1 /* |
|
2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Oracle designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Oracle in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
22 * or visit www.oracle.com if you need additional information or have any |
|
23 * questions. |
|
24 */ |
|
25 |
|
26 /* |
|
27 * This file contains implementations of NET_... functions. The NET_.. functions are |
|
28 * wrappers for common file- and socket functions plus provisions for non-blocking IO. |
|
29 * |
|
30 * (basically, the layers remember all file descriptors waiting for a particular fd; |
|
31 * all threads waiting on a certain fd can be woken up by sending them a signal; this |
|
32 * is done e.g. when the fd is closed.) |
|
33 * |
|
34 * This was originally copied from the linux_close.c implementation. |
|
35 * |
|
36 * Side Note: This coding needs initialization. Under Linux this is done |
|
37 * automatically via __attribute((constructor)), on AIX this is done manually |
|
38 * (see aix_close_init). |
|
39 * |
|
40 */ |
|
41 |
|
42 /* |
|
43 AIX needs a workaround for I/O cancellation, see: |
|
44 http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/close.htm |
|
45 ... |
|
46 The close subroutine is blocked until all subroutines which use the file |
|
47 descriptor return to usr space. For example, when a thread is calling close |
|
48 and another thread is calling select with the same file descriptor, the |
|
49 close subroutine does not return until the select call returns. |
|
50 ... |
|
51 */ |
|
52 |
|
53 #include <stdio.h> |
|
54 #include <stdlib.h> |
|
55 #include <signal.h> |
|
56 #include <pthread.h> |
|
57 #include <sys/types.h> |
|
58 #include <sys/socket.h> |
|
59 #include <sys/time.h> |
|
60 #include <sys/resource.h> |
|
61 #include <sys/uio.h> |
|
62 #include <unistd.h> |
|
63 #include <errno.h> |
|
64 #include <sys/poll.h> |
|
65 |
|
66 /* |
|
67 * Stack allocated by thread when doing blocking operation |
|
68 */ |
|
69 typedef struct threadEntry { |
|
70 pthread_t thr; /* this thread */ |
|
71 struct threadEntry *next; /* next thread */ |
|
72 int intr; /* interrupted */ |
|
73 } threadEntry_t; |
|
74 |
|
75 /* |
|
76 * Heap allocated during initialized - one entry per fd |
|
77 */ |
|
78 typedef struct { |
|
79 pthread_mutex_t lock; /* fd lock */ |
|
80 threadEntry_t *threads; /* threads blocked on fd */ |
|
81 } fdEntry_t; |
|
82 |
|
83 /* |
|
84 * Signal to unblock thread |
|
85 */ |
|
86 static int sigWakeup = (SIGRTMAX - 1); |
|
87 |
|
88 /* |
|
89 * The fd table and the number of file descriptors |
|
90 */ |
|
91 static fdEntry_t *fdTable = NULL; |
|
92 static int fdCount = 0; |
|
93 |
|
94 /* |
|
95 * Null signal handler |
|
96 */ |
|
97 static void sig_wakeup(int sig) { |
|
98 } |
|
99 |
|
100 /* |
|
101 * Initialization routine (executed when library is loaded) |
|
102 * Allocate fd tables and sets up signal handler. |
|
103 * |
|
104 * On AIX we don't have __attribute((constructor)) so we need to initialize |
|
105 * manually (from JNI_OnLoad() in 'src/share/native/java/net/net_util.c') |
|
106 */ |
|
107 void aix_close_init() { |
|
108 struct rlimit nbr_files; |
|
109 sigset_t sigset; |
|
110 struct sigaction sa; |
|
111 |
|
112 /* Check already initialized */ |
|
113 if (fdCount > 0 && fdTable != NULL) { |
|
114 return; |
|
115 } |
|
116 |
|
117 /* |
|
118 * Allocate table based on the maximum number of |
|
119 * file descriptors. |
|
120 */ |
|
121 if (-1 == getrlimit(RLIMIT_NOFILE, &nbr_files)) { |
|
122 fprintf(stderr, "library initialization failed - " |
|
123 "unable to get max # of allocated fds\n"); |
|
124 abort(); |
|
125 } |
|
126 fdCount = nbr_files.rlim_max; |
|
127 /* |
|
128 * We have a conceptual problem here, when the number of files is |
|
129 * unlimited. As a kind of workaround, we ensure the table is big |
|
130 * enough for handle even a large number of files. Since SAP itself |
|
131 * recommends a limit of 32000 files, we just use 64000 as 'infinity'. |
|
132 */ |
|
133 if (nbr_files.rlim_max == RLIM_INFINITY) { |
|
134 fdCount = 64000; |
|
135 } |
|
136 fdTable = (fdEntry_t *)calloc(fdCount, sizeof(fdEntry_t)); |
|
137 if (fdTable == NULL) { |
|
138 fprintf(stderr, "library initialization failed - " |
|
139 "unable to allocate file descriptor table - out of memory"); |
|
140 abort(); |
|
141 } |
|
142 |
|
143 { |
|
144 int i; |
|
145 for (i=0; i < fdCount; i++) { |
|
146 pthread_mutex_init(&fdTable[i].lock, NULL); |
|
147 } |
|
148 } |
|
149 |
|
150 /* |
|
151 * Setup the signal handler |
|
152 */ |
|
153 sa.sa_handler = sig_wakeup; |
|
154 sa.sa_flags = 0; |
|
155 sigemptyset(&sa.sa_mask); |
|
156 sigaction(sigWakeup, &sa, NULL); |
|
157 |
|
158 sigemptyset(&sigset); |
|
159 sigaddset(&sigset, sigWakeup); |
|
160 sigprocmask(SIG_UNBLOCK, &sigset, NULL); |
|
161 } |
|
162 |
|
163 /* |
|
164 * Return the fd table for this fd or NULL is fd out |
|
165 * of range. |
|
166 */ |
|
167 static inline fdEntry_t *getFdEntry(int fd) |
|
168 { |
|
169 if (fd < 0 || fd >= fdCount) { |
|
170 return NULL; |
|
171 } |
|
172 return &fdTable[fd]; |
|
173 } |
|
174 |
|
175 /* |
|
176 * Start a blocking operation :- |
|
177 * Insert thread onto thread list for the fd. |
|
178 */ |
|
179 static inline void startOp(fdEntry_t *fdEntry, threadEntry_t *self) |
|
180 { |
|
181 self->thr = pthread_self(); |
|
182 self->intr = 0; |
|
183 |
|
184 pthread_mutex_lock(&(fdEntry->lock)); |
|
185 { |
|
186 self->next = fdEntry->threads; |
|
187 fdEntry->threads = self; |
|
188 } |
|
189 pthread_mutex_unlock(&(fdEntry->lock)); |
|
190 } |
|
191 |
|
192 /* |
|
193 * End a blocking operation :- |
|
194 * Remove thread from thread list for the fd |
|
195 * If fd has been interrupted then set errno to EBADF |
|
196 */ |
|
197 static inline void endOp |
|
198 (fdEntry_t *fdEntry, threadEntry_t *self) |
|
199 { |
|
200 int orig_errno = errno; |
|
201 pthread_mutex_lock(&(fdEntry->lock)); |
|
202 { |
|
203 threadEntry_t *curr, *prev=NULL; |
|
204 curr = fdEntry->threads; |
|
205 while (curr != NULL) { |
|
206 if (curr == self) { |
|
207 if (curr->intr) { |
|
208 orig_errno = EBADF; |
|
209 } |
|
210 if (prev == NULL) { |
|
211 fdEntry->threads = curr->next; |
|
212 } else { |
|
213 prev->next = curr->next; |
|
214 } |
|
215 break; |
|
216 } |
|
217 prev = curr; |
|
218 curr = curr->next; |
|
219 } |
|
220 } |
|
221 pthread_mutex_unlock(&(fdEntry->lock)); |
|
222 errno = orig_errno; |
|
223 } |
|
224 |
|
225 /* |
|
226 * Close or dup2 a file descriptor ensuring that all threads blocked on |
|
227 * the file descriptor are notified via a wakeup signal. |
|
228 * |
|
229 * fd1 < 0 => close(fd2) |
|
230 * fd1 >= 0 => dup2(fd1, fd2) |
|
231 * |
|
232 * Returns -1 with errno set if operation fails. |
|
233 */ |
|
234 static int closefd(int fd1, int fd2) { |
|
235 int rv, orig_errno; |
|
236 fdEntry_t *fdEntry = getFdEntry(fd2); |
|
237 if (fdEntry == NULL) { |
|
238 errno = EBADF; |
|
239 return -1; |
|
240 } |
|
241 |
|
242 /* |
|
243 * Lock the fd to hold-off additional I/O on this fd. |
|
244 */ |
|
245 pthread_mutex_lock(&(fdEntry->lock)); |
|
246 |
|
247 { |
|
248 /* On fast machines we see that we enter dup2 before the |
|
249 * accepting thread had a chance to get and process the signal. |
|
250 * So in case we woke a thread up, give it some time to cope. |
|
251 * Also see https://bugs.openjdk.java.net/browse/JDK-8006395 */ |
|
252 int num_woken = 0; |
|
253 |
|
254 /* |
|
255 * Send a wakeup signal to all threads blocked on this |
|
256 * file descriptor. |
|
257 */ |
|
258 threadEntry_t *curr = fdEntry->threads; |
|
259 while (curr != NULL) { |
|
260 curr->intr = 1; |
|
261 pthread_kill( curr->thr, sigWakeup ); |
|
262 num_woken ++; |
|
263 curr = curr->next; |
|
264 } |
|
265 |
|
266 if (num_woken > 0) { |
|
267 usleep(num_woken * 50); |
|
268 } |
|
269 |
|
270 /* |
|
271 * And close/dup the file descriptor |
|
272 * (restart if interrupted by signal) |
|
273 */ |
|
274 do { |
|
275 if (fd1 < 0) { |
|
276 rv = close(fd2); |
|
277 } else { |
|
278 rv = dup2(fd1, fd2); |
|
279 } |
|
280 } while (rv == -1 && errno == EINTR); |
|
281 } |
|
282 |
|
283 /* |
|
284 * Unlock without destroying errno |
|
285 */ |
|
286 orig_errno = errno; |
|
287 pthread_mutex_unlock(&(fdEntry->lock)); |
|
288 errno = orig_errno; |
|
289 |
|
290 return rv; |
|
291 } |
|
292 |
|
293 /* |
|
294 * Wrapper for dup2 - same semantics as dup2 system call except |
|
295 * that any threads blocked in an I/O system call on fd2 will be |
|
296 * preempted and return -1/EBADF; |
|
297 */ |
|
298 int NET_Dup2(int fd, int fd2) { |
|
299 if (fd < 0) { |
|
300 errno = EBADF; |
|
301 return -1; |
|
302 } |
|
303 return closefd(fd, fd2); |
|
304 } |
|
305 |
|
306 /* |
|
307 * Wrapper for close - same semantics as close system call |
|
308 * except that any threads blocked in an I/O on fd will be |
|
309 * preempted and the I/O system call will return -1/EBADF. |
|
310 */ |
|
311 int NET_SocketClose(int fd) { |
|
312 return closefd(-1, fd); |
|
313 } |
|
314 |
|
315 /************** Basic I/O operations here ***************/ |
|
316 |
|
317 /* |
|
318 * Macro to perform a blocking IO operation. Restarts |
|
319 * automatically if interrupted by signal (other than |
|
320 * our wakeup signal) |
|
321 */ |
|
322 #define BLOCKING_IO_RETURN_INT(FD, FUNC) { \ |
|
323 int ret; \ |
|
324 threadEntry_t self; \ |
|
325 fdEntry_t *fdEntry = getFdEntry(FD); \ |
|
326 if (fdEntry == NULL) { \ |
|
327 errno = EBADF; \ |
|
328 return -1; \ |
|
329 } \ |
|
330 do { \ |
|
331 startOp(fdEntry, &self); \ |
|
332 ret = FUNC; \ |
|
333 endOp(fdEntry, &self); \ |
|
334 } while (ret == -1 && errno == EINTR); \ |
|
335 return ret; \ |
|
336 } |
|
337 |
|
338 int NET_Read(int s, void* buf, size_t len) { |
|
339 BLOCKING_IO_RETURN_INT( s, recv(s, buf, len, 0) ); |
|
340 } |
|
341 |
|
342 int NET_ReadV(int s, const struct iovec * vector, int count) { |
|
343 BLOCKING_IO_RETURN_INT( s, readv(s, vector, count) ); |
|
344 } |
|
345 |
|
346 int NET_RecvFrom(int s, void *buf, int len, unsigned int flags, |
|
347 struct sockaddr *from, int *fromlen) { |
|
348 socklen_t socklen = *fromlen; |
|
349 BLOCKING_IO_RETURN_INT( s, recvfrom(s, buf, len, flags, from, &socklen) ); |
|
350 *fromlen = socklen; |
|
351 } |
|
352 |
|
353 int NET_Send(int s, void *msg, int len, unsigned int flags) { |
|
354 BLOCKING_IO_RETURN_INT( s, send(s, msg, len, flags) ); |
|
355 } |
|
356 |
|
357 int NET_WriteV(int s, const struct iovec * vector, int count) { |
|
358 BLOCKING_IO_RETURN_INT( s, writev(s, vector, count) ); |
|
359 } |
|
360 |
|
361 int NET_SendTo(int s, const void *msg, int len, unsigned int |
|
362 flags, const struct sockaddr *to, int tolen) { |
|
363 BLOCKING_IO_RETURN_INT( s, sendto(s, msg, len, flags, to, tolen) ); |
|
364 } |
|
365 |
|
366 int NET_Accept(int s, struct sockaddr *addr, int *addrlen) { |
|
367 socklen_t socklen = *addrlen; |
|
368 BLOCKING_IO_RETURN_INT( s, accept(s, addr, &socklen) ); |
|
369 *addrlen = socklen; |
|
370 } |
|
371 |
|
372 int NET_Connect(int s, struct sockaddr *addr, int addrlen) { |
|
373 int crc = -1, prc = -1; |
|
374 threadEntry_t self; |
|
375 fdEntry_t* fdEntry = getFdEntry(s); |
|
376 |
|
377 if (fdEntry == NULL) { |
|
378 errno = EBADF; |
|
379 return -1; |
|
380 } |
|
381 |
|
382 /* On AIX, when the system call connect() is interrupted, the connection |
|
383 * is not aborted and it will be established asynchronously by the kernel. |
|
384 * Hence, no need to restart connect() when EINTR is received |
|
385 */ |
|
386 startOp(fdEntry, &self); |
|
387 crc = connect(s, addr, addrlen); |
|
388 endOp(fdEntry, &self); |
|
389 |
|
390 if (crc == -1 && errno == EINTR) { |
|
391 struct pollfd s_pollfd; |
|
392 int sockopt_arg = 0; |
|
393 socklen_t len; |
|
394 |
|
395 s_pollfd.fd = s; |
|
396 s_pollfd.events = POLLOUT | POLLERR; |
|
397 |
|
398 /* poll the file descriptor */ |
|
399 do { |
|
400 startOp(fdEntry, &self); |
|
401 prc = poll(&s_pollfd, 1, -1); |
|
402 endOp(fdEntry, &self); |
|
403 } while (prc == -1 && errno == EINTR); |
|
404 |
|
405 if (prc < 0) |
|
406 return prc; |
|
407 |
|
408 len = sizeof(sockopt_arg); |
|
409 |
|
410 /* Check whether the connection has been established */ |
|
411 if (getsockopt(s, SOL_SOCKET, SO_ERROR, &sockopt_arg, &len) == -1) |
|
412 return -1; |
|
413 |
|
414 if (sockopt_arg != 0 ) { |
|
415 errno = sockopt_arg; |
|
416 return -1; |
|
417 } |
|
418 } else { |
|
419 return crc; |
|
420 } |
|
421 |
|
422 /* At this point, fd is connected. Set successful return code */ |
|
423 return 0; |
|
424 } |
|
425 |
|
426 int NET_Poll(struct pollfd *ufds, unsigned int nfds, int timeout) { |
|
427 BLOCKING_IO_RETURN_INT( ufds[0].fd, poll(ufds, nfds, timeout) ); |
|
428 } |
|
429 |
|
430 /* |
|
431 * Wrapper for poll(s, timeout). |
|
432 * Auto restarts with adjusted timeout if interrupted by |
|
433 * signal other than our wakeup signal. |
|
434 */ |
|
435 int NET_Timeout(int s, long timeout) { |
|
436 long prevtime = 0, newtime; |
|
437 struct timeval t; |
|
438 fdEntry_t *fdEntry = getFdEntry(s); |
|
439 |
|
440 /* |
|
441 * Check that fd hasn't been closed. |
|
442 */ |
|
443 if (fdEntry == NULL) { |
|
444 errno = EBADF; |
|
445 return -1; |
|
446 } |
|
447 |
|
448 /* |
|
449 * Pick up current time as may need to adjust timeout |
|
450 */ |
|
451 if (timeout > 0) { |
|
452 gettimeofday(&t, NULL); |
|
453 prevtime = t.tv_sec * 1000 + t.tv_usec / 1000; |
|
454 } |
|
455 |
|
456 for(;;) { |
|
457 struct pollfd pfd; |
|
458 int rv; |
|
459 threadEntry_t self; |
|
460 |
|
461 /* |
|
462 * Poll the fd. If interrupted by our wakeup signal |
|
463 * errno will be set to EBADF. |
|
464 */ |
|
465 pfd.fd = s; |
|
466 pfd.events = POLLIN | POLLERR; |
|
467 |
|
468 startOp(fdEntry, &self); |
|
469 rv = poll(&pfd, 1, timeout); |
|
470 endOp(fdEntry, &self); |
|
471 |
|
472 /* |
|
473 * If interrupted then adjust timeout. If timeout |
|
474 * has expired return 0 (indicating timeout expired). |
|
475 */ |
|
476 if (rv < 0 && errno == EINTR) { |
|
477 if (timeout > 0) { |
|
478 gettimeofday(&t, NULL); |
|
479 newtime = t.tv_sec * 1000 + t.tv_usec / 1000; |
|
480 timeout -= newtime - prevtime; |
|
481 if (timeout <= 0) { |
|
482 return 0; |
|
483 } |
|
484 prevtime = newtime; |
|
485 } |
|
486 } else { |
|
487 return rv; |
|
488 } |
|
489 |
|
490 } |
|
491 } |
|