hotspot/src/share/vm/opto/chaitin.cpp
changeset 1 489c9b5090e2
child 360 21d113ecbf6a
equal deleted inserted replaced
0:fd16c54261b3 1:489c9b5090e2
       
     1 /*
       
     2  * Copyright 2000-2007 Sun Microsystems, Inc.  All Rights Reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.
       
     8  *
       
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    12  * version 2 for more details (a copy is included in the LICENSE file that
       
    13  * accompanied this code).
       
    14  *
       
    15  * You should have received a copy of the GNU General Public License version
       
    16  * 2 along with this work; if not, write to the Free Software Foundation,
       
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    18  *
       
    19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
       
    20  * CA 95054 USA or visit www.sun.com if you need additional information or
       
    21  * have any questions.
       
    22  *
       
    23  */
       
    24 
       
    25 #include "incls/_precompiled.incl"
       
    26 #include "incls/_chaitin.cpp.incl"
       
    27 
       
    28 //=============================================================================
       
    29 
       
    30 #ifndef PRODUCT
       
    31 void LRG::dump( ) const {
       
    32   ttyLocker ttyl;
       
    33   tty->print("%d ",num_regs());
       
    34   _mask.dump();
       
    35   if( _msize_valid ) {
       
    36     if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size);
       
    37     else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size());
       
    38   } else {
       
    39     tty->print(", #?(%d) ",_mask.Size());
       
    40   }
       
    41 
       
    42   tty->print("EffDeg: ");
       
    43   if( _degree_valid ) tty->print( "%d ", _eff_degree );
       
    44   else tty->print("? ");
       
    45 
       
    46   if( _def == NodeSentinel ) {
       
    47     tty->print("MultiDef ");
       
    48     if (_defs != NULL) {
       
    49       tty->print("(");
       
    50       for (int i = 0; i < _defs->length(); i++) {
       
    51         tty->print("N%d ", _defs->at(i)->_idx);
       
    52       }
       
    53       tty->print(") ");
       
    54     }
       
    55   }
       
    56   else if( _def == 0 ) tty->print("Dead ");
       
    57   else tty->print("Def: N%d ",_def->_idx);
       
    58 
       
    59   tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score());
       
    60   // Flags
       
    61   if( _is_oop ) tty->print("Oop ");
       
    62   if( _is_float ) tty->print("Float ");
       
    63   if( _was_spilled1 ) tty->print("Spilled ");
       
    64   if( _was_spilled2 ) tty->print("Spilled2 ");
       
    65   if( _direct_conflict ) tty->print("Direct_conflict ");
       
    66   if( _fat_proj ) tty->print("Fat ");
       
    67   if( _was_lo ) tty->print("Lo ");
       
    68   if( _has_copy ) tty->print("Copy ");
       
    69   if( _at_risk ) tty->print("Risk ");
       
    70 
       
    71   if( _must_spill ) tty->print("Must_spill ");
       
    72   if( _is_bound ) tty->print("Bound ");
       
    73   if( _msize_valid ) {
       
    74     if( _degree_valid && lo_degree() ) tty->print("Trivial ");
       
    75   }
       
    76 
       
    77   tty->cr();
       
    78 }
       
    79 #endif
       
    80 
       
    81 //------------------------------score------------------------------------------
       
    82 // Compute score from cost and area.  Low score is best to spill.
       
    83 static double raw_score( double cost, double area ) {
       
    84   return cost - (area*RegisterCostAreaRatio) * 1.52588e-5;
       
    85 }
       
    86 
       
    87 double LRG::score() const {
       
    88   // Scale _area by RegisterCostAreaRatio/64K then subtract from cost.
       
    89   // Bigger area lowers score, encourages spilling this live range.
       
    90   // Bigger cost raise score, prevents spilling this live range.
       
    91   // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer
       
    92   // to turn a divide by a constant into a multiply by the reciprical).
       
    93   double score = raw_score( _cost, _area);
       
    94 
       
    95   // Account for area.  Basically, LRGs covering large areas are better
       
    96   // to spill because more other LRGs get freed up.
       
    97   if( _area == 0.0 )            // No area?  Then no progress to spill
       
    98     return 1e35;
       
    99 
       
   100   if( _was_spilled2 )           // If spilled once before, we are unlikely
       
   101     return score + 1e30;        // to make progress again.
       
   102 
       
   103   if( _cost >= _area*3.0 )      // Tiny area relative to cost
       
   104     return score + 1e17;        // Probably no progress to spill
       
   105 
       
   106   if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost
       
   107     return score + 1e10;        // Likely no progress to spill
       
   108 
       
   109   return score;
       
   110 }
       
   111 
       
   112 //------------------------------LRG_List---------------------------------------
       
   113 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) {
       
   114   memset( _lidxs, 0, sizeof(uint)*max );
       
   115 }
       
   116 
       
   117 void LRG_List::extend( uint nidx, uint lidx ) {
       
   118   _nesting.check();
       
   119   if( nidx >= _max ) {
       
   120     uint size = 16;
       
   121     while( size <= nidx ) size <<=1;
       
   122     _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size );
       
   123     _max = size;
       
   124   }
       
   125   while( _cnt <= nidx )
       
   126     _lidxs[_cnt++] = 0;
       
   127   _lidxs[nidx] = lidx;
       
   128 }
       
   129 
       
   130 #define NUMBUCKS 3
       
   131 
       
   132 //------------------------------Chaitin----------------------------------------
       
   133 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher)
       
   134   : PhaseRegAlloc(unique, cfg, matcher,
       
   135 #ifndef PRODUCT
       
   136        print_chaitin_statistics
       
   137 #else
       
   138        NULL
       
   139 #endif
       
   140        ),
       
   141     _names(unique), _uf_map(unique),
       
   142     _maxlrg(0), _live(0),
       
   143     _spilled_once(Thread::current()->resource_area()),
       
   144     _spilled_twice(Thread::current()->resource_area()),
       
   145     _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0),
       
   146     _oldphi(unique)
       
   147 #ifndef PRODUCT
       
   148   , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling"))
       
   149 #endif
       
   150 {
       
   151   NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); )
       
   152   uint i,j;
       
   153   // Build a list of basic blocks, sorted by frequency
       
   154   _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
       
   155   // Experiment with sorting strategies to speed compilation
       
   156   double  cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket
       
   157   Block **buckets[NUMBUCKS];             // Array of buckets
       
   158   uint    buckcnt[NUMBUCKS];             // Array of bucket counters
       
   159   double  buckval[NUMBUCKS];             // Array of bucket value cutoffs
       
   160   for( i = 0; i < NUMBUCKS; i++ ) {
       
   161     buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks );
       
   162     buckcnt[i] = 0;
       
   163     // Bump by three orders of magnitude each time
       
   164     cutoff *= 0.001;
       
   165     buckval[i] = cutoff;
       
   166     for( j = 0; j < _cfg._num_blocks; j++ ) {
       
   167       buckets[i][j] = NULL;
       
   168     }
       
   169   }
       
   170   // Sort blocks into buckets
       
   171   for( i = 0; i < _cfg._num_blocks; i++ ) {
       
   172     for( j = 0; j < NUMBUCKS; j++ ) {
       
   173       if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) {
       
   174         // Assign block to end of list for appropriate bucket
       
   175         buckets[j][buckcnt[j]++] = _cfg._blocks[i];
       
   176         break;                      // kick out of inner loop
       
   177       }
       
   178     }
       
   179   }
       
   180   // Dump buckets into final block array
       
   181   uint blkcnt = 0;
       
   182   for( i = 0; i < NUMBUCKS; i++ ) {
       
   183     for( j = 0; j < buckcnt[i]; j++ ) {
       
   184       _blks[blkcnt++] = buckets[i][j];
       
   185     }
       
   186   }
       
   187 
       
   188   assert(blkcnt == _cfg._num_blocks, "Block array not totally filled");
       
   189 }
       
   190 
       
   191 void PhaseChaitin::Register_Allocate() {
       
   192 
       
   193   // Above the OLD FP (and in registers) are the incoming arguments.  Stack
       
   194   // slots in this area are called "arg_slots".  Above the NEW FP (and in
       
   195   // registers) is the outgoing argument area; above that is the spill/temp
       
   196   // area.  These are all "frame_slots".  Arg_slots start at the zero
       
   197   // stack_slots and count up to the known arg_size.  Frame_slots start at
       
   198   // the stack_slot #arg_size and go up.  After allocation I map stack
       
   199   // slots to actual offsets.  Stack-slots in the arg_slot area are biased
       
   200   // by the frame_size; stack-slots in the frame_slot area are biased by 0.
       
   201 
       
   202   _trip_cnt = 0;
       
   203   _alternate = 0;
       
   204   _matcher._allocation_started = true;
       
   205 
       
   206   ResourceArea live_arena;      // Arena for liveness & IFG info
       
   207   ResourceMark rm(&live_arena);
       
   208 
       
   209   // Need live-ness for the IFG; need the IFG for coalescing.  If the
       
   210   // liveness is JUST for coalescing, then I can get some mileage by renaming
       
   211   // all copy-related live ranges low and then using the max copy-related
       
   212   // live range as a cut-off for LIVE and the IFG.  In other words, I can
       
   213   // build a subset of LIVE and IFG just for copies.
       
   214   PhaseLive live(_cfg,_names,&live_arena);
       
   215 
       
   216   // Need IFG for coalescing and coloring
       
   217   PhaseIFG ifg( &live_arena );
       
   218   _ifg = &ifg;
       
   219 
       
   220   if (C->unique() > _names.Size())  _names.extend(C->unique()-1, 0);
       
   221 
       
   222   // Come out of SSA world to the Named world.  Assign (virtual) registers to
       
   223   // Nodes.  Use the same register for all inputs and the output of PhiNodes
       
   224   // - effectively ending SSA form.  This requires either coalescing live
       
   225   // ranges or inserting copies.  For the moment, we insert "virtual copies"
       
   226   // - we pretend there is a copy prior to each Phi in predecessor blocks.
       
   227   // We will attempt to coalesce such "virtual copies" before we manifest
       
   228   // them for real.
       
   229   de_ssa();
       
   230 
       
   231   {
       
   232     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
       
   233     _live = NULL;                 // Mark live as being not available
       
   234     rm.reset_to_mark();           // Reclaim working storage
       
   235     IndexSet::reset_memory(C, &live_arena);
       
   236     ifg.init(_maxlrg);            // Empty IFG
       
   237     gather_lrg_masks( false );    // Collect LRG masks
       
   238     live.compute( _maxlrg );      // Compute liveness
       
   239     _live = &live;                // Mark LIVE as being available
       
   240   }
       
   241 
       
   242   // Base pointers are currently "used" by instructions which define new
       
   243   // derived pointers.  This makes base pointers live up to the where the
       
   244   // derived pointer is made, but not beyond.  Really, they need to be live
       
   245   // across any GC point where the derived value is live.  So this code looks
       
   246   // at all the GC points, and "stretches" the live range of any base pointer
       
   247   // to the GC point.
       
   248   if( stretch_base_pointer_live_ranges(&live_arena) ) {
       
   249     NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); )
       
   250     // Since some live range stretched, I need to recompute live
       
   251     _live = NULL;
       
   252     rm.reset_to_mark();         // Reclaim working storage
       
   253     IndexSet::reset_memory(C, &live_arena);
       
   254     ifg.init(_maxlrg);
       
   255     gather_lrg_masks( false );
       
   256     live.compute( _maxlrg );
       
   257     _live = &live;
       
   258   }
       
   259   // Create the interference graph using virtual copies
       
   260   build_ifg_virtual( );  // Include stack slots this time
       
   261 
       
   262   // Aggressive (but pessimistic) copy coalescing.
       
   263   // This pass works on virtual copies.  Any virtual copies which are not
       
   264   // coalesced get manifested as actual copies
       
   265   {
       
   266     // The IFG is/was triangular.  I am 'squaring it up' so Union can run
       
   267     // faster.  Union requires a 'for all' operation which is slow on the
       
   268     // triangular adjacency matrix (quick reminder: the IFG is 'sparse' -
       
   269     // meaning I can visit all the Nodes neighbors less than a Node in time
       
   270     // O(# of neighbors), but I have to visit all the Nodes greater than a
       
   271     // given Node and search them for an instance, i.e., time O(#MaxLRG)).
       
   272     _ifg->SquareUp();
       
   273 
       
   274     PhaseAggressiveCoalesce coalesce( *this );
       
   275     coalesce.coalesce_driver( );
       
   276     // Insert un-coalesced copies.  Visit all Phis.  Where inputs to a Phi do
       
   277     // not match the Phi itself, insert a copy.
       
   278     coalesce.insert_copies(_matcher);
       
   279   }
       
   280 
       
   281   // After aggressive coalesce, attempt a first cut at coloring.
       
   282   // To color, we need the IFG and for that we need LIVE.
       
   283   {
       
   284     NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
       
   285     _live = NULL;
       
   286     rm.reset_to_mark();           // Reclaim working storage
       
   287     IndexSet::reset_memory(C, &live_arena);
       
   288     ifg.init(_maxlrg);
       
   289     gather_lrg_masks( true );
       
   290     live.compute( _maxlrg );
       
   291     _live = &live;
       
   292   }
       
   293 
       
   294   // Build physical interference graph
       
   295   uint must_spill = 0;
       
   296   must_spill = build_ifg_physical( &live_arena );
       
   297   // If we have a guaranteed spill, might as well spill now
       
   298   if( must_spill ) {
       
   299     if( !_maxlrg ) return;
       
   300     // Bail out if unique gets too large (ie - unique > MaxNodeLimit)
       
   301     C->check_node_count(10*must_spill, "out of nodes before split");
       
   302     if (C->failing())  return;
       
   303     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
       
   304     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
       
   305     // or we failed to split
       
   306     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split");
       
   307     if (C->failing())  return;
       
   308 
       
   309 #ifdef ASSERT
       
   310     if( VerifyOpto ) {
       
   311       _cfg.verify();
       
   312       verify_base_ptrs(&live_arena);
       
   313     }
       
   314 #endif
       
   315     NOT_PRODUCT( C->verify_graph_edges(); )
       
   316 
       
   317     compact();                  // Compact LRGs; return new lower max lrg
       
   318 
       
   319     {
       
   320       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
       
   321       _live = NULL;
       
   322       rm.reset_to_mark();         // Reclaim working storage
       
   323       IndexSet::reset_memory(C, &live_arena);
       
   324       ifg.init(_maxlrg);          // Build a new interference graph
       
   325       gather_lrg_masks( true );   // Collect intersect mask
       
   326       live.compute( _maxlrg );    // Compute LIVE
       
   327       _live = &live;
       
   328     }
       
   329     build_ifg_physical( &live_arena );
       
   330     _ifg->SquareUp();
       
   331     _ifg->Compute_Effective_Degree();
       
   332     // Only do conservative coalescing if requested
       
   333     if( OptoCoalesce ) {
       
   334       // Conservative (and pessimistic) copy coalescing of those spills
       
   335       PhaseConservativeCoalesce coalesce( *this );
       
   336       // If max live ranges greater than cutoff, don't color the stack.
       
   337       // This cutoff can be larger than below since it is only done once.
       
   338       coalesce.coalesce_driver( );
       
   339     }
       
   340     compress_uf_map_for_nodes();
       
   341 
       
   342 #ifdef ASSERT
       
   343     if( VerifyOpto ) _ifg->verify(this);
       
   344 #endif
       
   345   } else {
       
   346     ifg.SquareUp();
       
   347     ifg.Compute_Effective_Degree();
       
   348 #ifdef ASSERT
       
   349     set_was_low();
       
   350 #endif
       
   351   }
       
   352 
       
   353   // Prepare for Simplify & Select
       
   354   cache_lrg_info();           // Count degree of LRGs
       
   355 
       
   356   // Simplify the InterFerence Graph by removing LRGs of low degree.
       
   357   // LRGs of low degree are trivially colorable.
       
   358   Simplify();
       
   359 
       
   360   // Select colors by re-inserting LRGs back into the IFG in reverse order.
       
   361   // Return whether or not something spills.
       
   362   uint spills = Select( );
       
   363 
       
   364   // If we spill, split and recycle the entire thing
       
   365   while( spills ) {
       
   366     if( _trip_cnt++ > 24 ) {
       
   367       DEBUG_ONLY( dump_for_spill_split_recycle(); )
       
   368       if( _trip_cnt > 27 ) {
       
   369         C->record_method_not_compilable("failed spill-split-recycle sanity check");
       
   370         return;
       
   371       }
       
   372     }
       
   373 
       
   374     if( !_maxlrg ) return;
       
   375     _maxlrg = Split( _maxlrg );        // Split spilling LRG everywhere
       
   376     // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor)
       
   377     C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split");
       
   378     if (C->failing())  return;
       
   379 #ifdef ASSERT
       
   380     if( VerifyOpto ) {
       
   381       _cfg.verify();
       
   382       verify_base_ptrs(&live_arena);
       
   383     }
       
   384 #endif
       
   385 
       
   386     compact();                  // Compact LRGs; return new lower max lrg
       
   387 
       
   388     // Nuke the live-ness and interference graph and LiveRanGe info
       
   389     {
       
   390       NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); )
       
   391       _live = NULL;
       
   392       rm.reset_to_mark();         // Reclaim working storage
       
   393       IndexSet::reset_memory(C, &live_arena);
       
   394       ifg.init(_maxlrg);
       
   395 
       
   396       // Create LiveRanGe array.
       
   397       // Intersect register masks for all USEs and DEFs
       
   398       gather_lrg_masks( true );
       
   399       live.compute( _maxlrg );
       
   400       _live = &live;
       
   401     }
       
   402     must_spill = build_ifg_physical( &live_arena );
       
   403     _ifg->SquareUp();
       
   404     _ifg->Compute_Effective_Degree();
       
   405 
       
   406     // Only do conservative coalescing if requested
       
   407     if( OptoCoalesce ) {
       
   408       // Conservative (and pessimistic) copy coalescing
       
   409       PhaseConservativeCoalesce coalesce( *this );
       
   410       // Check for few live ranges determines how aggressive coalesce is.
       
   411       coalesce.coalesce_driver( );
       
   412     }
       
   413     compress_uf_map_for_nodes();
       
   414 #ifdef ASSERT
       
   415     if( VerifyOpto ) _ifg->verify(this);
       
   416 #endif
       
   417     cache_lrg_info();           // Count degree of LRGs
       
   418 
       
   419     // Simplify the InterFerence Graph by removing LRGs of low degree.
       
   420     // LRGs of low degree are trivially colorable.
       
   421     Simplify();
       
   422 
       
   423     // Select colors by re-inserting LRGs back into the IFG in reverse order.
       
   424     // Return whether or not something spills.
       
   425     spills = Select( );
       
   426   }
       
   427 
       
   428   // Count number of Simplify-Select trips per coloring success.
       
   429   _allocator_attempts += _trip_cnt + 1;
       
   430   _allocator_successes += 1;
       
   431 
       
   432   // Peephole remove copies
       
   433   post_allocate_copy_removal();
       
   434 
       
   435   // max_reg is past the largest *register* used.
       
   436   // Convert that to a frame_slot number.
       
   437   if( _max_reg <= _matcher._new_SP )
       
   438     _framesize = C->out_preserve_stack_slots();
       
   439   else _framesize = _max_reg -_matcher._new_SP;
       
   440   assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough");
       
   441 
       
   442   // This frame must preserve the required fp alignment
       
   443   const int stack_alignment_in_words = Matcher::stack_alignment_in_slots();
       
   444   if (stack_alignment_in_words > 0)
       
   445     _framesize = round_to(_framesize, Matcher::stack_alignment_in_bytes());
       
   446   assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" );
       
   447 #ifndef PRODUCT
       
   448   _total_framesize += _framesize;
       
   449   if( (int)_framesize > _max_framesize )
       
   450     _max_framesize = _framesize;
       
   451 #endif
       
   452 
       
   453   // Convert CISC spills
       
   454   fixup_spills();
       
   455 
       
   456   // Log regalloc results
       
   457   CompileLog* log = Compile::current()->log();
       
   458   if (log != NULL) {
       
   459     log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing());
       
   460   }
       
   461 
       
   462   if (C->failing())  return;
       
   463 
       
   464   NOT_PRODUCT( C->verify_graph_edges(); )
       
   465 
       
   466   // Move important info out of the live_arena to longer lasting storage.
       
   467   alloc_node_regs(_names.Size());
       
   468   for( uint i=0; i < _names.Size(); i++ ) {
       
   469     if( _names[i] ) {           // Live range associated with Node?
       
   470       LRG &lrg = lrgs( _names[i] );
       
   471       if( lrg.num_regs() == 1 ) {
       
   472         _node_regs[i].set1( lrg.reg() );
       
   473       } else {                  // Must be a register-pair
       
   474         if( !lrg._fat_proj ) {  // Must be aligned adjacent register pair
       
   475           // Live ranges record the highest register in their mask.
       
   476           // We want the low register for the AD file writer's convenience.
       
   477           _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) );
       
   478         } else {                // Misaligned; extract 2 bits
       
   479           OptoReg::Name hi = lrg.reg(); // Get hi register
       
   480           lrg.Remove(hi);       // Yank from mask
       
   481           int lo = lrg.mask().find_first_elem(); // Find lo
       
   482           _node_regs[i].set_pair( hi, lo );
       
   483         }
       
   484       }
       
   485       if( lrg._is_oop ) _node_oops.set(i);
       
   486     } else {
       
   487       _node_regs[i].set_bad();
       
   488     }
       
   489   }
       
   490 
       
   491   // Done!
       
   492   _live = NULL;
       
   493   _ifg = NULL;
       
   494   C->set_indexSet_arena(NULL);  // ResourceArea is at end of scope
       
   495 }
       
   496 
       
   497 //------------------------------de_ssa-----------------------------------------
       
   498 void PhaseChaitin::de_ssa() {
       
   499   // Set initial Names for all Nodes.  Most Nodes get the virtual register
       
   500   // number.  A few get the ZERO live range number.  These do not
       
   501   // get allocated, but instead rely on correct scheduling to ensure that
       
   502   // only one instance is simultaneously live at a time.
       
   503   uint lr_counter = 1;
       
   504   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
       
   505     Block *b = _cfg._blocks[i];
       
   506     uint cnt = b->_nodes.size();
       
   507 
       
   508     // Handle all the normal Nodes in the block
       
   509     for( uint j = 0; j < cnt; j++ ) {
       
   510       Node *n = b->_nodes[j];
       
   511       // Pre-color to the zero live range, or pick virtual register
       
   512       const RegMask &rm = n->out_RegMask();
       
   513       _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 );
       
   514     }
       
   515   }
       
   516   // Reset the Union-Find mapping to be identity
       
   517   reset_uf_map(lr_counter);
       
   518 }
       
   519 
       
   520 
       
   521 //------------------------------gather_lrg_masks-------------------------------
       
   522 // Gather LiveRanGe information, including register masks.  Modification of
       
   523 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce.
       
   524 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) {
       
   525 
       
   526   // Nail down the frame pointer live range
       
   527   uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr));
       
   528   lrgs(fp_lrg)._cost += 1e12;   // Cost is infinite
       
   529 
       
   530   // For all blocks
       
   531   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
       
   532     Block *b = _cfg._blocks[i];
       
   533 
       
   534     // For all instructions
       
   535     for( uint j = 1; j < b->_nodes.size(); j++ ) {
       
   536       Node *n = b->_nodes[j];
       
   537       uint input_edge_start =1; // Skip control most nodes
       
   538       if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base();
       
   539       uint idx = n->is_Copy();
       
   540 
       
   541       // Get virtual register number, same as LiveRanGe index
       
   542       uint vreg = n2lidx(n);
       
   543       LRG &lrg = lrgs(vreg);
       
   544       if( vreg ) {              // No vreg means un-allocable (e.g. memory)
       
   545 
       
   546         // Collect has-copy bit
       
   547         if( idx ) {
       
   548           lrg._has_copy = 1;
       
   549           uint clidx = n2lidx(n->in(idx));
       
   550           LRG &copy_src = lrgs(clidx);
       
   551           copy_src._has_copy = 1;
       
   552         }
       
   553 
       
   554         // Check for float-vs-int live range (used in register-pressure
       
   555         // calculations)
       
   556         const Type *n_type = n->bottom_type();
       
   557         if( n_type->is_floatingpoint() )
       
   558           lrg._is_float = 1;
       
   559 
       
   560         // Check for twice prior spilling.  Once prior spilling might have
       
   561         // spilled 'soft', 2nd prior spill should have spilled 'hard' and
       
   562         // further spilling is unlikely to make progress.
       
   563         if( _spilled_once.test(n->_idx) ) {
       
   564           lrg._was_spilled1 = 1;
       
   565           if( _spilled_twice.test(n->_idx) )
       
   566             lrg._was_spilled2 = 1;
       
   567         }
       
   568 
       
   569 #ifndef PRODUCT
       
   570         if (trace_spilling() && lrg._def != NULL) {
       
   571           // collect defs for MultiDef printing
       
   572           if (lrg._defs == NULL) {
       
   573             lrg._defs = new (_ifg->_arena) GrowableArray<Node*>();
       
   574             lrg._defs->append(lrg._def);
       
   575           }
       
   576           lrg._defs->append(n);
       
   577         }
       
   578 #endif
       
   579 
       
   580         // Check for a single def LRG; these can spill nicely
       
   581         // via rematerialization.  Flag as NULL for no def found
       
   582         // yet, or 'n' for single def or -1 for many defs.
       
   583         lrg._def = lrg._def ? NodeSentinel : n;
       
   584 
       
   585         // Limit result register mask to acceptable registers
       
   586         const RegMask &rm = n->out_RegMask();
       
   587         lrg.AND( rm );
       
   588         // Check for bound register masks
       
   589         const RegMask &lrgmask = lrg.mask();
       
   590         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
       
   591           lrg._is_bound = 1;
       
   592 
       
   593         // Check for maximum frequency value
       
   594         if( lrg._maxfreq < b->_freq )
       
   595           lrg._maxfreq = b->_freq;
       
   596 
       
   597         int ireg = n->ideal_reg();
       
   598         assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP,
       
   599                 "oops must be in Op_RegP's" );
       
   600         // Check for oop-iness, or long/double
       
   601         // Check for multi-kill projection
       
   602         switch( ireg ) {
       
   603         case MachProjNode::fat_proj:
       
   604           // Fat projections have size equal to number of registers killed
       
   605           lrg.set_num_regs(rm.Size());
       
   606           lrg.set_reg_pressure(lrg.num_regs());
       
   607           lrg._fat_proj = 1;
       
   608           lrg._is_bound = 1;
       
   609           break;
       
   610         case Op_RegP:
       
   611 #ifdef _LP64
       
   612           lrg.set_num_regs(2);  // Size is 2 stack words
       
   613 #else
       
   614           lrg.set_num_regs(1);  // Size is 1 stack word
       
   615 #endif
       
   616           // Register pressure is tracked relative to the maximum values
       
   617           // suggested for that platform, INTPRESSURE and FLOATPRESSURE,
       
   618           // and relative to other types which compete for the same regs.
       
   619           //
       
   620           // The following table contains suggested values based on the
       
   621           // architectures as defined in each .ad file.
       
   622           // INTPRESSURE and FLOATPRESSURE may be tuned differently for
       
   623           // compile-speed or performance.
       
   624           // Note1:
       
   625           // SPARC and SPARCV9 reg_pressures are at 2 instead of 1
       
   626           // since .ad registers are defined as high and low halves.
       
   627           // These reg_pressure values remain compatible with the code
       
   628           // in is_high_pressure() which relates get_invalid_mask_size(),
       
   629           // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE.
       
   630           // Note2:
       
   631           // SPARC -d32 has 24 registers available for integral values,
       
   632           // but only 10 of these are safe for 64-bit longs.
       
   633           // Using set_reg_pressure(2) for both int and long means
       
   634           // the allocator will believe it can fit 26 longs into
       
   635           // registers.  Using 2 for longs and 1 for ints means the
       
   636           // allocator will attempt to put 52 integers into registers.
       
   637           // The settings below limit this problem to methods with
       
   638           // many long values which are being run on 32-bit SPARC.
       
   639           //
       
   640           // ------------------- reg_pressure --------------------
       
   641           // Each entry is reg_pressure_per_value,number_of_regs
       
   642           //         RegL  RegI  RegFlags   RegF RegD    INTPRESSURE  FLOATPRESSURE
       
   643           // IA32     2     1     1          1    1          6           6
       
   644           // IA64     1     1     1          1    1         50          41
       
   645           // SPARC    2     2     2          2    2         48 (24)     52 (26)
       
   646           // SPARCV9  2     2     2          2    2         48 (24)     52 (26)
       
   647           // AMD64    1     1     1          1    1         14          15
       
   648           // -----------------------------------------------------
       
   649 #if defined(SPARC)
       
   650           lrg.set_reg_pressure(2);  // use for v9 as well
       
   651 #else
       
   652           lrg.set_reg_pressure(1);  // normally one value per register
       
   653 #endif
       
   654           if( n_type->isa_oop_ptr() ) {
       
   655             lrg._is_oop = 1;
       
   656           }
       
   657           break;
       
   658         case Op_RegL:           // Check for long or double
       
   659         case Op_RegD:
       
   660           lrg.set_num_regs(2);
       
   661           // Define platform specific register pressure
       
   662 #ifdef SPARC
       
   663           lrg.set_reg_pressure(2);
       
   664 #elif defined(IA32)
       
   665           if( ireg == Op_RegL ) {
       
   666             lrg.set_reg_pressure(2);
       
   667           } else {
       
   668             lrg.set_reg_pressure(1);
       
   669           }
       
   670 #else
       
   671           lrg.set_reg_pressure(1);  // normally one value per register
       
   672 #endif
       
   673           // If this def of a double forces a mis-aligned double,
       
   674           // flag as '_fat_proj' - really flag as allowing misalignment
       
   675           // AND changes how we count interferences.  A mis-aligned
       
   676           // double can interfere with TWO aligned pairs, or effectively
       
   677           // FOUR registers!
       
   678           if( rm.is_misaligned_Pair() ) {
       
   679             lrg._fat_proj = 1;
       
   680             lrg._is_bound = 1;
       
   681           }
       
   682           break;
       
   683         case Op_RegF:
       
   684         case Op_RegI:
       
   685         case Op_RegFlags:
       
   686         case 0:                 // not an ideal register
       
   687           lrg.set_num_regs(1);
       
   688 #ifdef SPARC
       
   689           lrg.set_reg_pressure(2);
       
   690 #else
       
   691           lrg.set_reg_pressure(1);
       
   692 #endif
       
   693           break;
       
   694         default:
       
   695           ShouldNotReachHere();
       
   696         }
       
   697       }
       
   698 
       
   699       // Now do the same for inputs
       
   700       uint cnt = n->req();
       
   701       // Setup for CISC SPILLING
       
   702       uint inp = (uint)AdlcVMDeps::Not_cisc_spillable;
       
   703       if( UseCISCSpill && after_aggressive ) {
       
   704         inp = n->cisc_operand();
       
   705         if( inp != (uint)AdlcVMDeps::Not_cisc_spillable )
       
   706           // Convert operand number to edge index number
       
   707           inp = n->as_Mach()->operand_index(inp);
       
   708       }
       
   709       // Prepare register mask for each input
       
   710       for( uint k = input_edge_start; k < cnt; k++ ) {
       
   711         uint vreg = n2lidx(n->in(k));
       
   712         if( !vreg ) continue;
       
   713 
       
   714         // If this instruction is CISC Spillable, add the flags
       
   715         // bit to its appropriate input
       
   716         if( UseCISCSpill && after_aggressive && inp == k ) {
       
   717 #ifndef PRODUCT
       
   718           if( TraceCISCSpill ) {
       
   719             tty->print("  use_cisc_RegMask: ");
       
   720             n->dump();
       
   721           }
       
   722 #endif
       
   723           n->as_Mach()->use_cisc_RegMask();
       
   724         }
       
   725 
       
   726         LRG &lrg = lrgs(vreg);
       
   727         // // Testing for floating point code shape
       
   728         // Node *test = n->in(k);
       
   729         // if( test->is_Mach() ) {
       
   730         //   MachNode *m = test->as_Mach();
       
   731         //   int  op = m->ideal_Opcode();
       
   732         //   if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) {
       
   733         //     int zzz = 1;
       
   734         //   }
       
   735         // }
       
   736 
       
   737         // Limit result register mask to acceptable registers.
       
   738         // Do not limit registers from uncommon uses before
       
   739         // AggressiveCoalesce.  This effectively pre-virtual-splits
       
   740         // around uncommon uses of common defs.
       
   741         const RegMask &rm = n->in_RegMask(k);
       
   742         if( !after_aggressive &&
       
   743           _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) {
       
   744           // Since we are BEFORE aggressive coalesce, leave the register
       
   745           // mask untrimmed by the call.  This encourages more coalescing.
       
   746           // Later, AFTER aggressive, this live range will have to spill
       
   747           // but the spiller handles slow-path calls very nicely.
       
   748         } else {
       
   749           lrg.AND( rm );
       
   750         }
       
   751         // Check for bound register masks
       
   752         const RegMask &lrgmask = lrg.mask();
       
   753         if( lrgmask.is_bound1() || lrgmask.is_bound2() )
       
   754           lrg._is_bound = 1;
       
   755         // If this use of a double forces a mis-aligned double,
       
   756         // flag as '_fat_proj' - really flag as allowing misalignment
       
   757         // AND changes how we count interferences.  A mis-aligned
       
   758         // double can interfere with TWO aligned pairs, or effectively
       
   759         // FOUR registers!
       
   760         if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) {
       
   761           lrg._fat_proj = 1;
       
   762           lrg._is_bound = 1;
       
   763         }
       
   764         // if the LRG is an unaligned pair, we will have to spill
       
   765         // so clear the LRG's register mask if it is not already spilled
       
   766         if ( !n->is_SpillCopy() &&
       
   767                (lrg._def == NULL || lrg._def == NodeSentinel || !lrg._def->is_SpillCopy()) &&
       
   768                lrgmask.is_misaligned_Pair()) {
       
   769           lrg.Clear();
       
   770         }
       
   771 
       
   772         // Check for maximum frequency value
       
   773         if( lrg._maxfreq < b->_freq )
       
   774           lrg._maxfreq = b->_freq;
       
   775 
       
   776       } // End for all allocated inputs
       
   777     } // end for all instructions
       
   778   } // end for all blocks
       
   779 
       
   780   // Final per-liverange setup
       
   781   for( uint i2=0; i2<_maxlrg; i2++ ) {
       
   782     LRG &lrg = lrgs(i2);
       
   783     if( lrg.num_regs() == 2 && !lrg._fat_proj )
       
   784       lrg.ClearToPairs();
       
   785     lrg.compute_set_mask_size();
       
   786     if( lrg.not_free() ) {      // Handle case where we lose from the start
       
   787       lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
       
   788       lrg._direct_conflict = 1;
       
   789     }
       
   790     lrg.set_degree(0);          // no neighbors in IFG yet
       
   791   }
       
   792 }
       
   793 
       
   794 //------------------------------set_was_low------------------------------------
       
   795 // Set the was-lo-degree bit.  Conservative coalescing should not change the
       
   796 // colorability of the graph.  If any live range was of low-degree before
       
   797 // coalescing, it should Simplify.  This call sets the was-lo-degree bit.
       
   798 // The bit is checked in Simplify.
       
   799 void PhaseChaitin::set_was_low() {
       
   800 #ifdef ASSERT
       
   801   for( uint i = 1; i < _maxlrg; i++ ) {
       
   802     int size = lrgs(i).num_regs();
       
   803     uint old_was_lo = lrgs(i)._was_lo;
       
   804     lrgs(i)._was_lo = 0;
       
   805     if( lrgs(i).lo_degree() ) {
       
   806       lrgs(i)._was_lo = 1;      // Trivially of low degree
       
   807     } else {                    // Else check the Brigg's assertion
       
   808       // Brigg's observation is that the lo-degree neighbors of a
       
   809       // hi-degree live range will not interfere with the color choices
       
   810       // of said hi-degree live range.  The Simplify reverse-stack-coloring
       
   811       // order takes care of the details.  Hence you do not have to count
       
   812       // low-degree neighbors when determining if this guy colors.
       
   813       int briggs_degree = 0;
       
   814       IndexSet *s = _ifg->neighbors(i);
       
   815       IndexSetIterator elements(s);
       
   816       uint lidx;
       
   817       while((lidx = elements.next()) != 0) {
       
   818         if( !lrgs(lidx).lo_degree() )
       
   819           briggs_degree += MAX2(size,lrgs(lidx).num_regs());
       
   820       }
       
   821       if( briggs_degree < lrgs(i).degrees_of_freedom() )
       
   822         lrgs(i)._was_lo = 1;    // Low degree via the briggs assertion
       
   823     }
       
   824     assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease");
       
   825   }
       
   826 #endif
       
   827 }
       
   828 
       
   829 #define REGISTER_CONSTRAINED 16
       
   830 
       
   831 //------------------------------cache_lrg_info---------------------------------
       
   832 // Compute cost/area ratio, in case we spill.  Build the lo-degree list.
       
   833 void PhaseChaitin::cache_lrg_info( ) {
       
   834 
       
   835   for( uint i = 1; i < _maxlrg; i++ ) {
       
   836     LRG &lrg = lrgs(i);
       
   837 
       
   838     // Check for being of low degree: means we can be trivially colored.
       
   839     // Low degree, dead or must-spill guys just get to simplify right away
       
   840     if( lrg.lo_degree() ||
       
   841        !lrg.alive() ||
       
   842         lrg._must_spill ) {
       
   843       // Split low degree list into those guys that must get a
       
   844       // register and those that can go to register or stack.
       
   845       // The idea is LRGs that can go register or stack color first when
       
   846       // they have a good chance of getting a register.  The register-only
       
   847       // lo-degree live ranges always get a register.
       
   848       OptoReg::Name hi_reg = lrg.mask().find_last_elem();
       
   849       if( OptoReg::is_stack(hi_reg)) { // Can go to stack?
       
   850         lrg._next = _lo_stk_degree;
       
   851         _lo_stk_degree = i;
       
   852       } else {
       
   853         lrg._next = _lo_degree;
       
   854         _lo_degree = i;
       
   855       }
       
   856     } else {                    // Else high degree
       
   857       lrgs(_hi_degree)._prev = i;
       
   858       lrg._next = _hi_degree;
       
   859       lrg._prev = 0;
       
   860       _hi_degree = i;
       
   861     }
       
   862   }
       
   863 }
       
   864 
       
   865 //------------------------------Pre-Simplify-----------------------------------
       
   866 // Simplify the IFG by removing LRGs of low degree that have NO copies
       
   867 void PhaseChaitin::Pre_Simplify( ) {
       
   868 
       
   869   // Warm up the lo-degree no-copy list
       
   870   int lo_no_copy = 0;
       
   871   for( uint i = 1; i < _maxlrg; i++ ) {
       
   872     if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) ||
       
   873         !lrgs(i).alive() ||
       
   874         lrgs(i)._must_spill ) {
       
   875       lrgs(i)._next = lo_no_copy;
       
   876       lo_no_copy = i;
       
   877     }
       
   878   }
       
   879 
       
   880   while( lo_no_copy ) {
       
   881     uint lo = lo_no_copy;
       
   882     lo_no_copy = lrgs(lo)._next;
       
   883     int size = lrgs(lo).num_regs();
       
   884 
       
   885     // Put the simplified guy on the simplified list.
       
   886     lrgs(lo)._next = _simplified;
       
   887     _simplified = lo;
       
   888 
       
   889     // Yank this guy from the IFG.
       
   890     IndexSet *adj = _ifg->remove_node( lo );
       
   891 
       
   892     // If any neighbors' degrees fall below their number of
       
   893     // allowed registers, then put that neighbor on the low degree
       
   894     // list.  Note that 'degree' can only fall and 'numregs' is
       
   895     // unchanged by this action.  Thus the two are equal at most once,
       
   896     // so LRGs hit the lo-degree worklists at most once.
       
   897     IndexSetIterator elements(adj);
       
   898     uint neighbor;
       
   899     while ((neighbor = elements.next()) != 0) {
       
   900       LRG *n = &lrgs(neighbor);
       
   901       assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
       
   902 
       
   903       // Check for just becoming of-low-degree
       
   904       if( n->just_lo_degree() && !n->_has_copy ) {
       
   905         assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
       
   906         // Put on lo-degree list
       
   907         n->_next = lo_no_copy;
       
   908         lo_no_copy = neighbor;
       
   909       }
       
   910     }
       
   911   } // End of while lo-degree no_copy worklist not empty
       
   912 
       
   913   // No more lo-degree no-copy live ranges to simplify
       
   914 }
       
   915 
       
   916 //------------------------------Simplify---------------------------------------
       
   917 // Simplify the IFG by removing LRGs of low degree.
       
   918 void PhaseChaitin::Simplify( ) {
       
   919 
       
   920   while( 1 ) {                  // Repeat till simplified it all
       
   921     // May want to explore simplifying lo_degree before _lo_stk_degree.
       
   922     // This might result in more spills coloring into registers during
       
   923     // Select().
       
   924     while( _lo_degree || _lo_stk_degree ) {
       
   925       // If possible, pull from lo_stk first
       
   926       uint lo;
       
   927       if( _lo_degree ) {
       
   928         lo = _lo_degree;
       
   929         _lo_degree = lrgs(lo)._next;
       
   930       } else {
       
   931         lo = _lo_stk_degree;
       
   932         _lo_stk_degree = lrgs(lo)._next;
       
   933       }
       
   934 
       
   935       // Put the simplified guy on the simplified list.
       
   936       lrgs(lo)._next = _simplified;
       
   937       _simplified = lo;
       
   938       // If this guy is "at risk" then mark his current neighbors
       
   939       if( lrgs(lo)._at_risk ) {
       
   940         IndexSetIterator elements(_ifg->neighbors(lo));
       
   941         uint datum;
       
   942         while ((datum = elements.next()) != 0) {
       
   943           lrgs(datum)._risk_bias = lo;
       
   944         }
       
   945       }
       
   946 
       
   947       // Yank this guy from the IFG.
       
   948       IndexSet *adj = _ifg->remove_node( lo );
       
   949 
       
   950       // If any neighbors' degrees fall below their number of
       
   951       // allowed registers, then put that neighbor on the low degree
       
   952       // list.  Note that 'degree' can only fall and 'numregs' is
       
   953       // unchanged by this action.  Thus the two are equal at most once,
       
   954       // so LRGs hit the lo-degree worklist at most once.
       
   955       IndexSetIterator elements(adj);
       
   956       uint neighbor;
       
   957       while ((neighbor = elements.next()) != 0) {
       
   958         LRG *n = &lrgs(neighbor);
       
   959 #ifdef ASSERT
       
   960         if( VerifyOpto ) {
       
   961           assert( _ifg->effective_degree(neighbor) == n->degree(), "" );
       
   962         }
       
   963 #endif
       
   964 
       
   965         // Check for just becoming of-low-degree just counting registers.
       
   966         // _must_spill live ranges are already on the low degree list.
       
   967         if( n->just_lo_degree() && !n->_must_spill ) {
       
   968           assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice");
       
   969           // Pull from hi-degree list
       
   970           uint prev = n->_prev;
       
   971           uint next = n->_next;
       
   972           if( prev ) lrgs(prev)._next = next;
       
   973           else _hi_degree = next;
       
   974           lrgs(next)._prev = prev;
       
   975           n->_next = _lo_degree;
       
   976           _lo_degree = neighbor;
       
   977         }
       
   978       }
       
   979     } // End of while lo-degree/lo_stk_degree worklist not empty
       
   980 
       
   981     // Check for got everything: is hi-degree list empty?
       
   982     if( !_hi_degree ) break;
       
   983 
       
   984     // Time to pick a potential spill guy
       
   985     uint lo_score = _hi_degree;
       
   986     double score = lrgs(lo_score).score();
       
   987     double area = lrgs(lo_score)._area;
       
   988 
       
   989     // Find cheapest guy
       
   990     debug_only( int lo_no_simplify=0; );
       
   991     for( uint i = _hi_degree; i; i = lrgs(i)._next ) {
       
   992       assert( !(*_ifg->_yanked)[i], "" );
       
   993       // It's just vaguely possible to move hi-degree to lo-degree without
       
   994       // going through a just-lo-degree stage: If you remove a double from
       
   995       // a float live range it's degree will drop by 2 and you can skip the
       
   996       // just-lo-degree stage.  It's very rare (shows up after 5000+ methods
       
   997       // in -Xcomp of Java2Demo).  So just choose this guy to simplify next.
       
   998       if( lrgs(i).lo_degree() ) {
       
   999         lo_score = i;
       
  1000         break;
       
  1001       }
       
  1002       debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; );
       
  1003       double iscore = lrgs(i).score();
       
  1004       double iarea = lrgs(i)._area;
       
  1005 
       
  1006       // Compare cost/area of i vs cost/area of lo_score.  Smaller cost/area
       
  1007       // wins.  Ties happen because all live ranges in question have spilled
       
  1008       // a few times before and the spill-score adds a huge number which
       
  1009       // washes out the low order bits.  We are choosing the lesser of 2
       
  1010       // evils; in this case pick largest area to spill.
       
  1011       if( iscore < score ||
       
  1012           (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) {
       
  1013         lo_score = i;
       
  1014         score = iscore;
       
  1015         area = iarea;
       
  1016       }
       
  1017     }
       
  1018     LRG *lo_lrg = &lrgs(lo_score);
       
  1019     // The live range we choose for spilling is either hi-degree, or very
       
  1020     // rarely it can be low-degree.  If we choose a hi-degree live range
       
  1021     // there better not be any lo-degree choices.
       
  1022     assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" );
       
  1023 
       
  1024     // Pull from hi-degree list
       
  1025     uint prev = lo_lrg->_prev;
       
  1026     uint next = lo_lrg->_next;
       
  1027     if( prev ) lrgs(prev)._next = next;
       
  1028     else _hi_degree = next;
       
  1029     lrgs(next)._prev = prev;
       
  1030     // Jam him on the lo-degree list, despite his high degree.
       
  1031     // Maybe he'll get a color, and maybe he'll spill.
       
  1032     // Only Select() will know.
       
  1033     lrgs(lo_score)._at_risk = true;
       
  1034     _lo_degree = lo_score;
       
  1035     lo_lrg->_next = 0;
       
  1036 
       
  1037   } // End of while not simplified everything
       
  1038 
       
  1039 }
       
  1040 
       
  1041 //------------------------------bias_color-------------------------------------
       
  1042 // Choose a color using the biasing heuristic
       
  1043 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) {
       
  1044 
       
  1045   // Check for "at_risk" LRG's
       
  1046   uint risk_lrg = Find(lrg._risk_bias);
       
  1047   if( risk_lrg != 0 ) {
       
  1048     // Walk the colored neighbors of the "at_risk" candidate
       
  1049     // Choose a color which is both legal and already taken by a neighbor
       
  1050     // of the "at_risk" candidate in order to improve the chances of the
       
  1051     // "at_risk" candidate of coloring
       
  1052     IndexSetIterator elements(_ifg->neighbors(risk_lrg));
       
  1053     uint datum;
       
  1054     while ((datum = elements.next()) != 0) {
       
  1055       OptoReg::Name reg = lrgs(datum).reg();
       
  1056       // If this LRG's register is legal for us, choose it
       
  1057       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
       
  1058           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
       
  1059           (lrg.num_regs()==1 || // either size 1
       
  1060            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
       
  1061         return reg;
       
  1062     }
       
  1063   }
       
  1064 
       
  1065   uint copy_lrg = Find(lrg._copy_bias);
       
  1066   if( copy_lrg != 0 ) {
       
  1067     // If he has a color,
       
  1068     if( !(*(_ifg->_yanked))[copy_lrg] ) {
       
  1069       OptoReg::Name reg = lrgs(copy_lrg).reg();
       
  1070       //  And it is legal for you,
       
  1071       if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE &&
       
  1072           lrg.mask().Member(OptoReg::add(reg,-chunk)) &&
       
  1073           (lrg.num_regs()==1 || // either size 1
       
  1074            (reg&1) == 1) )      // or aligned (adjacent reg is available since we already cleared-to-pairs)
       
  1075         return reg;
       
  1076     } else if( chunk == 0 ) {
       
  1077       // Choose a color which is legal for him
       
  1078       RegMask tempmask = lrg.mask();
       
  1079       tempmask.AND(lrgs(copy_lrg).mask());
       
  1080       OptoReg::Name reg;
       
  1081       if( lrg.num_regs() == 1 ) {
       
  1082         reg = tempmask.find_first_elem();
       
  1083       } else {
       
  1084         tempmask.ClearToPairs();
       
  1085         reg = tempmask.find_first_pair();
       
  1086       }
       
  1087       if( OptoReg::is_valid(reg) )
       
  1088         return reg;
       
  1089     }
       
  1090   }
       
  1091 
       
  1092   // If no bias info exists, just go with the register selection ordering
       
  1093   if( lrg.num_regs() == 2 ) {
       
  1094     // Find an aligned pair
       
  1095     return OptoReg::add(lrg.mask().find_first_pair(),chunk);
       
  1096   }
       
  1097 
       
  1098   // CNC - Fun hack.  Alternate 1st and 2nd selection.  Enables post-allocate
       
  1099   // copy removal to remove many more copies, by preventing a just-assigned
       
  1100   // register from being repeatedly assigned.
       
  1101   OptoReg::Name reg = lrg.mask().find_first_elem();
       
  1102   if( (++_alternate & 1) && OptoReg::is_valid(reg) ) {
       
  1103     // This 'Remove; find; Insert' idiom is an expensive way to find the
       
  1104     // SECOND element in the mask.
       
  1105     lrg.Remove(reg);
       
  1106     OptoReg::Name reg2 = lrg.mask().find_first_elem();
       
  1107     lrg.Insert(reg);
       
  1108     if( OptoReg::is_reg(reg2))
       
  1109       reg = reg2;
       
  1110   }
       
  1111   return OptoReg::add( reg, chunk );
       
  1112 }
       
  1113 
       
  1114 //------------------------------choose_color-----------------------------------
       
  1115 // Choose a color in the current chunk
       
  1116 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) {
       
  1117   assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)");
       
  1118   assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)");
       
  1119 
       
  1120   if( lrg.num_regs() == 1 ||    // Common Case
       
  1121       !lrg._fat_proj )          // Aligned+adjacent pairs ok
       
  1122     // Use a heuristic to "bias" the color choice
       
  1123     return bias_color(lrg, chunk);
       
  1124 
       
  1125   assert( lrg.num_regs() >= 2, "dead live ranges do not color" );
       
  1126 
       
  1127   // Fat-proj case or misaligned double argument.
       
  1128   assert(lrg.compute_mask_size() == lrg.num_regs() ||
       
  1129          lrg.num_regs() == 2,"fat projs exactly color" );
       
  1130   assert( !chunk, "always color in 1st chunk" );
       
  1131   // Return the highest element in the set.
       
  1132   return lrg.mask().find_last_elem();
       
  1133 }
       
  1134 
       
  1135 //------------------------------Select-----------------------------------------
       
  1136 // Select colors by re-inserting LRGs back into the IFG.  LRGs are re-inserted
       
  1137 // in reverse order of removal.  As long as nothing of hi-degree was yanked,
       
  1138 // everything going back is guaranteed a color.  Select that color.  If some
       
  1139 // hi-degree LRG cannot get a color then we record that we must spill.
       
  1140 uint PhaseChaitin::Select( ) {
       
  1141   uint spill_reg = LRG::SPILL_REG;
       
  1142   _max_reg = OptoReg::Name(0);  // Past max register used
       
  1143   while( _simplified ) {
       
  1144     // Pull next LRG from the simplified list - in reverse order of removal
       
  1145     uint lidx = _simplified;
       
  1146     LRG *lrg = &lrgs(lidx);
       
  1147     _simplified = lrg->_next;
       
  1148 
       
  1149 
       
  1150 #ifndef PRODUCT
       
  1151     if (trace_spilling()) {
       
  1152       ttyLocker ttyl;
       
  1153       tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(),
       
  1154                     lrg->degrees_of_freedom());
       
  1155       lrg->dump();
       
  1156     }
       
  1157 #endif
       
  1158 
       
  1159     // Re-insert into the IFG
       
  1160     _ifg->re_insert(lidx);
       
  1161     if( !lrg->alive() ) continue;
       
  1162     // capture allstackedness flag before mask is hacked
       
  1163     const int is_allstack = lrg->mask().is_AllStack();
       
  1164 
       
  1165     // Yeah, yeah, yeah, I know, I know.  I can refactor this
       
  1166     // to avoid the GOTO, although the refactored code will not
       
  1167     // be much clearer.  We arrive here IFF we have a stack-based
       
  1168     // live range that cannot color in the current chunk, and it
       
  1169     // has to move into the next free stack chunk.
       
  1170     int chunk = 0;              // Current chunk is first chunk
       
  1171     retry_next_chunk:
       
  1172 
       
  1173     // Remove neighbor colors
       
  1174     IndexSet *s = _ifg->neighbors(lidx);
       
  1175 
       
  1176     debug_only(RegMask orig_mask = lrg->mask();)
       
  1177     IndexSetIterator elements(s);
       
  1178     uint neighbor;
       
  1179     while ((neighbor = elements.next()) != 0) {
       
  1180       // Note that neighbor might be a spill_reg.  In this case, exclusion
       
  1181       // of its color will be a no-op, since the spill_reg chunk is in outer
       
  1182       // space.  Also, if neighbor is in a different chunk, this exclusion
       
  1183       // will be a no-op.  (Later on, if lrg runs out of possible colors in
       
  1184       // its chunk, a new chunk of color may be tried, in which case
       
  1185       // examination of neighbors is started again, at retry_next_chunk.)
       
  1186       LRG &nlrg = lrgs(neighbor);
       
  1187       OptoReg::Name nreg = nlrg.reg();
       
  1188       // Only subtract masks in the same chunk
       
  1189       if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) {
       
  1190 #ifndef PRODUCT
       
  1191         uint size = lrg->mask().Size();
       
  1192         RegMask rm = lrg->mask();
       
  1193 #endif
       
  1194         lrg->SUBTRACT(nlrg.mask());
       
  1195 #ifndef PRODUCT
       
  1196         if (trace_spilling() && lrg->mask().Size() != size) {
       
  1197           ttyLocker ttyl;
       
  1198           tty->print("L%d ", lidx);
       
  1199           rm.dump();
       
  1200           tty->print(" intersected L%d ", neighbor);
       
  1201           nlrg.mask().dump();
       
  1202           tty->print(" removed ");
       
  1203           rm.SUBTRACT(lrg->mask());
       
  1204           rm.dump();
       
  1205           tty->print(" leaving ");
       
  1206           lrg->mask().dump();
       
  1207           tty->cr();
       
  1208         }
       
  1209 #endif
       
  1210       }
       
  1211     }
       
  1212     //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness");
       
  1213     // Aligned pairs need aligned masks
       
  1214     if( lrg->num_regs() == 2 && !lrg->_fat_proj )
       
  1215       lrg->ClearToPairs();
       
  1216 
       
  1217     // Check if a color is available and if so pick the color
       
  1218     OptoReg::Name reg = choose_color( *lrg, chunk );
       
  1219 #ifdef SPARC
       
  1220     debug_only(lrg->compute_set_mask_size());
       
  1221     assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned");
       
  1222 #endif
       
  1223 
       
  1224     //---------------
       
  1225     // If we fail to color and the AllStack flag is set, trigger
       
  1226     // a chunk-rollover event
       
  1227     if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) {
       
  1228       // Bump register mask up to next stack chunk
       
  1229       chunk += RegMask::CHUNK_SIZE;
       
  1230       lrg->Set_All();
       
  1231 
       
  1232       goto retry_next_chunk;
       
  1233     }
       
  1234 
       
  1235     //---------------
       
  1236     // Did we get a color?
       
  1237     else if( OptoReg::is_valid(reg)) {
       
  1238 #ifndef PRODUCT
       
  1239       RegMask avail_rm = lrg->mask();
       
  1240 #endif
       
  1241 
       
  1242       // Record selected register
       
  1243       lrg->set_reg(reg);
       
  1244 
       
  1245       if( reg >= _max_reg )     // Compute max register limit
       
  1246         _max_reg = OptoReg::add(reg,1);
       
  1247       // Fold reg back into normal space
       
  1248       reg = OptoReg::add(reg,-chunk);
       
  1249 
       
  1250       // If the live range is not bound, then we actually had some choices
       
  1251       // to make.  In this case, the mask has more bits in it than the colors
       
  1252       // choosen.  Restrict the mask to just what was picked.
       
  1253       if( lrg->num_regs() == 1 ) { // Size 1 live range
       
  1254         lrg->Clear();           // Clear the mask
       
  1255         lrg->Insert(reg);       // Set regmask to match selected reg
       
  1256         lrg->set_mask_size(1);
       
  1257       } else if( !lrg->_fat_proj ) {
       
  1258         // For pairs, also insert the low bit of the pair
       
  1259         assert( lrg->num_regs() == 2, "unbound fatproj???" );
       
  1260         lrg->Clear();           // Clear the mask
       
  1261         lrg->Insert(reg);       // Set regmask to match selected reg
       
  1262         lrg->Insert(OptoReg::add(reg,-1));
       
  1263         lrg->set_mask_size(2);
       
  1264       } else {                  // Else fatproj
       
  1265         // mask must be equal to fatproj bits, by definition
       
  1266       }
       
  1267 #ifndef PRODUCT
       
  1268       if (trace_spilling()) {
       
  1269         ttyLocker ttyl;
       
  1270         tty->print("L%d selected ", lidx);
       
  1271         lrg->mask().dump();
       
  1272         tty->print(" from ");
       
  1273         avail_rm.dump();
       
  1274         tty->cr();
       
  1275       }
       
  1276 #endif
       
  1277       // Note that reg is the highest-numbered register in the newly-bound mask.
       
  1278     } // end color available case
       
  1279 
       
  1280     //---------------
       
  1281     // Live range is live and no colors available
       
  1282     else {
       
  1283       assert( lrg->alive(), "" );
       
  1284       assert( !lrg->_fat_proj || lrg->_def == NodeSentinel ||
       
  1285               lrg->_def->outcnt() > 0, "fat_proj cannot spill");
       
  1286       assert( !orig_mask.is_AllStack(), "All Stack does not spill" );
       
  1287 
       
  1288       // Assign the special spillreg register
       
  1289       lrg->set_reg(OptoReg::Name(spill_reg++));
       
  1290       // Do not empty the regmask; leave mask_size lying around
       
  1291       // for use during Spilling
       
  1292 #ifndef PRODUCT
       
  1293       if( trace_spilling() ) {
       
  1294         ttyLocker ttyl;
       
  1295         tty->print("L%d spilling with neighbors: ", lidx);
       
  1296         s->dump();
       
  1297         debug_only(tty->print(" original mask: "));
       
  1298         debug_only(orig_mask.dump());
       
  1299         dump_lrg(lidx);
       
  1300       }
       
  1301 #endif
       
  1302     } // end spill case
       
  1303 
       
  1304   }
       
  1305 
       
  1306   return spill_reg-LRG::SPILL_REG;      // Return number of spills
       
  1307 }
       
  1308 
       
  1309 
       
  1310 //------------------------------copy_was_spilled-------------------------------
       
  1311 // Copy 'was_spilled'-edness from the source Node to the dst Node.
       
  1312 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) {
       
  1313   if( _spilled_once.test(src->_idx) ) {
       
  1314     _spilled_once.set(dst->_idx);
       
  1315     lrgs(Find(dst))._was_spilled1 = 1;
       
  1316     if( _spilled_twice.test(src->_idx) ) {
       
  1317       _spilled_twice.set(dst->_idx);
       
  1318       lrgs(Find(dst))._was_spilled2 = 1;
       
  1319     }
       
  1320   }
       
  1321 }
       
  1322 
       
  1323 //------------------------------set_was_spilled--------------------------------
       
  1324 // Set the 'spilled_once' or 'spilled_twice' flag on a node.
       
  1325 void PhaseChaitin::set_was_spilled( Node *n ) {
       
  1326   if( _spilled_once.test_set(n->_idx) )
       
  1327     _spilled_twice.set(n->_idx);
       
  1328 }
       
  1329 
       
  1330 //------------------------------fixup_spills-----------------------------------
       
  1331 // Convert Ideal spill instructions into proper FramePtr + offset Loads and
       
  1332 // Stores.  Use-def chains are NOT preserved, but Node->LRG->reg maps are.
       
  1333 void PhaseChaitin::fixup_spills() {
       
  1334   // This function does only cisc spill work.
       
  1335   if( !UseCISCSpill ) return;
       
  1336 
       
  1337   NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); )
       
  1338 
       
  1339   // Grab the Frame Pointer
       
  1340   Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr);
       
  1341 
       
  1342   // For all blocks
       
  1343   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
       
  1344     Block *b = _cfg._blocks[i];
       
  1345 
       
  1346     // For all instructions in block
       
  1347     uint last_inst = b->end_idx();
       
  1348     for( uint j = 1; j <= last_inst; j++ ) {
       
  1349       Node *n = b->_nodes[j];
       
  1350 
       
  1351       // Dead instruction???
       
  1352       assert( n->outcnt() != 0 ||// Nothing dead after post alloc
       
  1353               C->top() == n ||  // Or the random TOP node
       
  1354               n->is_Proj(),     // Or a fat-proj kill node
       
  1355               "No dead instructions after post-alloc" );
       
  1356 
       
  1357       int inp = n->cisc_operand();
       
  1358       if( inp != AdlcVMDeps::Not_cisc_spillable ) {
       
  1359         // Convert operand number to edge index number
       
  1360         MachNode *mach = n->as_Mach();
       
  1361         inp = mach->operand_index(inp);
       
  1362         Node *src = n->in(inp);   // Value to load or store
       
  1363         LRG &lrg_cisc = lrgs( Find_const(src) );
       
  1364         OptoReg::Name src_reg = lrg_cisc.reg();
       
  1365         // Doubles record the HIGH register of an adjacent pair.
       
  1366         src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs());
       
  1367         if( OptoReg::is_stack(src_reg) ) { // If input is on stack
       
  1368           // This is a CISC Spill, get stack offset and construct new node
       
  1369 #ifndef PRODUCT
       
  1370           if( TraceCISCSpill ) {
       
  1371             tty->print("    reg-instr:  ");
       
  1372             n->dump();
       
  1373           }
       
  1374 #endif
       
  1375           int stk_offset = reg2offset(src_reg);
       
  1376           // Bailout if we might exceed node limit when spilling this instruction
       
  1377           C->check_node_count(0, "out of nodes fixing spills");
       
  1378           if (C->failing())  return;
       
  1379           // Transform node
       
  1380           MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach();
       
  1381           cisc->set_req(inp,fp);          // Base register is frame pointer
       
  1382           if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) {
       
  1383             assert( cisc->oper_input_base() == 2, "Only adding one edge");
       
  1384             cisc->ins_req(1,src);         // Requires a memory edge
       
  1385           }
       
  1386           b->_nodes.map(j,cisc);          // Insert into basic block
       
  1387           n->replace_by(cisc); // Correct graph
       
  1388           //
       
  1389           ++_used_cisc_instructions;
       
  1390 #ifndef PRODUCT
       
  1391           if( TraceCISCSpill ) {
       
  1392             tty->print("    cisc-instr: ");
       
  1393             cisc->dump();
       
  1394           }
       
  1395 #endif
       
  1396         } else {
       
  1397 #ifndef PRODUCT
       
  1398           if( TraceCISCSpill ) {
       
  1399             tty->print("    using reg-instr: ");
       
  1400             n->dump();
       
  1401           }
       
  1402 #endif
       
  1403           ++_unused_cisc_instructions;    // input can be on stack
       
  1404         }
       
  1405       }
       
  1406 
       
  1407     } // End of for all instructions
       
  1408 
       
  1409   } // End of for all blocks
       
  1410 }
       
  1411 
       
  1412 //------------------------------find_base_for_derived--------------------------
       
  1413 // Helper to stretch above; recursively discover the base Node for a
       
  1414 // given derived Node.  Easy for AddP-related machine nodes, but needs
       
  1415 // to be recursive for derived Phis.
       
  1416 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) {
       
  1417   // See if already computed; if so return it
       
  1418   if( derived_base_map[derived->_idx] )
       
  1419     return derived_base_map[derived->_idx];
       
  1420 
       
  1421   // See if this happens to be a base.
       
  1422   // NOTE: we use TypePtr instead of TypeOopPtr because we can have
       
  1423   // pointers derived from NULL!  These are always along paths that
       
  1424   // can't happen at run-time but the optimizer cannot deduce it so
       
  1425   // we have to handle it gracefully.
       
  1426   const TypePtr *tj = derived->bottom_type()->isa_ptr();
       
  1427   // If its an OOP with a non-zero offset, then it is derived.
       
  1428   if( tj->_offset == 0 ) {
       
  1429     derived_base_map[derived->_idx] = derived;
       
  1430     return derived;
       
  1431   }
       
  1432   // Derived is NULL+offset?  Base is NULL!
       
  1433   if( derived->is_Con() ) {
       
  1434     Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR );
       
  1435     uint no_lidx = 0;  // an unmatched constant in debug info has no LRG
       
  1436     _names.extend(base->_idx, no_lidx);
       
  1437     derived_base_map[derived->_idx] = base;
       
  1438     return base;
       
  1439   }
       
  1440 
       
  1441   // Check for AddP-related opcodes
       
  1442   if( !derived->is_Phi() ) {
       
  1443     assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" );
       
  1444     Node *base = derived->in(AddPNode::Base);
       
  1445     derived_base_map[derived->_idx] = base;
       
  1446     return base;
       
  1447   }
       
  1448 
       
  1449   // Recursively find bases for Phis.
       
  1450   // First check to see if we can avoid a base Phi here.
       
  1451   Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg);
       
  1452   uint i;
       
  1453   for( i = 2; i < derived->req(); i++ )
       
  1454     if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg))
       
  1455       break;
       
  1456   // Went to the end without finding any different bases?
       
  1457   if( i == derived->req() ) {   // No need for a base Phi here
       
  1458     derived_base_map[derived->_idx] = base;
       
  1459     return base;
       
  1460   }
       
  1461 
       
  1462   // Now we see we need a base-Phi here to merge the bases
       
  1463   base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() );
       
  1464   for( i = 1; i < derived->req(); i++ )
       
  1465     base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg));
       
  1466 
       
  1467   // Search the current block for an existing base-Phi
       
  1468   Block *b = _cfg._bbs[derived->_idx];
       
  1469   for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi
       
  1470     Node *phi = b->_nodes[i];
       
  1471     if( !phi->is_Phi() ) {      // Found end of Phis with no match?
       
  1472       b->_nodes.insert( i, base ); // Must insert created Phi here as base
       
  1473       _cfg._bbs.map( base->_idx, b );
       
  1474       new_lrg(base,maxlrg++);
       
  1475       break;
       
  1476     }
       
  1477     // See if Phi matches.
       
  1478     uint j;
       
  1479     for( j = 1; j < base->req(); j++ )
       
  1480       if( phi->in(j) != base->in(j) &&
       
  1481           !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs
       
  1482         break;
       
  1483     if( j == base->req() ) {    // All inputs match?
       
  1484       base = phi;               // Then use existing 'phi' and drop 'base'
       
  1485       break;
       
  1486     }
       
  1487   }
       
  1488 
       
  1489 
       
  1490   // Cache info for later passes
       
  1491   derived_base_map[derived->_idx] = base;
       
  1492   return base;
       
  1493 }
       
  1494 
       
  1495 
       
  1496 //------------------------------stretch_base_pointer_live_ranges---------------
       
  1497 // At each Safepoint, insert extra debug edges for each pair of derived value/
       
  1498 // base pointer that is live across the Safepoint for oopmap building.  The
       
  1499 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the
       
  1500 // required edge set.
       
  1501 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) {
       
  1502   int must_recompute_live = false;
       
  1503   uint maxlrg = _maxlrg;
       
  1504   Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique());
       
  1505   memset( derived_base_map, 0, sizeof(Node*)*C->unique() );
       
  1506 
       
  1507   // For all blocks in RPO do...
       
  1508   for( uint i=0; i<_cfg._num_blocks; i++ ) {
       
  1509     Block *b = _cfg._blocks[i];
       
  1510     // Note use of deep-copy constructor.  I cannot hammer the original
       
  1511     // liveout bits, because they are needed by the following coalesce pass.
       
  1512     IndexSet liveout(_live->live(b));
       
  1513 
       
  1514     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
       
  1515       Node *n = b->_nodes[j-1];
       
  1516 
       
  1517       // Pre-split compares of loop-phis.  Loop-phis form a cycle we would
       
  1518       // like to see in the same register.  Compare uses the loop-phi and so
       
  1519       // extends its live range BUT cannot be part of the cycle.  If this
       
  1520       // extended live range overlaps with the update of the loop-phi value
       
  1521       // we need both alive at the same time -- which requires at least 1
       
  1522       // copy.  But because Intel has only 2-address registers we end up with
       
  1523       // at least 2 copies, one before the loop-phi update instruction and
       
  1524       // one after.  Instead we split the input to the compare just after the
       
  1525       // phi.
       
  1526       if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) {
       
  1527         Node *phi = n->in(1);
       
  1528         if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) {
       
  1529           Block *phi_block = _cfg._bbs[phi->_idx];
       
  1530           if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) {
       
  1531             const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI];
       
  1532             Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask );
       
  1533             insert_proj( phi_block, 1, spill, maxlrg++ );
       
  1534             n->set_req(1,spill);
       
  1535             must_recompute_live = true;
       
  1536           }
       
  1537         }
       
  1538       }
       
  1539 
       
  1540       // Get value being defined
       
  1541       uint lidx = n2lidx(n);
       
  1542       if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) {
       
  1543         // Remove from live-out set
       
  1544         liveout.remove(lidx);
       
  1545 
       
  1546         // Copies do not define a new value and so do not interfere.
       
  1547         // Remove the copies source from the liveout set before interfering.
       
  1548         uint idx = n->is_Copy();
       
  1549         if( idx ) liveout.remove( n2lidx(n->in(idx)) );
       
  1550       }
       
  1551 
       
  1552       // Found a safepoint?
       
  1553       JVMState *jvms = n->jvms();
       
  1554       if( jvms ) {
       
  1555         // Now scan for a live derived pointer
       
  1556         IndexSetIterator elements(&liveout);
       
  1557         uint neighbor;
       
  1558         while ((neighbor = elements.next()) != 0) {
       
  1559           // Find reaching DEF for base and derived values
       
  1560           // This works because we are still in SSA during this call.
       
  1561           Node *derived = lrgs(neighbor)._def;
       
  1562           const TypePtr *tj = derived->bottom_type()->isa_ptr();
       
  1563           // If its an OOP with a non-zero offset, then it is derived.
       
  1564           if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) {
       
  1565             Node *base = find_base_for_derived( derived_base_map, derived, maxlrg );
       
  1566             assert( base->_idx < _names.Size(), "" );
       
  1567             // Add reaching DEFs of derived pointer and base pointer as a
       
  1568             // pair of inputs
       
  1569             n->add_req( derived );
       
  1570             n->add_req( base );
       
  1571 
       
  1572             // See if the base pointer is already live to this point.
       
  1573             // Since I'm working on the SSA form, live-ness amounts to
       
  1574             // reaching def's.  So if I find the base's live range then
       
  1575             // I know the base's def reaches here.
       
  1576             if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or
       
  1577                  !liveout.member( n2lidx(base) ) ) && // not live) AND
       
  1578                  (n2lidx(base) > 0)                && // not a constant
       
  1579                  _cfg._bbs[base->_idx] != b ) {     //  base not def'd in blk)
       
  1580               // Base pointer is not currently live.  Since I stretched
       
  1581               // the base pointer to here and it crosses basic-block
       
  1582               // boundaries, the global live info is now incorrect.
       
  1583               // Recompute live.
       
  1584               must_recompute_live = true;
       
  1585             } // End of if base pointer is not live to debug info
       
  1586           }
       
  1587         } // End of scan all live data for derived ptrs crossing GC point
       
  1588       } // End of if found a GC point
       
  1589 
       
  1590       // Make all inputs live
       
  1591       if( !n->is_Phi() ) {      // Phi function uses come from prior block
       
  1592         for( uint k = 1; k < n->req(); k++ ) {
       
  1593           uint lidx = n2lidx(n->in(k));
       
  1594           if( lidx < _maxlrg )
       
  1595             liveout.insert( lidx );
       
  1596         }
       
  1597       }
       
  1598 
       
  1599     } // End of forall instructions in block
       
  1600     liveout.clear();  // Free the memory used by liveout.
       
  1601 
       
  1602   } // End of forall blocks
       
  1603   _maxlrg = maxlrg;
       
  1604 
       
  1605   // If I created a new live range I need to recompute live
       
  1606   if( maxlrg != _ifg->_maxlrg )
       
  1607     must_recompute_live = true;
       
  1608 
       
  1609   return must_recompute_live != 0;
       
  1610 }
       
  1611 
       
  1612 
       
  1613 //------------------------------add_reference----------------------------------
       
  1614 // Extend the node to LRG mapping
       
  1615 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) {
       
  1616   _names.extend( node->_idx, n2lidx(old_node) );
       
  1617 }
       
  1618 
       
  1619 //------------------------------dump-------------------------------------------
       
  1620 #ifndef PRODUCT
       
  1621 void PhaseChaitin::dump( const Node *n ) const {
       
  1622   uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0;
       
  1623   tty->print("L%d",r);
       
  1624   if( r && n->Opcode() != Op_Phi ) {
       
  1625     if( _node_regs ) {          // Got a post-allocation copy of allocation?
       
  1626       tty->print("[");
       
  1627       OptoReg::Name second = get_reg_second(n);
       
  1628       if( OptoReg::is_valid(second) ) {
       
  1629         if( OptoReg::is_reg(second) )
       
  1630           tty->print("%s:",Matcher::regName[second]);
       
  1631         else
       
  1632           tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second));
       
  1633       }
       
  1634       OptoReg::Name first = get_reg_first(n);
       
  1635       if( OptoReg::is_reg(first) )
       
  1636         tty->print("%s]",Matcher::regName[first]);
       
  1637       else
       
  1638          tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first));
       
  1639     } else
       
  1640     n->out_RegMask().dump();
       
  1641   }
       
  1642   tty->print("/N%d\t",n->_idx);
       
  1643   tty->print("%s === ", n->Name());
       
  1644   uint k;
       
  1645   for( k = 0; k < n->req(); k++) {
       
  1646     Node *m = n->in(k);
       
  1647     if( !m ) tty->print("_ ");
       
  1648     else {
       
  1649       uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
       
  1650       tty->print("L%d",r);
       
  1651       // Data MultiNode's can have projections with no real registers.
       
  1652       // Don't die while dumping them.
       
  1653       int op = n->Opcode();
       
  1654       if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) {
       
  1655         if( _node_regs ) {
       
  1656           tty->print("[");
       
  1657           OptoReg::Name second = get_reg_second(n->in(k));
       
  1658           if( OptoReg::is_valid(second) ) {
       
  1659             if( OptoReg::is_reg(second) )
       
  1660               tty->print("%s:",Matcher::regName[second]);
       
  1661             else
       
  1662               tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer),
       
  1663                          reg2offset_unchecked(second));
       
  1664           }
       
  1665           OptoReg::Name first = get_reg_first(n->in(k));
       
  1666           if( OptoReg::is_reg(first) )
       
  1667             tty->print("%s]",Matcher::regName[first]);
       
  1668           else
       
  1669             tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer),
       
  1670                        reg2offset_unchecked(first));
       
  1671         } else
       
  1672           n->in_RegMask(k).dump();
       
  1673       }
       
  1674       tty->print("/N%d ",m->_idx);
       
  1675     }
       
  1676   }
       
  1677   if( k < n->len() && n->in(k) ) tty->print("| ");
       
  1678   for( ; k < n->len(); k++ ) {
       
  1679     Node *m = n->in(k);
       
  1680     if( !m ) break;
       
  1681     uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0;
       
  1682     tty->print("L%d",r);
       
  1683     tty->print("/N%d ",m->_idx);
       
  1684   }
       
  1685   if( n->is_Mach() ) n->as_Mach()->dump_spec(tty);
       
  1686   else n->dump_spec(tty);
       
  1687   if( _spilled_once.test(n->_idx ) ) {
       
  1688     tty->print(" Spill_1");
       
  1689     if( _spilled_twice.test(n->_idx ) )
       
  1690       tty->print(" Spill_2");
       
  1691   }
       
  1692   tty->print("\n");
       
  1693 }
       
  1694 
       
  1695 void PhaseChaitin::dump( const Block * b ) const {
       
  1696   b->dump_head( &_cfg._bbs );
       
  1697 
       
  1698   // For all instructions
       
  1699   for( uint j = 0; j < b->_nodes.size(); j++ )
       
  1700     dump(b->_nodes[j]);
       
  1701   // Print live-out info at end of block
       
  1702   if( _live ) {
       
  1703     tty->print("Liveout: ");
       
  1704     IndexSet *live = _live->live(b);
       
  1705     IndexSetIterator elements(live);
       
  1706     tty->print("{");
       
  1707     uint i;
       
  1708     while ((i = elements.next()) != 0) {
       
  1709       tty->print("L%d ", Find_const(i));
       
  1710     }
       
  1711     tty->print_cr("}");
       
  1712   }
       
  1713   tty->print("\n");
       
  1714 }
       
  1715 
       
  1716 void PhaseChaitin::dump() const {
       
  1717   tty->print( "--- Chaitin -- argsize: %d  framesize: %d ---\n",
       
  1718               _matcher._new_SP, _framesize );
       
  1719 
       
  1720   // For all blocks
       
  1721   for( uint i = 0; i < _cfg._num_blocks; i++ )
       
  1722     dump(_cfg._blocks[i]);
       
  1723   // End of per-block dump
       
  1724   tty->print("\n");
       
  1725 
       
  1726   if (!_ifg) {
       
  1727     tty->print("(No IFG.)\n");
       
  1728     return;
       
  1729   }
       
  1730 
       
  1731   // Dump LRG array
       
  1732   tty->print("--- Live RanGe Array ---\n");
       
  1733   for(uint i2 = 1; i2 < _maxlrg; i2++ ) {
       
  1734     tty->print("L%d: ",i2);
       
  1735     if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( );
       
  1736     else tty->print("new LRG");
       
  1737   }
       
  1738   tty->print_cr("");
       
  1739 
       
  1740   // Dump lo-degree list
       
  1741   tty->print("Lo degree: ");
       
  1742   for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next )
       
  1743     tty->print("L%d ",i3);
       
  1744   tty->print_cr("");
       
  1745 
       
  1746   // Dump lo-stk-degree list
       
  1747   tty->print("Lo stk degree: ");
       
  1748   for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next )
       
  1749     tty->print("L%d ",i4);
       
  1750   tty->print_cr("");
       
  1751 
       
  1752   // Dump lo-degree list
       
  1753   tty->print("Hi degree: ");
       
  1754   for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next )
       
  1755     tty->print("L%d ",i5);
       
  1756   tty->print_cr("");
       
  1757 }
       
  1758 
       
  1759 //------------------------------dump_degree_lists------------------------------
       
  1760 void PhaseChaitin::dump_degree_lists() const {
       
  1761   // Dump lo-degree list
       
  1762   tty->print("Lo degree: ");
       
  1763   for( uint i = _lo_degree; i; i = lrgs(i)._next )
       
  1764     tty->print("L%d ",i);
       
  1765   tty->print_cr("");
       
  1766 
       
  1767   // Dump lo-stk-degree list
       
  1768   tty->print("Lo stk degree: ");
       
  1769   for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next )
       
  1770     tty->print("L%d ",i2);
       
  1771   tty->print_cr("");
       
  1772 
       
  1773   // Dump lo-degree list
       
  1774   tty->print("Hi degree: ");
       
  1775   for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next )
       
  1776     tty->print("L%d ",i3);
       
  1777   tty->print_cr("");
       
  1778 }
       
  1779 
       
  1780 //------------------------------dump_simplified--------------------------------
       
  1781 void PhaseChaitin::dump_simplified() const {
       
  1782   tty->print("Simplified: ");
       
  1783   for( uint i = _simplified; i; i = lrgs(i)._next )
       
  1784     tty->print("L%d ",i);
       
  1785   tty->print_cr("");
       
  1786 }
       
  1787 
       
  1788 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) {
       
  1789   if ((int)reg < 0)
       
  1790     sprintf(buf, "<OptoReg::%d>", (int)reg);
       
  1791   else if (OptoReg::is_reg(reg))
       
  1792     strcpy(buf, Matcher::regName[reg]);
       
  1793   else
       
  1794     sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer),
       
  1795             pc->reg2offset(reg));
       
  1796   return buf+strlen(buf);
       
  1797 }
       
  1798 
       
  1799 //------------------------------dump_register----------------------------------
       
  1800 // Dump a register name into a buffer.  Be intelligent if we get called
       
  1801 // before allocation is complete.
       
  1802 char *PhaseChaitin::dump_register( const Node *n, char *buf  ) const {
       
  1803   if( !this ) {                 // Not got anything?
       
  1804     sprintf(buf,"N%d",n->_idx); // Then use Node index
       
  1805   } else if( _node_regs ) {
       
  1806     // Post allocation, use direct mappings, no LRG info available
       
  1807     print_reg( get_reg_first(n), this, buf );
       
  1808   } else {
       
  1809     uint lidx = Find_const(n); // Grab LRG number
       
  1810     if( !_ifg ) {
       
  1811       sprintf(buf,"L%d",lidx);  // No register binding yet
       
  1812     } else if( !lidx ) {        // Special, not allocated value
       
  1813       strcpy(buf,"Special");
       
  1814     } else if( (lrgs(lidx).num_regs() == 1)
       
  1815                 ? !lrgs(lidx).mask().is_bound1()
       
  1816                 : !lrgs(lidx).mask().is_bound2() ) {
       
  1817       sprintf(buf,"L%d",lidx); // No register binding yet
       
  1818     } else {                    // Hah!  We have a bound machine register
       
  1819       print_reg( lrgs(lidx).reg(), this, buf );
       
  1820     }
       
  1821   }
       
  1822   return buf+strlen(buf);
       
  1823 }
       
  1824 
       
  1825 //----------------------dump_for_spill_split_recycle--------------------------
       
  1826 void PhaseChaitin::dump_for_spill_split_recycle() const {
       
  1827   if( WizardMode && (PrintCompilation || PrintOpto) ) {
       
  1828     // Display which live ranges need to be split and the allocator's state
       
  1829     tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt);
       
  1830     for( uint bidx = 1; bidx < _maxlrg; bidx++ ) {
       
  1831       if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) {
       
  1832         tty->print("L%d: ", bidx);
       
  1833         lrgs(bidx).dump();
       
  1834       }
       
  1835     }
       
  1836     tty->cr();
       
  1837     dump();
       
  1838   }
       
  1839 }
       
  1840 
       
  1841 //------------------------------dump_frame------------------------------------
       
  1842 void PhaseChaitin::dump_frame() const {
       
  1843   const char *fp = OptoReg::regname(OptoReg::c_frame_pointer);
       
  1844   const TypeTuple *domain = C->tf()->domain();
       
  1845   const int        argcnt = domain->cnt() - TypeFunc::Parms;
       
  1846 
       
  1847   // Incoming arguments in registers dump
       
  1848   for( int k = 0; k < argcnt; k++ ) {
       
  1849     OptoReg::Name parmreg = _matcher._parm_regs[k].first();
       
  1850     if( OptoReg::is_reg(parmreg))  {
       
  1851       const char *reg_name = OptoReg::regname(parmreg);
       
  1852       tty->print("#r%3.3d %s", parmreg, reg_name);
       
  1853       parmreg = _matcher._parm_regs[k].second();
       
  1854       if( OptoReg::is_reg(parmreg))  {
       
  1855         tty->print(":%s", OptoReg::regname(parmreg));
       
  1856       }
       
  1857       tty->print("   : parm %d: ", k);
       
  1858       domain->field_at(k + TypeFunc::Parms)->dump();
       
  1859       tty->print_cr("");
       
  1860     }
       
  1861   }
       
  1862 
       
  1863   // Check for un-owned padding above incoming args
       
  1864   OptoReg::Name reg = _matcher._new_SP;
       
  1865   if( reg > _matcher._in_arg_limit ) {
       
  1866     reg = OptoReg::add(reg, -1);
       
  1867     tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg));
       
  1868   }
       
  1869 
       
  1870   // Incoming argument area dump
       
  1871   OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots());
       
  1872   while( reg > begin_in_arg ) {
       
  1873     reg = OptoReg::add(reg, -1);
       
  1874     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
       
  1875     int j;
       
  1876     for( j = 0; j < argcnt; j++) {
       
  1877       if( _matcher._parm_regs[j].first() == reg ||
       
  1878           _matcher._parm_regs[j].second() == reg ) {
       
  1879         tty->print("parm %d: ",j);
       
  1880         domain->field_at(j + TypeFunc::Parms)->dump();
       
  1881         tty->print_cr("");
       
  1882         break;
       
  1883       }
       
  1884     }
       
  1885     if( j >= argcnt )
       
  1886       tty->print_cr("HOLE, owned by SELF");
       
  1887   }
       
  1888 
       
  1889   // Old outgoing preserve area
       
  1890   while( reg > _matcher._old_SP ) {
       
  1891     reg = OptoReg::add(reg, -1);
       
  1892     tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg));
       
  1893   }
       
  1894 
       
  1895   // Old SP
       
  1896   tty->print_cr("# -- Old %s -- Framesize: %d --",fp,
       
  1897     reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize);
       
  1898 
       
  1899   // Preserve area dump
       
  1900   reg = OptoReg::add(reg, -1);
       
  1901   while( OptoReg::is_stack(reg)) {
       
  1902     tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg));
       
  1903     if( _matcher.return_addr() == reg )
       
  1904       tty->print_cr("return address");
       
  1905     else if( _matcher.return_addr() == OptoReg::add(reg,1) &&
       
  1906              VerifyStackAtCalls )
       
  1907       tty->print_cr("0xBADB100D   +VerifyStackAtCalls");
       
  1908     else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots())
       
  1909       tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg));
       
  1910     else
       
  1911       tty->print_cr("pad2, in_preserve");
       
  1912     reg = OptoReg::add(reg, -1);
       
  1913   }
       
  1914 
       
  1915   // Spill area dump
       
  1916   reg = OptoReg::add(_matcher._new_SP, _framesize );
       
  1917   while( reg > _matcher._out_arg_limit ) {
       
  1918     reg = OptoReg::add(reg, -1);
       
  1919     tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg));
       
  1920   }
       
  1921 
       
  1922   // Outgoing argument area dump
       
  1923   while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) {
       
  1924     reg = OptoReg::add(reg, -1);
       
  1925     tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg));
       
  1926   }
       
  1927 
       
  1928   // Outgoing new preserve area
       
  1929   while( reg > _matcher._new_SP ) {
       
  1930     reg = OptoReg::add(reg, -1);
       
  1931     tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg));
       
  1932   }
       
  1933   tty->print_cr("#");
       
  1934 }
       
  1935 
       
  1936 //------------------------------dump_bb----------------------------------------
       
  1937 void PhaseChaitin::dump_bb( uint pre_order ) const {
       
  1938   tty->print_cr("---dump of B%d---",pre_order);
       
  1939   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
       
  1940     Block *b = _cfg._blocks[i];
       
  1941     if( b->_pre_order == pre_order )
       
  1942       dump(b);
       
  1943   }
       
  1944 }
       
  1945 
       
  1946 //------------------------------dump_lrg---------------------------------------
       
  1947 void PhaseChaitin::dump_lrg( uint lidx ) const {
       
  1948   tty->print_cr("---dump of L%d---",lidx);
       
  1949 
       
  1950   if( _ifg ) {
       
  1951     if( lidx >= _maxlrg ) {
       
  1952       tty->print("Attempt to print live range index beyond max live range.\n");
       
  1953       return;
       
  1954     }
       
  1955     tty->print("L%d: ",lidx);
       
  1956     lrgs(lidx).dump( );
       
  1957   }
       
  1958   if( _ifg ) {    tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx));
       
  1959     _ifg->neighbors(lidx)->dump();
       
  1960     tty->cr();
       
  1961   }
       
  1962   // For all blocks
       
  1963   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
       
  1964     Block *b = _cfg._blocks[i];
       
  1965     int dump_once = 0;
       
  1966 
       
  1967     // For all instructions
       
  1968     for( uint j = 0; j < b->_nodes.size(); j++ ) {
       
  1969       Node *n = b->_nodes[j];
       
  1970       if( Find_const(n) == lidx ) {
       
  1971         if( !dump_once++ ) {
       
  1972           tty->cr();
       
  1973           b->dump_head( &_cfg._bbs );
       
  1974         }
       
  1975         dump(n);
       
  1976         continue;
       
  1977       }
       
  1978       uint cnt = n->req();
       
  1979       for( uint k = 1; k < cnt; k++ ) {
       
  1980         Node *m = n->in(k);
       
  1981         if (!m)  continue;  // be robust in the dumper
       
  1982         if( Find_const(m) == lidx ) {
       
  1983           if( !dump_once++ ) {
       
  1984             tty->cr();
       
  1985             b->dump_head( &_cfg._bbs );
       
  1986           }
       
  1987           dump(n);
       
  1988         }
       
  1989       }
       
  1990     }
       
  1991   } // End of per-block dump
       
  1992   tty->cr();
       
  1993 }
       
  1994 #endif // not PRODUCT
       
  1995 
       
  1996 //------------------------------print_chaitin_statistics-------------------------------
       
  1997 int PhaseChaitin::_final_loads  = 0;
       
  1998 int PhaseChaitin::_final_stores = 0;
       
  1999 int PhaseChaitin::_final_memoves= 0;
       
  2000 int PhaseChaitin::_final_copies = 0;
       
  2001 double PhaseChaitin::_final_load_cost  = 0;
       
  2002 double PhaseChaitin::_final_store_cost = 0;
       
  2003 double PhaseChaitin::_final_memove_cost= 0;
       
  2004 double PhaseChaitin::_final_copy_cost  = 0;
       
  2005 int PhaseChaitin::_conserv_coalesce = 0;
       
  2006 int PhaseChaitin::_conserv_coalesce_pair = 0;
       
  2007 int PhaseChaitin::_conserv_coalesce_trie = 0;
       
  2008 int PhaseChaitin::_conserv_coalesce_quad = 0;
       
  2009 int PhaseChaitin::_post_alloc = 0;
       
  2010 int PhaseChaitin::_lost_opp_pp_coalesce = 0;
       
  2011 int PhaseChaitin::_lost_opp_cflow_coalesce = 0;
       
  2012 int PhaseChaitin::_used_cisc_instructions   = 0;
       
  2013 int PhaseChaitin::_unused_cisc_instructions = 0;
       
  2014 int PhaseChaitin::_allocator_attempts       = 0;
       
  2015 int PhaseChaitin::_allocator_successes      = 0;
       
  2016 
       
  2017 #ifndef PRODUCT
       
  2018 uint PhaseChaitin::_high_pressure           = 0;
       
  2019 uint PhaseChaitin::_low_pressure            = 0;
       
  2020 
       
  2021 void PhaseChaitin::print_chaitin_statistics() {
       
  2022   tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies);
       
  2023   tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost);
       
  2024   tty->print_cr("Adjusted spill cost = %7.0f.",
       
  2025                 _final_load_cost*4.0 + _final_store_cost  * 2.0 +
       
  2026                 _final_copy_cost*1.0 + _final_memove_cost*12.0);
       
  2027   tty->print("Conservatively coalesced %d copies, %d pairs",
       
  2028                 _conserv_coalesce, _conserv_coalesce_pair);
       
  2029   if( _conserv_coalesce_trie || _conserv_coalesce_quad )
       
  2030     tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad);
       
  2031   tty->print_cr(", %d post alloc.", _post_alloc);
       
  2032   if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce )
       
  2033     tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.",
       
  2034                   _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce );
       
  2035   if( _used_cisc_instructions || _unused_cisc_instructions )
       
  2036     tty->print_cr("Used cisc instruction  %d,  remained in register %d",
       
  2037                    _used_cisc_instructions, _unused_cisc_instructions);
       
  2038   if( _allocator_successes != 0 )
       
  2039     tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes);
       
  2040   tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure);
       
  2041 }
       
  2042 #endif // not PRODUCT