jdk/src/java.base/share/classes/java/math/BitSieve.java
changeset 25859 3317bb8137f4
parent 5506 202f599c92aa
equal deleted inserted replaced
25858:836adbf7a2cd 25859:3317bb8137f4
       
     1 /*
       
     2  * Copyright (c) 1999, 2007, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Oracle designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Oracle in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    22  * or visit www.oracle.com if you need additional information or have any
       
    23  * questions.
       
    24  */
       
    25 
       
    26 package java.math;
       
    27 
       
    28 /**
       
    29  * A simple bit sieve used for finding prime number candidates. Allows setting
       
    30  * and clearing of bits in a storage array. The size of the sieve is assumed to
       
    31  * be constant to reduce overhead. All the bits of a new bitSieve are zero, and
       
    32  * bits are removed from it by setting them.
       
    33  *
       
    34  * To reduce storage space and increase efficiency, no even numbers are
       
    35  * represented in the sieve (each bit in the sieve represents an odd number).
       
    36  * The relationship between the index of a bit and the number it represents is
       
    37  * given by
       
    38  * N = offset + (2*index + 1);
       
    39  * Where N is the integer represented by a bit in the sieve, offset is some
       
    40  * even integer offset indicating where the sieve begins, and index is the
       
    41  * index of a bit in the sieve array.
       
    42  *
       
    43  * @see     BigInteger
       
    44  * @author  Michael McCloskey
       
    45  * @since   1.3
       
    46  */
       
    47 class BitSieve {
       
    48     /**
       
    49      * Stores the bits in this bitSieve.
       
    50      */
       
    51     private long bits[];
       
    52 
       
    53     /**
       
    54      * Length is how many bits this sieve holds.
       
    55      */
       
    56     private int length;
       
    57 
       
    58     /**
       
    59      * A small sieve used to filter out multiples of small primes in a search
       
    60      * sieve.
       
    61      */
       
    62     private static BitSieve smallSieve = new BitSieve();
       
    63 
       
    64     /**
       
    65      * Construct a "small sieve" with a base of 0.  This constructor is
       
    66      * used internally to generate the set of "small primes" whose multiples
       
    67      * are excluded from sieves generated by the main (package private)
       
    68      * constructor, BitSieve(BigInteger base, int searchLen).  The length
       
    69      * of the sieve generated by this constructor was chosen for performance;
       
    70      * it controls a tradeoff between how much time is spent constructing
       
    71      * other sieves, and how much time is wasted testing composite candidates
       
    72      * for primality.  The length was chosen experimentally to yield good
       
    73      * performance.
       
    74      */
       
    75     private BitSieve() {
       
    76         length = 150 * 64;
       
    77         bits = new long[(unitIndex(length - 1) + 1)];
       
    78 
       
    79         // Mark 1 as composite
       
    80         set(0);
       
    81         int nextIndex = 1;
       
    82         int nextPrime = 3;
       
    83 
       
    84         // Find primes and remove their multiples from sieve
       
    85         do {
       
    86             sieveSingle(length, nextIndex + nextPrime, nextPrime);
       
    87             nextIndex = sieveSearch(length, nextIndex + 1);
       
    88             nextPrime = 2*nextIndex + 1;
       
    89         } while((nextIndex > 0) && (nextPrime < length));
       
    90     }
       
    91 
       
    92     /**
       
    93      * Construct a bit sieve of searchLen bits used for finding prime number
       
    94      * candidates. The new sieve begins at the specified base, which must
       
    95      * be even.
       
    96      */
       
    97     BitSieve(BigInteger base, int searchLen) {
       
    98         /*
       
    99          * Candidates are indicated by clear bits in the sieve. As a candidates
       
   100          * nonprimality is calculated, a bit is set in the sieve to eliminate
       
   101          * it. To reduce storage space and increase efficiency, no even numbers
       
   102          * are represented in the sieve (each bit in the sieve represents an
       
   103          * odd number).
       
   104          */
       
   105         bits = new long[(unitIndex(searchLen-1) + 1)];
       
   106         length = searchLen;
       
   107         int start = 0;
       
   108 
       
   109         int step = smallSieve.sieveSearch(smallSieve.length, start);
       
   110         int convertedStep = (step *2) + 1;
       
   111 
       
   112         // Construct the large sieve at an even offset specified by base
       
   113         MutableBigInteger b = new MutableBigInteger(base);
       
   114         MutableBigInteger q = new MutableBigInteger();
       
   115         do {
       
   116             // Calculate base mod convertedStep
       
   117             start = b.divideOneWord(convertedStep, q);
       
   118 
       
   119             // Take each multiple of step out of sieve
       
   120             start = convertedStep - start;
       
   121             if (start%2 == 0)
       
   122                 start += convertedStep;
       
   123             sieveSingle(searchLen, (start-1)/2, convertedStep);
       
   124 
       
   125             // Find next prime from small sieve
       
   126             step = smallSieve.sieveSearch(smallSieve.length, step+1);
       
   127             convertedStep = (step *2) + 1;
       
   128         } while (step > 0);
       
   129     }
       
   130 
       
   131     /**
       
   132      * Given a bit index return unit index containing it.
       
   133      */
       
   134     private static int unitIndex(int bitIndex) {
       
   135         return bitIndex >>> 6;
       
   136     }
       
   137 
       
   138     /**
       
   139      * Return a unit that masks the specified bit in its unit.
       
   140      */
       
   141     private static long bit(int bitIndex) {
       
   142         return 1L << (bitIndex & ((1<<6) - 1));
       
   143     }
       
   144 
       
   145     /**
       
   146      * Get the value of the bit at the specified index.
       
   147      */
       
   148     private boolean get(int bitIndex) {
       
   149         int unitIndex = unitIndex(bitIndex);
       
   150         return ((bits[unitIndex] & bit(bitIndex)) != 0);
       
   151     }
       
   152 
       
   153     /**
       
   154      * Set the bit at the specified index.
       
   155      */
       
   156     private void set(int bitIndex) {
       
   157         int unitIndex = unitIndex(bitIndex);
       
   158         bits[unitIndex] |= bit(bitIndex);
       
   159     }
       
   160 
       
   161     /**
       
   162      * This method returns the index of the first clear bit in the search
       
   163      * array that occurs at or after start. It will not search past the
       
   164      * specified limit. It returns -1 if there is no such clear bit.
       
   165      */
       
   166     private int sieveSearch(int limit, int start) {
       
   167         if (start >= limit)
       
   168             return -1;
       
   169 
       
   170         int index = start;
       
   171         do {
       
   172             if (!get(index))
       
   173                 return index;
       
   174             index++;
       
   175         } while(index < limit-1);
       
   176         return -1;
       
   177     }
       
   178 
       
   179     /**
       
   180      * Sieve a single set of multiples out of the sieve. Begin to remove
       
   181      * multiples of the specified step starting at the specified start index,
       
   182      * up to the specified limit.
       
   183      */
       
   184     private void sieveSingle(int limit, int start, int step) {
       
   185         while(start < limit) {
       
   186             set(start);
       
   187             start += step;
       
   188         }
       
   189     }
       
   190 
       
   191     /**
       
   192      * Test probable primes in the sieve and return successful candidates.
       
   193      */
       
   194     BigInteger retrieve(BigInteger initValue, int certainty, java.util.Random random) {
       
   195         // Examine the sieve one long at a time to find possible primes
       
   196         int offset = 1;
       
   197         for (int i=0; i<bits.length; i++) {
       
   198             long nextLong = ~bits[i];
       
   199             for (int j=0; j<64; j++) {
       
   200                 if ((nextLong & 1) == 1) {
       
   201                     BigInteger candidate = initValue.add(
       
   202                                            BigInteger.valueOf(offset));
       
   203                     if (candidate.primeToCertainty(certainty, random))
       
   204                         return candidate;
       
   205                 }
       
   206                 nextLong >>>= 1;
       
   207                 offset+=2;
       
   208             }
       
   209         }
       
   210         return null;
       
   211     }
       
   212 }