont_yield); |
|
2352 |
|
2353 assert(lock_addr, "lock_address should be non null for v8"); |
|
2354 set((intptr_t)lock_addr, lock_ptr_reg); |
|
2355 // Initialize yield counter |
|
2356 mov(G0,yield_reg); |
|
2357 mov(G0, yieldall_reg); |
|
2358 set(StubRoutines::Sparc::locked, lock_reg); |
|
2359 |
|
2360 bind(retry_get_lock); |
|
2361 cmp_and_br_short(yield_reg, V8AtomicOperationUnderLockSpinCount, Assembler::less, Assembler::pt, dont_yield); |
|
2362 |
|
2363 if(use_call_vm) { |
|
2364 Untested("Need to verify global reg consistancy"); |
|
2365 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg); |
|
2366 } else { |
|
2367 // Save the regs and make space for a C call |
|
2368 save(SP, -96, SP); |
|
2369 save_all_globals_into_locals(); |
|
2370 call(CAST_FROM_FN_PTR(address,os::yield_all)); |
|
2371 delayed()->mov(yieldall_reg, O0); |
|
2372 restore_globals_from_locals(); |
|
2373 restore(); |
|
2374 } |
|
2375 |
|
2376 // reset the counter |
|
2377 mov(G0,yield_reg); |
|
2378 add(yieldall_reg, 1, yieldall_reg); |
|
2379 |
|
2380 bind(dont_yield); |
|
2381 // try to get lock |
|
2382 Assembler::swap(lock_ptr_reg, 0, lock_reg); |
|
2383 |
|
2384 // did we get the lock? |
|
2385 cmp(lock_reg, StubRoutines::Sparc::unlocked); |
|
2386 br(Assembler::notEqual, true, Assembler::pn, retry_get_lock); |
|
2387 delayed()->add(yield_reg,1,yield_reg); |
|
2388 |
|
2389 // yes, got lock. do we have the same top? |
|
2390 ld(top_ptr_reg_after_save, 0, value_reg); |
|
2391 cmp_and_br_short(value_reg, top_reg_after_save, Assembler::notEqual, Assembler::pn, not_same); |
|
2392 |
|
2393 // yes, same top. |
|
2394 st(ptr_reg_after_save, top_ptr_reg_after_save, 0); |
|
2395 membar(Assembler::StoreStore); |
|
2396 |
|
2397 bind(not_same); |
|
2398 mov(value_reg, ptr_reg_after_save); |
|
2399 st(lock_reg, lock_ptr_reg, 0); // unlock |
|
2400 |
|
2401 restore(); |
|
2402 } |
|
2403 } |
|
2404 |
|
2405 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr, |
|
2406 Register tmp, |
|
2407 int offset) { |
|
2408 intptr_t value = *delayed_value_addr; |
|
2409 if (value != 0) |
|
2410 return RegisterOrConstant(value + offset); |
|
2411 |
|
2412 // load indirectly to solve generation ordering problem |
|
2413 AddressLiteral a(delayed_value_addr); |
|
2414 load_ptr_contents(a, tmp); |
|
2415 |
|
2416 #ifdef ASSERT |
|
2417 tst(tmp); |
|
2418 breakpoint_trap(zero, xcc); |
|
2419 #endif |
|
2420 |
|
2421 if (offset != 0) |
|
2422 add(tmp, offset, tmp); |
|
2423 |
|
2424 return RegisterOrConstant(tmp); |
|
2425 } |
|
2426 |
|
2427 |
|
2428 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) { |
|
2429 assert(d.register_or_noreg() != G0, "lost side effect"); |
|
2430 if ((s2.is_constant() && s2.as_constant() == 0) || |
|
2431 (s2.is_register() && s2.as_register() == G0)) { |
|
2432 // Do nothing, just move value. |
|
2433 if (s1.is_register()) { |
|
2434 if (d.is_constant()) d = temp; |
|
2435 mov(s1.as_register(), d.as_register()); |
|
2436 return d; |
|
2437 } else { |
|
2438 return s1; |
|
2439 } |
|
2440 } |
|
2441 |
|
2442 if (s1.is_register()) { |
|
2443 assert_different_registers(s1.as_register(), temp); |
|
2444 if (d.is_constant()) d = temp; |
|
2445 andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register()); |
|
2446 return d; |
|
2447 } else { |
|
2448 if (s2.is_register()) { |
|
2449 assert_different_registers(s2.as_register(), temp); |
|
2450 if (d.is_constant()) d = temp; |
|
2451 set(s1.as_constant(), temp); |
|
2452 andn(temp, s2.as_register(), d.as_register()); |
|
2453 return d; |
|
2454 } else { |
|
2455 intptr_t res = s1.as_constant() & ~s2.as_constant(); |
|
2456 return res; |
|
2457 } |
|
2458 } |
|
2459 } |
|
2460 |
|
2461 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) { |
|
2462 assert(d.register_or_noreg() != G0, "lost side effect"); |
|
2463 if ((s2.is_constant() && s2.as_constant() == 0) || |
|
2464 (s2.is_register() && s2.as_register() == G0)) { |
|
2465 // Do nothing, just move value. |
|
2466 if (s1.is_register()) { |
|
2467 if (d.is_constant()) d = temp; |
|
2468 mov(s1.as_register(), d.as_register()); |
|
2469 return d; |
|
2470 } else { |
|
2471 return s1; |
|
2472 } |
|
2473 } |
|
2474 |
|
2475 if (s1.is_register()) { |
|
2476 assert_different_registers(s1.as_register(), temp); |
|
2477 if (d.is_constant()) d = temp; |
|
2478 add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register()); |
|
2479 return d; |
|
2480 } else { |
|
2481 if (s2.is_register()) { |
|
2482 assert_different_registers(s2.as_register(), temp); |
|
2483 if (d.is_constant()) d = temp; |
|
2484 add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register()); |
|
2485 return d; |
|
2486 } else { |
|
2487 intptr_t res = s1.as_constant() + s2.as_constant(); |
|
2488 return res; |
|
2489 } |
|
2490 } |
|
2491 } |
|
2492 |
|
2493 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) { |
|
2494 assert(d.register_or_noreg() != G0, "lost side effect"); |
|
2495 if (!is_simm13(s2.constant_or_zero())) |
|
2496 s2 = (s2.as_constant() & 0xFF); |
|
2497 if ((s2.is_constant() && s2.as_constant() == 0) || |
|
2498 (s2.is_register() && s2.as_register() == G0)) { |
|
2499 // Do nothing, just move value. |
|
2500 if (s1.is_register()) { |
|
2501 if (d.is_constant()) d = temp; |
|
2502 mov(s1.as_register(), d.as_register()); |
|
2503 return d; |
|
2504 } else { |
|
2505 return s1; |
|
2506 } |
|
2507 } |
|
2508 |
|
2509 if (s1.is_register()) { |
|
2510 assert_different_registers(s1.as_register(), temp); |
|
2511 if (d.is_constant()) d = temp; |
|
2512 sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register()); |
|
2513 return d; |
|
2514 } else { |
|
2515 if (s2.is_register()) { |
|
2516 assert_different_registers(s2.as_register(), temp); |
|
2517 if (d.is_constant()) d = temp; |
|
2518 set(s1.as_constant(), temp); |
|
2519 sll_ptr(temp, s2.as_register(), d.as_register()); |
|
2520 return d; |
|
2521 } else { |
|
2522 intptr_t res = s1.as_constant() << s2.as_constant(); |
|
2523 return res; |
|
2524 } |
|
2525 } |
|
2526 } |
|
2527 |
|
2528 |
|
2529 // Look up the method for a megamorphic invokeinterface call. |
|
2530 // The target method is determined by <intf_klass, itable_index>. |
|
2531 // The receiver klass is in recv_klass. |
|
2532 // On success, the result will be in method_result, and execution falls through. |
|
2533 // On failure, execution transfers to the given label. |
|
2534 void MacroAssembler::lookup_interface_method(Register recv_klass, |
|
2535 Register intf_klass, |
|
2536 RegisterOrConstant itable_index, |
|
2537 Register method_result, |
|
2538 Register scan_temp, |
|
2539 Register sethi_temp, |
|
2540 Label& L_no_such_interface) { |
|
2541 assert_different_registers(recv_klass, intf_klass, method_result, scan_temp); |
|
2542 assert(itable_index.is_constant() || itable_index.as_register() == method_result, |
|
2543 "caller must use same register for non-constant itable index as for method"); |
|
2544 |
|
2545 Label L_no_such_interface_restore; |
|
2546 bool did_save = false; |
|
2547 if (scan_temp == noreg || sethi_temp == noreg) { |
|
2548 Register recv_2 = recv_klass->is_global() ? recv_klass : L0; |
|
2549 Register intf_2 = intf_klass->is_global() ? intf_klass : L1; |
|
2550 assert(method_result->is_global(), "must be able to return value"); |
|
2551 scan_temp = L2; |
|
2552 sethi_temp = L3; |
|
2553 save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2); |
|
2554 recv_klass = recv_2; |
|
2555 intf_klass = intf_2; |
|
2556 did_save = true; |
|
2557 } |
|
2558 |
|
2559 // Compute start of first itableOffsetEntry (which is at the end of the vtable) |
|
2560 int vtable_base = InstanceKlass::vtable_start_offset() * wordSize; |
|
2561 int scan_step = itableOffsetEntry::size() * wordSize; |
|
2562 int vte_size = vtableEntry::size() * wordSize; |
|
2563 |
|
2564 lduw(recv_klass, InstanceKlass::vtable_length_offset() * wordSize, scan_temp); |
|
2565 // %%% We should store the aligned, prescaled offset in the klassoop. |
|
2566 // Then the next several instructions would fold away. |
|
2567 |
|
2568 int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0); |
|
2569 int itb_offset = vtable_base; |
|
2570 if (round_to_unit != 0) { |
|
2571 // hoist first instruction of round_to(scan_temp, BytesPerLong): |
|
2572 itb_offset += round_to_unit - wordSize; |
|
2573 } |
|
2574 int itb_scale = exact_log2(vtableEntry::size() * wordSize); |
|
2575 sll(scan_temp, itb_scale, scan_temp); |
|
2576 add(scan_temp, itb_offset, scan_temp); |
|
2577 if (round_to_unit != 0) { |
|
2578 // Round up to align_object_offset boundary |
|
2579 // see code for InstanceKlass::start_of_itable! |
|
2580 // Was: round_to(scan_temp, BytesPerLong); |
|
2581 // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp); |
|
2582 and3(scan_temp, -round_to_unit, scan_temp); |
|
2583 } |
|
2584 add(recv_klass, scan_temp, scan_temp); |
|
2585 |
|
2586 // Adjust recv_klass by scaled itable_index, so we can free itable_index. |
|
2587 RegisterOrConstant itable_offset = itable_index; |
|
2588 itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset); |
|
2589 itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset); |
|
2590 add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass); |
|
2591 |
|
2592 // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) { |
|
2593 // if (scan->interface() == intf) { |
|
2594 // result = (klass + scan->offset() + itable_index); |
|
2595 // } |
|
2596 // } |
|
2597 Label L_search, L_found_method; |
|
2598 |
|
2599 for (int peel = 1; peel >= 0; peel--) { |
|
2600 // %%%% Could load both offset and interface in one ldx, if they were |
|
2601 // in the opposite order. This would save a load. |
|
2602 ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result); |
|
2603 |
|
2604 // Check that this entry is non-null. A null entry means that |
|
2605 // the receiver class doesn't implement the interface, and wasn't the |
|
2606 // same as when the caller was compiled. |
|
2607 bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface); |
|
2608 delayed()->cmp(method_result, intf_klass); |
|
2609 |
|
2610 if (peel) { |
|
2611 brx(Assembler::equal, false, Assembler::pt, L_found_method); |
|
2612 } else { |
|
2613 brx(Assembler::notEqual, false, Assembler::pn, L_search); |
|
2614 // (invert the test to fall through to found_method...) |
|
2615 } |
|
2616 delayed()->add(scan_temp, scan_step, scan_temp); |
|
2617 |
|
2618 if (!peel) break; |
|
2619 |
|
2620 bind(L_search); |
|
2621 } |
|
2622 |
|
2623 bind(L_found_method); |
|
2624 |
|
2625 // Got a hit. |
|
2626 int ito_offset = itableOffsetEntry::offset_offset_in_bytes(); |
|
2627 // scan_temp[-scan_step] points to the vtable offset we need |
|
2628 ito_offset -= scan_step; |
|
2629 lduw(scan_temp, ito_offset, scan_temp); |
|
2630 ld_ptr(recv_klass, scan_temp, method_result); |
|
2631 |
|
2632 if (did_save) { |
|
2633 Label L_done; |
|
2634 ba(L_done); |
|
2635 delayed()->restore(); |
|
2636 |
|
2637 bind(L_no_such_interface_restore); |
|
2638 ba(L_no_such_interface); |
|
2639 delayed()->restore(); |
|
2640 |
|
2641 bind(L_done); |
|
2642 } |
|
2643 } |
|
2644 |
|
2645 |
|
2646 // virtual method calling |
|
2647 void MacroAssembler::lookup_virtual_method(Register recv_klass, |
|
2648 RegisterOrConstant vtable_index, |
|
2649 Register method_result) { |
|
2650 assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg()); |
|
2651 Register sethi_temp = method_result; |
|
2652 const int base = (InstanceKlass::vtable_start_offset() * wordSize + |
|
2653 // method pointer offset within the vtable entry: |
|
2654 vtableEntry::method_offset_in_bytes()); |
|
2655 RegisterOrConstant vtable_offset = vtable_index; |
|
2656 // Each of the following three lines potentially generates an instruction. |
|
2657 // But the total number of address formation instructions will always be |
|
2658 // at most two, and will often be zero. In any case, it will be optimal. |
|
2659 // If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x). |
|
2660 // If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t). |
|
2661 vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size() * wordSize), vtable_offset); |
|
2662 vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp); |
|
2663 Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp)); |
|
2664 ld_ptr(vtable_entry_addr, method_result); |
|
2665 } |
|
2666 |
|
2667 |
|
2668 void MacroAssembler::check_klass_subtype(Register sub_klass, |
|
2669 Register super_klass, |
|
2670 Register temp_reg, |
|
2671 Register temp2_reg, |
|
2672 Label& L_success) { |
|
2673 Register sub_2 = sub_klass; |
|
2674 Register sup_2 = super_klass; |
|
2675 if (!sub_2->is_global()) sub_2 = L0; |
|
2676 if (!sup_2->is_global()) sup_2 = L1; |
|
2677 bool did_save = false; |
|
2678 if (temp_reg == noreg || temp2_reg == noreg) { |
|
2679 temp_reg = L2; |
|
2680 temp2_reg = L3; |
|
2681 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2); |
|
2682 sub_klass = sub_2; |
|
2683 super_klass = sup_2; |
|
2684 did_save = true; |
|
2685 } |
|
2686 Label L_failure, L_pop_to_failure, L_pop_to_success; |
|
2687 check_klass_subtype_fast_path(sub_klass, super_klass, |
|
2688 temp_reg, temp2_reg, |
|
2689 (did_save ? &L_pop_to_success : &L_success), |
|
2690 (did_save ? &L_pop_to_failure : &L_failure), NULL); |
|
2691 |
|
2692 if (!did_save) |
|
2693 save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2); |
|
2694 check_klass_subtype_slow_path(sub_2, sup_2, |
|
2695 L2, L3, L4, L5, |
|
2696 NULL, &L_pop_to_failure); |
|
2697 |
|
2698 // on success: |
|
2699 bind(L_pop_to_success); |
|
2700 restore(); |
|
2701 ba_short(L_success); |
|
2702 |
|
2703 // on failure: |
|
2704 bind(L_pop_to_failure); |
|
2705 restore(); |
|
2706 bind(L_failure); |
|
2707 } |
|
2708 |
|
2709 |
|
2710 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, |
|
2711 Register super_klass, |
|
2712 Register temp_reg, |
|
2713 Register temp2_reg, |
|
2714 Label* L_success, |
|
2715 Label* L_failure, |
|
2716 Label* L_slow_path, |
|
2717 RegisterOrConstant super_check_offset) { |
|
2718 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); |
|
2719 int sco_offset = in_bytes(Klass::super_check_offset_offset()); |
|
2720 |
|
2721 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); |
|
2722 bool need_slow_path = (must_load_sco || |
|
2723 super_check_offset.constant_or_zero() == sco_offset); |
|
2724 |
|
2725 assert_different_registers(sub_klass, super_klass, temp_reg); |
|
2726 if (super_check_offset.is_register()) { |
|
2727 assert_different_registers(sub_klass, super_klass, temp_reg, |
|
2728 super_check_offset.as_register()); |
|
2729 } else if (must_load_sco) { |
|
2730 assert(temp2_reg != noreg, "supply either a temp or a register offset"); |
|
2731 } |
|
2732 |
|
2733 Label L_fallthrough; |
|
2734 int label_nulls = 0; |
|
2735 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } |
|
2736 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } |
|
2737 if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; } |
|
2738 assert(label_nulls <= 1 || |
|
2739 (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path), |
|
2740 "at most one NULL in the batch, usually"); |
|
2741 |
|
2742 // If the pointers are equal, we are done (e.g., String[] elements). |
|
2743 // This self-check enables sharing of secondary supertype arrays among |
|
2744 // non-primary types such as array-of-interface. Otherwise, each such |
|
2745 // type would need its own customized SSA. |
|
2746 // We move this check to the front of the fast path because many |
|
2747 // type checks are in fact trivially successful in this manner, |
|
2748 // so we get a nicely predicted branch right at the start of the check. |
|
2749 cmp(super_klass, sub_klass); |
|
2750 brx(Assembler::equal, false, Assembler::pn, *L_success); |
|
2751 delayed()->nop(); |
|
2752 |
|
2753 // Check the supertype display: |
|
2754 if (must_load_sco) { |
|
2755 // The super check offset is always positive... |
|
2756 lduw(super_klass, sco_offset, temp2_reg); |
|
2757 super_check_offset = RegisterOrConstant(temp2_reg); |
|
2758 // super_check_offset is register. |
|
2759 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register()); |
|
2760 } |
|
2761 ld_ptr(sub_klass, super_check_offset, temp_reg); |
|
2762 cmp(super_klass, temp_reg); |
|
2763 |
|
2764 // This check has worked decisively for primary supers. |
|
2765 // Secondary supers are sought in the super_cache ('super_cache_addr'). |
|
2766 // (Secondary supers are interfaces and very deeply nested subtypes.) |
|
2767 // This works in the same check above because of a tricky aliasing |
|
2768 // between the super_cache and the primary super display elements. |
|
2769 // (The 'super_check_addr' can address either, as the case requires.) |
|
2770 // Note that the cache is updated below if it does not help us find |
|
2771 // what we need immediately. |
|
2772 // So if it was a primary super, we can just fail immediately. |
|
2773 // Otherwise, it's the slow path for us (no success at this point). |
|
2774 |
|
2775 // Hacked ba(), which may only be used just before L_fallthrough. |
|
2776 #define FINAL_JUMP(label) \ |
|
2777 if (&(label) != &L_fallthrough) { \ |
|
2778 ba(label); delayed()->nop(); \ |
|
2779 } |
|
2780 |
|
2781 if (super_check_offset.is_register()) { |
|
2782 brx(Assembler::equal, false, Assembler::pn, *L_success); |
|
2783 delayed()->cmp(super_check_offset.as_register(), sc_offset); |
|
2784 |
|
2785 if (L_failure == &L_fallthrough) { |
|
2786 brx(Assembler::equal, false, Assembler::pt, *L_slow_path); |
|
2787 delayed()->nop(); |
|
2788 } else { |
|
2789 brx(Assembler::notEqual, false, Assembler::pn, *L_failure); |
|
2790 delayed()->nop(); |
|
2791 FINAL_JUMP(*L_slow_path); |
|
2792 } |
|
2793 } else if (super_check_offset.as_constant() == sc_offset) { |
|
2794 // Need a slow path; fast failure is impossible. |
|
2795 if (L_slow_path == &L_fallthrough) { |
|
2796 brx(Assembler::equal, false, Assembler::pt, *L_success); |
|
2797 delayed()->nop(); |
|
2798 } else { |
|
2799 brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path); |
|
2800 delayed()->nop(); |
|
2801 FINAL_JUMP(*L_success); |
|
2802 } |
|
2803 } else { |
|
2804 // No slow path; it's a fast decision. |
|
2805 if (L_failure == &L_fallthrough) { |
|
2806 brx(Assembler::equal, false, Assembler::pt, *L_success); |
|
2807 delayed()->nop(); |
|
2808 } else { |
|
2809 brx(Assembler::notEqual, false, Assembler::pn, *L_failure); |
|
2810 delayed()->nop(); |
|
2811 FINAL_JUMP(*L_success); |
|
2812 } |
|
2813 } |
|
2814 |
|
2815 bind(L_fallthrough); |
|
2816 |
|
2817 #undef FINAL_JUMP |
|
2818 } |
|
2819 |
|
2820 |
|
2821 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, |
|
2822 Register super_klass, |
|
2823 Register count_temp, |
|
2824 Register scan_temp, |
|
2825 Register scratch_reg, |
|
2826 Register coop_reg, |
|
2827 Label* L_success, |
|
2828 Label* L_failure) { |
|
2829 assert_different_registers(sub_klass, super_klass, |
|
2830 count_temp, scan_temp, scratch_reg, coop_reg); |
|
2831 |
|
2832 Label L_fallthrough, L_loop; |
|
2833 int label_nulls = 0; |
|
2834 if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; } |
|
2835 if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; } |
|
2836 assert(label_nulls <= 1, "at most one NULL in the batch"); |
|
2837 |
|
2838 // a couple of useful fields in sub_klass: |
|
2839 int ss_offset = in_bytes(Klass::secondary_supers_offset()); |
|
2840 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); |
|
2841 |
|
2842 // Do a linear scan of the secondary super-klass chain. |
|
2843 // This code is rarely used, so simplicity is a virtue here. |
|
2844 |
|
2845 #ifndef PRODUCT |
|
2846 int* pst_counter = &SharedRuntime::_partial_subtype_ctr; |
|
2847 inc_counter((address) pst_counter, count_temp, scan_temp); |
|
2848 #endif |
|
2849 |
|
2850 // We will consult the secondary-super array. |
|
2851 ld_ptr(sub_klass, ss_offset, scan_temp); |
|
2852 |
|
2853 Register search_key = super_klass; |
|
2854 |
|
2855 // Load the array length. (Positive movl does right thing on LP64.) |
|
2856 lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp); |
|
2857 |
|
2858 // Check for empty secondary super list |
|
2859 tst(count_temp); |
|
2860 |
|
2861 // In the array of super classes elements are pointer sized. |
|
2862 int element_size = wordSize; |
|
2863 |
|
2864 // Top of search loop |
|
2865 bind(L_loop); |
|
2866 br(Assembler::equal, false, Assembler::pn, *L_failure); |
|
2867 delayed()->add(scan_temp, element_size, scan_temp); |
|
2868 |
|
2869 // Skip the array header in all array accesses. |
|
2870 int elem_offset = Array<Klass*>::base_offset_in_bytes(); |
|
2871 elem_offset -= element_size; // the scan pointer was pre-incremented also |
|
2872 |
|
2873 // Load next super to check |
|
2874 ld_ptr( scan_temp, elem_offset, scratch_reg ); |
|
2875 |
|
2876 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list |
|
2877 cmp(scratch_reg, search_key); |
|
2878 |
|
2879 // A miss means we are NOT a subtype and need to keep looping |
|
2880 brx(Assembler::notEqual, false, Assembler::pn, L_loop); |
|
2881 delayed()->deccc(count_temp); // decrement trip counter in delay slot |
|
2882 |
|
2883 // Success. Cache the super we found and proceed in triumph. |
|
2884 st_ptr(super_klass, sub_klass, sc_offset); |
|
2885 |
|
2886 if (L_success != &L_fallthrough) { |
|
2887 ba(*L_success); |
|
2888 delayed()->nop(); |
|
2889 } |
|
2890 |
|
2891 bind(L_fallthrough); |
|
2892 } |
|
2893 |
|
2894 |
|
2895 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot, |
|
2896 Register temp_reg, |
|
2897 int extra_slot_offset) { |
|
2898 // cf. TemplateTable::prepare_invoke(), if (load_receiver). |
|
2899 int stackElementSize = Interpreter::stackElementSize; |
|
2900 int offset = extra_slot_offset * stackElementSize; |
|
2901 if (arg_slot.is_constant()) { |
|
2902 offset += arg_slot.as_constant() * stackElementSize; |
|
2903 return offset; |
|
2904 } else { |
|
2905 assert(temp_reg != noreg, "must specify"); |
|
2906 sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg); |
|
2907 if (offset != 0) |
|
2908 add(temp_reg, offset, temp_reg); |
|
2909 return temp_reg; |
|
2910 } |
|
2911 } |
|
2912 |
|
2913 |
|
2914 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, |
|
2915 Register temp_reg, |
|
2916 int extra_slot_offset) { |
|
2917 return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset)); |
|
2918 } |
|
2919 |
|
2920 |
|
2921 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg, |
|
2922 Register temp_reg, |
|
2923 Label& done, Label* slow_case, |
|
2924 BiasedLockingCounters* counters) { |
|
2925 assert(UseBiasedLocking, "why call this otherwise?"); |
|
2926 |
|
2927 if (PrintBiasedLockingStatistics) { |
|
2928 assert_different_registers(obj_reg, mark_reg, temp_reg, O7); |
|
2929 if (counters == NULL) |
|
2930 counters = BiasedLocking::counters(); |
|
2931 } |
|
2932 |
|
2933 Label cas_label; |
|
2934 |
|
2935 // Biased locking |
|
2936 // See whether the lock is currently biased toward our thread and |
|
2937 // whether the epoch is still valid |
|
2938 // Note that the runtime guarantees sufficient alignment of JavaThread |
|
2939 // pointers to allow age to be placed into low bits |
|
2940 assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout"); |
|
2941 and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg); |
|
2942 cmp_and_brx_short(temp_reg, markOopDesc::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label); |
|
2943 |
|
2944 load_klass(obj_reg, temp_reg); |
|
2945 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg); |
|
2946 or3(G2_thread, temp_reg, temp_reg); |
|
2947 xor3(mark_reg, temp_reg, temp_reg); |
|
2948 andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg); |
|
2949 if (counters != NULL) { |
|
2950 cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg); |
|
2951 // Reload mark_reg as we may need it later |
|
2952 ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg); |
|
2953 } |
|
2954 brx(Assembler::equal, true, Assembler::pt, done); |
|
2955 delayed()->nop(); |
|
2956 |
|
2957 Label try_revoke_bias; |
|
2958 Label try_rebias; |
|
2959 Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes()); |
|
2960 assert(mark_addr.disp() == 0, "cas must take a zero displacement"); |
|
2961 |
|
2962 // At this point we know that the header has the bias pattern and |
|
2963 // that we are not the bias owner in the current epoch. We need to |
|
2964 // figure out more details about the state of the header in order to |
|
2965 // know what operations can be legally performed on the object's |
|
2966 // header. |
|
2967 |
|
2968 // If the low three bits in the xor result aren't clear, that means |
|
2969 // the prototype header is no longer biased and we have to revoke |
|
2970 // the bias on this object. |
|
2971 btst(markOopDesc::biased_lock_mask_in_place, temp_reg); |
|
2972 brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias); |
|
2973 |
|
2974 // Biasing is still enabled for this data type. See whether the |
|
2975 // epoch of the current bias is still valid, meaning that the epoch |
|
2976 // bits of the mark word are equal to the epoch bits of the |
|
2977 // prototype header. (Note that the prototype header's epoch bits |
|
2978 // only change at a safepoint.) If not, attempt to rebias the object |
|
2979 // toward the current thread. Note that we must be absolutely sure |
|
2980 // that the current epoch is invalid in order to do this because |
|
2981 // otherwise the manipulations it performs on the mark word are |
|
2982 // illegal. |
|
2983 delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg); |
|
2984 brx(Assembler::notZero, false, Assembler::pn, try_rebias); |
|
2985 |
|
2986 // The epoch of the current bias is still valid but we know nothing |
|
2987 // about the owner; it might be set or it might be clear. Try to |
|
2988 // acquire the bias of the object using an atomic operation. If this |
|
2989 // fails we will go in to the runtime to revoke the object's bias. |
|
2990 // Note that we first construct the presumed unbiased header so we |
|
2991 // don't accidentally blow away another thread's valid bias. |
|
2992 delayed()->and3(mark_reg, |
|
2993 markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place, |
|
2994 mark_reg); |
|
2995 or3(G2_thread, mark_reg, temp_reg); |
|
2996 casn(mark_addr.base(), mark_reg, temp_reg); |
|
2997 // If the biasing toward our thread failed, this means that |
|
2998 // another thread succeeded in biasing it toward itself and we |
|
2999 // need to revoke that bias. The revocation will occur in the |
|
3000 // interpreter runtime in the slow case. |
|
3001 cmp(mark_reg, temp_reg); |
|
3002 if (counters != NULL) { |
|
3003 cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg); |
|
3004 } |
|
3005 if (slow_case != NULL) { |
|
3006 brx(Assembler::notEqual, true, Assembler::pn, *slow_case); |
|
3007 delayed()->nop(); |
|
3008 } |
|
3009 ba_short(done); |
|
3010 |
|
3011 bind(try_rebias); |
|
3012 // At this point we know the epoch has expired, meaning that the |
|
3013 // current "bias owner", if any, is actually invalid. Under these |
|
3014 // circumstances _only_, we are allowed to use the current header's |
|
3015 // value as the comparison value when doing the cas to acquire the |
|
3016 // bias in the current epoch. In other words, we allow transfer of |
|
3017 // the bias from one thread to another directly in this situation. |
|
3018 // |
|
3019 // FIXME: due to a lack of registers we currently blow away the age |
|
3020 // bits in this situation. Should attempt to preserve them. |
|
3021 load_klass(obj_reg, temp_reg); |
|
3022 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg); |
|
3023 or3(G2_thread, temp_reg, temp_reg); |
|
3024 casn(mark_addr.base(), mark_reg, temp_reg); |
|
3025 // If the biasing toward our thread failed, this means that |
|
3026 // another thread succeeded in biasing it toward itself and we |
|
3027 // need to revoke that bias. The revocation will occur in the |
|
3028 // interpreter runtime in the slow case. |
|
3029 cmp(mark_reg, temp_reg); |
|
3030 if (counters != NULL) { |
|
3031 cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg); |
|
3032 } |
|
3033 if (slow_case != NULL) { |
|
3034 brx(Assembler::notEqual, true, Assembler::pn, *slow_case); |
|
3035 delayed()->nop(); |
|
3036 } |
|
3037 ba_short(done); |
|
3038 |
|
3039 bind(try_revoke_bias); |
|
3040 // The prototype mark in the klass doesn't have the bias bit set any |
|
3041 // more, indicating that objects of this data type are not supposed |
|
3042 // to be biased any more. We are going to try to reset the mark of |
|
3043 // this object to the prototype value and fall through to the |
|
3044 // CAS-based locking scheme. Note that if our CAS fails, it means |
|
3045 // that another thread raced us for the privilege of revoking the |
|
3046 // bias of this particular object, so it's okay to continue in the |
|
3047 // normal locking code. |
|
3048 // |
|
3049 // FIXME: due to a lack of registers we currently blow away the age |
|
3050 // bits in this situation. Should attempt to preserve them. |
|
3051 load_klass(obj_reg, temp_reg); |
|
3052 ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg); |
|
3053 casn(mark_addr.base(), mark_reg, temp_reg); |
|
3054 // Fall through to the normal CAS-based lock, because no matter what |
|
3055 // the result of the above CAS, some thread must have succeeded in |
|
3056 // removing the bias bit from the object's header. |
|
3057 if (counters != NULL) { |
|
3058 cmp(mark_reg, temp_reg); |
|
3059 cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg); |
|
3060 } |
|
3061 |
|
3062 bind(cas_label); |
|
3063 } |
|
3064 |
|
3065 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done, |
|
3066 bool allow_delay_slot_filling) { |
|
3067 // Check for biased locking unlock case, which is a no-op |
|
3068 // Note: we do not have to check the thread ID for two reasons. |
|
3069 // First, the interpreter checks for IllegalMonitorStateException at |
|
3070 // a higher level. Second, if the bias was revoked while we held the |
|
3071 // lock, the object could not be rebiased toward another thread, so |
|
3072 // the bias bit would be clear. |
|
3073 ld_ptr(mark_addr, temp_reg); |
|
3074 and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg); |
|
3075 cmp(temp_reg, markOopDesc::biased_lock_pattern); |
|
3076 brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done); |
|
3077 delayed(); |
|
3078 if (!allow_delay_slot_filling) { |
|
3079 nop(); |
|
3080 } |
|
3081 } |
|
3082 |
|
3083 |
|
3084 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by |
|
3085 // Solaris/SPARC's "as". Another apt name would be cas_ptr() |
|
3086 |
|
3087 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) { |
|
3088 casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); |
|
3089 } |
|
3090 |
|
3091 |
|
3092 |
|
3093 // compiler_lock_object() and compiler_unlock_object() are direct transliterations |
|
3094 // of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments. |
|
3095 // The code could be tightened up considerably. |
|
3096 // |
|
3097 // box->dhw disposition - post-conditions at DONE_LABEL. |
|
3098 // - Successful inflated lock: box->dhw != 0. |
|
3099 // Any non-zero value suffices. |
|
3100 // Consider G2_thread, rsp, boxReg, or unused_mark() |
|
3101 // - Successful Stack-lock: box->dhw == mark. |
|
3102 // box->dhw must contain the displaced mark word value |
|
3103 // - Failure -- icc.ZFlag == 0 and box->dhw is undefined. |
|
3104 // The slow-path fast_enter() and slow_enter() operators |
|
3105 // are responsible for setting box->dhw = NonZero (typically ::unused_mark). |
|
3106 // - Biased: box->dhw is undefined |
|
3107 // |
|
3108 // SPARC refworkload performance - specifically jetstream and scimark - are |
|
3109 // extremely sensitive to the size of the code emitted by compiler_lock_object |
|
3110 // and compiler_unlock_object. Critically, the key factor is code size, not path |
|
3111 // length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the |
|
3112 // effect). |
|
3113 |
|
3114 |
|
3115 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark, |
|
3116 Register Rbox, Register Rscratch, |
|
3117 BiasedLockingCounters* counters, |
|
3118 bool try_bias) { |
|
3119 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes()); |
|
3120 |
|
3121 verify_oop(Roop); |
|
3122 Label done ; |
|
3123 |
|
3124 if (counters != NULL) { |
|
3125 inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch); |
|
3126 } |
|
3127 |
|
3128 if (EmitSync & 1) { |
|
3129 mov(3, Rscratch); |
|
3130 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3131 cmp(SP, G0); |
|
3132 return ; |
|
3133 } |
|
3134 |
|
3135 if (EmitSync & 2) { |
|
3136 |
|
3137 // Fetch object's markword |
|
3138 ld_ptr(mark_addr, Rmark); |
|
3139 |
|
3140 if (try_bias) { |
|
3141 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters); |
|
3142 } |
|
3143 |
|
3144 // Save Rbox in Rscratch to be used for the cas operation |
|
3145 mov(Rbox, Rscratch); |
|
3146 |
|
3147 // set Rmark to markOop | markOopDesc::unlocked_value |
|
3148 or3(Rmark, markOopDesc::unlocked_value, Rmark); |
|
3149 |
|
3150 // Initialize the box. (Must happen before we update the object mark!) |
|
3151 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3152 |
|
3153 // compare object markOop with Rmark and if equal exchange Rscratch with object markOop |
|
3154 assert(mark_addr.disp() == 0, "cas must take a zero displacement"); |
|
3155 casx_under_lock(mark_addr.base(), Rmark, Rscratch, |
|
3156 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); |
|
3157 |
|
3158 // if compare/exchange succeeded we found an unlocked object and we now have locked it |
|
3159 // hence we are done |
|
3160 cmp(Rmark, Rscratch); |
|
3161 #ifdef _LP64 |
|
3162 sub(Rscratch, STACK_BIAS, Rscratch); |
|
3163 #endif |
|
3164 brx(Assembler::equal, false, Assembler::pt, done); |
|
3165 delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot |
|
3166 |
|
3167 // we did not find an unlocked object so see if this is a recursive case |
|
3168 // sub(Rscratch, SP, Rscratch); |
|
3169 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); |
|
3170 andcc(Rscratch, 0xfffff003, Rscratch); |
|
3171 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3172 bind (done); |
|
3173 return ; |
|
3174 } |
|
3175 |
|
3176 Label Egress ; |
|
3177 |
|
3178 if (EmitSync & 256) { |
|
3179 Label IsInflated ; |
|
3180 |
|
3181 ld_ptr(mark_addr, Rmark); // fetch obj->mark |
|
3182 // Triage: biased, stack-locked, neutral, inflated |
|
3183 if (try_bias) { |
|
3184 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters); |
|
3185 // Invariant: if control reaches this point in the emitted stream |
|
3186 // then Rmark has not been modified. |
|
3187 } |
|
3188 |
|
3189 // Store mark into displaced mark field in the on-stack basic-lock "box" |
|
3190 // Critically, this must happen before the CAS |
|
3191 // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty. |
|
3192 st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3193 andcc(Rmark, 2, G0); |
|
3194 brx(Assembler::notZero, false, Assembler::pn, IsInflated); |
|
3195 delayed()-> |
|
3196 |
|
3197 // Try stack-lock acquisition. |
|
3198 // Beware: the 1st instruction is in a delay slot |
|
3199 mov(Rbox, Rscratch); |
|
3200 or3(Rmark, markOopDesc::unlocked_value, Rmark); |
|
3201 assert(mark_addr.disp() == 0, "cas must take a zero displacement"); |
|
3202 casn(mark_addr.base(), Rmark, Rscratch); |
|
3203 cmp(Rmark, Rscratch); |
|
3204 brx(Assembler::equal, false, Assembler::pt, done); |
|
3205 delayed()->sub(Rscratch, SP, Rscratch); |
|
3206 |
|
3207 // Stack-lock attempt failed - check for recursive stack-lock. |
|
3208 // See the comments below about how we might remove this case. |
|
3209 #ifdef _LP64 |
|
3210 sub(Rscratch, STACK_BIAS, Rscratch); |
|
3211 #endif |
|
3212 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); |
|
3213 andcc(Rscratch, 0xfffff003, Rscratch); |
|
3214 br(Assembler::always, false, Assembler::pt, done); |
|
3215 delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3216 |
|
3217 bind(IsInflated); |
|
3218 if (EmitSync & 64) { |
|
3219 // If m->owner != null goto IsLocked |
|
3220 // Pessimistic form: Test-and-CAS vs CAS |
|
3221 // The optimistic form avoids RTS->RTO cache line upgrades. |
|
3222 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch); |
|
3223 andcc(Rscratch, Rscratch, G0); |
|
3224 brx(Assembler::notZero, false, Assembler::pn, done); |
|
3225 delayed()->nop(); |
|
3226 // m->owner == null : it's unlocked. |
|
3227 } |
|
3228 |
|
3229 // Try to CAS m->owner from null to Self |
|
3230 // Invariant: if we acquire the lock then _recursions should be 0. |
|
3231 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark); |
|
3232 mov(G2_thread, Rscratch); |
|
3233 casn(Rmark, G0, Rscratch); |
|
3234 cmp(Rscratch, G0); |
|
3235 // Intentional fall-through into done |
|
3236 } else { |
|
3237 // Aggressively avoid the Store-before-CAS penalty |
|
3238 // Defer the store into box->dhw until after the CAS |
|
3239 Label IsInflated, Recursive ; |
|
3240 |
|
3241 // Anticipate CAS -- Avoid RTS->RTO upgrade |
|
3242 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads); |
|
3243 |
|
3244 ld_ptr(mark_addr, Rmark); // fetch obj->mark |
|
3245 // Triage: biased, stack-locked, neutral, inflated |
|
3246 |
|
3247 if (try_bias) { |
|
3248 biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters); |
|
3249 // Invariant: if control reaches this point in the emitted stream |
|
3250 // then Rmark has not been modified. |
|
3251 } |
|
3252 andcc(Rmark, 2, G0); |
|
3253 brx(Assembler::notZero, false, Assembler::pn, IsInflated); |
|
3254 delayed()-> // Beware - dangling delay-slot |
|
3255 |
|
3256 // Try stack-lock acquisition. |
|
3257 // Transiently install BUSY (0) encoding in the mark word. |
|
3258 // if the CAS of 0 into the mark was successful then we execute: |
|
3259 // ST box->dhw = mark -- save fetched mark in on-stack basiclock box |
|
3260 // ST obj->mark = box -- overwrite transient 0 value |
|
3261 // This presumes TSO, of course. |
|
3262 |
|
3263 mov(0, Rscratch); |
|
3264 or3(Rmark, markOopDesc::unlocked_value, Rmark); |
|
3265 assert(mark_addr.disp() == 0, "cas must take a zero displacement"); |
|
3266 casn(mark_addr.base(), Rmark, Rscratch); |
|
3267 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads); |
|
3268 cmp(Rscratch, Rmark); |
|
3269 brx(Assembler::notZero, false, Assembler::pn, Recursive); |
|
3270 delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3271 if (counters != NULL) { |
|
3272 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch); |
|
3273 } |
|
3274 ba(done); |
|
3275 delayed()->st_ptr(Rbox, mark_addr); |
|
3276 |
|
3277 bind(Recursive); |
|
3278 // Stack-lock attempt failed - check for recursive stack-lock. |
|
3279 // Tests show that we can remove the recursive case with no impact |
|
3280 // on refworkload 0.83. If we need to reduce the size of the code |
|
3281 // emitted by compiler_lock_object() the recursive case is perfect |
|
3282 // candidate. |
|
3283 // |
|
3284 // A more extreme idea is to always inflate on stack-lock recursion. |
|
3285 // This lets us eliminate the recursive checks in compiler_lock_object |
|
3286 // and compiler_unlock_object and the (box->dhw == 0) encoding. |
|
3287 // A brief experiment - requiring changes to synchronizer.cpp, interpreter, |
|
3288 // and showed a performance *increase*. In the same experiment I eliminated |
|
3289 // the fast-path stack-lock code from the interpreter and always passed |
|
3290 // control to the "slow" operators in synchronizer.cpp. |
|
3291 |
|
3292 // RScratch contains the fetched obj->mark value from the failed CASN. |
|
3293 #ifdef _LP64 |
|
3294 sub(Rscratch, STACK_BIAS, Rscratch); |
|
3295 #endif |
|
3296 sub(Rscratch, SP, Rscratch); |
|
3297 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); |
|
3298 andcc(Rscratch, 0xfffff003, Rscratch); |
|
3299 if (counters != NULL) { |
|
3300 // Accounting needs the Rscratch register |
|
3301 st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3302 cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch); |
|
3303 ba_short(done); |
|
3304 } else { |
|
3305 ba(done); |
|
3306 delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3307 } |
|
3308 |
|
3309 bind (IsInflated); |
|
3310 if (EmitSync & 64) { |
|
3311 // If m->owner != null goto IsLocked |
|
3312 // Test-and-CAS vs CAS |
|
3313 // Pessimistic form avoids futile (doomed) CAS attempts |
|
3314 // The optimistic form avoids RTS->RTO cache line upgrades. |
|
3315 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch); |
|
3316 andcc(Rscratch, Rscratch, G0); |
|
3317 brx(Assembler::notZero, false, Assembler::pn, done); |
|
3318 delayed()->nop(); |
|
3319 // m->owner == null : it's unlocked. |
|
3320 } |
|
3321 |
|
3322 // Try to CAS m->owner from null to Self |
|
3323 // Invariant: if we acquire the lock then _recursions should be 0. |
|
3324 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark); |
|
3325 mov(G2_thread, Rscratch); |
|
3326 casn(Rmark, G0, Rscratch); |
|
3327 cmp(Rscratch, G0); |
|
3328 // ST box->displaced_header = NonZero. |
|
3329 // Any non-zero value suffices: |
|
3330 // unused_mark(), G2_thread, RBox, RScratch, rsp, etc. |
|
3331 st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes()); |
|
3332 // Intentional fall-through into done |
|
3333 } |
|
3334 |
|
3335 bind (done); |
|
3336 } |
|
3337 |
|
3338 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark, |
|
3339 Register Rbox, Register Rscratch, |
|
3340 bool try_bias) { |
|
3341 Address mark_addr(Roop, oopDesc::mark_offset_in_bytes()); |
|
3342 |
|
3343 Label done ; |
|
3344 |
|
3345 if (EmitSync & 4) { |
|
3346 cmp(SP, G0); |
|
3347 return ; |
|
3348 } |
|
3349 |
|
3350 if (EmitSync & 8) { |
|
3351 if (try_bias) { |
|
3352 biased_locking_exit(mark_addr, Rscratch, done); |
|
3353 } |
|
3354 |
|
3355 // Test first if it is a fast recursive unlock |
|
3356 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark); |
|
3357 br_null_short(Rmark, Assembler::pt, done); |
|
3358 |
|
3359 // Check if it is still a light weight lock, this is is true if we see |
|
3360 // the stack address of the basicLock in the markOop of the object |
|
3361 assert(mark_addr.disp() == 0, "cas must take a zero displacement"); |
|
3362 casx_under_lock(mark_addr.base(), Rbox, Rmark, |
|
3363 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); |
|
3364 ba(done); |
|
3365 delayed()->cmp(Rbox, Rmark); |
|
3366 bind(done); |
|
3367 return ; |
|
3368 } |
|
3369 |
|
3370 // Beware ... If the aggregate size of the code emitted by CLO and CUO is |
|
3371 // is too large performance rolls abruptly off a cliff. |
|
3372 // This could be related to inlining policies, code cache management, or |
|
3373 // I$ effects. |
|
3374 Label LStacked ; |
|
3375 |
|
3376 if (try_bias) { |
|
3377 // TODO: eliminate redundant LDs of obj->mark |
|
3378 biased_locking_exit(mark_addr, Rscratch, done); |
|
3379 } |
|
3380 |
|
3381 ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark); |
|
3382 ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch); |
|
3383 andcc(Rscratch, Rscratch, G0); |
|
3384 brx(Assembler::zero, false, Assembler::pn, done); |
|
3385 delayed()->nop(); // consider: relocate fetch of mark, above, into this DS |
|
3386 andcc(Rmark, 2, G0); |
|
3387 brx(Assembler::zero, false, Assembler::pt, LStacked); |
|
3388 delayed()->nop(); |
|
3389 |
|
3390 // It's inflated |
|
3391 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before |
|
3392 // the ST of 0 into _owner which releases the lock. This prevents loads |
|
3393 // and stores within the critical section from reordering (floating) |
|
3394 // past the store that releases the lock. But TSO is a strong memory model |
|
3395 // and that particular flavor of barrier is a noop, so we can safely elide it. |
|
3396 // Note that we use 1-0 locking by default for the inflated case. We |
|
3397 // close the resultant (and rare) race by having contented threads in |
|
3398 // monitorenter periodically poll _owner. |
|
3399 ld_ptr(Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch); |
|
3400 ld_ptr(Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox); |
|
3401 xor3(Rscratch, G2_thread, Rscratch); |
|
3402 orcc(Rbox, Rscratch, Rbox); |
|
3403 brx(Assembler::notZero, false, Assembler::pn, done); |
|
3404 delayed()-> |
|
3405 ld_ptr(Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch); |
|
3406 ld_ptr(Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox); |
|
3407 orcc(Rbox, Rscratch, G0); |
|
3408 if (EmitSync & 65536) { |
|
3409 Label LSucc ; |
|
3410 brx(Assembler::notZero, false, Assembler::pn, LSucc); |
|
3411 delayed()->nop(); |
|
3412 ba(done); |
|
3413 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2); |
|
3414 |
|
3415 bind(LSucc); |
|
3416 st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2); |
|
3417 if (os::is_MP()) { membar (StoreLoad); } |
|
3418 ld_ptr(Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch); |
|
3419 andcc(Rscratch, Rscratch, G0); |
|
3420 brx(Assembler::notZero, false, Assembler::pt, done); |
|
3421 delayed()->andcc(G0, G0, G0); |
|
3422 add(Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark); |
|
3423 mov(G2_thread, Rscratch); |
|
3424 casn(Rmark, G0, Rscratch); |
|
3425 // invert icc.zf and goto done |
|
3426 br_notnull(Rscratch, false, Assembler::pt, done); |
|
3427 delayed()->cmp(G0, G0); |
|
3428 ba(done); |
|
3429 delayed()->cmp(G0, 1); |
|
3430 } else { |
|
3431 brx(Assembler::notZero, false, Assembler::pn, done); |
|
3432 delayed()->nop(); |
|
3433 ba(done); |
|
3434 delayed()->st_ptr(G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2); |
|
3435 } |
|
3436 |
|
3437 bind (LStacked); |
|
3438 // Consider: we could replace the expensive CAS in the exit |
|
3439 // path with a simple ST of the displaced mark value fetched from |
|
3440 // the on-stack basiclock box. That admits a race where a thread T2 |
|
3441 // in the slow lock path -- inflating with monitor M -- could race a |
|
3442 // thread T1 in the fast unlock path, resulting in a missed wakeup for T2. |
|
3443 // More precisely T1 in the stack-lock unlock path could "stomp" the |
|
3444 // inflated mark value M installed by T2, resulting in an orphan |
|
3445 // object monitor M and T2 becoming stranded. We can remedy that situation |
|
3446 // by having T2 periodically poll the object's mark word using timed wait |
|
3447 // operations. If T2 discovers that a stomp has occurred it vacates |
|
3448 // the monitor M and wakes any other threads stranded on the now-orphan M. |
|
3449 // In addition the monitor scavenger, which performs deflation, |
|
3450 // would also need to check for orpan monitors and stranded threads. |
|
3451 // |
|
3452 // Finally, inflation is also used when T2 needs to assign a hashCode |
|
3453 // to O and O is stack-locked by T1. The "stomp" race could cause |
|
3454 // an assigned hashCode value to be lost. We can avoid that condition |
|
3455 // and provide the necessary hashCode stability invariants by ensuring |
|
3456 // that hashCode generation is idempotent between copying GCs. |
|
3457 // For example we could compute the hashCode of an object O as |
|
3458 // O's heap address XOR some high quality RNG value that is refreshed |
|
3459 // at GC-time. The monitor scavenger would install the hashCode |
|
3460 // found in any orphan monitors. Again, the mechanism admits a |
|
3461 // lost-update "stomp" WAW race but detects and recovers as needed. |
|
3462 // |
|
3463 // A prototype implementation showed excellent results, although |
|
3464 // the scavenger and timeout code was rather involved. |
|
3465 |
|
3466 casn(mark_addr.base(), Rbox, Rscratch); |
|
3467 cmp(Rbox, Rscratch); |
|
3468 // Intentional fall through into done ... |
|
3469 |
|
3470 bind(done); |
|
3471 } |
|
3472 |
|
3473 |
|
3474 |
|
3475 void MacroAssembler::print_CPU_state() { |
|
3476 // %%%%% need to implement this |
|
3477 } |
|
3478 |
|
3479 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { |
|
3480 // %%%%% need to implement this |
|
3481 } |
|
3482 |
|
3483 void MacroAssembler::push_IU_state() { |
|
3484 // %%%%% need to implement this |
|
3485 } |
|
3486 |
|
3487 |
|
3488 void MacroAssembler::pop_IU_state() { |
|
3489 // %%%%% need to implement this |
|
3490 } |
|
3491 |
|
3492 |
|
3493 void MacroAssembler::push_FPU_state() { |
|
3494 // %%%%% need to implement this |
|
3495 } |
|
3496 |
|
3497 |
|
3498 void MacroAssembler::pop_FPU_state() { |
|
3499 // %%%%% need to implement this |
|
3500 } |
|
3501 |
|
3502 |
|
3503 void MacroAssembler::push_CPU_state() { |
|
3504 // %%%%% need to implement this |
|
3505 } |
|
3506 |
|
3507 |
|
3508 void MacroAssembler::pop_CPU_state() { |
|
3509 // %%%%% need to implement this |
|
3510 } |
|
3511 |
|
3512 |
|
3513 |
|
3514 void MacroAssembler::verify_tlab() { |
|
3515 #ifdef ASSERT |
|
3516 if (UseTLAB && VerifyOops) { |
|
3517 Label next, next2, ok; |
|
3518 Register t1 = L0; |
|
3519 Register t2 = L1; |
|
3520 Register t3 = L2; |
|
3521 |
|
3522 save_frame(0); |
|
3523 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1); |
|
3524 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2); |
|
3525 or3(t1, t2, t3); |
|
3526 cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next); |
|
3527 STOP("assert(top >= start)"); |
|
3528 should_not_reach_here(); |
|
3529 |
|
3530 bind(next); |
|
3531 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1); |
|
3532 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2); |
|
3533 or3(t3, t2, t3); |
|
3534 cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2); |
|
3535 STOP("assert(top <= end)"); |
|
3536 should_not_reach_here(); |
|
3537 |
|
3538 bind(next2); |
|
3539 and3(t3, MinObjAlignmentInBytesMask, t3); |
|
3540 cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok); |
|
3541 STOP("assert(aligned)"); |
|
3542 should_not_reach_here(); |
|
3543 |
|
3544 bind(ok); |
|
3545 restore(); |
|
3546 } |
|
3547 #endif |
|
3548 } |
|
3549 |
|
3550 |
|
3551 void MacroAssembler::eden_allocate( |
|
3552 Register obj, // result: pointer to object after successful allocation |
|
3553 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise |
|
3554 int con_size_in_bytes, // object size in bytes if known at compile time |
|
3555 Register t1, // temp register |
|
3556 Register t2, // temp register |
|
3557 Label& slow_case // continuation point if fast allocation fails |
|
3558 ){ |
|
3559 // make sure arguments make sense |
|
3560 assert_different_registers(obj, var_size_in_bytes, t1, t2); |
|
3561 assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size"); |
|
3562 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment"); |
|
3563 |
|
3564 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { |
|
3565 // No allocation in the shared eden. |
|
3566 ba_short(slow_case); |
|
3567 } else { |
|
3568 // get eden boundaries |
|
3569 // note: we need both top & top_addr! |
|
3570 const Register top_addr = t1; |
|
3571 const Register end = t2; |
|
3572 |
|
3573 CollectedHeap* ch = Universe::heap(); |
|
3574 set((intx)ch->top_addr(), top_addr); |
|
3575 intx delta = (intx)ch->end_addr() - (intx)ch->top_addr(); |
|
3576 ld_ptr(top_addr, delta, end); |
|
3577 ld_ptr(top_addr, 0, obj); |
|
3578 |
|
3579 // try to allocate |
|
3580 Label retry; |
|
3581 bind(retry); |
|
3582 #ifdef ASSERT |
|
3583 // make sure eden top is properly aligned |
|
3584 { |
|
3585 Label L; |
|
3586 btst(MinObjAlignmentInBytesMask, obj); |
|
3587 br(Assembler::zero, false, Assembler::pt, L); |
|
3588 delayed()->nop(); |
|
3589 STOP("eden top is not properly aligned"); |
|
3590 bind(L); |
|
3591 } |
|
3592 #endif // ASSERT |
|
3593 const Register free = end; |
|
3594 sub(end, obj, free); // compute amount of free space |
|
3595 if (var_size_in_bytes->is_valid()) { |
|
3596 // size is unknown at compile time |
|
3597 cmp(free, var_size_in_bytes); |
|
3598 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case |
|
3599 delayed()->add(obj, var_size_in_bytes, end); |
|
3600 } else { |
|
3601 // size is known at compile time |
|
3602 cmp(free, con_size_in_bytes); |
|
3603 br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case |
|
3604 delayed()->add(obj, con_size_in_bytes, end); |
|
3605 } |
|
3606 // Compare obj with the value at top_addr; if still equal, swap the value of |
|
3607 // end with the value at top_addr. If not equal, read the value at top_addr |
|
3608 // into end. |
|
3609 casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()); |
|
3610 // if someone beat us on the allocation, try again, otherwise continue |
|
3611 cmp(obj, end); |
|
3612 brx(Assembler::notEqual, false, Assembler::pn, retry); |
|
3613 delayed()->mov(end, obj); // nop if successfull since obj == end |
|
3614 |
|
3615 #ifdef ASSERT |
|
3616 // make sure eden top is properly aligned |
|
3617 { |
|
3618 Label L; |
|
3619 const Register top_addr = t1; |
|
3620 |
|
3621 set((intx)ch->top_addr(), top_addr); |
|
3622 ld_ptr(top_addr, 0, top_addr); |
|
3623 btst(MinObjAlignmentInBytesMask, top_addr); |
|
3624 br(Assembler::zero, false, Assembler::pt, L); |
|
3625 delayed()->nop(); |
|
3626 STOP("eden top is not properly aligned"); |
|
3627 bind(L); |
|
3628 } |
|
3629 #endif // ASSERT |
|
3630 } |
|
3631 } |
|
3632 |
|
3633 |
|
3634 void MacroAssembler::tlab_allocate( |
|
3635 Register obj, // result: pointer to object after successful allocation |
|
3636 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise |
|
3637 int con_size_in_bytes, // object size in bytes if known at compile time |
|
3638 Register t1, // temp register |
|
3639 Label& slow_case // continuation point if fast allocation fails |
|
3640 ){ |
|
3641 // make sure arguments make sense |
|
3642 assert_different_registers(obj, var_size_in_bytes, t1); |
|
3643 assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size"); |
|
3644 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment"); |
|
3645 |
|
3646 const Register free = t1; |
|
3647 |
|
3648 verify_tlab(); |
|
3649 |
|
3650 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj); |
|
3651 |
|
3652 // calculate amount of free space |
|
3653 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free); |
|
3654 sub(free, obj, free); |
|
3655 |
|
3656 Label done; |
|
3657 if (var_size_in_bytes == noreg) { |
|
3658 cmp(free, con_size_in_bytes); |
|
3659 } else { |
|
3660 cmp(free, var_size_in_bytes); |
|
3661 } |
|
3662 br(Assembler::less, false, Assembler::pn, slow_case); |
|
3663 // calculate the new top pointer |
|
3664 if (var_size_in_bytes == noreg) { |
|
3665 delayed()->add(obj, con_size_in_bytes, free); |
|
3666 } else { |
|
3667 delayed()->add(obj, var_size_in_bytes, free); |
|
3668 } |
|
3669 |
|
3670 bind(done); |
|
3671 |
|
3672 #ifdef ASSERT |
|
3673 // make sure new free pointer is properly aligned |
|
3674 { |
|
3675 Label L; |
|
3676 btst(MinObjAlignmentInBytesMask, free); |
|
3677 br(Assembler::zero, false, Assembler::pt, L); |
|
3678 delayed()->nop(); |
|
3679 STOP("updated TLAB free is not properly aligned"); |
|
3680 bind(L); |
|
3681 } |
|
3682 #endif // ASSERT |
|
3683 |
|
3684 // update the tlab top pointer |
|
3685 st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset())); |
|
3686 verify_tlab(); |
|
3687 } |
|
3688 |
|
3689 |
|
3690 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) { |
|
3691 Register top = O0; |
|
3692 Register t1 = G1; |
|
3693 Register t2 = G3; |
|
3694 Register t3 = O1; |
|
3695 assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */); |
|
3696 Label do_refill, discard_tlab; |
|
3697 |
|
3698 if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) { |
|
3699 // No allocation in the shared eden. |
|
3700 ba_short(slow_case); |
|
3701 } |
|
3702 |
|
3703 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top); |
|
3704 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1); |
|
3705 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2); |
|
3706 |
|
3707 // calculate amount of free space |
|
3708 sub(t1, top, t1); |
|
3709 srl_ptr(t1, LogHeapWordSize, t1); |
|
3710 |
|
3711 // Retain tlab and allocate object in shared space if |
|
3712 // the amount free in the tlab is too large to discard. |
|
3713 cmp(t1, t2); |
|
3714 brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab); |
|
3715 |
|
3716 // increment waste limit to prevent getting stuck on this slow path |
|
3717 delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2); |
|
3718 st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset())); |
|
3719 if (TLABStats) { |
|
3720 // increment number of slow_allocations |
|
3721 ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2); |
|
3722 add(t2, 1, t2); |
|
3723 stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset())); |
|
3724 } |
|
3725 ba_short(try_eden); |
|
3726 |
|
3727 bind(discard_tlab); |
|
3728 if (TLABStats) { |
|
3729 // increment number of refills |
|
3730 ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2); |
|
3731 add(t2, 1, t2); |
|
3732 stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset())); |
|
3733 // accumulate wastage |
|
3734 ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2); |
|
3735 add(t2, t1, t2); |
|
3736 stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset())); |
|
3737 } |
|
3738 |
|
3739 // if tlab is currently allocated (top or end != null) then |
|
3740 // fill [top, end + alignment_reserve) with array object |
|
3741 br_null_short(top, Assembler::pn, do_refill); |
|
3742 |
|
3743 set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2); |
|
3744 st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word |
|
3745 // set klass to intArrayKlass |
|
3746 sub(t1, typeArrayOopDesc::header_size(T_INT), t1); |
|
3747 add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1); |
|
3748 sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1); |
|
3749 st(t1, top, arrayOopDesc::length_offset_in_bytes()); |
|
3750 set((intptr_t)Universe::intArrayKlassObj_addr(), t2); |
|
3751 ld_ptr(t2, 0, t2); |
|
3752 // store klass last. concurrent gcs assumes klass length is valid if |
|
3753 // klass field is not null. |
|
3754 store_klass(t2, top); |
|
3755 verify_oop(top); |
|
3756 |
|
3757 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t1); |
|
3758 sub(top, t1, t1); // size of tlab's allocated portion |
|
3759 incr_allocated_bytes(t1, t2, t3); |
|
3760 |
|
3761 // refill the tlab with an eden allocation |
|
3762 bind(do_refill); |
|
3763 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1); |
|
3764 sll_ptr(t1, LogHeapWordSize, t1); |
|
3765 // allocate new tlab, address returned in top |
|
3766 eden_allocate(top, t1, 0, t2, t3, slow_case); |
|
3767 |
|
3768 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset())); |
|
3769 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset())); |
|
3770 #ifdef ASSERT |
|
3771 // check that tlab_size (t1) is still valid |
|
3772 { |
|
3773 Label ok; |
|
3774 ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2); |
|
3775 sll_ptr(t2, LogHeapWordSize, t2); |
|
3776 cmp_and_br_short(t1, t2, Assembler::equal, Assembler::pt, ok); |
|
3777 STOP("assert(t1 == tlab_size)"); |
|
3778 should_not_reach_here(); |
|
3779 |
|
3780 bind(ok); |
|
3781 } |
|
3782 #endif // ASSERT |
|
3783 add(top, t1, top); // t1 is tlab_size |
|
3784 sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top); |
|
3785 st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset())); |
|
3786 verify_tlab(); |
|
3787 ba_short(retry); |
|
3788 } |
|
3789 |
|
3790 void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes, |
|
3791 Register t1, Register t2) { |
|
3792 // Bump total bytes allocated by this thread |
|
3793 assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch |
|
3794 assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2); |
|
3795 // v8 support has gone the way of the dodo |
|
3796 ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1); |
|
3797 add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1); |
|
3798 stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset())); |
|
3799 } |
|
3800 |
|
3801 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { |
|
3802 switch (cond) { |
|
3803 // Note some conditions are synonyms for others |
|
3804 case Assembler::never: return Assembler::always; |
|
3805 case Assembler::zero: return Assembler::notZero; |
|
3806 case Assembler::lessEqual: return Assembler::greater; |
|
3807 case Assembler::less: return Assembler::greaterEqual; |
|
3808 case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned; |
|
3809 case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned; |
|
3810 case Assembler::negative: return Assembler::positive; |
|
3811 case Assembler::overflowSet: return Assembler::overflowClear; |
|
3812 case Assembler::always: return Assembler::never; |
|
3813 case Assembler::notZero: return Assembler::zero; |
|
3814 case Assembler::greater: return Assembler::lessEqual; |
|
3815 case Assembler::greaterEqual: return Assembler::less; |
|
3816 case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned; |
|
3817 case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned; |
|
3818 case Assembler::positive: return Assembler::negative; |
|
3819 case Assembler::overflowClear: return Assembler::overflowSet; |
|
3820 } |
|
3821 |
|
3822 ShouldNotReachHere(); return Assembler::overflowClear; |
|
3823 } |
|
3824 |
|
3825 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr, |
|
3826 Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) { |
|
3827 Condition negated_cond = negate_condition(cond); |
|
3828 Label L; |
|
3829 brx(negated_cond, false, Assembler::pt, L); |
|
3830 delayed()->nop(); |
|
3831 inc_counter(counter_ptr, Rtmp1, Rtmp2); |
|
3832 bind(L); |
|
3833 } |
|
3834 |
|
3835 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) { |
|
3836 AddressLiteral addrlit(counter_addr); |
|
3837 sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register. |
|
3838 Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits. |
|
3839 ld(addr, Rtmp2); |
|
3840 inc(Rtmp2); |
|
3841 st(Rtmp2, addr); |
|
3842 } |
|
3843 |
|
3844 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) { |
|
3845 inc_counter((address) counter_addr, Rtmp1, Rtmp2); |
|
3846 } |
|
3847 |
|
3848 SkipIfEqual::SkipIfEqual( |
|
3849 MacroAssembler* masm, Register temp, const bool* flag_addr, |
|
3850 Assembler::Condition condition) { |
|
3851 _masm = masm; |
|
3852 AddressLiteral flag(flag_addr); |
|
3853 _masm->sethi(flag, temp); |
|
3854 _masm->ldub(temp, flag.low10(), temp); |
|
3855 _masm->tst(temp); |
|
3856 _masm->br(condition, false, Assembler::pt, _label); |
|
3857 _masm->delayed()->nop(); |
|
3858 } |
|
3859 |
|
3860 SkipIfEqual::~SkipIfEqual() { |
|
3861 _masm->bind(_label); |
|
3862 } |
|
3863 |
|
3864 |
|
3865 // Writes to stack successive pages until offset reached to check for |
|
3866 // stack overflow + shadow pages. This clobbers tsp and scratch. |
|
3867 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp, |
|
3868 Register Rscratch) { |
|
3869 // Use stack pointer in temp stack pointer |
|
3870 mov(SP, Rtsp); |
|
3871 |
|
3872 // Bang stack for total size given plus stack shadow page size. |
|
3873 // Bang one page at a time because a large size can overflow yellow and |
|
3874 // red zones (the bang will fail but stack overflow handling can't tell that |
|
3875 // it was a stack overflow bang vs a regular segv). |
|
3876 int offset = os::vm_page_size(); |
|
3877 Register Roffset = Rscratch; |
|
3878 |
|
3879 Label loop; |
|
3880 bind(loop); |
|
3881 set((-offset)+STACK_BIAS, Rscratch); |
|
3882 st(G0, Rtsp, Rscratch); |
|
3883 set(offset, Roffset); |
|
3884 sub(Rsize, Roffset, Rsize); |
|
3885 cmp(Rsize, G0); |
|
3886 br(Assembler::greater, false, Assembler::pn, loop); |
|
3887 delayed()->sub(Rtsp, Roffset, Rtsp); |
|
3888 |
|
3889 // Bang down shadow pages too. |
|
3890 // The -1 because we already subtracted 1 page. |
|
3891 for (int i = 0; i< StackShadowPages-1; i++) { |
|
3892 set((-i*offset)+STACK_BIAS, Rscratch); |
|
3893 st(G0, Rtsp, Rscratch); |
|
3894 } |
|
3895 } |
|
3896 |
|
3897 /////////////////////////////////////////////////////////////////////////////////// |
|
3898 #ifndef SERIALGC |
|
3899 |
|
3900 static address satb_log_enqueue_with_frame = NULL; |
|
3901 static u_char* satb_log_enqueue_with_frame_end = NULL; |
|
3902 |
|
3903 static address satb_log_enqueue_frameless = NULL; |
|
3904 static u_char* satb_log_enqueue_frameless_end = NULL; |
|
3905 |
|
3906 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions? |
|
3907 |
|
3908 static void generate_satb_log_enqueue(bool with_frame) { |
|
3909 BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize); |
|
3910 CodeBuffer buf(bb); |
|
3911 MacroAssembler masm(&buf); |
|
3912 |
|
3913 #define __ masm. |
|
3914 |
|
3915 address start = __ pc(); |
|
3916 Register pre_val; |
|
3917 |
|
3918 Label refill, restart; |
|
3919 if (with_frame) { |
|
3920 __ save_frame(0); |
|
3921 pre_val = I0; // Was O0 before the save. |
|
3922 } else { |
|
3923 pre_val = O0; |
|
3924 } |
|
3925 |
|
3926 int satb_q_index_byte_offset = |
|
3927 in_bytes(JavaThread::satb_mark_queue_offset() + |
|
3928 PtrQueue::byte_offset_of_index()); |
|
3929 |
|
3930 int satb_q_buf_byte_offset = |
|
3931 in_bytes(JavaThread::satb_mark_queue_offset() + |
|
3932 PtrQueue::byte_offset_of_buf()); |
|
3933 |
|
3934 assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) && |
|
3935 in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t), |
|
3936 "check sizes in assembly below"); |
|
3937 |
|
3938 __ bind(restart); |
|
3939 |
|
3940 // Load the index into the SATB buffer. PtrQueue::_index is a size_t |
|
3941 // so ld_ptr is appropriate. |
|
3942 __ ld_ptr(G2_thread, satb_q_index_byte_offset, L0); |
|
3943 |
|
3944 // index == 0? |
|
3945 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill); |
|
3946 |
|
3947 __ ld_ptr(G2_thread, satb_q_buf_byte_offset, L1); |
|
3948 __ sub(L0, oopSize, L0); |
|
3949 |
|
3950 __ st_ptr(pre_val, L1, L0); // [_buf + index] := I0 |
|
3951 if (!with_frame) { |
|
3952 // Use return-from-leaf |
|
3953 __ retl(); |
|
3954 __ delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset); |
|
3955 } else { |
|
3956 // Not delayed. |
|
3957 __ st_ptr(L0, G2_thread, satb_q_index_byte_offset); |
|
3958 } |
|
3959 if (with_frame) { |
|
3960 __ ret(); |
|
3961 __ delayed()->restore(); |
|
3962 } |
|
3963 __ bind(refill); |
|
3964 |
|
3965 address handle_zero = |
|
3966 CAST_FROM_FN_PTR(address, |
|
3967 &SATBMarkQueueSet::handle_zero_index_for_thread); |
|
3968 // This should be rare enough that we can afford to save all the |
|
3969 // scratch registers that the calling context might be using. |
|
3970 __ mov(G1_scratch, L0); |
|
3971 __ mov(G3_scratch, L1); |
|
3972 __ mov(G4, L2); |
|
3973 // We need the value of O0 above (for the write into the buffer), so we |
|
3974 // save and restore it. |
|
3975 __ mov(O0, L3); |
|
3976 // Since the call will overwrite O7, we save and restore that, as well. |
|
3977 __ mov(O7, L4); |
|
3978 __ call_VM_leaf(L5, handle_zero, G2_thread); |
|
3979 __ mov(L0, G1_scratch); |
|
3980 __ mov(L1, G3_scratch); |
|
3981 __ mov(L2, G4); |
|
3982 __ mov(L3, O0); |
|
3983 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); |
|
3984 __ delayed()->mov(L4, O7); |
|
3985 |
|
3986 if (with_frame) { |
|
3987 satb_log_enqueue_with_frame = start; |
|
3988 satb_log_enqueue_with_frame_end = __ pc(); |
|
3989 } else { |
|
3990 satb_log_enqueue_frameless = start; |
|
3991 satb_log_enqueue_frameless_end = __ pc(); |
|
3992 } |
|
3993 |
|
3994 #undef __ |
|
3995 } |
|
3996 |
|
3997 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) { |
|
3998 if (with_frame) { |
|
3999 if (satb_log_enqueue_with_frame == 0) { |
|
4000 generate_satb_log_enqueue(with_frame); |
|
4001 assert(satb_log_enqueue_with_frame != 0, "postcondition."); |
|
4002 if (G1SATBPrintStubs) { |
|
4003 tty->print_cr("Generated with-frame satb enqueue:"); |
|
4004 Disassembler::decode((u_char*)satb_log_enqueue_with_frame, |
|
4005 satb_log_enqueue_with_frame_end, |
|
4006 tty); |
|
4007 } |
|
4008 } |
|
4009 } else { |
|
4010 if (satb_log_enqueue_frameless == 0) { |
|
4011 generate_satb_log_enqueue(with_frame); |
|
4012 assert(satb_log_enqueue_frameless != 0, "postcondition."); |
|
4013 if (G1SATBPrintStubs) { |
|
4014 tty->print_cr("Generated frameless satb enqueue:"); |
|
4015 Disassembler::decode((u_char*)satb_log_enqueue_frameless, |
|
4016 satb_log_enqueue_frameless_end, |
|
4017 tty); |
|
4018 } |
|
4019 } |
|
4020 } |
|
4021 } |
|
4022 |
|
4023 void MacroAssembler::g1_write_barrier_pre(Register obj, |
|
4024 Register index, |
|
4025 int offset, |
|
4026 Register pre_val, |
|
4027 Register tmp, |
|
4028 bool preserve_o_regs) { |
|
4029 Label filtered; |
|
4030 |
|
4031 if (obj == noreg) { |
|
4032 // We are not loading the previous value so make |
|
4033 // sure that we don't trash the value in pre_val |
|
4034 // with the code below. |
|
4035 assert_different_registers(pre_val, tmp); |
|
4036 } else { |
|
4037 // We will be loading the previous value |
|
4038 // in this code so... |
|
4039 assert(offset == 0 || index == noreg, "choose one"); |
|
4040 assert(pre_val == noreg, "check this code"); |
|
4041 } |
|
4042 |
|
4043 // Is marking active? |
|
4044 if (in_bytes(PtrQueue::byte_width_of_active()) == 4) { |
|
4045 ld(G2, |
|
4046 in_bytes(JavaThread::satb_mark_queue_offset() + |
|
4047 PtrQueue::byte_offset_of_active()), |
|
4048 tmp); |
|
4049 } else { |
|
4050 guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1, |
|
4051 "Assumption"); |
|
4052 ldsb(G2, |
|
4053 in_bytes(JavaThread::satb_mark_queue_offset() + |
|
4054 PtrQueue::byte_offset_of_active()), |
|
4055 tmp); |
|
4056 } |
|
4057 |
|
4058 // Is marking active? |
|
4059 cmp_and_br_short(tmp, G0, Assembler::equal, Assembler::pt, filtered); |
|
4060 |
|
4061 // Do we need to load the previous value? |
|
4062 if (obj != noreg) { |
|
4063 // Load the previous value... |
|
4064 if (index == noreg) { |
|
4065 if (Assembler::is_simm13(offset)) { |
|
4066 load_heap_oop(obj, offset, tmp); |
|
4067 } else { |
|
4068 set(offset, tmp); |
|
4069 load_heap_oop(obj, tmp, tmp); |
|
4070 } |
|
4071 } else { |
|
4072 load_heap_oop(obj, index, tmp); |
|
4073 } |
|
4074 // Previous value has been loaded into tmp |
|
4075 pre_val = tmp; |
|
4076 } |
|
4077 |
|
4078 assert(pre_val != noreg, "must have a real register"); |
|
4079 |
|
4080 // Is the previous value null? |
|
4081 cmp_and_brx_short(pre_val, G0, Assembler::equal, Assembler::pt, filtered); |
|
4082 |
|
4083 // OK, it's not filtered, so we'll need to call enqueue. In the normal |
|
4084 // case, pre_val will be a scratch G-reg, but there are some cases in |
|
4085 // which it's an O-reg. In the first case, do a normal call. In the |
|
4086 // latter, do a save here and call the frameless version. |
|
4087 |
|
4088 guarantee(pre_val->is_global() || pre_val->is_out(), |
|
4089 "Or we need to think harder."); |
|
4090 |
|
4091 if (pre_val->is_global() && !preserve_o_regs) { |
|
4092 generate_satb_log_enqueue_if_necessary(true); // with frame |
|
4093 |
|
4094 call(satb_log_enqueue_with_frame); |
|
4095 delayed()->mov(pre_val, O0); |
|
4096 } else { |
|
4097 generate_satb_log_enqueue_if_necessary(false); // frameless |
|
4098 |
|
4099 save_frame(0); |
|
4100 call(satb_log_enqueue_frameless); |
|
4101 delayed()->mov(pre_val->after_save(), O0); |
|
4102 restore(); |
|
4103 } |
|
4104 |
|
4105 bind(filtered); |
|
4106 } |
|
4107 |
|
4108 static address dirty_card_log_enqueue = 0; |
|
4109 static u_char* dirty_card_log_enqueue_end = 0; |
|
4110 |
|
4111 // This gets to assume that o0 contains the object address. |
|
4112 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) { |
|
4113 BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2); |
|
4114 CodeBuffer buf(bb); |
|
4115 MacroAssembler masm(&buf); |
|
4116 #define __ masm. |
|
4117 address start = __ pc(); |
|
4118 |
|
4119 Label not_already_dirty, restart, refill; |
|
4120 |
|
4121 #ifdef _LP64 |
|
4122 __ srlx(O0, CardTableModRefBS::card_shift, O0); |
|
4123 #else |
|
4124 __ srl(O0, CardTableModRefBS::card_shift, O0); |
|
4125 #endif |
|
4126 AddressLiteral addrlit(byte_map_base); |
|
4127 __ set(addrlit, O1); // O1 := <card table base> |
|
4128 __ ldub(O0, O1, O2); // O2 := [O0 + O1] |
|
4129 |
|
4130 assert(CardTableModRefBS::dirty_card_val() == 0, "otherwise check this code"); |
|
4131 __ cmp_and_br_short(O2, G0, Assembler::notEqual, Assembler::pt, not_already_dirty); |
|
4132 |
|
4133 // We didn't take the branch, so we're already dirty: return. |
|
4134 // Use return-from-leaf |
|
4135 __ retl(); |
|
4136 __ delayed()->nop(); |
|
4137 |
|
4138 // Not dirty. |
|
4139 __ bind(not_already_dirty); |
|
4140 |
|
4141 // Get O0 + O1 into a reg by itself |
|
4142 __ add(O0, O1, O3); |
|
4143 |
|
4144 // First, dirty it. |
|
4145 __ stb(G0, O3, G0); // [cardPtr] := 0 (i.e., dirty). |
|
4146 |
|
4147 int dirty_card_q_index_byte_offset = |
|
4148 in_bytes(JavaThread::dirty_card_queue_offset() + |
|
4149 PtrQueue::byte_offset_of_index()); |
|
4150 int dirty_card_q_buf_byte_offset = |
|
4151 in_bytes(JavaThread::dirty_card_queue_offset() + |
|
4152 PtrQueue::byte_offset_of_buf()); |
|
4153 __ bind(restart); |
|
4154 |
|
4155 // Load the index into the update buffer. PtrQueue::_index is |
|
4156 // a size_t so ld_ptr is appropriate here. |
|
4157 __ ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0); |
|
4158 |
|
4159 // index == 0? |
|
4160 __ cmp_and_brx_short(L0, G0, Assembler::equal, Assembler::pn, refill); |
|
4161 |
|
4162 __ ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1); |
|
4163 __ sub(L0, oopSize, L0); |
|
4164 |
|
4165 __ st_ptr(O3, L1, L0); // [_buf + index] := I0 |
|
4166 // Use return-from-leaf |
|
4167 __ retl(); |
|
4168 __ delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset); |
|
4169 |
|
4170 __ bind(refill); |
|
4171 address handle_zero = |
|
4172 CAST_FROM_FN_PTR(address, |
|
4173 &DirtyCardQueueSet::handle_zero_index_for_thread); |
|
4174 // This should be rare enough that we can afford to save all the |
|
4175 // scratch registers that the calling context might be using. |
|
4176 __ mov(G1_scratch, L3); |
|
4177 __ mov(G3_scratch, L5); |
|
4178 // We need the value of O3 above (for the write into the buffer), so we |
|
4179 // save and restore it. |
|
4180 __ mov(O3, L6); |
|
4181 // Since the call will overwrite O7, we save and restore that, as well. |
|
4182 __ mov(O7, L4); |
|
4183 |
|
4184 __ call_VM_leaf(L7_thread_cache, handle_zero, G2_thread); |
|
4185 __ mov(L3, G1_scratch); |
|
4186 __ mov(L5, G3_scratch); |
|
4187 __ mov(L6, O3); |
|
4188 __ br(Assembler::always, /*annul*/false, Assembler::pt, restart); |
|
4189 __ delayed()->mov(L4, O7); |
|
4190 |
|
4191 dirty_card_log_enqueue = start; |
|
4192 dirty_card_log_enqueue_end = __ pc(); |
|
4193 // XXX Should have a guarantee here about not going off the end! |
|
4194 // Does it already do so? Do an experiment... |
|
4195 |
|
4196 #undef __ |
|
4197 |
|
4198 } |
|
4199 |
|
4200 static inline void |
|
4201 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) { |
|
4202 if (dirty_card_log_enqueue == 0) { |
|
4203 generate_dirty_card_log_enqueue(byte_map_base); |
|
4204 assert(dirty_card_log_enqueue != 0, "postcondition."); |
|
4205 if (G1SATBPrintStubs) { |
|
4206 tty->print_cr("Generated dirty_card enqueue:"); |
|
4207 Disassembler::decode((u_char*)dirty_card_log_enqueue, |
|
4208 dirty_card_log_enqueue_end, |
|
4209 tty); |
|
4210 } |
|
4211 } |
|
4212 } |
|
4213 |
|
4214 |
|
4215 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) { |
|
4216 |
|
4217 Label filtered; |
|
4218 MacroAssembler* post_filter_masm = this; |
|
4219 |
|
4220 if (new_val == G0) return; |
|
4221 |
|
4222 G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set(); |
|
4223 assert(bs->kind() == BarrierSet::G1SATBCT || |
|
4224 bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier"); |
|
4225 |
|
4226 if (G1RSBarrierRegionFilter) { |
|
4227 xor3(store_addr, new_val, tmp); |
|
4228 #ifdef _LP64 |
|
4229 srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp); |
|
4230 #else |
|
4231 srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp); |
|
4232 #endif |
|
4233 |
|
4234 // XXX Should I predict this taken or not? Does it matter? |
|
4235 cmp_and_brx_short(tmp, G0, Assembler::equal, Assembler::pt, filtered); |
|
4236 } |
|
4237 |
|
4238 // If the "store_addr" register is an "in" or "local" register, move it to |
|
4239 // a scratch reg so we can pass it as an argument. |
|
4240 bool use_scr = !(store_addr->is_global() || store_addr->is_out()); |
|
4241 // Pick a scratch register different from "tmp". |
|
4242 Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch); |
|
4243 // Make sure we use up the delay slot! |
|
4244 if (use_scr) { |
|
4245 post_filter_masm->mov(store_addr, scr); |
|
4246 } else { |
|
4247 post_filter_masm->nop(); |
|
4248 } |
|
4249 generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base); |
|
4250 save_frame(0); |
|
4251 call(dirty_card_log_enqueue); |
|
4252 if (use_scr) { |
|
4253 delayed()->mov(scr, O0); |
|
4254 } else { |
|
4255 delayed()->mov(store_addr->after_save(), O0); |
|
4256 } |
|
4257 restore(); |
|
4258 |
|
4259 bind(filtered); |
|
4260 } |
|
4261 |
|
4262 #endif // SERIALGC |
|
4263 /////////////////////////////////////////////////////////////////////////////////// |
|
4264 |
|
4265 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) { |
|
4266 // If we're writing constant NULL, we can skip the write barrier. |
|
4267 if (new_val == G0) return; |
|
4268 CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set(); |
|
4269 assert(bs->kind() == BarrierSet::CardTableModRef || |
|
4270 bs->kind() == BarrierSet::CardTableExtension, "wrong barrier"); |
|
4271 card_table_write(bs->byte_map_base, tmp, store_addr); |
|
4272 } |
|
4273 |
|
4274 void MacroAssembler::load_klass(Register src_oop, Register klass) { |
|
4275 // The number of bytes in this code is used by |
|
4276 // MachCallDynamicJavaNode::ret_addr_offset() |
|
4277 // if this changes, change that. |
|
4278 if (UseCompressedKlassPointers) { |
|
4279 lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass); |
|
4280 decode_klass_not_null(klass); |
|
4281 } else { |
|
4282 ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass); |
|
4283 } |
|
4284 } |
|
4285 |
|
4286 void MacroAssembler::store_klass(Register klass, Register dst_oop) { |
|
4287 if (UseCompressedKlassPointers) { |
|
4288 assert(dst_oop != klass, "not enough registers"); |
|
4289 encode_klass_not_null(klass); |
|
4290 st(klass, dst_oop, oopDesc::klass_offset_in_bytes()); |
|
4291 } else { |
|
4292 st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes()); |
|
4293 } |
|
4294 } |
|
4295 |
|
4296 void MacroAssembler::store_klass_gap(Register s, Register d) { |
|
4297 if (UseCompressedKlassPointers) { |
|
4298 assert(s != d, "not enough registers"); |
|
4299 st(s, d, oopDesc::klass_gap_offset_in_bytes()); |
|
4300 } |
|
4301 } |
|
4302 |
|
4303 void MacroAssembler::load_heap_oop(const Address& s, Register d) { |
|
4304 if (UseCompressedOops) { |
|
4305 lduw(s, d); |
|
4306 decode_heap_oop(d); |
|
4307 } else { |
|
4308 ld_ptr(s, d); |
|
4309 } |
|
4310 } |
|
4311 |
|
4312 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) { |
|
4313 if (UseCompressedOops) { |
|
4314 lduw(s1, s2, d); |
|
4315 decode_heap_oop(d, d); |
|
4316 } else { |
|
4317 ld_ptr(s1, s2, d); |
|
4318 } |
|
4319 } |
|
4320 |
|
4321 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) { |
|
4322 if (UseCompressedOops) { |
|
4323 lduw(s1, simm13a, d); |
|
4324 decode_heap_oop(d, d); |
|
4325 } else { |
|
4326 ld_ptr(s1, simm13a, d); |
|
4327 } |
|
4328 } |
|
4329 |
|
4330 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) { |
|
4331 if (s2.is_constant()) load_heap_oop(s1, s2.as_constant(), d); |
|
4332 else load_heap_oop(s1, s2.as_register(), d); |
|
4333 } |
|
4334 |
|
4335 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) { |
|
4336 if (UseCompressedOops) { |
|
4337 assert(s1 != d && s2 != d, "not enough registers"); |
|
4338 encode_heap_oop(d); |
|
4339 st(d, s1, s2); |
|
4340 } else { |
|
4341 st_ptr(d, s1, s2); |
|
4342 } |
|
4343 } |
|
4344 |
|
4345 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) { |
|
4346 if (UseCompressedOops) { |
|
4347 assert(s1 != d, "not enough registers"); |
|
4348 encode_heap_oop(d); |
|
4349 st(d, s1, simm13a); |
|
4350 } else { |
|
4351 st_ptr(d, s1, simm13a); |
|
4352 } |
|
4353 } |
|
4354 |
|
4355 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) { |
|
4356 if (UseCompressedOops) { |
|
4357 assert(a.base() != d, "not enough registers"); |
|
4358 encode_heap_oop(d); |
|
4359 st(d, a, offset); |
|
4360 } else { |
|
4361 st_ptr(d, a, offset); |
|
4362 } |
|
4363 } |
|
4364 |
|
4365 |
|
4366 void MacroAssembler::encode_heap_oop(Register src, Register dst) { |
|
4367 assert (UseCompressedOops, "must be compressed"); |
|
4368 assert (Universe::heap() != NULL, "java heap should be initialized"); |
|
4369 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); |
|
4370 verify_oop(src); |
|
4371 if (Universe::narrow_oop_base() == NULL) { |
|
4372 srlx(src, LogMinObjAlignmentInBytes, dst); |
|
4373 return; |
|
4374 } |
|
4375 Label done; |
|
4376 if (src == dst) { |
|
4377 // optimize for frequent case src == dst |
|
4378 bpr(rc_nz, true, Assembler::pt, src, done); |
|
4379 delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken |
|
4380 bind(done); |
|
4381 srlx(src, LogMinObjAlignmentInBytes, dst); |
|
4382 } else { |
|
4383 bpr(rc_z, false, Assembler::pn, src, done); |
|
4384 delayed() -> mov(G0, dst); |
|
4385 // could be moved before branch, and annulate delay, |
|
4386 // but may add some unneeded work decoding null |
|
4387 sub(src, G6_heapbase, dst); |
|
4388 srlx(dst, LogMinObjAlignmentInBytes, dst); |
|
4389 bind(done); |
|
4390 } |
|
4391 } |
|
4392 |
|
4393 |
|
4394 void MacroAssembler::encode_heap_oop_not_null(Register r) { |
|
4395 assert (UseCompressedOops, "must be compressed"); |
|
4396 assert (Universe::heap() != NULL, "java heap should be initialized"); |
|
4397 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); |
|
4398 verify_oop(r); |
|
4399 if (Universe::narrow_oop_base() != NULL) |
|
4400 sub(r, G6_heapbase, r); |
|
4401 srlx(r, LogMinObjAlignmentInBytes, r); |
|
4402 } |
|
4403 |
|
4404 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) { |
|
4405 assert (UseCompressedOops, "must be compressed"); |
|
4406 assert (Universe::heap() != NULL, "java heap should be initialized"); |
|
4407 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); |
|
4408 verify_oop(src); |
|
4409 if (Universe::narrow_oop_base() == NULL) { |
|
4410 srlx(src, LogMinObjAlignmentInBytes, dst); |
|
4411 } else { |
|
4412 sub(src, G6_heapbase, dst); |
|
4413 srlx(dst, LogMinObjAlignmentInBytes, dst); |
|
4414 } |
|
4415 } |
|
4416 |
|
4417 // Same algorithm as oops.inline.hpp decode_heap_oop. |
|
4418 void MacroAssembler::decode_heap_oop(Register src, Register dst) { |
|
4419 assert (UseCompressedOops, "must be compressed"); |
|
4420 assert (Universe::heap() != NULL, "java heap should be initialized"); |
|
4421 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); |
|
4422 sllx(src, LogMinObjAlignmentInBytes, dst); |
|
4423 if (Universe::narrow_oop_base() != NULL) { |
|
4424 Label done; |
|
4425 bpr(rc_nz, true, Assembler::pt, dst, done); |
|
4426 delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken |
|
4427 bind(done); |
|
4428 } |
|
4429 verify_oop(dst); |
|
4430 } |
|
4431 |
|
4432 void MacroAssembler::decode_heap_oop_not_null(Register r) { |
|
4433 // Do not add assert code to this unless you change vtableStubs_sparc.cpp |
|
4434 // pd_code_size_limit. |
|
4435 // Also do not verify_oop as this is called by verify_oop. |
|
4436 assert (UseCompressedOops, "must be compressed"); |
|
4437 assert (Universe::heap() != NULL, "java heap should be initialized"); |
|
4438 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); |
|
4439 sllx(r, LogMinObjAlignmentInBytes, r); |
|
4440 if (Universe::narrow_oop_base() != NULL) |
|
4441 add(r, G6_heapbase, r); |
|
4442 } |
|
4443 |
|
4444 void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) { |
|
4445 // Do not add assert code to this unless you change vtableStubs_sparc.cpp |
|
4446 // pd_code_size_limit. |
|
4447 // Also do not verify_oop as this is called by verify_oop. |
|
4448 assert (UseCompressedOops, "must be compressed"); |
|
4449 assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong"); |
|
4450 sllx(src, LogMinObjAlignmentInBytes, dst); |
|
4451 if (Universe::narrow_oop_base() != NULL) |
|
4452 add(dst, G6_heapbase, dst); |
|
4453 } |
|
4454 |
|
4455 void MacroAssembler::encode_klass_not_null(Register r) { |
|
4456 assert(Metaspace::is_initialized(), "metaspace should be initialized"); |
|
4457 assert (UseCompressedKlassPointers, "must be compressed"); |
|
4458 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); |
|
4459 if (Universe::narrow_klass_base() != NULL) |
|
4460 sub(r, G6_heapbase, r); |
|
4461 srlx(r, LogKlassAlignmentInBytes, r); |
|
4462 } |
|
4463 |
|
4464 void MacroAssembler::encode_klass_not_null(Register src, Register dst) { |
|
4465 assert(Metaspace::is_initialized(), "metaspace should be initialized"); |
|
4466 assert (UseCompressedKlassPointers, "must be compressed"); |
|
4467 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); |
|
4468 if (Universe::narrow_klass_base() == NULL) { |
|
4469 srlx(src, LogKlassAlignmentInBytes, dst); |
|
4470 } else { |
|
4471 sub(src, G6_heapbase, dst); |
|
4472 srlx(dst, LogKlassAlignmentInBytes, dst); |
|
4473 } |
|
4474 } |
|
4475 |
|
4476 void MacroAssembler::decode_klass_not_null(Register r) { |
|
4477 assert(Metaspace::is_initialized(), "metaspace should be initialized"); |
|
4478 // Do not add assert code to this unless you change vtableStubs_sparc.cpp |
|
4479 // pd_code_size_limit. |
|
4480 assert (UseCompressedKlassPointers, "must be compressed"); |
|
4481 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); |
|
4482 sllx(r, LogKlassAlignmentInBytes, r); |
|
4483 if (Universe::narrow_klass_base() != NULL) |
|
4484 add(r, G6_heapbase, r); |
|
4485 } |
|
4486 |
|
4487 void MacroAssembler::decode_klass_not_null(Register src, Register dst) { |
|
4488 assert(Metaspace::is_initialized(), "metaspace should be initialized"); |
|
4489 // Do not add assert code to this unless you change vtableStubs_sparc.cpp |
|
4490 // pd_code_size_limit. |
|
4491 assert (UseCompressedKlassPointers, "must be compressed"); |
|
4492 assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong"); |
|
4493 sllx(src, LogKlassAlignmentInBytes, dst); |
|
4494 if (Universe::narrow_klass_base() != NULL) |
|
4495 add(dst, G6_heapbase, dst); |
|
4496 } |
|
4497 |
|
4498 void MacroAssembler::reinit_heapbase() { |
|
4499 if (UseCompressedOops || UseCompressedKlassPointers) { |
|
4500 AddressLiteral base(Universe::narrow_ptrs_base_addr()); |
|
4501 load_ptr_contents(base, G6_heapbase); |
|
4502 } |
|
4503 } |
|
4504 |
|
4505 // Compare char[] arrays aligned to 4 bytes. |
|
4506 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2, |
|
4507 Register limit, Register result, |
|
4508 Register chr1, Register chr2, Label& Ldone) { |
|
4509 Label Lvector, Lloop; |
|
4510 assert(chr1 == result, "should be the same"); |
|
4511 |
|
4512 // Note: limit contains number of bytes (2*char_elements) != 0. |
|
4513 andcc(limit, 0x2, chr1); // trailing character ? |
|
4514 br(Assembler::zero, false, Assembler::pt, Lvector); |
|
4515 delayed()->nop(); |
|
4516 |
|
4517 // compare the trailing char |
|
4518 sub(limit, sizeof(jchar), limit); |
|
4519 lduh(ary1, limit, chr1); |
|
4520 lduh(ary2, limit, chr2); |
|
4521 cmp(chr1, chr2); |
|
4522 br(Assembler::notEqual, true, Assembler::pt, Ldone); |
|
4523 delayed()->mov(G0, result); // not equal |
|
4524 |
|
4525 // only one char ? |
|
4526 cmp_zero_and_br(zero, limit, Ldone, true, Assembler::pn); |
|
4527 delayed()->add(G0, 1, result); // zero-length arrays are equal |
|
4528 |
|
4529 // word by word compare, dont't need alignment check |
|
4530 bind(Lvector); |
|
4531 // Shift ary1 and ary2 to the end of the arrays, negate limit |
|
4532 add(ary1, limit, ary1); |
|
4533 add(ary2, limit, ary2); |
|
4534 neg(limit, limit); |
|
4535 |
|
4536 lduw(ary1, limit, chr1); |
|
4537 bind(Lloop); |
|
4538 lduw(ary2, limit, chr2); |
|
4539 cmp(chr1, chr2); |
|
4540 br(Assembler::notEqual, true, Assembler::pt, Ldone); |
|
4541 delayed()->mov(G0, result); // not equal |
|
4542 inccc(limit, 2*sizeof(jchar)); |
|
4543 // annul LDUW if branch is not taken to prevent access past end of array |
|
4544 br(Assembler::notZero, true, Assembler::pt, Lloop); |
|
4545 delayed()->lduw(ary1, limit, chr1); // hoisted |
|
4546 |
|
4547 // Caller should set it: |
|
4548 // add(G0, 1, result); // equals |
|
4549 } |
|
4550 |
|
4551 // Use BIS for zeroing (count is in bytes). |
|
4552 void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) { |
|
4553 assert(UseBlockZeroing && VM_Version::has_block_zeroing(), "only works with BIS zeroing"); |
|
4554 Register end = count; |
|
4555 int cache_line_size = VM_Version::prefetch_data_size(); |
|
4556 // Minimum count when BIS zeroing can be used since |
|
4557 // it needs membar which is expensive. |
|
4558 int block_zero_size = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit); |
|
4559 |
|
4560 Label small_loop; |
|
4561 // Check if count is negative (dead code) or zero. |
|
4562 // Note, count uses 64bit in 64 bit VM. |
|
4563 cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone); |
|
4564 |
|
4565 // Use BIS zeroing only for big arrays since it requires membar. |
|
4566 if (Assembler::is_simm13(block_zero_size)) { // < 4096 |
|
4567 cmp(count, block_zero_size); |
|
4568 } else { |
|
4569 set(block_zero_size, temp); |
|
4570 cmp(count, temp); |
|
4571 } |
|
4572 br(Assembler::lessUnsigned, false, Assembler::pt, small_loop); |
|
4573 delayed()->add(to, count, end); |
|
4574 |
|
4575 // Note: size is >= three (32 bytes) cache lines. |
|
4576 |
|
4577 // Clean the beginning of space up to next cache line. |
|
4578 for (int offs = 0; offs < cache_line_size; offs += 8) { |
|
4579 stx(G0, to, offs); |
|
4580 } |
|
4581 |
|
4582 // align to next cache line |
|
4583 add(to, cache_line_size, to); |
|
4584 and3(to, -cache_line_size, to); |
|
4585 |
|
4586 // Note: size left >= two (32 bytes) cache lines. |
|
4587 |
|
4588 // BIS should not be used to zero tail (64 bytes) |
|
4589 // to avoid zeroing a header of the following object. |
|
4590 sub(end, (cache_line_size*2)-8, end); |
|
4591 |
|
4592 Label bis_loop; |
|
4593 bind(bis_loop); |
|
4594 stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY); |
|
4595 add(to, cache_line_size, to); |
|
4596 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop); |
|
4597 |
|
4598 // BIS needs membar. |
|
4599 membar(Assembler::StoreLoad); |
|
4600 |
|
4601 add(end, (cache_line_size*2)-8, end); // restore end |
|
4602 cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone); |
|
4603 |
|
4604 // Clean the tail. |
|
4605 bind(small_loop); |
|
4606 stx(G0, to, 0); |
|
4607 add(to, 8, to); |
|
4608 cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop); |
|
4609 nop(); // Separate short branches |
|
4610 } |