|
1 /* |
|
2 * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Oracle designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Oracle in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
22 * or visit www.oracle.com if you need additional information or have any |
|
23 * questions. |
|
24 */ |
|
25 |
|
26 package java.security.spec; |
|
27 |
|
28 import java.math.BigInteger; |
|
29 |
|
30 /** |
|
31 * This class specifies an RSA private key, as defined in the PKCS#1 |
|
32 * standard, using the Chinese Remainder Theorem (CRT) information values for |
|
33 * efficiency. |
|
34 * |
|
35 * @author Jan Luehe |
|
36 * |
|
37 * |
|
38 * @see java.security.Key |
|
39 * @see java.security.KeyFactory |
|
40 * @see KeySpec |
|
41 * @see PKCS8EncodedKeySpec |
|
42 * @see RSAPrivateKeySpec |
|
43 * @see RSAPublicKeySpec |
|
44 */ |
|
45 |
|
46 public class RSAPrivateCrtKeySpec extends RSAPrivateKeySpec { |
|
47 |
|
48 private final BigInteger publicExponent; |
|
49 private final BigInteger primeP; |
|
50 private final BigInteger primeQ; |
|
51 private final BigInteger primeExponentP; |
|
52 private final BigInteger primeExponentQ; |
|
53 private final BigInteger crtCoefficient; |
|
54 |
|
55 |
|
56 |
|
57 /** |
|
58 * Creates a new {@code RSAPrivateCrtKeySpec} |
|
59 * given the modulus, publicExponent, privateExponent, |
|
60 * primeP, primeQ, primeExponentP, primeExponentQ, and |
|
61 * crtCoefficient as defined in PKCS#1. |
|
62 * |
|
63 * @param modulus the modulus n |
|
64 * @param publicExponent the public exponent e |
|
65 * @param privateExponent the private exponent d |
|
66 * @param primeP the prime factor p of n |
|
67 * @param primeQ the prime factor q of n |
|
68 * @param primeExponentP this is d mod (p-1) |
|
69 * @param primeExponentQ this is d mod (q-1) |
|
70 * @param crtCoefficient the Chinese Remainder Theorem |
|
71 * coefficient q-1 mod p |
|
72 */ |
|
73 public RSAPrivateCrtKeySpec(BigInteger modulus, |
|
74 BigInteger publicExponent, |
|
75 BigInteger privateExponent, |
|
76 BigInteger primeP, |
|
77 BigInteger primeQ, |
|
78 BigInteger primeExponentP, |
|
79 BigInteger primeExponentQ, |
|
80 BigInteger crtCoefficient) { |
|
81 super(modulus, privateExponent); |
|
82 this.publicExponent = publicExponent; |
|
83 this.primeP = primeP; |
|
84 this.primeQ = primeQ; |
|
85 this.primeExponentP = primeExponentP; |
|
86 this.primeExponentQ = primeExponentQ; |
|
87 this.crtCoefficient = crtCoefficient; |
|
88 } |
|
89 |
|
90 /** |
|
91 * Returns the public exponent. |
|
92 * |
|
93 * @return the public exponent |
|
94 */ |
|
95 public BigInteger getPublicExponent() { |
|
96 return this.publicExponent; |
|
97 } |
|
98 |
|
99 /** |
|
100 * Returns the primeP. |
|
101 |
|
102 * @return the primeP |
|
103 */ |
|
104 public BigInteger getPrimeP() { |
|
105 return this.primeP; |
|
106 } |
|
107 |
|
108 /** |
|
109 * Returns the primeQ. |
|
110 * |
|
111 * @return the primeQ |
|
112 */ |
|
113 public BigInteger getPrimeQ() { |
|
114 return this.primeQ; |
|
115 } |
|
116 |
|
117 /** |
|
118 * Returns the primeExponentP. |
|
119 * |
|
120 * @return the primeExponentP |
|
121 */ |
|
122 public BigInteger getPrimeExponentP() { |
|
123 return this.primeExponentP; |
|
124 } |
|
125 |
|
126 /** |
|
127 * Returns the primeExponentQ. |
|
128 * |
|
129 * @return the primeExponentQ |
|
130 */ |
|
131 public BigInteger getPrimeExponentQ() { |
|
132 return this.primeExponentQ; |
|
133 } |
|
134 |
|
135 /** |
|
136 * Returns the crtCoefficient. |
|
137 * |
|
138 * @return the crtCoefficient |
|
139 */ |
|
140 public BigInteger getCrtCoefficient() { |
|
141 return this.crtCoefficient; |
|
142 } |
|
143 } |