|
1 /* |
|
2 * Copyright 2000-2007 Sun Microsystems, Inc. All Rights Reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. |
|
8 * |
|
9 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
12 * version 2 for more details (a copy is included in the LICENSE file that |
|
13 * accompanied this code). |
|
14 * |
|
15 * You should have received a copy of the GNU General Public License version |
|
16 * 2 along with this work; if not, write to the Free Software Foundation, |
|
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
18 * |
|
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, |
|
20 * CA 95054 USA or visit www.sun.com if you need additional information or |
|
21 * have any questions. |
|
22 * |
|
23 */ |
|
24 |
|
25 #include "incls/_precompiled.incl" |
|
26 #include "incls/_chaitin.cpp.incl" |
|
27 |
|
28 //============================================================================= |
|
29 |
|
30 #ifndef PRODUCT |
|
31 void LRG::dump( ) const { |
|
32 ttyLocker ttyl; |
|
33 tty->print("%d ",num_regs()); |
|
34 _mask.dump(); |
|
35 if( _msize_valid ) { |
|
36 if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size); |
|
37 else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size()); |
|
38 } else { |
|
39 tty->print(", #?(%d) ",_mask.Size()); |
|
40 } |
|
41 |
|
42 tty->print("EffDeg: "); |
|
43 if( _degree_valid ) tty->print( "%d ", _eff_degree ); |
|
44 else tty->print("? "); |
|
45 |
|
46 if( _def == NodeSentinel ) { |
|
47 tty->print("MultiDef "); |
|
48 if (_defs != NULL) { |
|
49 tty->print("("); |
|
50 for (int i = 0; i < _defs->length(); i++) { |
|
51 tty->print("N%d ", _defs->at(i)->_idx); |
|
52 } |
|
53 tty->print(") "); |
|
54 } |
|
55 } |
|
56 else if( _def == 0 ) tty->print("Dead "); |
|
57 else tty->print("Def: N%d ",_def->_idx); |
|
58 |
|
59 tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score()); |
|
60 // Flags |
|
61 if( _is_oop ) tty->print("Oop "); |
|
62 if( _is_float ) tty->print("Float "); |
|
63 if( _was_spilled1 ) tty->print("Spilled "); |
|
64 if( _was_spilled2 ) tty->print("Spilled2 "); |
|
65 if( _direct_conflict ) tty->print("Direct_conflict "); |
|
66 if( _fat_proj ) tty->print("Fat "); |
|
67 if( _was_lo ) tty->print("Lo "); |
|
68 if( _has_copy ) tty->print("Copy "); |
|
69 if( _at_risk ) tty->print("Risk "); |
|
70 |
|
71 if( _must_spill ) tty->print("Must_spill "); |
|
72 if( _is_bound ) tty->print("Bound "); |
|
73 if( _msize_valid ) { |
|
74 if( _degree_valid && lo_degree() ) tty->print("Trivial "); |
|
75 } |
|
76 |
|
77 tty->cr(); |
|
78 } |
|
79 #endif |
|
80 |
|
81 //------------------------------score------------------------------------------ |
|
82 // Compute score from cost and area. Low score is best to spill. |
|
83 static double raw_score( double cost, double area ) { |
|
84 return cost - (area*RegisterCostAreaRatio) * 1.52588e-5; |
|
85 } |
|
86 |
|
87 double LRG::score() const { |
|
88 // Scale _area by RegisterCostAreaRatio/64K then subtract from cost. |
|
89 // Bigger area lowers score, encourages spilling this live range. |
|
90 // Bigger cost raise score, prevents spilling this live range. |
|
91 // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer |
|
92 // to turn a divide by a constant into a multiply by the reciprical). |
|
93 double score = raw_score( _cost, _area); |
|
94 |
|
95 // Account for area. Basically, LRGs covering large areas are better |
|
96 // to spill because more other LRGs get freed up. |
|
97 if( _area == 0.0 ) // No area? Then no progress to spill |
|
98 return 1e35; |
|
99 |
|
100 if( _was_spilled2 ) // If spilled once before, we are unlikely |
|
101 return score + 1e30; // to make progress again. |
|
102 |
|
103 if( _cost >= _area*3.0 ) // Tiny area relative to cost |
|
104 return score + 1e17; // Probably no progress to spill |
|
105 |
|
106 if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost |
|
107 return score + 1e10; // Likely no progress to spill |
|
108 |
|
109 return score; |
|
110 } |
|
111 |
|
112 //------------------------------LRG_List--------------------------------------- |
|
113 LRG_List::LRG_List( uint max ) : _cnt(max), _max(max), _lidxs(NEW_RESOURCE_ARRAY(uint,max)) { |
|
114 memset( _lidxs, 0, sizeof(uint)*max ); |
|
115 } |
|
116 |
|
117 void LRG_List::extend( uint nidx, uint lidx ) { |
|
118 _nesting.check(); |
|
119 if( nidx >= _max ) { |
|
120 uint size = 16; |
|
121 while( size <= nidx ) size <<=1; |
|
122 _lidxs = REALLOC_RESOURCE_ARRAY( uint, _lidxs, _max, size ); |
|
123 _max = size; |
|
124 } |
|
125 while( _cnt <= nidx ) |
|
126 _lidxs[_cnt++] = 0; |
|
127 _lidxs[nidx] = lidx; |
|
128 } |
|
129 |
|
130 #define NUMBUCKS 3 |
|
131 |
|
132 //------------------------------Chaitin---------------------------------------- |
|
133 PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher) |
|
134 : PhaseRegAlloc(unique, cfg, matcher, |
|
135 #ifndef PRODUCT |
|
136 print_chaitin_statistics |
|
137 #else |
|
138 NULL |
|
139 #endif |
|
140 ), |
|
141 _names(unique), _uf_map(unique), |
|
142 _maxlrg(0), _live(0), |
|
143 _spilled_once(Thread::current()->resource_area()), |
|
144 _spilled_twice(Thread::current()->resource_area()), |
|
145 _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0), |
|
146 _oldphi(unique) |
|
147 #ifndef PRODUCT |
|
148 , _trace_spilling(TraceSpilling || C->method_has_option("TraceSpilling")) |
|
149 #endif |
|
150 { |
|
151 NOT_PRODUCT( Compile::TracePhase t3("ctorChaitin", &_t_ctorChaitin, TimeCompiler); ) |
|
152 uint i,j; |
|
153 // Build a list of basic blocks, sorted by frequency |
|
154 _blks = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks ); |
|
155 // Experiment with sorting strategies to speed compilation |
|
156 double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket |
|
157 Block **buckets[NUMBUCKS]; // Array of buckets |
|
158 uint buckcnt[NUMBUCKS]; // Array of bucket counters |
|
159 double buckval[NUMBUCKS]; // Array of bucket value cutoffs |
|
160 for( i = 0; i < NUMBUCKS; i++ ) { |
|
161 buckets[i] = NEW_RESOURCE_ARRAY( Block *, _cfg._num_blocks ); |
|
162 buckcnt[i] = 0; |
|
163 // Bump by three orders of magnitude each time |
|
164 cutoff *= 0.001; |
|
165 buckval[i] = cutoff; |
|
166 for( j = 0; j < _cfg._num_blocks; j++ ) { |
|
167 buckets[i][j] = NULL; |
|
168 } |
|
169 } |
|
170 // Sort blocks into buckets |
|
171 for( i = 0; i < _cfg._num_blocks; i++ ) { |
|
172 for( j = 0; j < NUMBUCKS; j++ ) { |
|
173 if( (j == NUMBUCKS-1) || (_cfg._blocks[i]->_freq > buckval[j]) ) { |
|
174 // Assign block to end of list for appropriate bucket |
|
175 buckets[j][buckcnt[j]++] = _cfg._blocks[i]; |
|
176 break; // kick out of inner loop |
|
177 } |
|
178 } |
|
179 } |
|
180 // Dump buckets into final block array |
|
181 uint blkcnt = 0; |
|
182 for( i = 0; i < NUMBUCKS; i++ ) { |
|
183 for( j = 0; j < buckcnt[i]; j++ ) { |
|
184 _blks[blkcnt++] = buckets[i][j]; |
|
185 } |
|
186 } |
|
187 |
|
188 assert(blkcnt == _cfg._num_blocks, "Block array not totally filled"); |
|
189 } |
|
190 |
|
191 void PhaseChaitin::Register_Allocate() { |
|
192 |
|
193 // Above the OLD FP (and in registers) are the incoming arguments. Stack |
|
194 // slots in this area are called "arg_slots". Above the NEW FP (and in |
|
195 // registers) is the outgoing argument area; above that is the spill/temp |
|
196 // area. These are all "frame_slots". Arg_slots start at the zero |
|
197 // stack_slots and count up to the known arg_size. Frame_slots start at |
|
198 // the stack_slot #arg_size and go up. After allocation I map stack |
|
199 // slots to actual offsets. Stack-slots in the arg_slot area are biased |
|
200 // by the frame_size; stack-slots in the frame_slot area are biased by 0. |
|
201 |
|
202 _trip_cnt = 0; |
|
203 _alternate = 0; |
|
204 _matcher._allocation_started = true; |
|
205 |
|
206 ResourceArea live_arena; // Arena for liveness & IFG info |
|
207 ResourceMark rm(&live_arena); |
|
208 |
|
209 // Need live-ness for the IFG; need the IFG for coalescing. If the |
|
210 // liveness is JUST for coalescing, then I can get some mileage by renaming |
|
211 // all copy-related live ranges low and then using the max copy-related |
|
212 // live range as a cut-off for LIVE and the IFG. In other words, I can |
|
213 // build a subset of LIVE and IFG just for copies. |
|
214 PhaseLive live(_cfg,_names,&live_arena); |
|
215 |
|
216 // Need IFG for coalescing and coloring |
|
217 PhaseIFG ifg( &live_arena ); |
|
218 _ifg = &ifg; |
|
219 |
|
220 if (C->unique() > _names.Size()) _names.extend(C->unique()-1, 0); |
|
221 |
|
222 // Come out of SSA world to the Named world. Assign (virtual) registers to |
|
223 // Nodes. Use the same register for all inputs and the output of PhiNodes |
|
224 // - effectively ending SSA form. This requires either coalescing live |
|
225 // ranges or inserting copies. For the moment, we insert "virtual copies" |
|
226 // - we pretend there is a copy prior to each Phi in predecessor blocks. |
|
227 // We will attempt to coalesce such "virtual copies" before we manifest |
|
228 // them for real. |
|
229 de_ssa(); |
|
230 |
|
231 { |
|
232 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
233 _live = NULL; // Mark live as being not available |
|
234 rm.reset_to_mark(); // Reclaim working storage |
|
235 IndexSet::reset_memory(C, &live_arena); |
|
236 ifg.init(_maxlrg); // Empty IFG |
|
237 gather_lrg_masks( false ); // Collect LRG masks |
|
238 live.compute( _maxlrg ); // Compute liveness |
|
239 _live = &live; // Mark LIVE as being available |
|
240 } |
|
241 |
|
242 // Base pointers are currently "used" by instructions which define new |
|
243 // derived pointers. This makes base pointers live up to the where the |
|
244 // derived pointer is made, but not beyond. Really, they need to be live |
|
245 // across any GC point where the derived value is live. So this code looks |
|
246 // at all the GC points, and "stretches" the live range of any base pointer |
|
247 // to the GC point. |
|
248 if( stretch_base_pointer_live_ranges(&live_arena) ) { |
|
249 NOT_PRODUCT( Compile::TracePhase t3("computeLive (sbplr)", &_t_computeLive, TimeCompiler); ) |
|
250 // Since some live range stretched, I need to recompute live |
|
251 _live = NULL; |
|
252 rm.reset_to_mark(); // Reclaim working storage |
|
253 IndexSet::reset_memory(C, &live_arena); |
|
254 ifg.init(_maxlrg); |
|
255 gather_lrg_masks( false ); |
|
256 live.compute( _maxlrg ); |
|
257 _live = &live; |
|
258 } |
|
259 // Create the interference graph using virtual copies |
|
260 build_ifg_virtual( ); // Include stack slots this time |
|
261 |
|
262 // Aggressive (but pessimistic) copy coalescing. |
|
263 // This pass works on virtual copies. Any virtual copies which are not |
|
264 // coalesced get manifested as actual copies |
|
265 { |
|
266 // The IFG is/was triangular. I am 'squaring it up' so Union can run |
|
267 // faster. Union requires a 'for all' operation which is slow on the |
|
268 // triangular adjacency matrix (quick reminder: the IFG is 'sparse' - |
|
269 // meaning I can visit all the Nodes neighbors less than a Node in time |
|
270 // O(# of neighbors), but I have to visit all the Nodes greater than a |
|
271 // given Node and search them for an instance, i.e., time O(#MaxLRG)). |
|
272 _ifg->SquareUp(); |
|
273 |
|
274 PhaseAggressiveCoalesce coalesce( *this ); |
|
275 coalesce.coalesce_driver( ); |
|
276 // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do |
|
277 // not match the Phi itself, insert a copy. |
|
278 coalesce.insert_copies(_matcher); |
|
279 } |
|
280 |
|
281 // After aggressive coalesce, attempt a first cut at coloring. |
|
282 // To color, we need the IFG and for that we need LIVE. |
|
283 { |
|
284 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
285 _live = NULL; |
|
286 rm.reset_to_mark(); // Reclaim working storage |
|
287 IndexSet::reset_memory(C, &live_arena); |
|
288 ifg.init(_maxlrg); |
|
289 gather_lrg_masks( true ); |
|
290 live.compute( _maxlrg ); |
|
291 _live = &live; |
|
292 } |
|
293 |
|
294 // Build physical interference graph |
|
295 uint must_spill = 0; |
|
296 must_spill = build_ifg_physical( &live_arena ); |
|
297 // If we have a guaranteed spill, might as well spill now |
|
298 if( must_spill ) { |
|
299 if( !_maxlrg ) return; |
|
300 // Bail out if unique gets too large (ie - unique > MaxNodeLimit) |
|
301 C->check_node_count(10*must_spill, "out of nodes before split"); |
|
302 if (C->failing()) return; |
|
303 _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere |
|
304 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) |
|
305 // or we failed to split |
|
306 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split"); |
|
307 if (C->failing()) return; |
|
308 |
|
309 #ifdef ASSERT |
|
310 if( VerifyOpto ) { |
|
311 _cfg.verify(); |
|
312 verify_base_ptrs(&live_arena); |
|
313 } |
|
314 #endif |
|
315 NOT_PRODUCT( C->verify_graph_edges(); ) |
|
316 |
|
317 compact(); // Compact LRGs; return new lower max lrg |
|
318 |
|
319 { |
|
320 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
321 _live = NULL; |
|
322 rm.reset_to_mark(); // Reclaim working storage |
|
323 IndexSet::reset_memory(C, &live_arena); |
|
324 ifg.init(_maxlrg); // Build a new interference graph |
|
325 gather_lrg_masks( true ); // Collect intersect mask |
|
326 live.compute( _maxlrg ); // Compute LIVE |
|
327 _live = &live; |
|
328 } |
|
329 build_ifg_physical( &live_arena ); |
|
330 _ifg->SquareUp(); |
|
331 _ifg->Compute_Effective_Degree(); |
|
332 // Only do conservative coalescing if requested |
|
333 if( OptoCoalesce ) { |
|
334 // Conservative (and pessimistic) copy coalescing of those spills |
|
335 PhaseConservativeCoalesce coalesce( *this ); |
|
336 // If max live ranges greater than cutoff, don't color the stack. |
|
337 // This cutoff can be larger than below since it is only done once. |
|
338 coalesce.coalesce_driver( ); |
|
339 } |
|
340 compress_uf_map_for_nodes(); |
|
341 |
|
342 #ifdef ASSERT |
|
343 if( VerifyOpto ) _ifg->verify(this); |
|
344 #endif |
|
345 } else { |
|
346 ifg.SquareUp(); |
|
347 ifg.Compute_Effective_Degree(); |
|
348 #ifdef ASSERT |
|
349 set_was_low(); |
|
350 #endif |
|
351 } |
|
352 |
|
353 // Prepare for Simplify & Select |
|
354 cache_lrg_info(); // Count degree of LRGs |
|
355 |
|
356 // Simplify the InterFerence Graph by removing LRGs of low degree. |
|
357 // LRGs of low degree are trivially colorable. |
|
358 Simplify(); |
|
359 |
|
360 // Select colors by re-inserting LRGs back into the IFG in reverse order. |
|
361 // Return whether or not something spills. |
|
362 uint spills = Select( ); |
|
363 |
|
364 // If we spill, split and recycle the entire thing |
|
365 while( spills ) { |
|
366 if( _trip_cnt++ > 24 ) { |
|
367 DEBUG_ONLY( dump_for_spill_split_recycle(); ) |
|
368 if( _trip_cnt > 27 ) { |
|
369 C->record_method_not_compilable("failed spill-split-recycle sanity check"); |
|
370 return; |
|
371 } |
|
372 } |
|
373 |
|
374 if( !_maxlrg ) return; |
|
375 _maxlrg = Split( _maxlrg ); // Split spilling LRG everywhere |
|
376 // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) |
|
377 C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after split"); |
|
378 if (C->failing()) return; |
|
379 #ifdef ASSERT |
|
380 if( VerifyOpto ) { |
|
381 _cfg.verify(); |
|
382 verify_base_ptrs(&live_arena); |
|
383 } |
|
384 #endif |
|
385 |
|
386 compact(); // Compact LRGs; return new lower max lrg |
|
387 |
|
388 // Nuke the live-ness and interference graph and LiveRanGe info |
|
389 { |
|
390 NOT_PRODUCT( Compile::TracePhase t3("computeLive", &_t_computeLive, TimeCompiler); ) |
|
391 _live = NULL; |
|
392 rm.reset_to_mark(); // Reclaim working storage |
|
393 IndexSet::reset_memory(C, &live_arena); |
|
394 ifg.init(_maxlrg); |
|
395 |
|
396 // Create LiveRanGe array. |
|
397 // Intersect register masks for all USEs and DEFs |
|
398 gather_lrg_masks( true ); |
|
399 live.compute( _maxlrg ); |
|
400 _live = &live; |
|
401 } |
|
402 must_spill = build_ifg_physical( &live_arena ); |
|
403 _ifg->SquareUp(); |
|
404 _ifg->Compute_Effective_Degree(); |
|
405 |
|
406 // Only do conservative coalescing if requested |
|
407 if( OptoCoalesce ) { |
|
408 // Conservative (and pessimistic) copy coalescing |
|
409 PhaseConservativeCoalesce coalesce( *this ); |
|
410 // Check for few live ranges determines how aggressive coalesce is. |
|
411 coalesce.coalesce_driver( ); |
|
412 } |
|
413 compress_uf_map_for_nodes(); |
|
414 #ifdef ASSERT |
|
415 if( VerifyOpto ) _ifg->verify(this); |
|
416 #endif |
|
417 cache_lrg_info(); // Count degree of LRGs |
|
418 |
|
419 // Simplify the InterFerence Graph by removing LRGs of low degree. |
|
420 // LRGs of low degree are trivially colorable. |
|
421 Simplify(); |
|
422 |
|
423 // Select colors by re-inserting LRGs back into the IFG in reverse order. |
|
424 // Return whether or not something spills. |
|
425 spills = Select( ); |
|
426 } |
|
427 |
|
428 // Count number of Simplify-Select trips per coloring success. |
|
429 _allocator_attempts += _trip_cnt + 1; |
|
430 _allocator_successes += 1; |
|
431 |
|
432 // Peephole remove copies |
|
433 post_allocate_copy_removal(); |
|
434 |
|
435 // max_reg is past the largest *register* used. |
|
436 // Convert that to a frame_slot number. |
|
437 if( _max_reg <= _matcher._new_SP ) |
|
438 _framesize = C->out_preserve_stack_slots(); |
|
439 else _framesize = _max_reg -_matcher._new_SP; |
|
440 assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough"); |
|
441 |
|
442 // This frame must preserve the required fp alignment |
|
443 const int stack_alignment_in_words = Matcher::stack_alignment_in_slots(); |
|
444 if (stack_alignment_in_words > 0) |
|
445 _framesize = round_to(_framesize, Matcher::stack_alignment_in_bytes()); |
|
446 assert( _framesize >= 0 && _framesize <= 1000000, "sanity check" ); |
|
447 #ifndef PRODUCT |
|
448 _total_framesize += _framesize; |
|
449 if( (int)_framesize > _max_framesize ) |
|
450 _max_framesize = _framesize; |
|
451 #endif |
|
452 |
|
453 // Convert CISC spills |
|
454 fixup_spills(); |
|
455 |
|
456 // Log regalloc results |
|
457 CompileLog* log = Compile::current()->log(); |
|
458 if (log != NULL) { |
|
459 log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing()); |
|
460 } |
|
461 |
|
462 if (C->failing()) return; |
|
463 |
|
464 NOT_PRODUCT( C->verify_graph_edges(); ) |
|
465 |
|
466 // Move important info out of the live_arena to longer lasting storage. |
|
467 alloc_node_regs(_names.Size()); |
|
468 for( uint i=0; i < _names.Size(); i++ ) { |
|
469 if( _names[i] ) { // Live range associated with Node? |
|
470 LRG &lrg = lrgs( _names[i] ); |
|
471 if( lrg.num_regs() == 1 ) { |
|
472 _node_regs[i].set1( lrg.reg() ); |
|
473 } else { // Must be a register-pair |
|
474 if( !lrg._fat_proj ) { // Must be aligned adjacent register pair |
|
475 // Live ranges record the highest register in their mask. |
|
476 // We want the low register for the AD file writer's convenience. |
|
477 _node_regs[i].set2( OptoReg::add(lrg.reg(),-1) ); |
|
478 } else { // Misaligned; extract 2 bits |
|
479 OptoReg::Name hi = lrg.reg(); // Get hi register |
|
480 lrg.Remove(hi); // Yank from mask |
|
481 int lo = lrg.mask().find_first_elem(); // Find lo |
|
482 _node_regs[i].set_pair( hi, lo ); |
|
483 } |
|
484 } |
|
485 if( lrg._is_oop ) _node_oops.set(i); |
|
486 } else { |
|
487 _node_regs[i].set_bad(); |
|
488 } |
|
489 } |
|
490 |
|
491 // Done! |
|
492 _live = NULL; |
|
493 _ifg = NULL; |
|
494 C->set_indexSet_arena(NULL); // ResourceArea is at end of scope |
|
495 } |
|
496 |
|
497 //------------------------------de_ssa----------------------------------------- |
|
498 void PhaseChaitin::de_ssa() { |
|
499 // Set initial Names for all Nodes. Most Nodes get the virtual register |
|
500 // number. A few get the ZERO live range number. These do not |
|
501 // get allocated, but instead rely on correct scheduling to ensure that |
|
502 // only one instance is simultaneously live at a time. |
|
503 uint lr_counter = 1; |
|
504 for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
505 Block *b = _cfg._blocks[i]; |
|
506 uint cnt = b->_nodes.size(); |
|
507 |
|
508 // Handle all the normal Nodes in the block |
|
509 for( uint j = 0; j < cnt; j++ ) { |
|
510 Node *n = b->_nodes[j]; |
|
511 // Pre-color to the zero live range, or pick virtual register |
|
512 const RegMask &rm = n->out_RegMask(); |
|
513 _names.map( n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0 ); |
|
514 } |
|
515 } |
|
516 // Reset the Union-Find mapping to be identity |
|
517 reset_uf_map(lr_counter); |
|
518 } |
|
519 |
|
520 |
|
521 //------------------------------gather_lrg_masks------------------------------- |
|
522 // Gather LiveRanGe information, including register masks. Modification of |
|
523 // cisc spillable in_RegMasks should not be done before AggressiveCoalesce. |
|
524 void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) { |
|
525 |
|
526 // Nail down the frame pointer live range |
|
527 uint fp_lrg = n2lidx(_cfg._root->in(1)->in(TypeFunc::FramePtr)); |
|
528 lrgs(fp_lrg)._cost += 1e12; // Cost is infinite |
|
529 |
|
530 // For all blocks |
|
531 for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
532 Block *b = _cfg._blocks[i]; |
|
533 |
|
534 // For all instructions |
|
535 for( uint j = 1; j < b->_nodes.size(); j++ ) { |
|
536 Node *n = b->_nodes[j]; |
|
537 uint input_edge_start =1; // Skip control most nodes |
|
538 if( n->is_Mach() ) input_edge_start = n->as_Mach()->oper_input_base(); |
|
539 uint idx = n->is_Copy(); |
|
540 |
|
541 // Get virtual register number, same as LiveRanGe index |
|
542 uint vreg = n2lidx(n); |
|
543 LRG &lrg = lrgs(vreg); |
|
544 if( vreg ) { // No vreg means un-allocable (e.g. memory) |
|
545 |
|
546 // Collect has-copy bit |
|
547 if( idx ) { |
|
548 lrg._has_copy = 1; |
|
549 uint clidx = n2lidx(n->in(idx)); |
|
550 LRG ©_src = lrgs(clidx); |
|
551 copy_src._has_copy = 1; |
|
552 } |
|
553 |
|
554 // Check for float-vs-int live range (used in register-pressure |
|
555 // calculations) |
|
556 const Type *n_type = n->bottom_type(); |
|
557 if( n_type->is_floatingpoint() ) |
|
558 lrg._is_float = 1; |
|
559 |
|
560 // Check for twice prior spilling. Once prior spilling might have |
|
561 // spilled 'soft', 2nd prior spill should have spilled 'hard' and |
|
562 // further spilling is unlikely to make progress. |
|
563 if( _spilled_once.test(n->_idx) ) { |
|
564 lrg._was_spilled1 = 1; |
|
565 if( _spilled_twice.test(n->_idx) ) |
|
566 lrg._was_spilled2 = 1; |
|
567 } |
|
568 |
|
569 #ifndef PRODUCT |
|
570 if (trace_spilling() && lrg._def != NULL) { |
|
571 // collect defs for MultiDef printing |
|
572 if (lrg._defs == NULL) { |
|
573 lrg._defs = new (_ifg->_arena) GrowableArray<Node*>(); |
|
574 lrg._defs->append(lrg._def); |
|
575 } |
|
576 lrg._defs->append(n); |
|
577 } |
|
578 #endif |
|
579 |
|
580 // Check for a single def LRG; these can spill nicely |
|
581 // via rematerialization. Flag as NULL for no def found |
|
582 // yet, or 'n' for single def or -1 for many defs. |
|
583 lrg._def = lrg._def ? NodeSentinel : n; |
|
584 |
|
585 // Limit result register mask to acceptable registers |
|
586 const RegMask &rm = n->out_RegMask(); |
|
587 lrg.AND( rm ); |
|
588 // Check for bound register masks |
|
589 const RegMask &lrgmask = lrg.mask(); |
|
590 if( lrgmask.is_bound1() || lrgmask.is_bound2() ) |
|
591 lrg._is_bound = 1; |
|
592 |
|
593 // Check for maximum frequency value |
|
594 if( lrg._maxfreq < b->_freq ) |
|
595 lrg._maxfreq = b->_freq; |
|
596 |
|
597 int ireg = n->ideal_reg(); |
|
598 assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP, |
|
599 "oops must be in Op_RegP's" ); |
|
600 // Check for oop-iness, or long/double |
|
601 // Check for multi-kill projection |
|
602 switch( ireg ) { |
|
603 case MachProjNode::fat_proj: |
|
604 // Fat projections have size equal to number of registers killed |
|
605 lrg.set_num_regs(rm.Size()); |
|
606 lrg.set_reg_pressure(lrg.num_regs()); |
|
607 lrg._fat_proj = 1; |
|
608 lrg._is_bound = 1; |
|
609 break; |
|
610 case Op_RegP: |
|
611 #ifdef _LP64 |
|
612 lrg.set_num_regs(2); // Size is 2 stack words |
|
613 #else |
|
614 lrg.set_num_regs(1); // Size is 1 stack word |
|
615 #endif |
|
616 // Register pressure is tracked relative to the maximum values |
|
617 // suggested for that platform, INTPRESSURE and FLOATPRESSURE, |
|
618 // and relative to other types which compete for the same regs. |
|
619 // |
|
620 // The following table contains suggested values based on the |
|
621 // architectures as defined in each .ad file. |
|
622 // INTPRESSURE and FLOATPRESSURE may be tuned differently for |
|
623 // compile-speed or performance. |
|
624 // Note1: |
|
625 // SPARC and SPARCV9 reg_pressures are at 2 instead of 1 |
|
626 // since .ad registers are defined as high and low halves. |
|
627 // These reg_pressure values remain compatible with the code |
|
628 // in is_high_pressure() which relates get_invalid_mask_size(), |
|
629 // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE. |
|
630 // Note2: |
|
631 // SPARC -d32 has 24 registers available for integral values, |
|
632 // but only 10 of these are safe for 64-bit longs. |
|
633 // Using set_reg_pressure(2) for both int and long means |
|
634 // the allocator will believe it can fit 26 longs into |
|
635 // registers. Using 2 for longs and 1 for ints means the |
|
636 // allocator will attempt to put 52 integers into registers. |
|
637 // The settings below limit this problem to methods with |
|
638 // many long values which are being run on 32-bit SPARC. |
|
639 // |
|
640 // ------------------- reg_pressure -------------------- |
|
641 // Each entry is reg_pressure_per_value,number_of_regs |
|
642 // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE |
|
643 // IA32 2 1 1 1 1 6 6 |
|
644 // IA64 1 1 1 1 1 50 41 |
|
645 // SPARC 2 2 2 2 2 48 (24) 52 (26) |
|
646 // SPARCV9 2 2 2 2 2 48 (24) 52 (26) |
|
647 // AMD64 1 1 1 1 1 14 15 |
|
648 // ----------------------------------------------------- |
|
649 #if defined(SPARC) |
|
650 lrg.set_reg_pressure(2); // use for v9 as well |
|
651 #else |
|
652 lrg.set_reg_pressure(1); // normally one value per register |
|
653 #endif |
|
654 if( n_type->isa_oop_ptr() ) { |
|
655 lrg._is_oop = 1; |
|
656 } |
|
657 break; |
|
658 case Op_RegL: // Check for long or double |
|
659 case Op_RegD: |
|
660 lrg.set_num_regs(2); |
|
661 // Define platform specific register pressure |
|
662 #ifdef SPARC |
|
663 lrg.set_reg_pressure(2); |
|
664 #elif defined(IA32) |
|
665 if( ireg == Op_RegL ) { |
|
666 lrg.set_reg_pressure(2); |
|
667 } else { |
|
668 lrg.set_reg_pressure(1); |
|
669 } |
|
670 #else |
|
671 lrg.set_reg_pressure(1); // normally one value per register |
|
672 #endif |
|
673 // If this def of a double forces a mis-aligned double, |
|
674 // flag as '_fat_proj' - really flag as allowing misalignment |
|
675 // AND changes how we count interferences. A mis-aligned |
|
676 // double can interfere with TWO aligned pairs, or effectively |
|
677 // FOUR registers! |
|
678 if( rm.is_misaligned_Pair() ) { |
|
679 lrg._fat_proj = 1; |
|
680 lrg._is_bound = 1; |
|
681 } |
|
682 break; |
|
683 case Op_RegF: |
|
684 case Op_RegI: |
|
685 case Op_RegFlags: |
|
686 case 0: // not an ideal register |
|
687 lrg.set_num_regs(1); |
|
688 #ifdef SPARC |
|
689 lrg.set_reg_pressure(2); |
|
690 #else |
|
691 lrg.set_reg_pressure(1); |
|
692 #endif |
|
693 break; |
|
694 default: |
|
695 ShouldNotReachHere(); |
|
696 } |
|
697 } |
|
698 |
|
699 // Now do the same for inputs |
|
700 uint cnt = n->req(); |
|
701 // Setup for CISC SPILLING |
|
702 uint inp = (uint)AdlcVMDeps::Not_cisc_spillable; |
|
703 if( UseCISCSpill && after_aggressive ) { |
|
704 inp = n->cisc_operand(); |
|
705 if( inp != (uint)AdlcVMDeps::Not_cisc_spillable ) |
|
706 // Convert operand number to edge index number |
|
707 inp = n->as_Mach()->operand_index(inp); |
|
708 } |
|
709 // Prepare register mask for each input |
|
710 for( uint k = input_edge_start; k < cnt; k++ ) { |
|
711 uint vreg = n2lidx(n->in(k)); |
|
712 if( !vreg ) continue; |
|
713 |
|
714 // If this instruction is CISC Spillable, add the flags |
|
715 // bit to its appropriate input |
|
716 if( UseCISCSpill && after_aggressive && inp == k ) { |
|
717 #ifndef PRODUCT |
|
718 if( TraceCISCSpill ) { |
|
719 tty->print(" use_cisc_RegMask: "); |
|
720 n->dump(); |
|
721 } |
|
722 #endif |
|
723 n->as_Mach()->use_cisc_RegMask(); |
|
724 } |
|
725 |
|
726 LRG &lrg = lrgs(vreg); |
|
727 // // Testing for floating point code shape |
|
728 // Node *test = n->in(k); |
|
729 // if( test->is_Mach() ) { |
|
730 // MachNode *m = test->as_Mach(); |
|
731 // int op = m->ideal_Opcode(); |
|
732 // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) { |
|
733 // int zzz = 1; |
|
734 // } |
|
735 // } |
|
736 |
|
737 // Limit result register mask to acceptable registers. |
|
738 // Do not limit registers from uncommon uses before |
|
739 // AggressiveCoalesce. This effectively pre-virtual-splits |
|
740 // around uncommon uses of common defs. |
|
741 const RegMask &rm = n->in_RegMask(k); |
|
742 if( !after_aggressive && |
|
743 _cfg._bbs[n->in(k)->_idx]->_freq > 1000*b->_freq ) { |
|
744 // Since we are BEFORE aggressive coalesce, leave the register |
|
745 // mask untrimmed by the call. This encourages more coalescing. |
|
746 // Later, AFTER aggressive, this live range will have to spill |
|
747 // but the spiller handles slow-path calls very nicely. |
|
748 } else { |
|
749 lrg.AND( rm ); |
|
750 } |
|
751 // Check for bound register masks |
|
752 const RegMask &lrgmask = lrg.mask(); |
|
753 if( lrgmask.is_bound1() || lrgmask.is_bound2() ) |
|
754 lrg._is_bound = 1; |
|
755 // If this use of a double forces a mis-aligned double, |
|
756 // flag as '_fat_proj' - really flag as allowing misalignment |
|
757 // AND changes how we count interferences. A mis-aligned |
|
758 // double can interfere with TWO aligned pairs, or effectively |
|
759 // FOUR registers! |
|
760 if( lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_Pair() ) { |
|
761 lrg._fat_proj = 1; |
|
762 lrg._is_bound = 1; |
|
763 } |
|
764 // if the LRG is an unaligned pair, we will have to spill |
|
765 // so clear the LRG's register mask if it is not already spilled |
|
766 if ( !n->is_SpillCopy() && |
|
767 (lrg._def == NULL || lrg._def == NodeSentinel || !lrg._def->is_SpillCopy()) && |
|
768 lrgmask.is_misaligned_Pair()) { |
|
769 lrg.Clear(); |
|
770 } |
|
771 |
|
772 // Check for maximum frequency value |
|
773 if( lrg._maxfreq < b->_freq ) |
|
774 lrg._maxfreq = b->_freq; |
|
775 |
|
776 } // End for all allocated inputs |
|
777 } // end for all instructions |
|
778 } // end for all blocks |
|
779 |
|
780 // Final per-liverange setup |
|
781 for( uint i2=0; i2<_maxlrg; i2++ ) { |
|
782 LRG &lrg = lrgs(i2); |
|
783 if( lrg.num_regs() == 2 && !lrg._fat_proj ) |
|
784 lrg.ClearToPairs(); |
|
785 lrg.compute_set_mask_size(); |
|
786 if( lrg.not_free() ) { // Handle case where we lose from the start |
|
787 lrg.set_reg(OptoReg::Name(LRG::SPILL_REG)); |
|
788 lrg._direct_conflict = 1; |
|
789 } |
|
790 lrg.set_degree(0); // no neighbors in IFG yet |
|
791 } |
|
792 } |
|
793 |
|
794 //------------------------------set_was_low------------------------------------ |
|
795 // Set the was-lo-degree bit. Conservative coalescing should not change the |
|
796 // colorability of the graph. If any live range was of low-degree before |
|
797 // coalescing, it should Simplify. This call sets the was-lo-degree bit. |
|
798 // The bit is checked in Simplify. |
|
799 void PhaseChaitin::set_was_low() { |
|
800 #ifdef ASSERT |
|
801 for( uint i = 1; i < _maxlrg; i++ ) { |
|
802 int size = lrgs(i).num_regs(); |
|
803 uint old_was_lo = lrgs(i)._was_lo; |
|
804 lrgs(i)._was_lo = 0; |
|
805 if( lrgs(i).lo_degree() ) { |
|
806 lrgs(i)._was_lo = 1; // Trivially of low degree |
|
807 } else { // Else check the Brigg's assertion |
|
808 // Brigg's observation is that the lo-degree neighbors of a |
|
809 // hi-degree live range will not interfere with the color choices |
|
810 // of said hi-degree live range. The Simplify reverse-stack-coloring |
|
811 // order takes care of the details. Hence you do not have to count |
|
812 // low-degree neighbors when determining if this guy colors. |
|
813 int briggs_degree = 0; |
|
814 IndexSet *s = _ifg->neighbors(i); |
|
815 IndexSetIterator elements(s); |
|
816 uint lidx; |
|
817 while((lidx = elements.next()) != 0) { |
|
818 if( !lrgs(lidx).lo_degree() ) |
|
819 briggs_degree += MAX2(size,lrgs(lidx).num_regs()); |
|
820 } |
|
821 if( briggs_degree < lrgs(i).degrees_of_freedom() ) |
|
822 lrgs(i)._was_lo = 1; // Low degree via the briggs assertion |
|
823 } |
|
824 assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease"); |
|
825 } |
|
826 #endif |
|
827 } |
|
828 |
|
829 #define REGISTER_CONSTRAINED 16 |
|
830 |
|
831 //------------------------------cache_lrg_info--------------------------------- |
|
832 // Compute cost/area ratio, in case we spill. Build the lo-degree list. |
|
833 void PhaseChaitin::cache_lrg_info( ) { |
|
834 |
|
835 for( uint i = 1; i < _maxlrg; i++ ) { |
|
836 LRG &lrg = lrgs(i); |
|
837 |
|
838 // Check for being of low degree: means we can be trivially colored. |
|
839 // Low degree, dead or must-spill guys just get to simplify right away |
|
840 if( lrg.lo_degree() || |
|
841 !lrg.alive() || |
|
842 lrg._must_spill ) { |
|
843 // Split low degree list into those guys that must get a |
|
844 // register and those that can go to register or stack. |
|
845 // The idea is LRGs that can go register or stack color first when |
|
846 // they have a good chance of getting a register. The register-only |
|
847 // lo-degree live ranges always get a register. |
|
848 OptoReg::Name hi_reg = lrg.mask().find_last_elem(); |
|
849 if( OptoReg::is_stack(hi_reg)) { // Can go to stack? |
|
850 lrg._next = _lo_stk_degree; |
|
851 _lo_stk_degree = i; |
|
852 } else { |
|
853 lrg._next = _lo_degree; |
|
854 _lo_degree = i; |
|
855 } |
|
856 } else { // Else high degree |
|
857 lrgs(_hi_degree)._prev = i; |
|
858 lrg._next = _hi_degree; |
|
859 lrg._prev = 0; |
|
860 _hi_degree = i; |
|
861 } |
|
862 } |
|
863 } |
|
864 |
|
865 //------------------------------Pre-Simplify----------------------------------- |
|
866 // Simplify the IFG by removing LRGs of low degree that have NO copies |
|
867 void PhaseChaitin::Pre_Simplify( ) { |
|
868 |
|
869 // Warm up the lo-degree no-copy list |
|
870 int lo_no_copy = 0; |
|
871 for( uint i = 1; i < _maxlrg; i++ ) { |
|
872 if( (lrgs(i).lo_degree() && !lrgs(i)._has_copy) || |
|
873 !lrgs(i).alive() || |
|
874 lrgs(i)._must_spill ) { |
|
875 lrgs(i)._next = lo_no_copy; |
|
876 lo_no_copy = i; |
|
877 } |
|
878 } |
|
879 |
|
880 while( lo_no_copy ) { |
|
881 uint lo = lo_no_copy; |
|
882 lo_no_copy = lrgs(lo)._next; |
|
883 int size = lrgs(lo).num_regs(); |
|
884 |
|
885 // Put the simplified guy on the simplified list. |
|
886 lrgs(lo)._next = _simplified; |
|
887 _simplified = lo; |
|
888 |
|
889 // Yank this guy from the IFG. |
|
890 IndexSet *adj = _ifg->remove_node( lo ); |
|
891 |
|
892 // If any neighbors' degrees fall below their number of |
|
893 // allowed registers, then put that neighbor on the low degree |
|
894 // list. Note that 'degree' can only fall and 'numregs' is |
|
895 // unchanged by this action. Thus the two are equal at most once, |
|
896 // so LRGs hit the lo-degree worklists at most once. |
|
897 IndexSetIterator elements(adj); |
|
898 uint neighbor; |
|
899 while ((neighbor = elements.next()) != 0) { |
|
900 LRG *n = &lrgs(neighbor); |
|
901 assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); |
|
902 |
|
903 // Check for just becoming of-low-degree |
|
904 if( n->just_lo_degree() && !n->_has_copy ) { |
|
905 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice"); |
|
906 // Put on lo-degree list |
|
907 n->_next = lo_no_copy; |
|
908 lo_no_copy = neighbor; |
|
909 } |
|
910 } |
|
911 } // End of while lo-degree no_copy worklist not empty |
|
912 |
|
913 // No more lo-degree no-copy live ranges to simplify |
|
914 } |
|
915 |
|
916 //------------------------------Simplify--------------------------------------- |
|
917 // Simplify the IFG by removing LRGs of low degree. |
|
918 void PhaseChaitin::Simplify( ) { |
|
919 |
|
920 while( 1 ) { // Repeat till simplified it all |
|
921 // May want to explore simplifying lo_degree before _lo_stk_degree. |
|
922 // This might result in more spills coloring into registers during |
|
923 // Select(). |
|
924 while( _lo_degree || _lo_stk_degree ) { |
|
925 // If possible, pull from lo_stk first |
|
926 uint lo; |
|
927 if( _lo_degree ) { |
|
928 lo = _lo_degree; |
|
929 _lo_degree = lrgs(lo)._next; |
|
930 } else { |
|
931 lo = _lo_stk_degree; |
|
932 _lo_stk_degree = lrgs(lo)._next; |
|
933 } |
|
934 |
|
935 // Put the simplified guy on the simplified list. |
|
936 lrgs(lo)._next = _simplified; |
|
937 _simplified = lo; |
|
938 // If this guy is "at risk" then mark his current neighbors |
|
939 if( lrgs(lo)._at_risk ) { |
|
940 IndexSetIterator elements(_ifg->neighbors(lo)); |
|
941 uint datum; |
|
942 while ((datum = elements.next()) != 0) { |
|
943 lrgs(datum)._risk_bias = lo; |
|
944 } |
|
945 } |
|
946 |
|
947 // Yank this guy from the IFG. |
|
948 IndexSet *adj = _ifg->remove_node( lo ); |
|
949 |
|
950 // If any neighbors' degrees fall below their number of |
|
951 // allowed registers, then put that neighbor on the low degree |
|
952 // list. Note that 'degree' can only fall and 'numregs' is |
|
953 // unchanged by this action. Thus the two are equal at most once, |
|
954 // so LRGs hit the lo-degree worklist at most once. |
|
955 IndexSetIterator elements(adj); |
|
956 uint neighbor; |
|
957 while ((neighbor = elements.next()) != 0) { |
|
958 LRG *n = &lrgs(neighbor); |
|
959 #ifdef ASSERT |
|
960 if( VerifyOpto ) { |
|
961 assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); |
|
962 } |
|
963 #endif |
|
964 |
|
965 // Check for just becoming of-low-degree just counting registers. |
|
966 // _must_spill live ranges are already on the low degree list. |
|
967 if( n->just_lo_degree() && !n->_must_spill ) { |
|
968 assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice"); |
|
969 // Pull from hi-degree list |
|
970 uint prev = n->_prev; |
|
971 uint next = n->_next; |
|
972 if( prev ) lrgs(prev)._next = next; |
|
973 else _hi_degree = next; |
|
974 lrgs(next)._prev = prev; |
|
975 n->_next = _lo_degree; |
|
976 _lo_degree = neighbor; |
|
977 } |
|
978 } |
|
979 } // End of while lo-degree/lo_stk_degree worklist not empty |
|
980 |
|
981 // Check for got everything: is hi-degree list empty? |
|
982 if( !_hi_degree ) break; |
|
983 |
|
984 // Time to pick a potential spill guy |
|
985 uint lo_score = _hi_degree; |
|
986 double score = lrgs(lo_score).score(); |
|
987 double area = lrgs(lo_score)._area; |
|
988 |
|
989 // Find cheapest guy |
|
990 debug_only( int lo_no_simplify=0; ); |
|
991 for( uint i = _hi_degree; i; i = lrgs(i)._next ) { |
|
992 assert( !(*_ifg->_yanked)[i], "" ); |
|
993 // It's just vaguely possible to move hi-degree to lo-degree without |
|
994 // going through a just-lo-degree stage: If you remove a double from |
|
995 // a float live range it's degree will drop by 2 and you can skip the |
|
996 // just-lo-degree stage. It's very rare (shows up after 5000+ methods |
|
997 // in -Xcomp of Java2Demo). So just choose this guy to simplify next. |
|
998 if( lrgs(i).lo_degree() ) { |
|
999 lo_score = i; |
|
1000 break; |
|
1001 } |
|
1002 debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; ); |
|
1003 double iscore = lrgs(i).score(); |
|
1004 double iarea = lrgs(i)._area; |
|
1005 |
|
1006 // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area |
|
1007 // wins. Ties happen because all live ranges in question have spilled |
|
1008 // a few times before and the spill-score adds a huge number which |
|
1009 // washes out the low order bits. We are choosing the lesser of 2 |
|
1010 // evils; in this case pick largest area to spill. |
|
1011 if( iscore < score || |
|
1012 (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) ) { |
|
1013 lo_score = i; |
|
1014 score = iscore; |
|
1015 area = iarea; |
|
1016 } |
|
1017 } |
|
1018 LRG *lo_lrg = &lrgs(lo_score); |
|
1019 // The live range we choose for spilling is either hi-degree, or very |
|
1020 // rarely it can be low-degree. If we choose a hi-degree live range |
|
1021 // there better not be any lo-degree choices. |
|
1022 assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" ); |
|
1023 |
|
1024 // Pull from hi-degree list |
|
1025 uint prev = lo_lrg->_prev; |
|
1026 uint next = lo_lrg->_next; |
|
1027 if( prev ) lrgs(prev)._next = next; |
|
1028 else _hi_degree = next; |
|
1029 lrgs(next)._prev = prev; |
|
1030 // Jam him on the lo-degree list, despite his high degree. |
|
1031 // Maybe he'll get a color, and maybe he'll spill. |
|
1032 // Only Select() will know. |
|
1033 lrgs(lo_score)._at_risk = true; |
|
1034 _lo_degree = lo_score; |
|
1035 lo_lrg->_next = 0; |
|
1036 |
|
1037 } // End of while not simplified everything |
|
1038 |
|
1039 } |
|
1040 |
|
1041 //------------------------------bias_color------------------------------------- |
|
1042 // Choose a color using the biasing heuristic |
|
1043 OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) { |
|
1044 |
|
1045 // Check for "at_risk" LRG's |
|
1046 uint risk_lrg = Find(lrg._risk_bias); |
|
1047 if( risk_lrg != 0 ) { |
|
1048 // Walk the colored neighbors of the "at_risk" candidate |
|
1049 // Choose a color which is both legal and already taken by a neighbor |
|
1050 // of the "at_risk" candidate in order to improve the chances of the |
|
1051 // "at_risk" candidate of coloring |
|
1052 IndexSetIterator elements(_ifg->neighbors(risk_lrg)); |
|
1053 uint datum; |
|
1054 while ((datum = elements.next()) != 0) { |
|
1055 OptoReg::Name reg = lrgs(datum).reg(); |
|
1056 // If this LRG's register is legal for us, choose it |
|
1057 if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE && |
|
1058 lrg.mask().Member(OptoReg::add(reg,-chunk)) && |
|
1059 (lrg.num_regs()==1 || // either size 1 |
|
1060 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs) |
|
1061 return reg; |
|
1062 } |
|
1063 } |
|
1064 |
|
1065 uint copy_lrg = Find(lrg._copy_bias); |
|
1066 if( copy_lrg != 0 ) { |
|
1067 // If he has a color, |
|
1068 if( !(*(_ifg->_yanked))[copy_lrg] ) { |
|
1069 OptoReg::Name reg = lrgs(copy_lrg).reg(); |
|
1070 // And it is legal for you, |
|
1071 if( reg >= chunk && reg < chunk + RegMask::CHUNK_SIZE && |
|
1072 lrg.mask().Member(OptoReg::add(reg,-chunk)) && |
|
1073 (lrg.num_regs()==1 || // either size 1 |
|
1074 (reg&1) == 1) ) // or aligned (adjacent reg is available since we already cleared-to-pairs) |
|
1075 return reg; |
|
1076 } else if( chunk == 0 ) { |
|
1077 // Choose a color which is legal for him |
|
1078 RegMask tempmask = lrg.mask(); |
|
1079 tempmask.AND(lrgs(copy_lrg).mask()); |
|
1080 OptoReg::Name reg; |
|
1081 if( lrg.num_regs() == 1 ) { |
|
1082 reg = tempmask.find_first_elem(); |
|
1083 } else { |
|
1084 tempmask.ClearToPairs(); |
|
1085 reg = tempmask.find_first_pair(); |
|
1086 } |
|
1087 if( OptoReg::is_valid(reg) ) |
|
1088 return reg; |
|
1089 } |
|
1090 } |
|
1091 |
|
1092 // If no bias info exists, just go with the register selection ordering |
|
1093 if( lrg.num_regs() == 2 ) { |
|
1094 // Find an aligned pair |
|
1095 return OptoReg::add(lrg.mask().find_first_pair(),chunk); |
|
1096 } |
|
1097 |
|
1098 // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate |
|
1099 // copy removal to remove many more copies, by preventing a just-assigned |
|
1100 // register from being repeatedly assigned. |
|
1101 OptoReg::Name reg = lrg.mask().find_first_elem(); |
|
1102 if( (++_alternate & 1) && OptoReg::is_valid(reg) ) { |
|
1103 // This 'Remove; find; Insert' idiom is an expensive way to find the |
|
1104 // SECOND element in the mask. |
|
1105 lrg.Remove(reg); |
|
1106 OptoReg::Name reg2 = lrg.mask().find_first_elem(); |
|
1107 lrg.Insert(reg); |
|
1108 if( OptoReg::is_reg(reg2)) |
|
1109 reg = reg2; |
|
1110 } |
|
1111 return OptoReg::add( reg, chunk ); |
|
1112 } |
|
1113 |
|
1114 //------------------------------choose_color----------------------------------- |
|
1115 // Choose a color in the current chunk |
|
1116 OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) { |
|
1117 assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)"); |
|
1118 assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)"); |
|
1119 |
|
1120 if( lrg.num_regs() == 1 || // Common Case |
|
1121 !lrg._fat_proj ) // Aligned+adjacent pairs ok |
|
1122 // Use a heuristic to "bias" the color choice |
|
1123 return bias_color(lrg, chunk); |
|
1124 |
|
1125 assert( lrg.num_regs() >= 2, "dead live ranges do not color" ); |
|
1126 |
|
1127 // Fat-proj case or misaligned double argument. |
|
1128 assert(lrg.compute_mask_size() == lrg.num_regs() || |
|
1129 lrg.num_regs() == 2,"fat projs exactly color" ); |
|
1130 assert( !chunk, "always color in 1st chunk" ); |
|
1131 // Return the highest element in the set. |
|
1132 return lrg.mask().find_last_elem(); |
|
1133 } |
|
1134 |
|
1135 //------------------------------Select----------------------------------------- |
|
1136 // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted |
|
1137 // in reverse order of removal. As long as nothing of hi-degree was yanked, |
|
1138 // everything going back is guaranteed a color. Select that color. If some |
|
1139 // hi-degree LRG cannot get a color then we record that we must spill. |
|
1140 uint PhaseChaitin::Select( ) { |
|
1141 uint spill_reg = LRG::SPILL_REG; |
|
1142 _max_reg = OptoReg::Name(0); // Past max register used |
|
1143 while( _simplified ) { |
|
1144 // Pull next LRG from the simplified list - in reverse order of removal |
|
1145 uint lidx = _simplified; |
|
1146 LRG *lrg = &lrgs(lidx); |
|
1147 _simplified = lrg->_next; |
|
1148 |
|
1149 |
|
1150 #ifndef PRODUCT |
|
1151 if (trace_spilling()) { |
|
1152 ttyLocker ttyl; |
|
1153 tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(), |
|
1154 lrg->degrees_of_freedom()); |
|
1155 lrg->dump(); |
|
1156 } |
|
1157 #endif |
|
1158 |
|
1159 // Re-insert into the IFG |
|
1160 _ifg->re_insert(lidx); |
|
1161 if( !lrg->alive() ) continue; |
|
1162 // capture allstackedness flag before mask is hacked |
|
1163 const int is_allstack = lrg->mask().is_AllStack(); |
|
1164 |
|
1165 // Yeah, yeah, yeah, I know, I know. I can refactor this |
|
1166 // to avoid the GOTO, although the refactored code will not |
|
1167 // be much clearer. We arrive here IFF we have a stack-based |
|
1168 // live range that cannot color in the current chunk, and it |
|
1169 // has to move into the next free stack chunk. |
|
1170 int chunk = 0; // Current chunk is first chunk |
|
1171 retry_next_chunk: |
|
1172 |
|
1173 // Remove neighbor colors |
|
1174 IndexSet *s = _ifg->neighbors(lidx); |
|
1175 |
|
1176 debug_only(RegMask orig_mask = lrg->mask();) |
|
1177 IndexSetIterator elements(s); |
|
1178 uint neighbor; |
|
1179 while ((neighbor = elements.next()) != 0) { |
|
1180 // Note that neighbor might be a spill_reg. In this case, exclusion |
|
1181 // of its color will be a no-op, since the spill_reg chunk is in outer |
|
1182 // space. Also, if neighbor is in a different chunk, this exclusion |
|
1183 // will be a no-op. (Later on, if lrg runs out of possible colors in |
|
1184 // its chunk, a new chunk of color may be tried, in which case |
|
1185 // examination of neighbors is started again, at retry_next_chunk.) |
|
1186 LRG &nlrg = lrgs(neighbor); |
|
1187 OptoReg::Name nreg = nlrg.reg(); |
|
1188 // Only subtract masks in the same chunk |
|
1189 if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) { |
|
1190 #ifndef PRODUCT |
|
1191 uint size = lrg->mask().Size(); |
|
1192 RegMask rm = lrg->mask(); |
|
1193 #endif |
|
1194 lrg->SUBTRACT(nlrg.mask()); |
|
1195 #ifndef PRODUCT |
|
1196 if (trace_spilling() && lrg->mask().Size() != size) { |
|
1197 ttyLocker ttyl; |
|
1198 tty->print("L%d ", lidx); |
|
1199 rm.dump(); |
|
1200 tty->print(" intersected L%d ", neighbor); |
|
1201 nlrg.mask().dump(); |
|
1202 tty->print(" removed "); |
|
1203 rm.SUBTRACT(lrg->mask()); |
|
1204 rm.dump(); |
|
1205 tty->print(" leaving "); |
|
1206 lrg->mask().dump(); |
|
1207 tty->cr(); |
|
1208 } |
|
1209 #endif |
|
1210 } |
|
1211 } |
|
1212 //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness"); |
|
1213 // Aligned pairs need aligned masks |
|
1214 if( lrg->num_regs() == 2 && !lrg->_fat_proj ) |
|
1215 lrg->ClearToPairs(); |
|
1216 |
|
1217 // Check if a color is available and if so pick the color |
|
1218 OptoReg::Name reg = choose_color( *lrg, chunk ); |
|
1219 #ifdef SPARC |
|
1220 debug_only(lrg->compute_set_mask_size()); |
|
1221 assert(lrg->num_regs() != 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned"); |
|
1222 #endif |
|
1223 |
|
1224 //--------------- |
|
1225 // If we fail to color and the AllStack flag is set, trigger |
|
1226 // a chunk-rollover event |
|
1227 if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) { |
|
1228 // Bump register mask up to next stack chunk |
|
1229 chunk += RegMask::CHUNK_SIZE; |
|
1230 lrg->Set_All(); |
|
1231 |
|
1232 goto retry_next_chunk; |
|
1233 } |
|
1234 |
|
1235 //--------------- |
|
1236 // Did we get a color? |
|
1237 else if( OptoReg::is_valid(reg)) { |
|
1238 #ifndef PRODUCT |
|
1239 RegMask avail_rm = lrg->mask(); |
|
1240 #endif |
|
1241 |
|
1242 // Record selected register |
|
1243 lrg->set_reg(reg); |
|
1244 |
|
1245 if( reg >= _max_reg ) // Compute max register limit |
|
1246 _max_reg = OptoReg::add(reg,1); |
|
1247 // Fold reg back into normal space |
|
1248 reg = OptoReg::add(reg,-chunk); |
|
1249 |
|
1250 // If the live range is not bound, then we actually had some choices |
|
1251 // to make. In this case, the mask has more bits in it than the colors |
|
1252 // choosen. Restrict the mask to just what was picked. |
|
1253 if( lrg->num_regs() == 1 ) { // Size 1 live range |
|
1254 lrg->Clear(); // Clear the mask |
|
1255 lrg->Insert(reg); // Set regmask to match selected reg |
|
1256 lrg->set_mask_size(1); |
|
1257 } else if( !lrg->_fat_proj ) { |
|
1258 // For pairs, also insert the low bit of the pair |
|
1259 assert( lrg->num_regs() == 2, "unbound fatproj???" ); |
|
1260 lrg->Clear(); // Clear the mask |
|
1261 lrg->Insert(reg); // Set regmask to match selected reg |
|
1262 lrg->Insert(OptoReg::add(reg,-1)); |
|
1263 lrg->set_mask_size(2); |
|
1264 } else { // Else fatproj |
|
1265 // mask must be equal to fatproj bits, by definition |
|
1266 } |
|
1267 #ifndef PRODUCT |
|
1268 if (trace_spilling()) { |
|
1269 ttyLocker ttyl; |
|
1270 tty->print("L%d selected ", lidx); |
|
1271 lrg->mask().dump(); |
|
1272 tty->print(" from "); |
|
1273 avail_rm.dump(); |
|
1274 tty->cr(); |
|
1275 } |
|
1276 #endif |
|
1277 // Note that reg is the highest-numbered register in the newly-bound mask. |
|
1278 } // end color available case |
|
1279 |
|
1280 //--------------- |
|
1281 // Live range is live and no colors available |
|
1282 else { |
|
1283 assert( lrg->alive(), "" ); |
|
1284 assert( !lrg->_fat_proj || lrg->_def == NodeSentinel || |
|
1285 lrg->_def->outcnt() > 0, "fat_proj cannot spill"); |
|
1286 assert( !orig_mask.is_AllStack(), "All Stack does not spill" ); |
|
1287 |
|
1288 // Assign the special spillreg register |
|
1289 lrg->set_reg(OptoReg::Name(spill_reg++)); |
|
1290 // Do not empty the regmask; leave mask_size lying around |
|
1291 // for use during Spilling |
|
1292 #ifndef PRODUCT |
|
1293 if( trace_spilling() ) { |
|
1294 ttyLocker ttyl; |
|
1295 tty->print("L%d spilling with neighbors: ", lidx); |
|
1296 s->dump(); |
|
1297 debug_only(tty->print(" original mask: ")); |
|
1298 debug_only(orig_mask.dump()); |
|
1299 dump_lrg(lidx); |
|
1300 } |
|
1301 #endif |
|
1302 } // end spill case |
|
1303 |
|
1304 } |
|
1305 |
|
1306 return spill_reg-LRG::SPILL_REG; // Return number of spills |
|
1307 } |
|
1308 |
|
1309 |
|
1310 //------------------------------copy_was_spilled------------------------------- |
|
1311 // Copy 'was_spilled'-edness from the source Node to the dst Node. |
|
1312 void PhaseChaitin::copy_was_spilled( Node *src, Node *dst ) { |
|
1313 if( _spilled_once.test(src->_idx) ) { |
|
1314 _spilled_once.set(dst->_idx); |
|
1315 lrgs(Find(dst))._was_spilled1 = 1; |
|
1316 if( _spilled_twice.test(src->_idx) ) { |
|
1317 _spilled_twice.set(dst->_idx); |
|
1318 lrgs(Find(dst))._was_spilled2 = 1; |
|
1319 } |
|
1320 } |
|
1321 } |
|
1322 |
|
1323 //------------------------------set_was_spilled-------------------------------- |
|
1324 // Set the 'spilled_once' or 'spilled_twice' flag on a node. |
|
1325 void PhaseChaitin::set_was_spilled( Node *n ) { |
|
1326 if( _spilled_once.test_set(n->_idx) ) |
|
1327 _spilled_twice.set(n->_idx); |
|
1328 } |
|
1329 |
|
1330 //------------------------------fixup_spills----------------------------------- |
|
1331 // Convert Ideal spill instructions into proper FramePtr + offset Loads and |
|
1332 // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are. |
|
1333 void PhaseChaitin::fixup_spills() { |
|
1334 // This function does only cisc spill work. |
|
1335 if( !UseCISCSpill ) return; |
|
1336 |
|
1337 NOT_PRODUCT( Compile::TracePhase t3("fixupSpills", &_t_fixupSpills, TimeCompiler); ) |
|
1338 |
|
1339 // Grab the Frame Pointer |
|
1340 Node *fp = _cfg._broot->head()->in(1)->in(TypeFunc::FramePtr); |
|
1341 |
|
1342 // For all blocks |
|
1343 for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
1344 Block *b = _cfg._blocks[i]; |
|
1345 |
|
1346 // For all instructions in block |
|
1347 uint last_inst = b->end_idx(); |
|
1348 for( uint j = 1; j <= last_inst; j++ ) { |
|
1349 Node *n = b->_nodes[j]; |
|
1350 |
|
1351 // Dead instruction??? |
|
1352 assert( n->outcnt() != 0 ||// Nothing dead after post alloc |
|
1353 C->top() == n || // Or the random TOP node |
|
1354 n->is_Proj(), // Or a fat-proj kill node |
|
1355 "No dead instructions after post-alloc" ); |
|
1356 |
|
1357 int inp = n->cisc_operand(); |
|
1358 if( inp != AdlcVMDeps::Not_cisc_spillable ) { |
|
1359 // Convert operand number to edge index number |
|
1360 MachNode *mach = n->as_Mach(); |
|
1361 inp = mach->operand_index(inp); |
|
1362 Node *src = n->in(inp); // Value to load or store |
|
1363 LRG &lrg_cisc = lrgs( Find_const(src) ); |
|
1364 OptoReg::Name src_reg = lrg_cisc.reg(); |
|
1365 // Doubles record the HIGH register of an adjacent pair. |
|
1366 src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs()); |
|
1367 if( OptoReg::is_stack(src_reg) ) { // If input is on stack |
|
1368 // This is a CISC Spill, get stack offset and construct new node |
|
1369 #ifndef PRODUCT |
|
1370 if( TraceCISCSpill ) { |
|
1371 tty->print(" reg-instr: "); |
|
1372 n->dump(); |
|
1373 } |
|
1374 #endif |
|
1375 int stk_offset = reg2offset(src_reg); |
|
1376 // Bailout if we might exceed node limit when spilling this instruction |
|
1377 C->check_node_count(0, "out of nodes fixing spills"); |
|
1378 if (C->failing()) return; |
|
1379 // Transform node |
|
1380 MachNode *cisc = mach->cisc_version(stk_offset, C)->as_Mach(); |
|
1381 cisc->set_req(inp,fp); // Base register is frame pointer |
|
1382 if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) { |
|
1383 assert( cisc->oper_input_base() == 2, "Only adding one edge"); |
|
1384 cisc->ins_req(1,src); // Requires a memory edge |
|
1385 } |
|
1386 b->_nodes.map(j,cisc); // Insert into basic block |
|
1387 n->replace_by(cisc); // Correct graph |
|
1388 // |
|
1389 ++_used_cisc_instructions; |
|
1390 #ifndef PRODUCT |
|
1391 if( TraceCISCSpill ) { |
|
1392 tty->print(" cisc-instr: "); |
|
1393 cisc->dump(); |
|
1394 } |
|
1395 #endif |
|
1396 } else { |
|
1397 #ifndef PRODUCT |
|
1398 if( TraceCISCSpill ) { |
|
1399 tty->print(" using reg-instr: "); |
|
1400 n->dump(); |
|
1401 } |
|
1402 #endif |
|
1403 ++_unused_cisc_instructions; // input can be on stack |
|
1404 } |
|
1405 } |
|
1406 |
|
1407 } // End of for all instructions |
|
1408 |
|
1409 } // End of for all blocks |
|
1410 } |
|
1411 |
|
1412 //------------------------------find_base_for_derived-------------------------- |
|
1413 // Helper to stretch above; recursively discover the base Node for a |
|
1414 // given derived Node. Easy for AddP-related machine nodes, but needs |
|
1415 // to be recursive for derived Phis. |
|
1416 Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) { |
|
1417 // See if already computed; if so return it |
|
1418 if( derived_base_map[derived->_idx] ) |
|
1419 return derived_base_map[derived->_idx]; |
|
1420 |
|
1421 // See if this happens to be a base. |
|
1422 // NOTE: we use TypePtr instead of TypeOopPtr because we can have |
|
1423 // pointers derived from NULL! These are always along paths that |
|
1424 // can't happen at run-time but the optimizer cannot deduce it so |
|
1425 // we have to handle it gracefully. |
|
1426 const TypePtr *tj = derived->bottom_type()->isa_ptr(); |
|
1427 // If its an OOP with a non-zero offset, then it is derived. |
|
1428 if( tj->_offset == 0 ) { |
|
1429 derived_base_map[derived->_idx] = derived; |
|
1430 return derived; |
|
1431 } |
|
1432 // Derived is NULL+offset? Base is NULL! |
|
1433 if( derived->is_Con() ) { |
|
1434 Node *base = new (C, 1) ConPNode( TypePtr::NULL_PTR ); |
|
1435 uint no_lidx = 0; // an unmatched constant in debug info has no LRG |
|
1436 _names.extend(base->_idx, no_lidx); |
|
1437 derived_base_map[derived->_idx] = base; |
|
1438 return base; |
|
1439 } |
|
1440 |
|
1441 // Check for AddP-related opcodes |
|
1442 if( !derived->is_Phi() ) { |
|
1443 assert( derived->as_Mach()->ideal_Opcode() == Op_AddP, "" ); |
|
1444 Node *base = derived->in(AddPNode::Base); |
|
1445 derived_base_map[derived->_idx] = base; |
|
1446 return base; |
|
1447 } |
|
1448 |
|
1449 // Recursively find bases for Phis. |
|
1450 // First check to see if we can avoid a base Phi here. |
|
1451 Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg); |
|
1452 uint i; |
|
1453 for( i = 2; i < derived->req(); i++ ) |
|
1454 if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg)) |
|
1455 break; |
|
1456 // Went to the end without finding any different bases? |
|
1457 if( i == derived->req() ) { // No need for a base Phi here |
|
1458 derived_base_map[derived->_idx] = base; |
|
1459 return base; |
|
1460 } |
|
1461 |
|
1462 // Now we see we need a base-Phi here to merge the bases |
|
1463 base = new (C, derived->req()) PhiNode( derived->in(0), base->bottom_type() ); |
|
1464 for( i = 1; i < derived->req(); i++ ) |
|
1465 base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg)); |
|
1466 |
|
1467 // Search the current block for an existing base-Phi |
|
1468 Block *b = _cfg._bbs[derived->_idx]; |
|
1469 for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi |
|
1470 Node *phi = b->_nodes[i]; |
|
1471 if( !phi->is_Phi() ) { // Found end of Phis with no match? |
|
1472 b->_nodes.insert( i, base ); // Must insert created Phi here as base |
|
1473 _cfg._bbs.map( base->_idx, b ); |
|
1474 new_lrg(base,maxlrg++); |
|
1475 break; |
|
1476 } |
|
1477 // See if Phi matches. |
|
1478 uint j; |
|
1479 for( j = 1; j < base->req(); j++ ) |
|
1480 if( phi->in(j) != base->in(j) && |
|
1481 !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs |
|
1482 break; |
|
1483 if( j == base->req() ) { // All inputs match? |
|
1484 base = phi; // Then use existing 'phi' and drop 'base' |
|
1485 break; |
|
1486 } |
|
1487 } |
|
1488 |
|
1489 |
|
1490 // Cache info for later passes |
|
1491 derived_base_map[derived->_idx] = base; |
|
1492 return base; |
|
1493 } |
|
1494 |
|
1495 |
|
1496 //------------------------------stretch_base_pointer_live_ranges--------------- |
|
1497 // At each Safepoint, insert extra debug edges for each pair of derived value/ |
|
1498 // base pointer that is live across the Safepoint for oopmap building. The |
|
1499 // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the |
|
1500 // required edge set. |
|
1501 bool PhaseChaitin::stretch_base_pointer_live_ranges( ResourceArea *a ) { |
|
1502 int must_recompute_live = false; |
|
1503 uint maxlrg = _maxlrg; |
|
1504 Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique()); |
|
1505 memset( derived_base_map, 0, sizeof(Node*)*C->unique() ); |
|
1506 |
|
1507 // For all blocks in RPO do... |
|
1508 for( uint i=0; i<_cfg._num_blocks; i++ ) { |
|
1509 Block *b = _cfg._blocks[i]; |
|
1510 // Note use of deep-copy constructor. I cannot hammer the original |
|
1511 // liveout bits, because they are needed by the following coalesce pass. |
|
1512 IndexSet liveout(_live->live(b)); |
|
1513 |
|
1514 for( uint j = b->end_idx() + 1; j > 1; j-- ) { |
|
1515 Node *n = b->_nodes[j-1]; |
|
1516 |
|
1517 // Pre-split compares of loop-phis. Loop-phis form a cycle we would |
|
1518 // like to see in the same register. Compare uses the loop-phi and so |
|
1519 // extends its live range BUT cannot be part of the cycle. If this |
|
1520 // extended live range overlaps with the update of the loop-phi value |
|
1521 // we need both alive at the same time -- which requires at least 1 |
|
1522 // copy. But because Intel has only 2-address registers we end up with |
|
1523 // at least 2 copies, one before the loop-phi update instruction and |
|
1524 // one after. Instead we split the input to the compare just after the |
|
1525 // phi. |
|
1526 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) { |
|
1527 Node *phi = n->in(1); |
|
1528 if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) { |
|
1529 Block *phi_block = _cfg._bbs[phi->_idx]; |
|
1530 if( _cfg._bbs[phi_block->pred(2)->_idx] == b ) { |
|
1531 const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI]; |
|
1532 Node *spill = new (C) MachSpillCopyNode( phi, *mask, *mask ); |
|
1533 insert_proj( phi_block, 1, spill, maxlrg++ ); |
|
1534 n->set_req(1,spill); |
|
1535 must_recompute_live = true; |
|
1536 } |
|
1537 } |
|
1538 } |
|
1539 |
|
1540 // Get value being defined |
|
1541 uint lidx = n2lidx(n); |
|
1542 if( lidx && lidx < _maxlrg /* Ignore the occasional brand-new live range */) { |
|
1543 // Remove from live-out set |
|
1544 liveout.remove(lidx); |
|
1545 |
|
1546 // Copies do not define a new value and so do not interfere. |
|
1547 // Remove the copies source from the liveout set before interfering. |
|
1548 uint idx = n->is_Copy(); |
|
1549 if( idx ) liveout.remove( n2lidx(n->in(idx)) ); |
|
1550 } |
|
1551 |
|
1552 // Found a safepoint? |
|
1553 JVMState *jvms = n->jvms(); |
|
1554 if( jvms ) { |
|
1555 // Now scan for a live derived pointer |
|
1556 IndexSetIterator elements(&liveout); |
|
1557 uint neighbor; |
|
1558 while ((neighbor = elements.next()) != 0) { |
|
1559 // Find reaching DEF for base and derived values |
|
1560 // This works because we are still in SSA during this call. |
|
1561 Node *derived = lrgs(neighbor)._def; |
|
1562 const TypePtr *tj = derived->bottom_type()->isa_ptr(); |
|
1563 // If its an OOP with a non-zero offset, then it is derived. |
|
1564 if( tj && tj->_offset != 0 && tj->isa_oop_ptr() ) { |
|
1565 Node *base = find_base_for_derived( derived_base_map, derived, maxlrg ); |
|
1566 assert( base->_idx < _names.Size(), "" ); |
|
1567 // Add reaching DEFs of derived pointer and base pointer as a |
|
1568 // pair of inputs |
|
1569 n->add_req( derived ); |
|
1570 n->add_req( base ); |
|
1571 |
|
1572 // See if the base pointer is already live to this point. |
|
1573 // Since I'm working on the SSA form, live-ness amounts to |
|
1574 // reaching def's. So if I find the base's live range then |
|
1575 // I know the base's def reaches here. |
|
1576 if( (n2lidx(base) >= _maxlrg ||// (Brand new base (hence not live) or |
|
1577 !liveout.member( n2lidx(base) ) ) && // not live) AND |
|
1578 (n2lidx(base) > 0) && // not a constant |
|
1579 _cfg._bbs[base->_idx] != b ) { // base not def'd in blk) |
|
1580 // Base pointer is not currently live. Since I stretched |
|
1581 // the base pointer to here and it crosses basic-block |
|
1582 // boundaries, the global live info is now incorrect. |
|
1583 // Recompute live. |
|
1584 must_recompute_live = true; |
|
1585 } // End of if base pointer is not live to debug info |
|
1586 } |
|
1587 } // End of scan all live data for derived ptrs crossing GC point |
|
1588 } // End of if found a GC point |
|
1589 |
|
1590 // Make all inputs live |
|
1591 if( !n->is_Phi() ) { // Phi function uses come from prior block |
|
1592 for( uint k = 1; k < n->req(); k++ ) { |
|
1593 uint lidx = n2lidx(n->in(k)); |
|
1594 if( lidx < _maxlrg ) |
|
1595 liveout.insert( lidx ); |
|
1596 } |
|
1597 } |
|
1598 |
|
1599 } // End of forall instructions in block |
|
1600 liveout.clear(); // Free the memory used by liveout. |
|
1601 |
|
1602 } // End of forall blocks |
|
1603 _maxlrg = maxlrg; |
|
1604 |
|
1605 // If I created a new live range I need to recompute live |
|
1606 if( maxlrg != _ifg->_maxlrg ) |
|
1607 must_recompute_live = true; |
|
1608 |
|
1609 return must_recompute_live != 0; |
|
1610 } |
|
1611 |
|
1612 |
|
1613 //------------------------------add_reference---------------------------------- |
|
1614 // Extend the node to LRG mapping |
|
1615 void PhaseChaitin::add_reference( const Node *node, const Node *old_node ) { |
|
1616 _names.extend( node->_idx, n2lidx(old_node) ); |
|
1617 } |
|
1618 |
|
1619 //------------------------------dump------------------------------------------- |
|
1620 #ifndef PRODUCT |
|
1621 void PhaseChaitin::dump( const Node *n ) const { |
|
1622 uint r = (n->_idx < _names.Size() ) ? Find_const(n) : 0; |
|
1623 tty->print("L%d",r); |
|
1624 if( r && n->Opcode() != Op_Phi ) { |
|
1625 if( _node_regs ) { // Got a post-allocation copy of allocation? |
|
1626 tty->print("["); |
|
1627 OptoReg::Name second = get_reg_second(n); |
|
1628 if( OptoReg::is_valid(second) ) { |
|
1629 if( OptoReg::is_reg(second) ) |
|
1630 tty->print("%s:",Matcher::regName[second]); |
|
1631 else |
|
1632 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second)); |
|
1633 } |
|
1634 OptoReg::Name first = get_reg_first(n); |
|
1635 if( OptoReg::is_reg(first) ) |
|
1636 tty->print("%s]",Matcher::regName[first]); |
|
1637 else |
|
1638 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first)); |
|
1639 } else |
|
1640 n->out_RegMask().dump(); |
|
1641 } |
|
1642 tty->print("/N%d\t",n->_idx); |
|
1643 tty->print("%s === ", n->Name()); |
|
1644 uint k; |
|
1645 for( k = 0; k < n->req(); k++) { |
|
1646 Node *m = n->in(k); |
|
1647 if( !m ) tty->print("_ "); |
|
1648 else { |
|
1649 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0; |
|
1650 tty->print("L%d",r); |
|
1651 // Data MultiNode's can have projections with no real registers. |
|
1652 // Don't die while dumping them. |
|
1653 int op = n->Opcode(); |
|
1654 if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) { |
|
1655 if( _node_regs ) { |
|
1656 tty->print("["); |
|
1657 OptoReg::Name second = get_reg_second(n->in(k)); |
|
1658 if( OptoReg::is_valid(second) ) { |
|
1659 if( OptoReg::is_reg(second) ) |
|
1660 tty->print("%s:",Matcher::regName[second]); |
|
1661 else |
|
1662 tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), |
|
1663 reg2offset_unchecked(second)); |
|
1664 } |
|
1665 OptoReg::Name first = get_reg_first(n->in(k)); |
|
1666 if( OptoReg::is_reg(first) ) |
|
1667 tty->print("%s]",Matcher::regName[first]); |
|
1668 else |
|
1669 tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), |
|
1670 reg2offset_unchecked(first)); |
|
1671 } else |
|
1672 n->in_RegMask(k).dump(); |
|
1673 } |
|
1674 tty->print("/N%d ",m->_idx); |
|
1675 } |
|
1676 } |
|
1677 if( k < n->len() && n->in(k) ) tty->print("| "); |
|
1678 for( ; k < n->len(); k++ ) { |
|
1679 Node *m = n->in(k); |
|
1680 if( !m ) break; |
|
1681 uint r = (m->_idx < _names.Size() ) ? Find_const(m) : 0; |
|
1682 tty->print("L%d",r); |
|
1683 tty->print("/N%d ",m->_idx); |
|
1684 } |
|
1685 if( n->is_Mach() ) n->as_Mach()->dump_spec(tty); |
|
1686 else n->dump_spec(tty); |
|
1687 if( _spilled_once.test(n->_idx ) ) { |
|
1688 tty->print(" Spill_1"); |
|
1689 if( _spilled_twice.test(n->_idx ) ) |
|
1690 tty->print(" Spill_2"); |
|
1691 } |
|
1692 tty->print("\n"); |
|
1693 } |
|
1694 |
|
1695 void PhaseChaitin::dump( const Block * b ) const { |
|
1696 b->dump_head( &_cfg._bbs ); |
|
1697 |
|
1698 // For all instructions |
|
1699 for( uint j = 0; j < b->_nodes.size(); j++ ) |
|
1700 dump(b->_nodes[j]); |
|
1701 // Print live-out info at end of block |
|
1702 if( _live ) { |
|
1703 tty->print("Liveout: "); |
|
1704 IndexSet *live = _live->live(b); |
|
1705 IndexSetIterator elements(live); |
|
1706 tty->print("{"); |
|
1707 uint i; |
|
1708 while ((i = elements.next()) != 0) { |
|
1709 tty->print("L%d ", Find_const(i)); |
|
1710 } |
|
1711 tty->print_cr("}"); |
|
1712 } |
|
1713 tty->print("\n"); |
|
1714 } |
|
1715 |
|
1716 void PhaseChaitin::dump() const { |
|
1717 tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n", |
|
1718 _matcher._new_SP, _framesize ); |
|
1719 |
|
1720 // For all blocks |
|
1721 for( uint i = 0; i < _cfg._num_blocks; i++ ) |
|
1722 dump(_cfg._blocks[i]); |
|
1723 // End of per-block dump |
|
1724 tty->print("\n"); |
|
1725 |
|
1726 if (!_ifg) { |
|
1727 tty->print("(No IFG.)\n"); |
|
1728 return; |
|
1729 } |
|
1730 |
|
1731 // Dump LRG array |
|
1732 tty->print("--- Live RanGe Array ---\n"); |
|
1733 for(uint i2 = 1; i2 < _maxlrg; i2++ ) { |
|
1734 tty->print("L%d: ",i2); |
|
1735 if( i2 < _ifg->_maxlrg ) lrgs(i2).dump( ); |
|
1736 else tty->print("new LRG"); |
|
1737 } |
|
1738 tty->print_cr(""); |
|
1739 |
|
1740 // Dump lo-degree list |
|
1741 tty->print("Lo degree: "); |
|
1742 for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next ) |
|
1743 tty->print("L%d ",i3); |
|
1744 tty->print_cr(""); |
|
1745 |
|
1746 // Dump lo-stk-degree list |
|
1747 tty->print("Lo stk degree: "); |
|
1748 for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next ) |
|
1749 tty->print("L%d ",i4); |
|
1750 tty->print_cr(""); |
|
1751 |
|
1752 // Dump lo-degree list |
|
1753 tty->print("Hi degree: "); |
|
1754 for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next ) |
|
1755 tty->print("L%d ",i5); |
|
1756 tty->print_cr(""); |
|
1757 } |
|
1758 |
|
1759 //------------------------------dump_degree_lists------------------------------ |
|
1760 void PhaseChaitin::dump_degree_lists() const { |
|
1761 // Dump lo-degree list |
|
1762 tty->print("Lo degree: "); |
|
1763 for( uint i = _lo_degree; i; i = lrgs(i)._next ) |
|
1764 tty->print("L%d ",i); |
|
1765 tty->print_cr(""); |
|
1766 |
|
1767 // Dump lo-stk-degree list |
|
1768 tty->print("Lo stk degree: "); |
|
1769 for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next ) |
|
1770 tty->print("L%d ",i2); |
|
1771 tty->print_cr(""); |
|
1772 |
|
1773 // Dump lo-degree list |
|
1774 tty->print("Hi degree: "); |
|
1775 for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next ) |
|
1776 tty->print("L%d ",i3); |
|
1777 tty->print_cr(""); |
|
1778 } |
|
1779 |
|
1780 //------------------------------dump_simplified-------------------------------- |
|
1781 void PhaseChaitin::dump_simplified() const { |
|
1782 tty->print("Simplified: "); |
|
1783 for( uint i = _simplified; i; i = lrgs(i)._next ) |
|
1784 tty->print("L%d ",i); |
|
1785 tty->print_cr(""); |
|
1786 } |
|
1787 |
|
1788 static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) { |
|
1789 if ((int)reg < 0) |
|
1790 sprintf(buf, "<OptoReg::%d>", (int)reg); |
|
1791 else if (OptoReg::is_reg(reg)) |
|
1792 strcpy(buf, Matcher::regName[reg]); |
|
1793 else |
|
1794 sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer), |
|
1795 pc->reg2offset(reg)); |
|
1796 return buf+strlen(buf); |
|
1797 } |
|
1798 |
|
1799 //------------------------------dump_register---------------------------------- |
|
1800 // Dump a register name into a buffer. Be intelligent if we get called |
|
1801 // before allocation is complete. |
|
1802 char *PhaseChaitin::dump_register( const Node *n, char *buf ) const { |
|
1803 if( !this ) { // Not got anything? |
|
1804 sprintf(buf,"N%d",n->_idx); // Then use Node index |
|
1805 } else if( _node_regs ) { |
|
1806 // Post allocation, use direct mappings, no LRG info available |
|
1807 print_reg( get_reg_first(n), this, buf ); |
|
1808 } else { |
|
1809 uint lidx = Find_const(n); // Grab LRG number |
|
1810 if( !_ifg ) { |
|
1811 sprintf(buf,"L%d",lidx); // No register binding yet |
|
1812 } else if( !lidx ) { // Special, not allocated value |
|
1813 strcpy(buf,"Special"); |
|
1814 } else if( (lrgs(lidx).num_regs() == 1) |
|
1815 ? !lrgs(lidx).mask().is_bound1() |
|
1816 : !lrgs(lidx).mask().is_bound2() ) { |
|
1817 sprintf(buf,"L%d",lidx); // No register binding yet |
|
1818 } else { // Hah! We have a bound machine register |
|
1819 print_reg( lrgs(lidx).reg(), this, buf ); |
|
1820 } |
|
1821 } |
|
1822 return buf+strlen(buf); |
|
1823 } |
|
1824 |
|
1825 //----------------------dump_for_spill_split_recycle-------------------------- |
|
1826 void PhaseChaitin::dump_for_spill_split_recycle() const { |
|
1827 if( WizardMode && (PrintCompilation || PrintOpto) ) { |
|
1828 // Display which live ranges need to be split and the allocator's state |
|
1829 tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt); |
|
1830 for( uint bidx = 1; bidx < _maxlrg; bidx++ ) { |
|
1831 if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) { |
|
1832 tty->print("L%d: ", bidx); |
|
1833 lrgs(bidx).dump(); |
|
1834 } |
|
1835 } |
|
1836 tty->cr(); |
|
1837 dump(); |
|
1838 } |
|
1839 } |
|
1840 |
|
1841 //------------------------------dump_frame------------------------------------ |
|
1842 void PhaseChaitin::dump_frame() const { |
|
1843 const char *fp = OptoReg::regname(OptoReg::c_frame_pointer); |
|
1844 const TypeTuple *domain = C->tf()->domain(); |
|
1845 const int argcnt = domain->cnt() - TypeFunc::Parms; |
|
1846 |
|
1847 // Incoming arguments in registers dump |
|
1848 for( int k = 0; k < argcnt; k++ ) { |
|
1849 OptoReg::Name parmreg = _matcher._parm_regs[k].first(); |
|
1850 if( OptoReg::is_reg(parmreg)) { |
|
1851 const char *reg_name = OptoReg::regname(parmreg); |
|
1852 tty->print("#r%3.3d %s", parmreg, reg_name); |
|
1853 parmreg = _matcher._parm_regs[k].second(); |
|
1854 if( OptoReg::is_reg(parmreg)) { |
|
1855 tty->print(":%s", OptoReg::regname(parmreg)); |
|
1856 } |
|
1857 tty->print(" : parm %d: ", k); |
|
1858 domain->field_at(k + TypeFunc::Parms)->dump(); |
|
1859 tty->print_cr(""); |
|
1860 } |
|
1861 } |
|
1862 |
|
1863 // Check for un-owned padding above incoming args |
|
1864 OptoReg::Name reg = _matcher._new_SP; |
|
1865 if( reg > _matcher._in_arg_limit ) { |
|
1866 reg = OptoReg::add(reg, -1); |
|
1867 tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg)); |
|
1868 } |
|
1869 |
|
1870 // Incoming argument area dump |
|
1871 OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots()); |
|
1872 while( reg > begin_in_arg ) { |
|
1873 reg = OptoReg::add(reg, -1); |
|
1874 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); |
|
1875 int j; |
|
1876 for( j = 0; j < argcnt; j++) { |
|
1877 if( _matcher._parm_regs[j].first() == reg || |
|
1878 _matcher._parm_regs[j].second() == reg ) { |
|
1879 tty->print("parm %d: ",j); |
|
1880 domain->field_at(j + TypeFunc::Parms)->dump(); |
|
1881 tty->print_cr(""); |
|
1882 break; |
|
1883 } |
|
1884 } |
|
1885 if( j >= argcnt ) |
|
1886 tty->print_cr("HOLE, owned by SELF"); |
|
1887 } |
|
1888 |
|
1889 // Old outgoing preserve area |
|
1890 while( reg > _matcher._old_SP ) { |
|
1891 reg = OptoReg::add(reg, -1); |
|
1892 tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg)); |
|
1893 } |
|
1894 |
|
1895 // Old SP |
|
1896 tty->print_cr("# -- Old %s -- Framesize: %d --",fp, |
|
1897 reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize); |
|
1898 |
|
1899 // Preserve area dump |
|
1900 reg = OptoReg::add(reg, -1); |
|
1901 while( OptoReg::is_stack(reg)) { |
|
1902 tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); |
|
1903 if( _matcher.return_addr() == reg ) |
|
1904 tty->print_cr("return address"); |
|
1905 else if( _matcher.return_addr() == OptoReg::add(reg,1) && |
|
1906 VerifyStackAtCalls ) |
|
1907 tty->print_cr("0xBADB100D +VerifyStackAtCalls"); |
|
1908 else if ((int)OptoReg::reg2stack(reg) < C->fixed_slots()) |
|
1909 tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg)); |
|
1910 else |
|
1911 tty->print_cr("pad2, in_preserve"); |
|
1912 reg = OptoReg::add(reg, -1); |
|
1913 } |
|
1914 |
|
1915 // Spill area dump |
|
1916 reg = OptoReg::add(_matcher._new_SP, _framesize ); |
|
1917 while( reg > _matcher._out_arg_limit ) { |
|
1918 reg = OptoReg::add(reg, -1); |
|
1919 tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg)); |
|
1920 } |
|
1921 |
|
1922 // Outgoing argument area dump |
|
1923 while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) { |
|
1924 reg = OptoReg::add(reg, -1); |
|
1925 tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg)); |
|
1926 } |
|
1927 |
|
1928 // Outgoing new preserve area |
|
1929 while( reg > _matcher._new_SP ) { |
|
1930 reg = OptoReg::add(reg, -1); |
|
1931 tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg)); |
|
1932 } |
|
1933 tty->print_cr("#"); |
|
1934 } |
|
1935 |
|
1936 //------------------------------dump_bb---------------------------------------- |
|
1937 void PhaseChaitin::dump_bb( uint pre_order ) const { |
|
1938 tty->print_cr("---dump of B%d---",pre_order); |
|
1939 for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
1940 Block *b = _cfg._blocks[i]; |
|
1941 if( b->_pre_order == pre_order ) |
|
1942 dump(b); |
|
1943 } |
|
1944 } |
|
1945 |
|
1946 //------------------------------dump_lrg--------------------------------------- |
|
1947 void PhaseChaitin::dump_lrg( uint lidx ) const { |
|
1948 tty->print_cr("---dump of L%d---",lidx); |
|
1949 |
|
1950 if( _ifg ) { |
|
1951 if( lidx >= _maxlrg ) { |
|
1952 tty->print("Attempt to print live range index beyond max live range.\n"); |
|
1953 return; |
|
1954 } |
|
1955 tty->print("L%d: ",lidx); |
|
1956 lrgs(lidx).dump( ); |
|
1957 } |
|
1958 if( _ifg ) { tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx)); |
|
1959 _ifg->neighbors(lidx)->dump(); |
|
1960 tty->cr(); |
|
1961 } |
|
1962 // For all blocks |
|
1963 for( uint i = 0; i < _cfg._num_blocks; i++ ) { |
|
1964 Block *b = _cfg._blocks[i]; |
|
1965 int dump_once = 0; |
|
1966 |
|
1967 // For all instructions |
|
1968 for( uint j = 0; j < b->_nodes.size(); j++ ) { |
|
1969 Node *n = b->_nodes[j]; |
|
1970 if( Find_const(n) == lidx ) { |
|
1971 if( !dump_once++ ) { |
|
1972 tty->cr(); |
|
1973 b->dump_head( &_cfg._bbs ); |
|
1974 } |
|
1975 dump(n); |
|
1976 continue; |
|
1977 } |
|
1978 uint cnt = n->req(); |
|
1979 for( uint k = 1; k < cnt; k++ ) { |
|
1980 Node *m = n->in(k); |
|
1981 if (!m) continue; // be robust in the dumper |
|
1982 if( Find_const(m) == lidx ) { |
|
1983 if( !dump_once++ ) { |
|
1984 tty->cr(); |
|
1985 b->dump_head( &_cfg._bbs ); |
|
1986 } |
|
1987 dump(n); |
|
1988 } |
|
1989 } |
|
1990 } |
|
1991 } // End of per-block dump |
|
1992 tty->cr(); |
|
1993 } |
|
1994 #endif // not PRODUCT |
|
1995 |
|
1996 //------------------------------print_chaitin_statistics------------------------------- |
|
1997 int PhaseChaitin::_final_loads = 0; |
|
1998 int PhaseChaitin::_final_stores = 0; |
|
1999 int PhaseChaitin::_final_memoves= 0; |
|
2000 int PhaseChaitin::_final_copies = 0; |
|
2001 double PhaseChaitin::_final_load_cost = 0; |
|
2002 double PhaseChaitin::_final_store_cost = 0; |
|
2003 double PhaseChaitin::_final_memove_cost= 0; |
|
2004 double PhaseChaitin::_final_copy_cost = 0; |
|
2005 int PhaseChaitin::_conserv_coalesce = 0; |
|
2006 int PhaseChaitin::_conserv_coalesce_pair = 0; |
|
2007 int PhaseChaitin::_conserv_coalesce_trie = 0; |
|
2008 int PhaseChaitin::_conserv_coalesce_quad = 0; |
|
2009 int PhaseChaitin::_post_alloc = 0; |
|
2010 int PhaseChaitin::_lost_opp_pp_coalesce = 0; |
|
2011 int PhaseChaitin::_lost_opp_cflow_coalesce = 0; |
|
2012 int PhaseChaitin::_used_cisc_instructions = 0; |
|
2013 int PhaseChaitin::_unused_cisc_instructions = 0; |
|
2014 int PhaseChaitin::_allocator_attempts = 0; |
|
2015 int PhaseChaitin::_allocator_successes = 0; |
|
2016 |
|
2017 #ifndef PRODUCT |
|
2018 uint PhaseChaitin::_high_pressure = 0; |
|
2019 uint PhaseChaitin::_low_pressure = 0; |
|
2020 |
|
2021 void PhaseChaitin::print_chaitin_statistics() { |
|
2022 tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies); |
|
2023 tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost); |
|
2024 tty->print_cr("Adjusted spill cost = %7.0f.", |
|
2025 _final_load_cost*4.0 + _final_store_cost * 2.0 + |
|
2026 _final_copy_cost*1.0 + _final_memove_cost*12.0); |
|
2027 tty->print("Conservatively coalesced %d copies, %d pairs", |
|
2028 _conserv_coalesce, _conserv_coalesce_pair); |
|
2029 if( _conserv_coalesce_trie || _conserv_coalesce_quad ) |
|
2030 tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad); |
|
2031 tty->print_cr(", %d post alloc.", _post_alloc); |
|
2032 if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce ) |
|
2033 tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.", |
|
2034 _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce ); |
|
2035 if( _used_cisc_instructions || _unused_cisc_instructions ) |
|
2036 tty->print_cr("Used cisc instruction %d, remained in register %d", |
|
2037 _used_cisc_instructions, _unused_cisc_instructions); |
|
2038 if( _allocator_successes != 0 ) |
|
2039 tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes); |
|
2040 tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure); |
|
2041 } |
|
2042 #endif // not PRODUCT |