|
1 /* |
|
2 * Copyright (c) 1994, 2013, Oracle and/or its affiliates. All rights reserved. |
|
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
|
4 * |
|
5 * This code is free software; you can redistribute it and/or modify it |
|
6 * under the terms of the GNU General Public License version 2 only, as |
|
7 * published by the Free Software Foundation. Oracle designates this |
|
8 * particular file as subject to the "Classpath" exception as provided |
|
9 * by Oracle in the LICENSE file that accompanied this code. |
|
10 * |
|
11 * This code is distributed in the hope that it will be useful, but WITHOUT |
|
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
|
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
14 * version 2 for more details (a copy is included in the LICENSE file that |
|
15 * accompanied this code). |
|
16 * |
|
17 * You should have received a copy of the GNU General Public License version |
|
18 * 2 along with this work; if not, write to the Free Software Foundation, |
|
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
|
20 * |
|
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
|
22 * or visit www.oracle.com if you need additional information or have any |
|
23 * questions. |
|
24 */ |
|
25 |
|
26 package java.lang; |
|
27 import java.util.Random; |
|
28 |
|
29 import sun.misc.FloatConsts; |
|
30 import sun.misc.DoubleConsts; |
|
31 |
|
32 /** |
|
33 * The class {@code Math} contains methods for performing basic |
|
34 * numeric operations such as the elementary exponential, logarithm, |
|
35 * square root, and trigonometric functions. |
|
36 * |
|
37 * <p>Unlike some of the numeric methods of class |
|
38 * {@code StrictMath}, all implementations of the equivalent |
|
39 * functions of class {@code Math} are not defined to return the |
|
40 * bit-for-bit same results. This relaxation permits |
|
41 * better-performing implementations where strict reproducibility is |
|
42 * not required. |
|
43 * |
|
44 * <p>By default many of the {@code Math} methods simply call |
|
45 * the equivalent method in {@code StrictMath} for their |
|
46 * implementation. Code generators are encouraged to use |
|
47 * platform-specific native libraries or microprocessor instructions, |
|
48 * where available, to provide higher-performance implementations of |
|
49 * {@code Math} methods. Such higher-performance |
|
50 * implementations still must conform to the specification for |
|
51 * {@code Math}. |
|
52 * |
|
53 * <p>The quality of implementation specifications concern two |
|
54 * properties, accuracy of the returned result and monotonicity of the |
|
55 * method. Accuracy of the floating-point {@code Math} methods is |
|
56 * measured in terms of <i>ulps</i>, units in the last place. For a |
|
57 * given floating-point format, an {@linkplain #ulp(double) ulp} of a |
|
58 * specific real number value is the distance between the two |
|
59 * floating-point values bracketing that numerical value. When |
|
60 * discussing the accuracy of a method as a whole rather than at a |
|
61 * specific argument, the number of ulps cited is for the worst-case |
|
62 * error at any argument. If a method always has an error less than |
|
63 * 0.5 ulps, the method always returns the floating-point number |
|
64 * nearest the exact result; such a method is <i>correctly |
|
65 * rounded</i>. A correctly rounded method is generally the best a |
|
66 * floating-point approximation can be; however, it is impractical for |
|
67 * many floating-point methods to be correctly rounded. Instead, for |
|
68 * the {@code Math} class, a larger error bound of 1 or 2 ulps is |
|
69 * allowed for certain methods. Informally, with a 1 ulp error bound, |
|
70 * when the exact result is a representable number, the exact result |
|
71 * should be returned as the computed result; otherwise, either of the |
|
72 * two floating-point values which bracket the exact result may be |
|
73 * returned. For exact results large in magnitude, one of the |
|
74 * endpoints of the bracket may be infinite. Besides accuracy at |
|
75 * individual arguments, maintaining proper relations between the |
|
76 * method at different arguments is also important. Therefore, most |
|
77 * methods with more than 0.5 ulp errors are required to be |
|
78 * <i>semi-monotonic</i>: whenever the mathematical function is |
|
79 * non-decreasing, so is the floating-point approximation, likewise, |
|
80 * whenever the mathematical function is non-increasing, so is the |
|
81 * floating-point approximation. Not all approximations that have 1 |
|
82 * ulp accuracy will automatically meet the monotonicity requirements. |
|
83 * |
|
84 * <p> |
|
85 * The platform uses signed two's complement integer arithmetic with |
|
86 * int and long primitive types. The developer should choose |
|
87 * the primitive type to ensure that arithmetic operations consistently |
|
88 * produce correct results, which in some cases means the operations |
|
89 * will not overflow the range of values of the computation. |
|
90 * The best practice is to choose the primitive type and algorithm to avoid |
|
91 * overflow. In cases where the size is {@code int} or {@code long} and |
|
92 * overflow errors need to be detected, the methods {@code addExact}, |
|
93 * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact} |
|
94 * throw an {@code ArithmeticException} when the results overflow. |
|
95 * For other arithmetic operations such as divide, absolute value, |
|
96 * increment, decrement, and negation overflow occurs only with |
|
97 * a specific minimum or maximum value and should be checked against |
|
98 * the minimum or maximum as appropriate. |
|
99 * |
|
100 * @author unascribed |
|
101 * @author Joseph D. Darcy |
|
102 * @since 1.0 |
|
103 */ |
|
104 |
|
105 public final class Math { |
|
106 |
|
107 /** |
|
108 * Don't let anyone instantiate this class. |
|
109 */ |
|
110 private Math() {} |
|
111 |
|
112 /** |
|
113 * The {@code double} value that is closer than any other to |
|
114 * <i>e</i>, the base of the natural logarithms. |
|
115 */ |
|
116 public static final double E = 2.7182818284590452354; |
|
117 |
|
118 /** |
|
119 * The {@code double} value that is closer than any other to |
|
120 * <i>pi</i>, the ratio of the circumference of a circle to its |
|
121 * diameter. |
|
122 */ |
|
123 public static final double PI = 3.14159265358979323846; |
|
124 |
|
125 /** |
|
126 * Returns the trigonometric sine of an angle. Special cases: |
|
127 * <ul><li>If the argument is NaN or an infinity, then the |
|
128 * result is NaN. |
|
129 * <li>If the argument is zero, then the result is a zero with the |
|
130 * same sign as the argument.</ul> |
|
131 * |
|
132 * <p>The computed result must be within 1 ulp of the exact result. |
|
133 * Results must be semi-monotonic. |
|
134 * |
|
135 * @param a an angle, in radians. |
|
136 * @return the sine of the argument. |
|
137 */ |
|
138 public static double sin(double a) { |
|
139 return StrictMath.sin(a); // default impl. delegates to StrictMath |
|
140 } |
|
141 |
|
142 /** |
|
143 * Returns the trigonometric cosine of an angle. Special cases: |
|
144 * <ul><li>If the argument is NaN or an infinity, then the |
|
145 * result is NaN.</ul> |
|
146 * |
|
147 * <p>The computed result must be within 1 ulp of the exact result. |
|
148 * Results must be semi-monotonic. |
|
149 * |
|
150 * @param a an angle, in radians. |
|
151 * @return the cosine of the argument. |
|
152 */ |
|
153 public static double cos(double a) { |
|
154 return StrictMath.cos(a); // default impl. delegates to StrictMath |
|
155 } |
|
156 |
|
157 /** |
|
158 * Returns the trigonometric tangent of an angle. Special cases: |
|
159 * <ul><li>If the argument is NaN or an infinity, then the result |
|
160 * is NaN. |
|
161 * <li>If the argument is zero, then the result is a zero with the |
|
162 * same sign as the argument.</ul> |
|
163 * |
|
164 * <p>The computed result must be within 1 ulp of the exact result. |
|
165 * Results must be semi-monotonic. |
|
166 * |
|
167 * @param a an angle, in radians. |
|
168 * @return the tangent of the argument. |
|
169 */ |
|
170 public static double tan(double a) { |
|
171 return StrictMath.tan(a); // default impl. delegates to StrictMath |
|
172 } |
|
173 |
|
174 /** |
|
175 * Returns the arc sine of a value; the returned angle is in the |
|
176 * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: |
|
177 * <ul><li>If the argument is NaN or its absolute value is greater |
|
178 * than 1, then the result is NaN. |
|
179 * <li>If the argument is zero, then the result is a zero with the |
|
180 * same sign as the argument.</ul> |
|
181 * |
|
182 * <p>The computed result must be within 1 ulp of the exact result. |
|
183 * Results must be semi-monotonic. |
|
184 * |
|
185 * @param a the value whose arc sine is to be returned. |
|
186 * @return the arc sine of the argument. |
|
187 */ |
|
188 public static double asin(double a) { |
|
189 return StrictMath.asin(a); // default impl. delegates to StrictMath |
|
190 } |
|
191 |
|
192 /** |
|
193 * Returns the arc cosine of a value; the returned angle is in the |
|
194 * range 0.0 through <i>pi</i>. Special case: |
|
195 * <ul><li>If the argument is NaN or its absolute value is greater |
|
196 * than 1, then the result is NaN.</ul> |
|
197 * |
|
198 * <p>The computed result must be within 1 ulp of the exact result. |
|
199 * Results must be semi-monotonic. |
|
200 * |
|
201 * @param a the value whose arc cosine is to be returned. |
|
202 * @return the arc cosine of the argument. |
|
203 */ |
|
204 public static double acos(double a) { |
|
205 return StrictMath.acos(a); // default impl. delegates to StrictMath |
|
206 } |
|
207 |
|
208 /** |
|
209 * Returns the arc tangent of a value; the returned angle is in the |
|
210 * range -<i>pi</i>/2 through <i>pi</i>/2. Special cases: |
|
211 * <ul><li>If the argument is NaN, then the result is NaN. |
|
212 * <li>If the argument is zero, then the result is a zero with the |
|
213 * same sign as the argument.</ul> |
|
214 * |
|
215 * <p>The computed result must be within 1 ulp of the exact result. |
|
216 * Results must be semi-monotonic. |
|
217 * |
|
218 * @param a the value whose arc tangent is to be returned. |
|
219 * @return the arc tangent of the argument. |
|
220 */ |
|
221 public static double atan(double a) { |
|
222 return StrictMath.atan(a); // default impl. delegates to StrictMath |
|
223 } |
|
224 |
|
225 /** |
|
226 * Converts an angle measured in degrees to an approximately |
|
227 * equivalent angle measured in radians. The conversion from |
|
228 * degrees to radians is generally inexact. |
|
229 * |
|
230 * @param angdeg an angle, in degrees |
|
231 * @return the measurement of the angle {@code angdeg} |
|
232 * in radians. |
|
233 * @since 1.2 |
|
234 */ |
|
235 public static double toRadians(double angdeg) { |
|
236 return angdeg / 180.0 * PI; |
|
237 } |
|
238 |
|
239 /** |
|
240 * Converts an angle measured in radians to an approximately |
|
241 * equivalent angle measured in degrees. The conversion from |
|
242 * radians to degrees is generally inexact; users should |
|
243 * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly |
|
244 * equal {@code 0.0}. |
|
245 * |
|
246 * @param angrad an angle, in radians |
|
247 * @return the measurement of the angle {@code angrad} |
|
248 * in degrees. |
|
249 * @since 1.2 |
|
250 */ |
|
251 public static double toDegrees(double angrad) { |
|
252 return angrad * 180.0 / PI; |
|
253 } |
|
254 |
|
255 /** |
|
256 * Returns Euler's number <i>e</i> raised to the power of a |
|
257 * {@code double} value. Special cases: |
|
258 * <ul><li>If the argument is NaN, the result is NaN. |
|
259 * <li>If the argument is positive infinity, then the result is |
|
260 * positive infinity. |
|
261 * <li>If the argument is negative infinity, then the result is |
|
262 * positive zero.</ul> |
|
263 * |
|
264 * <p>The computed result must be within 1 ulp of the exact result. |
|
265 * Results must be semi-monotonic. |
|
266 * |
|
267 * @param a the exponent to raise <i>e</i> to. |
|
268 * @return the value <i>e</i><sup>{@code a}</sup>, |
|
269 * where <i>e</i> is the base of the natural logarithms. |
|
270 */ |
|
271 public static double exp(double a) { |
|
272 return StrictMath.exp(a); // default impl. delegates to StrictMath |
|
273 } |
|
274 |
|
275 /** |
|
276 * Returns the natural logarithm (base <i>e</i>) of a {@code double} |
|
277 * value. Special cases: |
|
278 * <ul><li>If the argument is NaN or less than zero, then the result |
|
279 * is NaN. |
|
280 * <li>If the argument is positive infinity, then the result is |
|
281 * positive infinity. |
|
282 * <li>If the argument is positive zero or negative zero, then the |
|
283 * result is negative infinity.</ul> |
|
284 * |
|
285 * <p>The computed result must be within 1 ulp of the exact result. |
|
286 * Results must be semi-monotonic. |
|
287 * |
|
288 * @param a a value |
|
289 * @return the value ln {@code a}, the natural logarithm of |
|
290 * {@code a}. |
|
291 */ |
|
292 public static double log(double a) { |
|
293 return StrictMath.log(a); // default impl. delegates to StrictMath |
|
294 } |
|
295 |
|
296 /** |
|
297 * Returns the base 10 logarithm of a {@code double} value. |
|
298 * Special cases: |
|
299 * |
|
300 * <ul><li>If the argument is NaN or less than zero, then the result |
|
301 * is NaN. |
|
302 * <li>If the argument is positive infinity, then the result is |
|
303 * positive infinity. |
|
304 * <li>If the argument is positive zero or negative zero, then the |
|
305 * result is negative infinity. |
|
306 * <li> If the argument is equal to 10<sup><i>n</i></sup> for |
|
307 * integer <i>n</i>, then the result is <i>n</i>. |
|
308 * </ul> |
|
309 * |
|
310 * <p>The computed result must be within 1 ulp of the exact result. |
|
311 * Results must be semi-monotonic. |
|
312 * |
|
313 * @param a a value |
|
314 * @return the base 10 logarithm of {@code a}. |
|
315 * @since 1.5 |
|
316 */ |
|
317 public static double log10(double a) { |
|
318 return StrictMath.log10(a); // default impl. delegates to StrictMath |
|
319 } |
|
320 |
|
321 /** |
|
322 * Returns the correctly rounded positive square root of a |
|
323 * {@code double} value. |
|
324 * Special cases: |
|
325 * <ul><li>If the argument is NaN or less than zero, then the result |
|
326 * is NaN. |
|
327 * <li>If the argument is positive infinity, then the result is positive |
|
328 * infinity. |
|
329 * <li>If the argument is positive zero or negative zero, then the |
|
330 * result is the same as the argument.</ul> |
|
331 * Otherwise, the result is the {@code double} value closest to |
|
332 * the true mathematical square root of the argument value. |
|
333 * |
|
334 * @param a a value. |
|
335 * @return the positive square root of {@code a}. |
|
336 * If the argument is NaN or less than zero, the result is NaN. |
|
337 */ |
|
338 public static double sqrt(double a) { |
|
339 return StrictMath.sqrt(a); // default impl. delegates to StrictMath |
|
340 // Note that hardware sqrt instructions |
|
341 // frequently can be directly used by JITs |
|
342 // and should be much faster than doing |
|
343 // Math.sqrt in software. |
|
344 } |
|
345 |
|
346 |
|
347 /** |
|
348 * Returns the cube root of a {@code double} value. For |
|
349 * positive finite {@code x}, {@code cbrt(-x) == |
|
350 * -cbrt(x)}; that is, the cube root of a negative value is |
|
351 * the negative of the cube root of that value's magnitude. |
|
352 * |
|
353 * Special cases: |
|
354 * |
|
355 * <ul> |
|
356 * |
|
357 * <li>If the argument is NaN, then the result is NaN. |
|
358 * |
|
359 * <li>If the argument is infinite, then the result is an infinity |
|
360 * with the same sign as the argument. |
|
361 * |
|
362 * <li>If the argument is zero, then the result is a zero with the |
|
363 * same sign as the argument. |
|
364 * |
|
365 * </ul> |
|
366 * |
|
367 * <p>The computed result must be within 1 ulp of the exact result. |
|
368 * |
|
369 * @param a a value. |
|
370 * @return the cube root of {@code a}. |
|
371 * @since 1.5 |
|
372 */ |
|
373 public static double cbrt(double a) { |
|
374 return StrictMath.cbrt(a); |
|
375 } |
|
376 |
|
377 /** |
|
378 * Computes the remainder operation on two arguments as prescribed |
|
379 * by the IEEE 754 standard. |
|
380 * The remainder value is mathematically equal to |
|
381 * <code>f1 - f2</code> × <i>n</i>, |
|
382 * where <i>n</i> is the mathematical integer closest to the exact |
|
383 * mathematical value of the quotient {@code f1/f2}, and if two |
|
384 * mathematical integers are equally close to {@code f1/f2}, |
|
385 * then <i>n</i> is the integer that is even. If the remainder is |
|
386 * zero, its sign is the same as the sign of the first argument. |
|
387 * Special cases: |
|
388 * <ul><li>If either argument is NaN, or the first argument is infinite, |
|
389 * or the second argument is positive zero or negative zero, then the |
|
390 * result is NaN. |
|
391 * <li>If the first argument is finite and the second argument is |
|
392 * infinite, then the result is the same as the first argument.</ul> |
|
393 * |
|
394 * @param f1 the dividend. |
|
395 * @param f2 the divisor. |
|
396 * @return the remainder when {@code f1} is divided by |
|
397 * {@code f2}. |
|
398 */ |
|
399 public static double IEEEremainder(double f1, double f2) { |
|
400 return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath |
|
401 } |
|
402 |
|
403 /** |
|
404 * Returns the smallest (closest to negative infinity) |
|
405 * {@code double} value that is greater than or equal to the |
|
406 * argument and is equal to a mathematical integer. Special cases: |
|
407 * <ul><li>If the argument value is already equal to a |
|
408 * mathematical integer, then the result is the same as the |
|
409 * argument. <li>If the argument is NaN or an infinity or |
|
410 * positive zero or negative zero, then the result is the same as |
|
411 * the argument. <li>If the argument value is less than zero but |
|
412 * greater than -1.0, then the result is negative zero.</ul> Note |
|
413 * that the value of {@code Math.ceil(x)} is exactly the |
|
414 * value of {@code -Math.floor(-x)}. |
|
415 * |
|
416 * |
|
417 * @param a a value. |
|
418 * @return the smallest (closest to negative infinity) |
|
419 * floating-point value that is greater than or equal to |
|
420 * the argument and is equal to a mathematical integer. |
|
421 */ |
|
422 public static double ceil(double a) { |
|
423 return StrictMath.ceil(a); // default impl. delegates to StrictMath |
|
424 } |
|
425 |
|
426 /** |
|
427 * Returns the largest (closest to positive infinity) |
|
428 * {@code double} value that is less than or equal to the |
|
429 * argument and is equal to a mathematical integer. Special cases: |
|
430 * <ul><li>If the argument value is already equal to a |
|
431 * mathematical integer, then the result is the same as the |
|
432 * argument. <li>If the argument is NaN or an infinity or |
|
433 * positive zero or negative zero, then the result is the same as |
|
434 * the argument.</ul> |
|
435 * |
|
436 * @param a a value. |
|
437 * @return the largest (closest to positive infinity) |
|
438 * floating-point value that less than or equal to the argument |
|
439 * and is equal to a mathematical integer. |
|
440 */ |
|
441 public static double floor(double a) { |
|
442 return StrictMath.floor(a); // default impl. delegates to StrictMath |
|
443 } |
|
444 |
|
445 /** |
|
446 * Returns the {@code double} value that is closest in value |
|
447 * to the argument and is equal to a mathematical integer. If two |
|
448 * {@code double} values that are mathematical integers are |
|
449 * equally close, the result is the integer value that is |
|
450 * even. Special cases: |
|
451 * <ul><li>If the argument value is already equal to a mathematical |
|
452 * integer, then the result is the same as the argument. |
|
453 * <li>If the argument is NaN or an infinity or positive zero or negative |
|
454 * zero, then the result is the same as the argument.</ul> |
|
455 * |
|
456 * @param a a {@code double} value. |
|
457 * @return the closest floating-point value to {@code a} that is |
|
458 * equal to a mathematical integer. |
|
459 */ |
|
460 public static double rint(double a) { |
|
461 return StrictMath.rint(a); // default impl. delegates to StrictMath |
|
462 } |
|
463 |
|
464 /** |
|
465 * Returns the angle <i>theta</i> from the conversion of rectangular |
|
466 * coordinates ({@code x}, {@code y}) to polar |
|
467 * coordinates (r, <i>theta</i>). |
|
468 * This method computes the phase <i>theta</i> by computing an arc tangent |
|
469 * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special |
|
470 * cases: |
|
471 * <ul><li>If either argument is NaN, then the result is NaN. |
|
472 * <li>If the first argument is positive zero and the second argument |
|
473 * is positive, or the first argument is positive and finite and the |
|
474 * second argument is positive infinity, then the result is positive |
|
475 * zero. |
|
476 * <li>If the first argument is negative zero and the second argument |
|
477 * is positive, or the first argument is negative and finite and the |
|
478 * second argument is positive infinity, then the result is negative zero. |
|
479 * <li>If the first argument is positive zero and the second argument |
|
480 * is negative, or the first argument is positive and finite and the |
|
481 * second argument is negative infinity, then the result is the |
|
482 * {@code double} value closest to <i>pi</i>. |
|
483 * <li>If the first argument is negative zero and the second argument |
|
484 * is negative, or the first argument is negative and finite and the |
|
485 * second argument is negative infinity, then the result is the |
|
486 * {@code double} value closest to -<i>pi</i>. |
|
487 * <li>If the first argument is positive and the second argument is |
|
488 * positive zero or negative zero, or the first argument is positive |
|
489 * infinity and the second argument is finite, then the result is the |
|
490 * {@code double} value closest to <i>pi</i>/2. |
|
491 * <li>If the first argument is negative and the second argument is |
|
492 * positive zero or negative zero, or the first argument is negative |
|
493 * infinity and the second argument is finite, then the result is the |
|
494 * {@code double} value closest to -<i>pi</i>/2. |
|
495 * <li>If both arguments are positive infinity, then the result is the |
|
496 * {@code double} value closest to <i>pi</i>/4. |
|
497 * <li>If the first argument is positive infinity and the second argument |
|
498 * is negative infinity, then the result is the {@code double} |
|
499 * value closest to 3*<i>pi</i>/4. |
|
500 * <li>If the first argument is negative infinity and the second argument |
|
501 * is positive infinity, then the result is the {@code double} value |
|
502 * closest to -<i>pi</i>/4. |
|
503 * <li>If both arguments are negative infinity, then the result is the |
|
504 * {@code double} value closest to -3*<i>pi</i>/4.</ul> |
|
505 * |
|
506 * <p>The computed result must be within 2 ulps of the exact result. |
|
507 * Results must be semi-monotonic. |
|
508 * |
|
509 * @param y the ordinate coordinate |
|
510 * @param x the abscissa coordinate |
|
511 * @return the <i>theta</i> component of the point |
|
512 * (<i>r</i>, <i>theta</i>) |
|
513 * in polar coordinates that corresponds to the point |
|
514 * (<i>x</i>, <i>y</i>) in Cartesian coordinates. |
|
515 */ |
|
516 public static double atan2(double y, double x) { |
|
517 return StrictMath.atan2(y, x); // default impl. delegates to StrictMath |
|
518 } |
|
519 |
|
520 /** |
|
521 * Returns the value of the first argument raised to the power of the |
|
522 * second argument. Special cases: |
|
523 * |
|
524 * <ul><li>If the second argument is positive or negative zero, then the |
|
525 * result is 1.0. |
|
526 * <li>If the second argument is 1.0, then the result is the same as the |
|
527 * first argument. |
|
528 * <li>If the second argument is NaN, then the result is NaN. |
|
529 * <li>If the first argument is NaN and the second argument is nonzero, |
|
530 * then the result is NaN. |
|
531 * |
|
532 * <li>If |
|
533 * <ul> |
|
534 * <li>the absolute value of the first argument is greater than 1 |
|
535 * and the second argument is positive infinity, or |
|
536 * <li>the absolute value of the first argument is less than 1 and |
|
537 * the second argument is negative infinity, |
|
538 * </ul> |
|
539 * then the result is positive infinity. |
|
540 * |
|
541 * <li>If |
|
542 * <ul> |
|
543 * <li>the absolute value of the first argument is greater than 1 and |
|
544 * the second argument is negative infinity, or |
|
545 * <li>the absolute value of the |
|
546 * first argument is less than 1 and the second argument is positive |
|
547 * infinity, |
|
548 * </ul> |
|
549 * then the result is positive zero. |
|
550 * |
|
551 * <li>If the absolute value of the first argument equals 1 and the |
|
552 * second argument is infinite, then the result is NaN. |
|
553 * |
|
554 * <li>If |
|
555 * <ul> |
|
556 * <li>the first argument is positive zero and the second argument |
|
557 * is greater than zero, or |
|
558 * <li>the first argument is positive infinity and the second |
|
559 * argument is less than zero, |
|
560 * </ul> |
|
561 * then the result is positive zero. |
|
562 * |
|
563 * <li>If |
|
564 * <ul> |
|
565 * <li>the first argument is positive zero and the second argument |
|
566 * is less than zero, or |
|
567 * <li>the first argument is positive infinity and the second |
|
568 * argument is greater than zero, |
|
569 * </ul> |
|
570 * then the result is positive infinity. |
|
571 * |
|
572 * <li>If |
|
573 * <ul> |
|
574 * <li>the first argument is negative zero and the second argument |
|
575 * is greater than zero but not a finite odd integer, or |
|
576 * <li>the first argument is negative infinity and the second |
|
577 * argument is less than zero but not a finite odd integer, |
|
578 * </ul> |
|
579 * then the result is positive zero. |
|
580 * |
|
581 * <li>If |
|
582 * <ul> |
|
583 * <li>the first argument is negative zero and the second argument |
|
584 * is a positive finite odd integer, or |
|
585 * <li>the first argument is negative infinity and the second |
|
586 * argument is a negative finite odd integer, |
|
587 * </ul> |
|
588 * then the result is negative zero. |
|
589 * |
|
590 * <li>If |
|
591 * <ul> |
|
592 * <li>the first argument is negative zero and the second argument |
|
593 * is less than zero but not a finite odd integer, or |
|
594 * <li>the first argument is negative infinity and the second |
|
595 * argument is greater than zero but not a finite odd integer, |
|
596 * </ul> |
|
597 * then the result is positive infinity. |
|
598 * |
|
599 * <li>If |
|
600 * <ul> |
|
601 * <li>the first argument is negative zero and the second argument |
|
602 * is a negative finite odd integer, or |
|
603 * <li>the first argument is negative infinity and the second |
|
604 * argument is a positive finite odd integer, |
|
605 * </ul> |
|
606 * then the result is negative infinity. |
|
607 * |
|
608 * <li>If the first argument is finite and less than zero |
|
609 * <ul> |
|
610 * <li> if the second argument is a finite even integer, the |
|
611 * result is equal to the result of raising the absolute value of |
|
612 * the first argument to the power of the second argument |
|
613 * |
|
614 * <li>if the second argument is a finite odd integer, the result |
|
615 * is equal to the negative of the result of raising the absolute |
|
616 * value of the first argument to the power of the second |
|
617 * argument |
|
618 * |
|
619 * <li>if the second argument is finite and not an integer, then |
|
620 * the result is NaN. |
|
621 * </ul> |
|
622 * |
|
623 * <li>If both arguments are integers, then the result is exactly equal |
|
624 * to the mathematical result of raising the first argument to the power |
|
625 * of the second argument if that result can in fact be represented |
|
626 * exactly as a {@code double} value.</ul> |
|
627 * |
|
628 * <p>(In the foregoing descriptions, a floating-point value is |
|
629 * considered to be an integer if and only if it is finite and a |
|
630 * fixed point of the method {@link #ceil ceil} or, |
|
631 * equivalently, a fixed point of the method {@link #floor |
|
632 * floor}. A value is a fixed point of a one-argument |
|
633 * method if and only if the result of applying the method to the |
|
634 * value is equal to the value.) |
|
635 * |
|
636 * <p>The computed result must be within 1 ulp of the exact result. |
|
637 * Results must be semi-monotonic. |
|
638 * |
|
639 * @param a the base. |
|
640 * @param b the exponent. |
|
641 * @return the value {@code a}<sup>{@code b}</sup>. |
|
642 */ |
|
643 public static double pow(double a, double b) { |
|
644 return StrictMath.pow(a, b); // default impl. delegates to StrictMath |
|
645 } |
|
646 |
|
647 /** |
|
648 * Returns the closest {@code int} to the argument, with ties |
|
649 * rounding to positive infinity. |
|
650 * |
|
651 * <p> |
|
652 * Special cases: |
|
653 * <ul><li>If the argument is NaN, the result is 0. |
|
654 * <li>If the argument is negative infinity or any value less than or |
|
655 * equal to the value of {@code Integer.MIN_VALUE}, the result is |
|
656 * equal to the value of {@code Integer.MIN_VALUE}. |
|
657 * <li>If the argument is positive infinity or any value greater than or |
|
658 * equal to the value of {@code Integer.MAX_VALUE}, the result is |
|
659 * equal to the value of {@code Integer.MAX_VALUE}.</ul> |
|
660 * |
|
661 * @param a a floating-point value to be rounded to an integer. |
|
662 * @return the value of the argument rounded to the nearest |
|
663 * {@code int} value. |
|
664 * @see java.lang.Integer#MAX_VALUE |
|
665 * @see java.lang.Integer#MIN_VALUE |
|
666 */ |
|
667 public static int round(float a) { |
|
668 int intBits = Float.floatToRawIntBits(a); |
|
669 int biasedExp = (intBits & FloatConsts.EXP_BIT_MASK) |
|
670 >> (FloatConsts.SIGNIFICAND_WIDTH - 1); |
|
671 int shift = (FloatConsts.SIGNIFICAND_WIDTH - 2 |
|
672 + FloatConsts.EXP_BIAS) - biasedExp; |
|
673 if ((shift & -32) == 0) { // shift >= 0 && shift < 32 |
|
674 // a is a finite number such that pow(2,-32) <= ulp(a) < 1 |
|
675 int r = ((intBits & FloatConsts.SIGNIF_BIT_MASK) |
|
676 | (FloatConsts.SIGNIF_BIT_MASK + 1)); |
|
677 if (intBits < 0) { |
|
678 r = -r; |
|
679 } |
|
680 // In the comments below each Java expression evaluates to the value |
|
681 // the corresponding mathematical expression: |
|
682 // (r) evaluates to a / ulp(a) |
|
683 // (r >> shift) evaluates to floor(a * 2) |
|
684 // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) |
|
685 // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) |
|
686 return ((r >> shift) + 1) >> 1; |
|
687 } else { |
|
688 // a is either |
|
689 // - a finite number with abs(a) < exp(2,FloatConsts.SIGNIFICAND_WIDTH-32) < 1/2 |
|
690 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer |
|
691 // - an infinity or NaN |
|
692 return (int) a; |
|
693 } |
|
694 } |
|
695 |
|
696 /** |
|
697 * Returns the closest {@code long} to the argument, with ties |
|
698 * rounding to positive infinity. |
|
699 * |
|
700 * <p>Special cases: |
|
701 * <ul><li>If the argument is NaN, the result is 0. |
|
702 * <li>If the argument is negative infinity or any value less than or |
|
703 * equal to the value of {@code Long.MIN_VALUE}, the result is |
|
704 * equal to the value of {@code Long.MIN_VALUE}. |
|
705 * <li>If the argument is positive infinity or any value greater than or |
|
706 * equal to the value of {@code Long.MAX_VALUE}, the result is |
|
707 * equal to the value of {@code Long.MAX_VALUE}.</ul> |
|
708 * |
|
709 * @param a a floating-point value to be rounded to a |
|
710 * {@code long}. |
|
711 * @return the value of the argument rounded to the nearest |
|
712 * {@code long} value. |
|
713 * @see java.lang.Long#MAX_VALUE |
|
714 * @see java.lang.Long#MIN_VALUE |
|
715 */ |
|
716 public static long round(double a) { |
|
717 long longBits = Double.doubleToRawLongBits(a); |
|
718 long biasedExp = (longBits & DoubleConsts.EXP_BIT_MASK) |
|
719 >> (DoubleConsts.SIGNIFICAND_WIDTH - 1); |
|
720 long shift = (DoubleConsts.SIGNIFICAND_WIDTH - 2 |
|
721 + DoubleConsts.EXP_BIAS) - biasedExp; |
|
722 if ((shift & -64) == 0) { // shift >= 0 && shift < 64 |
|
723 // a is a finite number such that pow(2,-64) <= ulp(a) < 1 |
|
724 long r = ((longBits & DoubleConsts.SIGNIF_BIT_MASK) |
|
725 | (DoubleConsts.SIGNIF_BIT_MASK + 1)); |
|
726 if (longBits < 0) { |
|
727 r = -r; |
|
728 } |
|
729 // In the comments below each Java expression evaluates to the value |
|
730 // the corresponding mathematical expression: |
|
731 // (r) evaluates to a / ulp(a) |
|
732 // (r >> shift) evaluates to floor(a * 2) |
|
733 // ((r >> shift) + 1) evaluates to floor((a + 1/2) * 2) |
|
734 // (((r >> shift) + 1) >> 1) evaluates to floor(a + 1/2) |
|
735 return ((r >> shift) + 1) >> 1; |
|
736 } else { |
|
737 // a is either |
|
738 // - a finite number with abs(a) < exp(2,DoubleConsts.SIGNIFICAND_WIDTH-64) < 1/2 |
|
739 // - a finite number with ulp(a) >= 1 and hence a is a mathematical integer |
|
740 // - an infinity or NaN |
|
741 return (long) a; |
|
742 } |
|
743 } |
|
744 |
|
745 private static final class RandomNumberGeneratorHolder { |
|
746 static final Random randomNumberGenerator = new Random(); |
|
747 } |
|
748 |
|
749 /** |
|
750 * Returns a {@code double} value with a positive sign, greater |
|
751 * than or equal to {@code 0.0} and less than {@code 1.0}. |
|
752 * Returned values are chosen pseudorandomly with (approximately) |
|
753 * uniform distribution from that range. |
|
754 * |
|
755 * <p>When this method is first called, it creates a single new |
|
756 * pseudorandom-number generator, exactly as if by the expression |
|
757 * |
|
758 * <blockquote>{@code new java.util.Random()}</blockquote> |
|
759 * |
|
760 * This new pseudorandom-number generator is used thereafter for |
|
761 * all calls to this method and is used nowhere else. |
|
762 * |
|
763 * <p>This method is properly synchronized to allow correct use by |
|
764 * more than one thread. However, if many threads need to generate |
|
765 * pseudorandom numbers at a great rate, it may reduce contention |
|
766 * for each thread to have its own pseudorandom-number generator. |
|
767 * |
|
768 * @apiNote |
|
769 * As the largest {@code double} value less than {@code 1.0} |
|
770 * is {@code Math.nextDown(1.0)}, a value {@code x} in the closed range |
|
771 * {@code [x1,x2]} where {@code x1<=x2} may be defined by the statements |
|
772 * |
|
773 * <blockquote><pre>{@code |
|
774 * double f = Math.random()/Math.nextDown(1.0); |
|
775 * double x = x1*(1.0 - f) + x2*f; |
|
776 * }</pre></blockquote> |
|
777 * |
|
778 * @return a pseudorandom {@code double} greater than or equal |
|
779 * to {@code 0.0} and less than {@code 1.0}. |
|
780 * @see #nextDown(double) |
|
781 * @see Random#nextDouble() |
|
782 */ |
|
783 public static double random() { |
|
784 return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble(); |
|
785 } |
|
786 |
|
787 /** |
|
788 * Returns the sum of its arguments, |
|
789 * throwing an exception if the result overflows an {@code int}. |
|
790 * |
|
791 * @param x the first value |
|
792 * @param y the second value |
|
793 * @return the result |
|
794 * @throws ArithmeticException if the result overflows an int |
|
795 * @since 1.8 |
|
796 */ |
|
797 public static int addExact(int x, int y) { |
|
798 int r = x + y; |
|
799 // HD 2-12 Overflow iff both arguments have the opposite sign of the result |
|
800 if (((x ^ r) & (y ^ r)) < 0) { |
|
801 throw new ArithmeticException("integer overflow"); |
|
802 } |
|
803 return r; |
|
804 } |
|
805 |
|
806 /** |
|
807 * Returns the sum of its arguments, |
|
808 * throwing an exception if the result overflows a {@code long}. |
|
809 * |
|
810 * @param x the first value |
|
811 * @param y the second value |
|
812 * @return the result |
|
813 * @throws ArithmeticException if the result overflows a long |
|
814 * @since 1.8 |
|
815 */ |
|
816 public static long addExact(long x, long y) { |
|
817 long r = x + y; |
|
818 // HD 2-12 Overflow iff both arguments have the opposite sign of the result |
|
819 if (((x ^ r) & (y ^ r)) < 0) { |
|
820 throw new ArithmeticException("long overflow"); |
|
821 } |
|
822 return r; |
|
823 } |
|
824 |
|
825 /** |
|
826 * Returns the difference of the arguments, |
|
827 * throwing an exception if the result overflows an {@code int}. |
|
828 * |
|
829 * @param x the first value |
|
830 * @param y the second value to subtract from the first |
|
831 * @return the result |
|
832 * @throws ArithmeticException if the result overflows an int |
|
833 * @since 1.8 |
|
834 */ |
|
835 public static int subtractExact(int x, int y) { |
|
836 int r = x - y; |
|
837 // HD 2-12 Overflow iff the arguments have different signs and |
|
838 // the sign of the result is different than the sign of x |
|
839 if (((x ^ y) & (x ^ r)) < 0) { |
|
840 throw new ArithmeticException("integer overflow"); |
|
841 } |
|
842 return r; |
|
843 } |
|
844 |
|
845 /** |
|
846 * Returns the difference of the arguments, |
|
847 * throwing an exception if the result overflows a {@code long}. |
|
848 * |
|
849 * @param x the first value |
|
850 * @param y the second value to subtract from the first |
|
851 * @return the result |
|
852 * @throws ArithmeticException if the result overflows a long |
|
853 * @since 1.8 |
|
854 */ |
|
855 public static long subtractExact(long x, long y) { |
|
856 long r = x - y; |
|
857 // HD 2-12 Overflow iff the arguments have different signs and |
|
858 // the sign of the result is different than the sign of x |
|
859 if (((x ^ y) & (x ^ r)) < 0) { |
|
860 throw new ArithmeticException("long overflow"); |
|
861 } |
|
862 return r; |
|
863 } |
|
864 |
|
865 /** |
|
866 * Returns the product of the arguments, |
|
867 * throwing an exception if the result overflows an {@code int}. |
|
868 * |
|
869 * @param x the first value |
|
870 * @param y the second value |
|
871 * @return the result |
|
872 * @throws ArithmeticException if the result overflows an int |
|
873 * @since 1.8 |
|
874 */ |
|
875 public static int multiplyExact(int x, int y) { |
|
876 long r = (long)x * (long)y; |
|
877 if ((int)r != r) { |
|
878 throw new ArithmeticException("integer overflow"); |
|
879 } |
|
880 return (int)r; |
|
881 } |
|
882 |
|
883 /** |
|
884 * Returns the product of the arguments, |
|
885 * throwing an exception if the result overflows a {@code long}. |
|
886 * |
|
887 * @param x the first value |
|
888 * @param y the second value |
|
889 * @return the result |
|
890 * @throws ArithmeticException if the result overflows a long |
|
891 * @since 1.8 |
|
892 */ |
|
893 public static long multiplyExact(long x, long y) { |
|
894 long r = x * y; |
|
895 long ax = Math.abs(x); |
|
896 long ay = Math.abs(y); |
|
897 if (((ax | ay) >>> 31 != 0)) { |
|
898 // Some bits greater than 2^31 that might cause overflow |
|
899 // Check the result using the divide operator |
|
900 // and check for the special case of Long.MIN_VALUE * -1 |
|
901 if (((y != 0) && (r / y != x)) || |
|
902 (x == Long.MIN_VALUE && y == -1)) { |
|
903 throw new ArithmeticException("long overflow"); |
|
904 } |
|
905 } |
|
906 return r; |
|
907 } |
|
908 |
|
909 /** |
|
910 * Returns the argument incremented by one, throwing an exception if the |
|
911 * result overflows an {@code int}. |
|
912 * |
|
913 * @param a the value to increment |
|
914 * @return the result |
|
915 * @throws ArithmeticException if the result overflows an int |
|
916 * @since 1.8 |
|
917 */ |
|
918 public static int incrementExact(int a) { |
|
919 if (a == Integer.MAX_VALUE) { |
|
920 throw new ArithmeticException("integer overflow"); |
|
921 } |
|
922 |
|
923 return a + 1; |
|
924 } |
|
925 |
|
926 /** |
|
927 * Returns the argument incremented by one, throwing an exception if the |
|
928 * result overflows a {@code long}. |
|
929 * |
|
930 * @param a the value to increment |
|
931 * @return the result |
|
932 * @throws ArithmeticException if the result overflows a long |
|
933 * @since 1.8 |
|
934 */ |
|
935 public static long incrementExact(long a) { |
|
936 if (a == Long.MAX_VALUE) { |
|
937 throw new ArithmeticException("long overflow"); |
|
938 } |
|
939 |
|
940 return a + 1L; |
|
941 } |
|
942 |
|
943 /** |
|
944 * Returns the argument decremented by one, throwing an exception if the |
|
945 * result overflows an {@code int}. |
|
946 * |
|
947 * @param a the value to decrement |
|
948 * @return the result |
|
949 * @throws ArithmeticException if the result overflows an int |
|
950 * @since 1.8 |
|
951 */ |
|
952 public static int decrementExact(int a) { |
|
953 if (a == Integer.MIN_VALUE) { |
|
954 throw new ArithmeticException("integer overflow"); |
|
955 } |
|
956 |
|
957 return a - 1; |
|
958 } |
|
959 |
|
960 /** |
|
961 * Returns the argument decremented by one, throwing an exception if the |
|
962 * result overflows a {@code long}. |
|
963 * |
|
964 * @param a the value to decrement |
|
965 * @return the result |
|
966 * @throws ArithmeticException if the result overflows a long |
|
967 * @since 1.8 |
|
968 */ |
|
969 public static long decrementExact(long a) { |
|
970 if (a == Long.MIN_VALUE) { |
|
971 throw new ArithmeticException("long overflow"); |
|
972 } |
|
973 |
|
974 return a - 1L; |
|
975 } |
|
976 |
|
977 /** |
|
978 * Returns the negation of the argument, throwing an exception if the |
|
979 * result overflows an {@code int}. |
|
980 * |
|
981 * @param a the value to negate |
|
982 * @return the result |
|
983 * @throws ArithmeticException if the result overflows an int |
|
984 * @since 1.8 |
|
985 */ |
|
986 public static int negateExact(int a) { |
|
987 if (a == Integer.MIN_VALUE) { |
|
988 throw new ArithmeticException("integer overflow"); |
|
989 } |
|
990 |
|
991 return -a; |
|
992 } |
|
993 |
|
994 /** |
|
995 * Returns the negation of the argument, throwing an exception if the |
|
996 * result overflows a {@code long}. |
|
997 * |
|
998 * @param a the value to negate |
|
999 * @return the result |
|
1000 * @throws ArithmeticException if the result overflows a long |
|
1001 * @since 1.8 |
|
1002 */ |
|
1003 public static long negateExact(long a) { |
|
1004 if (a == Long.MIN_VALUE) { |
|
1005 throw new ArithmeticException("long overflow"); |
|
1006 } |
|
1007 |
|
1008 return -a; |
|
1009 } |
|
1010 |
|
1011 /** |
|
1012 * Returns the value of the {@code long} argument; |
|
1013 * throwing an exception if the value overflows an {@code int}. |
|
1014 * |
|
1015 * @param value the long value |
|
1016 * @return the argument as an int |
|
1017 * @throws ArithmeticException if the {@code argument} overflows an int |
|
1018 * @since 1.8 |
|
1019 */ |
|
1020 public static int toIntExact(long value) { |
|
1021 if ((int)value != value) { |
|
1022 throw new ArithmeticException("integer overflow"); |
|
1023 } |
|
1024 return (int)value; |
|
1025 } |
|
1026 |
|
1027 /** |
|
1028 * Returns the largest (closest to positive infinity) |
|
1029 * {@code int} value that is less than or equal to the algebraic quotient. |
|
1030 * There is one special case, if the dividend is the |
|
1031 * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1}, |
|
1032 * then integer overflow occurs and |
|
1033 * the result is equal to the {@code Integer.MIN_VALUE}. |
|
1034 * <p> |
|
1035 * Normal integer division operates under the round to zero rounding mode |
|
1036 * (truncation). This operation instead acts under the round toward |
|
1037 * negative infinity (floor) rounding mode. |
|
1038 * The floor rounding mode gives different results than truncation |
|
1039 * when the exact result is negative. |
|
1040 * <ul> |
|
1041 * <li>If the signs of the arguments are the same, the results of |
|
1042 * {@code floorDiv} and the {@code /} operator are the same. <br> |
|
1043 * For example, {@code floorDiv(4, 3) == 1} and {@code (4 / 3) == 1}.</li> |
|
1044 * <li>If the signs of the arguments are different, the quotient is negative and |
|
1045 * {@code floorDiv} returns the integer less than or equal to the quotient |
|
1046 * and the {@code /} operator returns the integer closest to zero.<br> |
|
1047 * For example, {@code floorDiv(-4, 3) == -2}, |
|
1048 * whereas {@code (-4 / 3) == -1}. |
|
1049 * </li> |
|
1050 * </ul> |
|
1051 * |
|
1052 * @param x the dividend |
|
1053 * @param y the divisor |
|
1054 * @return the largest (closest to positive infinity) |
|
1055 * {@code int} value that is less than or equal to the algebraic quotient. |
|
1056 * @throws ArithmeticException if the divisor {@code y} is zero |
|
1057 * @see #floorMod(int, int) |
|
1058 * @see #floor(double) |
|
1059 * @since 1.8 |
|
1060 */ |
|
1061 public static int floorDiv(int x, int y) { |
|
1062 int r = x / y; |
|
1063 // if the signs are different and modulo not zero, round down |
|
1064 if ((x ^ y) < 0 && (r * y != x)) { |
|
1065 r--; |
|
1066 } |
|
1067 return r; |
|
1068 } |
|
1069 |
|
1070 /** |
|
1071 * Returns the largest (closest to positive infinity) |
|
1072 * {@code long} value that is less than or equal to the algebraic quotient. |
|
1073 * There is one special case, if the dividend is the |
|
1074 * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1}, |
|
1075 * then integer overflow occurs and |
|
1076 * the result is equal to the {@code Long.MIN_VALUE}. |
|
1077 * <p> |
|
1078 * Normal integer division operates under the round to zero rounding mode |
|
1079 * (truncation). This operation instead acts under the round toward |
|
1080 * negative infinity (floor) rounding mode. |
|
1081 * The floor rounding mode gives different results than truncation |
|
1082 * when the exact result is negative. |
|
1083 * <p> |
|
1084 * For examples, see {@link #floorDiv(int, int)}. |
|
1085 * |
|
1086 * @param x the dividend |
|
1087 * @param y the divisor |
|
1088 * @return the largest (closest to positive infinity) |
|
1089 * {@code long} value that is less than or equal to the algebraic quotient. |
|
1090 * @throws ArithmeticException if the divisor {@code y} is zero |
|
1091 * @see #floorMod(long, long) |
|
1092 * @see #floor(double) |
|
1093 * @since 1.8 |
|
1094 */ |
|
1095 public static long floorDiv(long x, long y) { |
|
1096 long r = x / y; |
|
1097 // if the signs are different and modulo not zero, round down |
|
1098 if ((x ^ y) < 0 && (r * y != x)) { |
|
1099 r--; |
|
1100 } |
|
1101 return r; |
|
1102 } |
|
1103 |
|
1104 /** |
|
1105 * Returns the floor modulus of the {@code int} arguments. |
|
1106 * <p> |
|
1107 * The floor modulus is {@code x - (floorDiv(x, y) * y)}, |
|
1108 * has the same sign as the divisor {@code y}, and |
|
1109 * is in the range of {@code -abs(y) < r < +abs(y)}. |
|
1110 * |
|
1111 * <p> |
|
1112 * The relationship between {@code floorDiv} and {@code floorMod} is such that: |
|
1113 * <ul> |
|
1114 * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} |
|
1115 * </ul> |
|
1116 * <p> |
|
1117 * The difference in values between {@code floorMod} and |
|
1118 * the {@code %} operator is due to the difference between |
|
1119 * {@code floorDiv} that returns the integer less than or equal to the quotient |
|
1120 * and the {@code /} operator that returns the integer closest to zero. |
|
1121 * <p> |
|
1122 * Examples: |
|
1123 * <ul> |
|
1124 * <li>If the signs of the arguments are the same, the results |
|
1125 * of {@code floorMod} and the {@code %} operator are the same. <br> |
|
1126 * <ul> |
|
1127 * <li>{@code floorMod(4, 3) == 1}; and {@code (4 % 3) == 1}</li> |
|
1128 * </ul> |
|
1129 * <li>If the signs of the arguments are different, the results differ from the {@code %} operator.<br> |
|
1130 * <ul> |
|
1131 * <li>{@code floorMod(+4, -3) == -2}; and {@code (+4 % -3) == +1} </li> |
|
1132 * <li>{@code floorMod(-4, +3) == +2}; and {@code (-4 % +3) == -1} </li> |
|
1133 * <li>{@code floorMod(-4, -3) == -1}; and {@code (-4 % -3) == -1 } </li> |
|
1134 * </ul> |
|
1135 * </li> |
|
1136 * </ul> |
|
1137 * <p> |
|
1138 * If the signs of arguments are unknown and a positive modulus |
|
1139 * is needed it can be computed as {@code (floorMod(x, y) + abs(y)) % abs(y)}. |
|
1140 * |
|
1141 * @param x the dividend |
|
1142 * @param y the divisor |
|
1143 * @return the floor modulus {@code x - (floorDiv(x, y) * y)} |
|
1144 * @throws ArithmeticException if the divisor {@code y} is zero |
|
1145 * @see #floorDiv(int, int) |
|
1146 * @since 1.8 |
|
1147 */ |
|
1148 public static int floorMod(int x, int y) { |
|
1149 int r = x - floorDiv(x, y) * y; |
|
1150 return r; |
|
1151 } |
|
1152 |
|
1153 /** |
|
1154 * Returns the floor modulus of the {@code long} arguments. |
|
1155 * <p> |
|
1156 * The floor modulus is {@code x - (floorDiv(x, y) * y)}, |
|
1157 * has the same sign as the divisor {@code y}, and |
|
1158 * is in the range of {@code -abs(y) < r < +abs(y)}. |
|
1159 * |
|
1160 * <p> |
|
1161 * The relationship between {@code floorDiv} and {@code floorMod} is such that: |
|
1162 * <ul> |
|
1163 * <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x} |
|
1164 * </ul> |
|
1165 * <p> |
|
1166 * For examples, see {@link #floorMod(int, int)}. |
|
1167 * |
|
1168 * @param x the dividend |
|
1169 * @param y the divisor |
|
1170 * @return the floor modulus {@code x - (floorDiv(x, y) * y)} |
|
1171 * @throws ArithmeticException if the divisor {@code y} is zero |
|
1172 * @see #floorDiv(long, long) |
|
1173 * @since 1.8 |
|
1174 */ |
|
1175 public static long floorMod(long x, long y) { |
|
1176 return x - floorDiv(x, y) * y; |
|
1177 } |
|
1178 |
|
1179 /** |
|
1180 * Returns the absolute value of an {@code int} value. |
|
1181 * If the argument is not negative, the argument is returned. |
|
1182 * If the argument is negative, the negation of the argument is returned. |
|
1183 * |
|
1184 * <p>Note that if the argument is equal to the value of |
|
1185 * {@link Integer#MIN_VALUE}, the most negative representable |
|
1186 * {@code int} value, the result is that same value, which is |
|
1187 * negative. |
|
1188 * |
|
1189 * @param a the argument whose absolute value is to be determined |
|
1190 * @return the absolute value of the argument. |
|
1191 */ |
|
1192 public static int abs(int a) { |
|
1193 return (a < 0) ? -a : a; |
|
1194 } |
|
1195 |
|
1196 /** |
|
1197 * Returns the absolute value of a {@code long} value. |
|
1198 * If the argument is not negative, the argument is returned. |
|
1199 * If the argument is negative, the negation of the argument is returned. |
|
1200 * |
|
1201 * <p>Note that if the argument is equal to the value of |
|
1202 * {@link Long#MIN_VALUE}, the most negative representable |
|
1203 * {@code long} value, the result is that same value, which |
|
1204 * is negative. |
|
1205 * |
|
1206 * @param a the argument whose absolute value is to be determined |
|
1207 * @return the absolute value of the argument. |
|
1208 */ |
|
1209 public static long abs(long a) { |
|
1210 return (a < 0) ? -a : a; |
|
1211 } |
|
1212 |
|
1213 /** |
|
1214 * Returns the absolute value of a {@code float} value. |
|
1215 * If the argument is not negative, the argument is returned. |
|
1216 * If the argument is negative, the negation of the argument is returned. |
|
1217 * Special cases: |
|
1218 * <ul><li>If the argument is positive zero or negative zero, the |
|
1219 * result is positive zero. |
|
1220 * <li>If the argument is infinite, the result is positive infinity. |
|
1221 * <li>If the argument is NaN, the result is NaN.</ul> |
|
1222 * In other words, the result is the same as the value of the expression: |
|
1223 * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))} |
|
1224 * |
|
1225 * @param a the argument whose absolute value is to be determined |
|
1226 * @return the absolute value of the argument. |
|
1227 */ |
|
1228 public static float abs(float a) { |
|
1229 return (a <= 0.0F) ? 0.0F - a : a; |
|
1230 } |
|
1231 |
|
1232 /** |
|
1233 * Returns the absolute value of a {@code double} value. |
|
1234 * If the argument is not negative, the argument is returned. |
|
1235 * If the argument is negative, the negation of the argument is returned. |
|
1236 * Special cases: |
|
1237 * <ul><li>If the argument is positive zero or negative zero, the result |
|
1238 * is positive zero. |
|
1239 * <li>If the argument is infinite, the result is positive infinity. |
|
1240 * <li>If the argument is NaN, the result is NaN.</ul> |
|
1241 * In other words, the result is the same as the value of the expression: |
|
1242 * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)} |
|
1243 * |
|
1244 * @param a the argument whose absolute value is to be determined |
|
1245 * @return the absolute value of the argument. |
|
1246 */ |
|
1247 public static double abs(double a) { |
|
1248 return (a <= 0.0D) ? 0.0D - a : a; |
|
1249 } |
|
1250 |
|
1251 /** |
|
1252 * Returns the greater of two {@code int} values. That is, the |
|
1253 * result is the argument closer to the value of |
|
1254 * {@link Integer#MAX_VALUE}. If the arguments have the same value, |
|
1255 * the result is that same value. |
|
1256 * |
|
1257 * @param a an argument. |
|
1258 * @param b another argument. |
|
1259 * @return the larger of {@code a} and {@code b}. |
|
1260 */ |
|
1261 public static int max(int a, int b) { |
|
1262 return (a >= b) ? a : b; |
|
1263 } |
|
1264 |
|
1265 /** |
|
1266 * Returns the greater of two {@code long} values. That is, the |
|
1267 * result is the argument closer to the value of |
|
1268 * {@link Long#MAX_VALUE}. If the arguments have the same value, |
|
1269 * the result is that same value. |
|
1270 * |
|
1271 * @param a an argument. |
|
1272 * @param b another argument. |
|
1273 * @return the larger of {@code a} and {@code b}. |
|
1274 */ |
|
1275 public static long max(long a, long b) { |
|
1276 return (a >= b) ? a : b; |
|
1277 } |
|
1278 |
|
1279 // Use raw bit-wise conversions on guaranteed non-NaN arguments. |
|
1280 private static long negativeZeroFloatBits = Float.floatToRawIntBits(-0.0f); |
|
1281 private static long negativeZeroDoubleBits = Double.doubleToRawLongBits(-0.0d); |
|
1282 |
|
1283 /** |
|
1284 * Returns the greater of two {@code float} values. That is, |
|
1285 * the result is the argument closer to positive infinity. If the |
|
1286 * arguments have the same value, the result is that same |
|
1287 * value. If either value is NaN, then the result is NaN. Unlike |
|
1288 * the numerical comparison operators, this method considers |
|
1289 * negative zero to be strictly smaller than positive zero. If one |
|
1290 * argument is positive zero and the other negative zero, the |
|
1291 * result is positive zero. |
|
1292 * |
|
1293 * @param a an argument. |
|
1294 * @param b another argument. |
|
1295 * @return the larger of {@code a} and {@code b}. |
|
1296 */ |
|
1297 public static float max(float a, float b) { |
|
1298 if (a != a) |
|
1299 return a; // a is NaN |
|
1300 if ((a == 0.0f) && |
|
1301 (b == 0.0f) && |
|
1302 (Float.floatToRawIntBits(a) == negativeZeroFloatBits)) { |
|
1303 // Raw conversion ok since NaN can't map to -0.0. |
|
1304 return b; |
|
1305 } |
|
1306 return (a >= b) ? a : b; |
|
1307 } |
|
1308 |
|
1309 /** |
|
1310 * Returns the greater of two {@code double} values. That |
|
1311 * is, the result is the argument closer to positive infinity. If |
|
1312 * the arguments have the same value, the result is that same |
|
1313 * value. If either value is NaN, then the result is NaN. Unlike |
|
1314 * the numerical comparison operators, this method considers |
|
1315 * negative zero to be strictly smaller than positive zero. If one |
|
1316 * argument is positive zero and the other negative zero, the |
|
1317 * result is positive zero. |
|
1318 * |
|
1319 * @param a an argument. |
|
1320 * @param b another argument. |
|
1321 * @return the larger of {@code a} and {@code b}. |
|
1322 */ |
|
1323 public static double max(double a, double b) { |
|
1324 if (a != a) |
|
1325 return a; // a is NaN |
|
1326 if ((a == 0.0d) && |
|
1327 (b == 0.0d) && |
|
1328 (Double.doubleToRawLongBits(a) == negativeZeroDoubleBits)) { |
|
1329 // Raw conversion ok since NaN can't map to -0.0. |
|
1330 return b; |
|
1331 } |
|
1332 return (a >= b) ? a : b; |
|
1333 } |
|
1334 |
|
1335 /** |
|
1336 * Returns the smaller of two {@code int} values. That is, |
|
1337 * the result the argument closer to the value of |
|
1338 * {@link Integer#MIN_VALUE}. If the arguments have the same |
|
1339 * value, the result is that same value. |
|
1340 * |
|
1341 * @param a an argument. |
|
1342 * @param b another argument. |
|
1343 * @return the smaller of {@code a} and {@code b}. |
|
1344 */ |
|
1345 public static int min(int a, int b) { |
|
1346 return (a <= b) ? a : b; |
|
1347 } |
|
1348 |
|
1349 /** |
|
1350 * Returns the smaller of two {@code long} values. That is, |
|
1351 * the result is the argument closer to the value of |
|
1352 * {@link Long#MIN_VALUE}. If the arguments have the same |
|
1353 * value, the result is that same value. |
|
1354 * |
|
1355 * @param a an argument. |
|
1356 * @param b another argument. |
|
1357 * @return the smaller of {@code a} and {@code b}. |
|
1358 */ |
|
1359 public static long min(long a, long b) { |
|
1360 return (a <= b) ? a : b; |
|
1361 } |
|
1362 |
|
1363 /** |
|
1364 * Returns the smaller of two {@code float} values. That is, |
|
1365 * the result is the value closer to negative infinity. If the |
|
1366 * arguments have the same value, the result is that same |
|
1367 * value. If either value is NaN, then the result is NaN. Unlike |
|
1368 * the numerical comparison operators, this method considers |
|
1369 * negative zero to be strictly smaller than positive zero. If |
|
1370 * one argument is positive zero and the other is negative zero, |
|
1371 * the result is negative zero. |
|
1372 * |
|
1373 * @param a an argument. |
|
1374 * @param b another argument. |
|
1375 * @return the smaller of {@code a} and {@code b}. |
|
1376 */ |
|
1377 public static float min(float a, float b) { |
|
1378 if (a != a) |
|
1379 return a; // a is NaN |
|
1380 if ((a == 0.0f) && |
|
1381 (b == 0.0f) && |
|
1382 (Float.floatToRawIntBits(b) == negativeZeroFloatBits)) { |
|
1383 // Raw conversion ok since NaN can't map to -0.0. |
|
1384 return b; |
|
1385 } |
|
1386 return (a <= b) ? a : b; |
|
1387 } |
|
1388 |
|
1389 /** |
|
1390 * Returns the smaller of two {@code double} values. That |
|
1391 * is, the result is the value closer to negative infinity. If the |
|
1392 * arguments have the same value, the result is that same |
|
1393 * value. If either value is NaN, then the result is NaN. Unlike |
|
1394 * the numerical comparison operators, this method considers |
|
1395 * negative zero to be strictly smaller than positive zero. If one |
|
1396 * argument is positive zero and the other is negative zero, the |
|
1397 * result is negative zero. |
|
1398 * |
|
1399 * @param a an argument. |
|
1400 * @param b another argument. |
|
1401 * @return the smaller of {@code a} and {@code b}. |
|
1402 */ |
|
1403 public static double min(double a, double b) { |
|
1404 if (a != a) |
|
1405 return a; // a is NaN |
|
1406 if ((a == 0.0d) && |
|
1407 (b == 0.0d) && |
|
1408 (Double.doubleToRawLongBits(b) == negativeZeroDoubleBits)) { |
|
1409 // Raw conversion ok since NaN can't map to -0.0. |
|
1410 return b; |
|
1411 } |
|
1412 return (a <= b) ? a : b; |
|
1413 } |
|
1414 |
|
1415 /** |
|
1416 * Returns the size of an ulp of the argument. An ulp, unit in |
|
1417 * the last place, of a {@code double} value is the positive |
|
1418 * distance between this floating-point value and the {@code |
|
1419 * double} value next larger in magnitude. Note that for non-NaN |
|
1420 * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. |
|
1421 * |
|
1422 * <p>Special Cases: |
|
1423 * <ul> |
|
1424 * <li> If the argument is NaN, then the result is NaN. |
|
1425 * <li> If the argument is positive or negative infinity, then the |
|
1426 * result is positive infinity. |
|
1427 * <li> If the argument is positive or negative zero, then the result is |
|
1428 * {@code Double.MIN_VALUE}. |
|
1429 * <li> If the argument is ±{@code Double.MAX_VALUE}, then |
|
1430 * the result is equal to 2<sup>971</sup>. |
|
1431 * </ul> |
|
1432 * |
|
1433 * @param d the floating-point value whose ulp is to be returned |
|
1434 * @return the size of an ulp of the argument |
|
1435 * @author Joseph D. Darcy |
|
1436 * @since 1.5 |
|
1437 */ |
|
1438 public static double ulp(double d) { |
|
1439 int exp = getExponent(d); |
|
1440 |
|
1441 switch(exp) { |
|
1442 case DoubleConsts.MAX_EXPONENT+1: // NaN or infinity |
|
1443 return Math.abs(d); |
|
1444 |
|
1445 case DoubleConsts.MIN_EXPONENT-1: // zero or subnormal |
|
1446 return Double.MIN_VALUE; |
|
1447 |
|
1448 default: |
|
1449 assert exp <= DoubleConsts.MAX_EXPONENT && exp >= DoubleConsts.MIN_EXPONENT; |
|
1450 |
|
1451 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) |
|
1452 exp = exp - (DoubleConsts.SIGNIFICAND_WIDTH-1); |
|
1453 if (exp >= DoubleConsts.MIN_EXPONENT) { |
|
1454 return powerOfTwoD(exp); |
|
1455 } |
|
1456 else { |
|
1457 // return a subnormal result; left shift integer |
|
1458 // representation of Double.MIN_VALUE appropriate |
|
1459 // number of positions |
|
1460 return Double.longBitsToDouble(1L << |
|
1461 (exp - (DoubleConsts.MIN_EXPONENT - (DoubleConsts.SIGNIFICAND_WIDTH-1)) )); |
|
1462 } |
|
1463 } |
|
1464 } |
|
1465 |
|
1466 /** |
|
1467 * Returns the size of an ulp of the argument. An ulp, unit in |
|
1468 * the last place, of a {@code float} value is the positive |
|
1469 * distance between this floating-point value and the {@code |
|
1470 * float} value next larger in magnitude. Note that for non-NaN |
|
1471 * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>. |
|
1472 * |
|
1473 * <p>Special Cases: |
|
1474 * <ul> |
|
1475 * <li> If the argument is NaN, then the result is NaN. |
|
1476 * <li> If the argument is positive or negative infinity, then the |
|
1477 * result is positive infinity. |
|
1478 * <li> If the argument is positive or negative zero, then the result is |
|
1479 * {@code Float.MIN_VALUE}. |
|
1480 * <li> If the argument is ±{@code Float.MAX_VALUE}, then |
|
1481 * the result is equal to 2<sup>104</sup>. |
|
1482 * </ul> |
|
1483 * |
|
1484 * @param f the floating-point value whose ulp is to be returned |
|
1485 * @return the size of an ulp of the argument |
|
1486 * @author Joseph D. Darcy |
|
1487 * @since 1.5 |
|
1488 */ |
|
1489 public static float ulp(float f) { |
|
1490 int exp = getExponent(f); |
|
1491 |
|
1492 switch(exp) { |
|
1493 case FloatConsts.MAX_EXPONENT+1: // NaN or infinity |
|
1494 return Math.abs(f); |
|
1495 |
|
1496 case FloatConsts.MIN_EXPONENT-1: // zero or subnormal |
|
1497 return FloatConsts.MIN_VALUE; |
|
1498 |
|
1499 default: |
|
1500 assert exp <= FloatConsts.MAX_EXPONENT && exp >= FloatConsts.MIN_EXPONENT; |
|
1501 |
|
1502 // ulp(x) is usually 2^(SIGNIFICAND_WIDTH-1)*(2^ilogb(x)) |
|
1503 exp = exp - (FloatConsts.SIGNIFICAND_WIDTH-1); |
|
1504 if (exp >= FloatConsts.MIN_EXPONENT) { |
|
1505 return powerOfTwoF(exp); |
|
1506 } |
|
1507 else { |
|
1508 // return a subnormal result; left shift integer |
|
1509 // representation of FloatConsts.MIN_VALUE appropriate |
|
1510 // number of positions |
|
1511 return Float.intBitsToFloat(1 << |
|
1512 (exp - (FloatConsts.MIN_EXPONENT - (FloatConsts.SIGNIFICAND_WIDTH-1)) )); |
|
1513 } |
|
1514 } |
|
1515 } |
|
1516 |
|
1517 /** |
|
1518 * Returns the signum function of the argument; zero if the argument |
|
1519 * is zero, 1.0 if the argument is greater than zero, -1.0 if the |
|
1520 * argument is less than zero. |
|
1521 * |
|
1522 * <p>Special Cases: |
|
1523 * <ul> |
|
1524 * <li> If the argument is NaN, then the result is NaN. |
|
1525 * <li> If the argument is positive zero or negative zero, then the |
|
1526 * result is the same as the argument. |
|
1527 * </ul> |
|
1528 * |
|
1529 * @param d the floating-point value whose signum is to be returned |
|
1530 * @return the signum function of the argument |
|
1531 * @author Joseph D. Darcy |
|
1532 * @since 1.5 |
|
1533 */ |
|
1534 public static double signum(double d) { |
|
1535 return (d == 0.0 || Double.isNaN(d))?d:copySign(1.0, d); |
|
1536 } |
|
1537 |
|
1538 /** |
|
1539 * Returns the signum function of the argument; zero if the argument |
|
1540 * is zero, 1.0f if the argument is greater than zero, -1.0f if the |
|
1541 * argument is less than zero. |
|
1542 * |
|
1543 * <p>Special Cases: |
|
1544 * <ul> |
|
1545 * <li> If the argument is NaN, then the result is NaN. |
|
1546 * <li> If the argument is positive zero or negative zero, then the |
|
1547 * result is the same as the argument. |
|
1548 * </ul> |
|
1549 * |
|
1550 * @param f the floating-point value whose signum is to be returned |
|
1551 * @return the signum function of the argument |
|
1552 * @author Joseph D. Darcy |
|
1553 * @since 1.5 |
|
1554 */ |
|
1555 public static float signum(float f) { |
|
1556 return (f == 0.0f || Float.isNaN(f))?f:copySign(1.0f, f); |
|
1557 } |
|
1558 |
|
1559 /** |
|
1560 * Returns the hyperbolic sine of a {@code double} value. |
|
1561 * The hyperbolic sine of <i>x</i> is defined to be |
|
1562 * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/2 |
|
1563 * where <i>e</i> is {@linkplain Math#E Euler's number}. |
|
1564 * |
|
1565 * <p>Special cases: |
|
1566 * <ul> |
|
1567 * |
|
1568 * <li>If the argument is NaN, then the result is NaN. |
|
1569 * |
|
1570 * <li>If the argument is infinite, then the result is an infinity |
|
1571 * with the same sign as the argument. |
|
1572 * |
|
1573 * <li>If the argument is zero, then the result is a zero with the |
|
1574 * same sign as the argument. |
|
1575 * |
|
1576 * </ul> |
|
1577 * |
|
1578 * <p>The computed result must be within 2.5 ulps of the exact result. |
|
1579 * |
|
1580 * @param x The number whose hyperbolic sine is to be returned. |
|
1581 * @return The hyperbolic sine of {@code x}. |
|
1582 * @since 1.5 |
|
1583 */ |
|
1584 public static double sinh(double x) { |
|
1585 return StrictMath.sinh(x); |
|
1586 } |
|
1587 |
|
1588 /** |
|
1589 * Returns the hyperbolic cosine of a {@code double} value. |
|
1590 * The hyperbolic cosine of <i>x</i> is defined to be |
|
1591 * (<i>e<sup>x</sup> + e<sup>-x</sup></i>)/2 |
|
1592 * where <i>e</i> is {@linkplain Math#E Euler's number}. |
|
1593 * |
|
1594 * <p>Special cases: |
|
1595 * <ul> |
|
1596 * |
|
1597 * <li>If the argument is NaN, then the result is NaN. |
|
1598 * |
|
1599 * <li>If the argument is infinite, then the result is positive |
|
1600 * infinity. |
|
1601 * |
|
1602 * <li>If the argument is zero, then the result is {@code 1.0}. |
|
1603 * |
|
1604 * </ul> |
|
1605 * |
|
1606 * <p>The computed result must be within 2.5 ulps of the exact result. |
|
1607 * |
|
1608 * @param x The number whose hyperbolic cosine is to be returned. |
|
1609 * @return The hyperbolic cosine of {@code x}. |
|
1610 * @since 1.5 |
|
1611 */ |
|
1612 public static double cosh(double x) { |
|
1613 return StrictMath.cosh(x); |
|
1614 } |
|
1615 |
|
1616 /** |
|
1617 * Returns the hyperbolic tangent of a {@code double} value. |
|
1618 * The hyperbolic tangent of <i>x</i> is defined to be |
|
1619 * (<i>e<sup>x</sup> - e<sup>-x</sup></i>)/(<i>e<sup>x</sup> + e<sup>-x</sup></i>), |
|
1620 * in other words, {@linkplain Math#sinh |
|
1621 * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}. Note |
|
1622 * that the absolute value of the exact tanh is always less than |
|
1623 * 1. |
|
1624 * |
|
1625 * <p>Special cases: |
|
1626 * <ul> |
|
1627 * |
|
1628 * <li>If the argument is NaN, then the result is NaN. |
|
1629 * |
|
1630 * <li>If the argument is zero, then the result is a zero with the |
|
1631 * same sign as the argument. |
|
1632 * |
|
1633 * <li>If the argument is positive infinity, then the result is |
|
1634 * {@code +1.0}. |
|
1635 * |
|
1636 * <li>If the argument is negative infinity, then the result is |
|
1637 * {@code -1.0}. |
|
1638 * |
|
1639 * </ul> |
|
1640 * |
|
1641 * <p>The computed result must be within 2.5 ulps of the exact result. |
|
1642 * The result of {@code tanh} for any finite input must have |
|
1643 * an absolute value less than or equal to 1. Note that once the |
|
1644 * exact result of tanh is within 1/2 of an ulp of the limit value |
|
1645 * of ±1, correctly signed ±{@code 1.0} should |
|
1646 * be returned. |
|
1647 * |
|
1648 * @param x The number whose hyperbolic tangent is to be returned. |
|
1649 * @return The hyperbolic tangent of {@code x}. |
|
1650 * @since 1.5 |
|
1651 */ |
|
1652 public static double tanh(double x) { |
|
1653 return StrictMath.tanh(x); |
|
1654 } |
|
1655 |
|
1656 /** |
|
1657 * Returns sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) |
|
1658 * without intermediate overflow or underflow. |
|
1659 * |
|
1660 * <p>Special cases: |
|
1661 * <ul> |
|
1662 * |
|
1663 * <li> If either argument is infinite, then the result |
|
1664 * is positive infinity. |
|
1665 * |
|
1666 * <li> If either argument is NaN and neither argument is infinite, |
|
1667 * then the result is NaN. |
|
1668 * |
|
1669 * </ul> |
|
1670 * |
|
1671 * <p>The computed result must be within 1 ulp of the exact |
|
1672 * result. If one parameter is held constant, the results must be |
|
1673 * semi-monotonic in the other parameter. |
|
1674 * |
|
1675 * @param x a value |
|
1676 * @param y a value |
|
1677 * @return sqrt(<i>x</i><sup>2</sup> +<i>y</i><sup>2</sup>) |
|
1678 * without intermediate overflow or underflow |
|
1679 * @since 1.5 |
|
1680 */ |
|
1681 public static double hypot(double x, double y) { |
|
1682 return StrictMath.hypot(x, y); |
|
1683 } |
|
1684 |
|
1685 /** |
|
1686 * Returns <i>e</i><sup>x</sup> -1. Note that for values of |
|
1687 * <i>x</i> near 0, the exact sum of |
|
1688 * {@code expm1(x)} + 1 is much closer to the true |
|
1689 * result of <i>e</i><sup>x</sup> than {@code exp(x)}. |
|
1690 * |
|
1691 * <p>Special cases: |
|
1692 * <ul> |
|
1693 * <li>If the argument is NaN, the result is NaN. |
|
1694 * |
|
1695 * <li>If the argument is positive infinity, then the result is |
|
1696 * positive infinity. |
|
1697 * |
|
1698 * <li>If the argument is negative infinity, then the result is |
|
1699 * -1.0. |
|
1700 * |
|
1701 * <li>If the argument is zero, then the result is a zero with the |
|
1702 * same sign as the argument. |
|
1703 * |
|
1704 * </ul> |
|
1705 * |
|
1706 * <p>The computed result must be within 1 ulp of the exact result. |
|
1707 * Results must be semi-monotonic. The result of |
|
1708 * {@code expm1} for any finite input must be greater than or |
|
1709 * equal to {@code -1.0}. Note that once the exact result of |
|
1710 * <i>e</i><sup>{@code x}</sup> - 1 is within 1/2 |
|
1711 * ulp of the limit value -1, {@code -1.0} should be |
|
1712 * returned. |
|
1713 * |
|
1714 * @param x the exponent to raise <i>e</i> to in the computation of |
|
1715 * <i>e</i><sup>{@code x}</sup> -1. |
|
1716 * @return the value <i>e</i><sup>{@code x}</sup> - 1. |
|
1717 * @since 1.5 |
|
1718 */ |
|
1719 public static double expm1(double x) { |
|
1720 return StrictMath.expm1(x); |
|
1721 } |
|
1722 |
|
1723 /** |
|
1724 * Returns the natural logarithm of the sum of the argument and 1. |
|
1725 * Note that for small values {@code x}, the result of |
|
1726 * {@code log1p(x)} is much closer to the true result of ln(1 |
|
1727 * + {@code x}) than the floating-point evaluation of |
|
1728 * {@code log(1.0+x)}. |
|
1729 * |
|
1730 * <p>Special cases: |
|
1731 * |
|
1732 * <ul> |
|
1733 * |
|
1734 * <li>If the argument is NaN or less than -1, then the result is |
|
1735 * NaN. |
|
1736 * |
|
1737 * <li>If the argument is positive infinity, then the result is |
|
1738 * positive infinity. |
|
1739 * |
|
1740 * <li>If the argument is negative one, then the result is |
|
1741 * negative infinity. |
|
1742 * |
|
1743 * <li>If the argument is zero, then the result is a zero with the |
|
1744 * same sign as the argument. |
|
1745 * |
|
1746 * </ul> |
|
1747 * |
|
1748 * <p>The computed result must be within 1 ulp of the exact result. |
|
1749 * Results must be semi-monotonic. |
|
1750 * |
|
1751 * @param x a value |
|
1752 * @return the value ln({@code x} + 1), the natural |
|
1753 * log of {@code x} + 1 |
|
1754 * @since 1.5 |
|
1755 */ |
|
1756 public static double log1p(double x) { |
|
1757 return StrictMath.log1p(x); |
|
1758 } |
|
1759 |
|
1760 /** |
|
1761 * Returns the first floating-point argument with the sign of the |
|
1762 * second floating-point argument. Note that unlike the {@link |
|
1763 * StrictMath#copySign(double, double) StrictMath.copySign} |
|
1764 * method, this method does not require NaN {@code sign} |
|
1765 * arguments to be treated as positive values; implementations are |
|
1766 * permitted to treat some NaN arguments as positive and other NaN |
|
1767 * arguments as negative to allow greater performance. |
|
1768 * |
|
1769 * @param magnitude the parameter providing the magnitude of the result |
|
1770 * @param sign the parameter providing the sign of the result |
|
1771 * @return a value with the magnitude of {@code magnitude} |
|
1772 * and the sign of {@code sign}. |
|
1773 * @since 1.6 |
|
1774 */ |
|
1775 public static double copySign(double magnitude, double sign) { |
|
1776 return Double.longBitsToDouble((Double.doubleToRawLongBits(sign) & |
|
1777 (DoubleConsts.SIGN_BIT_MASK)) | |
|
1778 (Double.doubleToRawLongBits(magnitude) & |
|
1779 (DoubleConsts.EXP_BIT_MASK | |
|
1780 DoubleConsts.SIGNIF_BIT_MASK))); |
|
1781 } |
|
1782 |
|
1783 /** |
|
1784 * Returns the first floating-point argument with the sign of the |
|
1785 * second floating-point argument. Note that unlike the {@link |
|
1786 * StrictMath#copySign(float, float) StrictMath.copySign} |
|
1787 * method, this method does not require NaN {@code sign} |
|
1788 * arguments to be treated as positive values; implementations are |
|
1789 * permitted to treat some NaN arguments as positive and other NaN |
|
1790 * arguments as negative to allow greater performance. |
|
1791 * |
|
1792 * @param magnitude the parameter providing the magnitude of the result |
|
1793 * @param sign the parameter providing the sign of the result |
|
1794 * @return a value with the magnitude of {@code magnitude} |
|
1795 * and the sign of {@code sign}. |
|
1796 * @since 1.6 |
|
1797 */ |
|
1798 public static float copySign(float magnitude, float sign) { |
|
1799 return Float.intBitsToFloat((Float.floatToRawIntBits(sign) & |
|
1800 (FloatConsts.SIGN_BIT_MASK)) | |
|
1801 (Float.floatToRawIntBits(magnitude) & |
|
1802 (FloatConsts.EXP_BIT_MASK | |
|
1803 FloatConsts.SIGNIF_BIT_MASK))); |
|
1804 } |
|
1805 |
|
1806 /** |
|
1807 * Returns the unbiased exponent used in the representation of a |
|
1808 * {@code float}. Special cases: |
|
1809 * |
|
1810 * <ul> |
|
1811 * <li>If the argument is NaN or infinite, then the result is |
|
1812 * {@link Float#MAX_EXPONENT} + 1. |
|
1813 * <li>If the argument is zero or subnormal, then the result is |
|
1814 * {@link Float#MIN_EXPONENT} -1. |
|
1815 * </ul> |
|
1816 * @param f a {@code float} value |
|
1817 * @return the unbiased exponent of the argument |
|
1818 * @since 1.6 |
|
1819 */ |
|
1820 public static int getExponent(float f) { |
|
1821 /* |
|
1822 * Bitwise convert f to integer, mask out exponent bits, shift |
|
1823 * to the right and then subtract out float's bias adjust to |
|
1824 * get true exponent value |
|
1825 */ |
|
1826 return ((Float.floatToRawIntBits(f) & FloatConsts.EXP_BIT_MASK) >> |
|
1827 (FloatConsts.SIGNIFICAND_WIDTH - 1)) - FloatConsts.EXP_BIAS; |
|
1828 } |
|
1829 |
|
1830 /** |
|
1831 * Returns the unbiased exponent used in the representation of a |
|
1832 * {@code double}. Special cases: |
|
1833 * |
|
1834 * <ul> |
|
1835 * <li>If the argument is NaN or infinite, then the result is |
|
1836 * {@link Double#MAX_EXPONENT} + 1. |
|
1837 * <li>If the argument is zero or subnormal, then the result is |
|
1838 * {@link Double#MIN_EXPONENT} -1. |
|
1839 * </ul> |
|
1840 * @param d a {@code double} value |
|
1841 * @return the unbiased exponent of the argument |
|
1842 * @since 1.6 |
|
1843 */ |
|
1844 public static int getExponent(double d) { |
|
1845 /* |
|
1846 * Bitwise convert d to long, mask out exponent bits, shift |
|
1847 * to the right and then subtract out double's bias adjust to |
|
1848 * get true exponent value. |
|
1849 */ |
|
1850 return (int)(((Double.doubleToRawLongBits(d) & DoubleConsts.EXP_BIT_MASK) >> |
|
1851 (DoubleConsts.SIGNIFICAND_WIDTH - 1)) - DoubleConsts.EXP_BIAS); |
|
1852 } |
|
1853 |
|
1854 /** |
|
1855 * Returns the floating-point number adjacent to the first |
|
1856 * argument in the direction of the second argument. If both |
|
1857 * arguments compare as equal the second argument is returned. |
|
1858 * |
|
1859 * <p> |
|
1860 * Special cases: |
|
1861 * <ul> |
|
1862 * <li> If either argument is a NaN, then NaN is returned. |
|
1863 * |
|
1864 * <li> If both arguments are signed zeros, {@code direction} |
|
1865 * is returned unchanged (as implied by the requirement of |
|
1866 * returning the second argument if the arguments compare as |
|
1867 * equal). |
|
1868 * |
|
1869 * <li> If {@code start} is |
|
1870 * ±{@link Double#MIN_VALUE} and {@code direction} |
|
1871 * has a value such that the result should have a smaller |
|
1872 * magnitude, then a zero with the same sign as {@code start} |
|
1873 * is returned. |
|
1874 * |
|
1875 * <li> If {@code start} is infinite and |
|
1876 * {@code direction} has a value such that the result should |
|
1877 * have a smaller magnitude, {@link Double#MAX_VALUE} with the |
|
1878 * same sign as {@code start} is returned. |
|
1879 * |
|
1880 * <li> If {@code start} is equal to ± |
|
1881 * {@link Double#MAX_VALUE} and {@code direction} has a |
|
1882 * value such that the result should have a larger magnitude, an |
|
1883 * infinity with same sign as {@code start} is returned. |
|
1884 * </ul> |
|
1885 * |
|
1886 * @param start starting floating-point value |
|
1887 * @param direction value indicating which of |
|
1888 * {@code start}'s neighbors or {@code start} should |
|
1889 * be returned |
|
1890 * @return The floating-point number adjacent to {@code start} in the |
|
1891 * direction of {@code direction}. |
|
1892 * @since 1.6 |
|
1893 */ |
|
1894 public static double nextAfter(double start, double direction) { |
|
1895 /* |
|
1896 * The cases: |
|
1897 * |
|
1898 * nextAfter(+infinity, 0) == MAX_VALUE |
|
1899 * nextAfter(+infinity, +infinity) == +infinity |
|
1900 * nextAfter(-infinity, 0) == -MAX_VALUE |
|
1901 * nextAfter(-infinity, -infinity) == -infinity |
|
1902 * |
|
1903 * are naturally handled without any additional testing |
|
1904 */ |
|
1905 |
|
1906 /* |
|
1907 * IEEE 754 floating-point numbers are lexicographically |
|
1908 * ordered if treated as signed-magnitude integers. |
|
1909 * Since Java's integers are two's complement, |
|
1910 * incrementing the two's complement representation of a |
|
1911 * logically negative floating-point value *decrements* |
|
1912 * the signed-magnitude representation. Therefore, when |
|
1913 * the integer representation of a floating-point value |
|
1914 * is negative, the adjustment to the representation is in |
|
1915 * the opposite direction from what would initially be expected. |
|
1916 */ |
|
1917 |
|
1918 // Branch to descending case first as it is more costly than ascending |
|
1919 // case due to start != 0.0d conditional. |
|
1920 if (start > direction) { // descending |
|
1921 if (start != 0.0d) { |
|
1922 final long transducer = Double.doubleToRawLongBits(start); |
|
1923 return Double.longBitsToDouble(transducer + ((transducer > 0L) ? -1L : 1L)); |
|
1924 } else { // start == 0.0d && direction < 0.0d |
|
1925 return -Double.MIN_VALUE; |
|
1926 } |
|
1927 } else if (start < direction) { // ascending |
|
1928 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) |
|
1929 // then bitwise convert start to integer. |
|
1930 final long transducer = Double.doubleToRawLongBits(start + 0.0d); |
|
1931 return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L)); |
|
1932 } else if (start == direction) { |
|
1933 return direction; |
|
1934 } else { // isNaN(start) || isNaN(direction) |
|
1935 return start + direction; |
|
1936 } |
|
1937 } |
|
1938 |
|
1939 /** |
|
1940 * Returns the floating-point number adjacent to the first |
|
1941 * argument in the direction of the second argument. If both |
|
1942 * arguments compare as equal a value equivalent to the second argument |
|
1943 * is returned. |
|
1944 * |
|
1945 * <p> |
|
1946 * Special cases: |
|
1947 * <ul> |
|
1948 * <li> If either argument is a NaN, then NaN is returned. |
|
1949 * |
|
1950 * <li> If both arguments are signed zeros, a value equivalent |
|
1951 * to {@code direction} is returned. |
|
1952 * |
|
1953 * <li> If {@code start} is |
|
1954 * ±{@link Float#MIN_VALUE} and {@code direction} |
|
1955 * has a value such that the result should have a smaller |
|
1956 * magnitude, then a zero with the same sign as {@code start} |
|
1957 * is returned. |
|
1958 * |
|
1959 * <li> If {@code start} is infinite and |
|
1960 * {@code direction} has a value such that the result should |
|
1961 * have a smaller magnitude, {@link Float#MAX_VALUE} with the |
|
1962 * same sign as {@code start} is returned. |
|
1963 * |
|
1964 * <li> If {@code start} is equal to ± |
|
1965 * {@link Float#MAX_VALUE} and {@code direction} has a |
|
1966 * value such that the result should have a larger magnitude, an |
|
1967 * infinity with same sign as {@code start} is returned. |
|
1968 * </ul> |
|
1969 * |
|
1970 * @param start starting floating-point value |
|
1971 * @param direction value indicating which of |
|
1972 * {@code start}'s neighbors or {@code start} should |
|
1973 * be returned |
|
1974 * @return The floating-point number adjacent to {@code start} in the |
|
1975 * direction of {@code direction}. |
|
1976 * @since 1.6 |
|
1977 */ |
|
1978 public static float nextAfter(float start, double direction) { |
|
1979 /* |
|
1980 * The cases: |
|
1981 * |
|
1982 * nextAfter(+infinity, 0) == MAX_VALUE |
|
1983 * nextAfter(+infinity, +infinity) == +infinity |
|
1984 * nextAfter(-infinity, 0) == -MAX_VALUE |
|
1985 * nextAfter(-infinity, -infinity) == -infinity |
|
1986 * |
|
1987 * are naturally handled without any additional testing |
|
1988 */ |
|
1989 |
|
1990 /* |
|
1991 * IEEE 754 floating-point numbers are lexicographically |
|
1992 * ordered if treated as signed-magnitude integers. |
|
1993 * Since Java's integers are two's complement, |
|
1994 * incrementing the two's complement representation of a |
|
1995 * logically negative floating-point value *decrements* |
|
1996 * the signed-magnitude representation. Therefore, when |
|
1997 * the integer representation of a floating-point value |
|
1998 * is negative, the adjustment to the representation is in |
|
1999 * the opposite direction from what would initially be expected. |
|
2000 */ |
|
2001 |
|
2002 // Branch to descending case first as it is more costly than ascending |
|
2003 // case due to start != 0.0f conditional. |
|
2004 if (start > direction) { // descending |
|
2005 if (start != 0.0f) { |
|
2006 final int transducer = Float.floatToRawIntBits(start); |
|
2007 return Float.intBitsToFloat(transducer + ((transducer > 0) ? -1 : 1)); |
|
2008 } else { // start == 0.0f && direction < 0.0f |
|
2009 return -Float.MIN_VALUE; |
|
2010 } |
|
2011 } else if (start < direction) { // ascending |
|
2012 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0) |
|
2013 // then bitwise convert start to integer. |
|
2014 final int transducer = Float.floatToRawIntBits(start + 0.0f); |
|
2015 return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1)); |
|
2016 } else if (start == direction) { |
|
2017 return (float)direction; |
|
2018 } else { // isNaN(start) || isNaN(direction) |
|
2019 return start + (float)direction; |
|
2020 } |
|
2021 } |
|
2022 |
|
2023 /** |
|
2024 * Returns the floating-point value adjacent to {@code d} in |
|
2025 * the direction of positive infinity. This method is |
|
2026 * semantically equivalent to {@code nextAfter(d, |
|
2027 * Double.POSITIVE_INFINITY)}; however, a {@code nextUp} |
|
2028 * implementation may run faster than its equivalent |
|
2029 * {@code nextAfter} call. |
|
2030 * |
|
2031 * <p>Special Cases: |
|
2032 * <ul> |
|
2033 * <li> If the argument is NaN, the result is NaN. |
|
2034 * |
|
2035 * <li> If the argument is positive infinity, the result is |
|
2036 * positive infinity. |
|
2037 * |
|
2038 * <li> If the argument is zero, the result is |
|
2039 * {@link Double#MIN_VALUE} |
|
2040 * |
|
2041 * </ul> |
|
2042 * |
|
2043 * @param d starting floating-point value |
|
2044 * @return The adjacent floating-point value closer to positive |
|
2045 * infinity. |
|
2046 * @since 1.6 |
|
2047 */ |
|
2048 public static double nextUp(double d) { |
|
2049 // Use a single conditional and handle the likely cases first. |
|
2050 if (d < Double.POSITIVE_INFINITY) { |
|
2051 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0). |
|
2052 final long transducer = Double.doubleToRawLongBits(d + 0.0D); |
|
2053 return Double.longBitsToDouble(transducer + ((transducer >= 0L) ? 1L : -1L)); |
|
2054 } else { // d is NaN or +Infinity |
|
2055 return d; |
|
2056 } |
|
2057 } |
|
2058 |
|
2059 /** |
|
2060 * Returns the floating-point value adjacent to {@code f} in |
|
2061 * the direction of positive infinity. This method is |
|
2062 * semantically equivalent to {@code nextAfter(f, |
|
2063 * Float.POSITIVE_INFINITY)}; however, a {@code nextUp} |
|
2064 * implementation may run faster than its equivalent |
|
2065 * {@code nextAfter} call. |
|
2066 * |
|
2067 * <p>Special Cases: |
|
2068 * <ul> |
|
2069 * <li> If the argument is NaN, the result is NaN. |
|
2070 * |
|
2071 * <li> If the argument is positive infinity, the result is |
|
2072 * positive infinity. |
|
2073 * |
|
2074 * <li> If the argument is zero, the result is |
|
2075 * {@link Float#MIN_VALUE} |
|
2076 * |
|
2077 * </ul> |
|
2078 * |
|
2079 * @param f starting floating-point value |
|
2080 * @return The adjacent floating-point value closer to positive |
|
2081 * infinity. |
|
2082 * @since 1.6 |
|
2083 */ |
|
2084 public static float nextUp(float f) { |
|
2085 // Use a single conditional and handle the likely cases first. |
|
2086 if (f < Float.POSITIVE_INFINITY) { |
|
2087 // Add +0.0 to get rid of a -0.0 (+0.0 + -0.0 => +0.0). |
|
2088 final int transducer = Float.floatToRawIntBits(f + 0.0F); |
|
2089 return Float.intBitsToFloat(transducer + ((transducer >= 0) ? 1 : -1)); |
|
2090 } else { // f is NaN or +Infinity |
|
2091 return f; |
|
2092 } |
|
2093 } |
|
2094 |
|
2095 /** |
|
2096 * Returns the floating-point value adjacent to {@code d} in |
|
2097 * the direction of negative infinity. This method is |
|
2098 * semantically equivalent to {@code nextAfter(d, |
|
2099 * Double.NEGATIVE_INFINITY)}; however, a |
|
2100 * {@code nextDown} implementation may run faster than its |
|
2101 * equivalent {@code nextAfter} call. |
|
2102 * |
|
2103 * <p>Special Cases: |
|
2104 * <ul> |
|
2105 * <li> If the argument is NaN, the result is NaN. |
|
2106 * |
|
2107 * <li> If the argument is negative infinity, the result is |
|
2108 * negative infinity. |
|
2109 * |
|
2110 * <li> If the argument is zero, the result is |
|
2111 * {@code -Double.MIN_VALUE} |
|
2112 * |
|
2113 * </ul> |
|
2114 * |
|
2115 * @param d starting floating-point value |
|
2116 * @return The adjacent floating-point value closer to negative |
|
2117 * infinity. |
|
2118 * @since 1.8 |
|
2119 */ |
|
2120 public static double nextDown(double d) { |
|
2121 if (Double.isNaN(d) || d == Double.NEGATIVE_INFINITY) |
|
2122 return d; |
|
2123 else { |
|
2124 if (d == 0.0) |
|
2125 return -Double.MIN_VALUE; |
|
2126 else |
|
2127 return Double.longBitsToDouble(Double.doubleToRawLongBits(d) + |
|
2128 ((d > 0.0d)?-1L:+1L)); |
|
2129 } |
|
2130 } |
|
2131 |
|
2132 /** |
|
2133 * Returns the floating-point value adjacent to {@code f} in |
|
2134 * the direction of negative infinity. This method is |
|
2135 * semantically equivalent to {@code nextAfter(f, |
|
2136 * Float.NEGATIVE_INFINITY)}; however, a |
|
2137 * {@code nextDown} implementation may run faster than its |
|
2138 * equivalent {@code nextAfter} call. |
|
2139 * |
|
2140 * <p>Special Cases: |
|
2141 * <ul> |
|
2142 * <li> If the argument is NaN, the result is NaN. |
|
2143 * |
|
2144 * <li> If the argument is negative infinity, the result is |
|
2145 * negative infinity. |
|
2146 * |
|
2147 * <li> If the argument is zero, the result is |
|
2148 * {@code -Float.MIN_VALUE} |
|
2149 * |
|
2150 * </ul> |
|
2151 * |
|
2152 * @param f starting floating-point value |
|
2153 * @return The adjacent floating-point value closer to negative |
|
2154 * infinity. |
|
2155 * @since 1.8 |
|
2156 */ |
|
2157 public static float nextDown(float f) { |
|
2158 if (Float.isNaN(f) || f == Float.NEGATIVE_INFINITY) |
|
2159 return f; |
|
2160 else { |
|
2161 if (f == 0.0f) |
|
2162 return -Float.MIN_VALUE; |
|
2163 else |
|
2164 return Float.intBitsToFloat(Float.floatToRawIntBits(f) + |
|
2165 ((f > 0.0f)?-1:+1)); |
|
2166 } |
|
2167 } |
|
2168 |
|
2169 /** |
|
2170 * Returns {@code d} × |
|
2171 * 2<sup>{@code scaleFactor}</sup> rounded as if performed |
|
2172 * by a single correctly rounded floating-point multiply to a |
|
2173 * member of the double value set. See the Java |
|
2174 * Language Specification for a discussion of floating-point |
|
2175 * value sets. If the exponent of the result is between {@link |
|
2176 * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the |
|
2177 * answer is calculated exactly. If the exponent of the result |
|
2178 * would be larger than {@code Double.MAX_EXPONENT}, an |
|
2179 * infinity is returned. Note that if the result is subnormal, |
|
2180 * precision may be lost; that is, when {@code scalb(x, n)} |
|
2181 * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal |
|
2182 * <i>x</i>. When the result is non-NaN, the result has the same |
|
2183 * sign as {@code d}. |
|
2184 * |
|
2185 * <p>Special cases: |
|
2186 * <ul> |
|
2187 * <li> If the first argument is NaN, NaN is returned. |
|
2188 * <li> If the first argument is infinite, then an infinity of the |
|
2189 * same sign is returned. |
|
2190 * <li> If the first argument is zero, then a zero of the same |
|
2191 * sign is returned. |
|
2192 * </ul> |
|
2193 * |
|
2194 * @param d number to be scaled by a power of two. |
|
2195 * @param scaleFactor power of 2 used to scale {@code d} |
|
2196 * @return {@code d} × 2<sup>{@code scaleFactor}</sup> |
|
2197 * @since 1.6 |
|
2198 */ |
|
2199 public static double scalb(double d, int scaleFactor) { |
|
2200 /* |
|
2201 * This method does not need to be declared strictfp to |
|
2202 * compute the same correct result on all platforms. When |
|
2203 * scaling up, it does not matter what order the |
|
2204 * multiply-store operations are done; the result will be |
|
2205 * finite or overflow regardless of the operation ordering. |
|
2206 * However, to get the correct result when scaling down, a |
|
2207 * particular ordering must be used. |
|
2208 * |
|
2209 * When scaling down, the multiply-store operations are |
|
2210 * sequenced so that it is not possible for two consecutive |
|
2211 * multiply-stores to return subnormal results. If one |
|
2212 * multiply-store result is subnormal, the next multiply will |
|
2213 * round it away to zero. This is done by first multiplying |
|
2214 * by 2 ^ (scaleFactor % n) and then multiplying several |
|
2215 * times by by 2^n as needed where n is the exponent of number |
|
2216 * that is a covenient power of two. In this way, at most one |
|
2217 * real rounding error occurs. If the double value set is |
|
2218 * being used exclusively, the rounding will occur on a |
|
2219 * multiply. If the double-extended-exponent value set is |
|
2220 * being used, the products will (perhaps) be exact but the |
|
2221 * stores to d are guaranteed to round to the double value |
|
2222 * set. |
|
2223 * |
|
2224 * It is _not_ a valid implementation to first multiply d by |
|
2225 * 2^MIN_EXPONENT and then by 2 ^ (scaleFactor % |
|
2226 * MIN_EXPONENT) since even in a strictfp program double |
|
2227 * rounding on underflow could occur; e.g. if the scaleFactor |
|
2228 * argument was (MIN_EXPONENT - n) and the exponent of d was a |
|
2229 * little less than -(MIN_EXPONENT - n), meaning the final |
|
2230 * result would be subnormal. |
|
2231 * |
|
2232 * Since exact reproducibility of this method can be achieved |
|
2233 * without any undue performance burden, there is no |
|
2234 * compelling reason to allow double rounding on underflow in |
|
2235 * scalb. |
|
2236 */ |
|
2237 |
|
2238 // magnitude of a power of two so large that scaling a finite |
|
2239 // nonzero value by it would be guaranteed to over or |
|
2240 // underflow; due to rounding, scaling down takes takes an |
|
2241 // additional power of two which is reflected here |
|
2242 final int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT + |
|
2243 DoubleConsts.SIGNIFICAND_WIDTH + 1; |
|
2244 int exp_adjust = 0; |
|
2245 int scale_increment = 0; |
|
2246 double exp_delta = Double.NaN; |
|
2247 |
|
2248 // Make sure scaling factor is in a reasonable range |
|
2249 |
|
2250 if(scaleFactor < 0) { |
|
2251 scaleFactor = Math.max(scaleFactor, -MAX_SCALE); |
|
2252 scale_increment = -512; |
|
2253 exp_delta = twoToTheDoubleScaleDown; |
|
2254 } |
|
2255 else { |
|
2256 scaleFactor = Math.min(scaleFactor, MAX_SCALE); |
|
2257 scale_increment = 512; |
|
2258 exp_delta = twoToTheDoubleScaleUp; |
|
2259 } |
|
2260 |
|
2261 // Calculate (scaleFactor % +/-512), 512 = 2^9, using |
|
2262 // technique from "Hacker's Delight" section 10-2. |
|
2263 int t = (scaleFactor >> 9-1) >>> 32 - 9; |
|
2264 exp_adjust = ((scaleFactor + t) & (512 -1)) - t; |
|
2265 |
|
2266 d *= powerOfTwoD(exp_adjust); |
|
2267 scaleFactor -= exp_adjust; |
|
2268 |
|
2269 while(scaleFactor != 0) { |
|
2270 d *= exp_delta; |
|
2271 scaleFactor -= scale_increment; |
|
2272 } |
|
2273 return d; |
|
2274 } |
|
2275 |
|
2276 /** |
|
2277 * Returns {@code f} × |
|
2278 * 2<sup>{@code scaleFactor}</sup> rounded as if performed |
|
2279 * by a single correctly rounded floating-point multiply to a |
|
2280 * member of the float value set. See the Java |
|
2281 * Language Specification for a discussion of floating-point |
|
2282 * value sets. If the exponent of the result is between {@link |
|
2283 * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the |
|
2284 * answer is calculated exactly. If the exponent of the result |
|
2285 * would be larger than {@code Float.MAX_EXPONENT}, an |
|
2286 * infinity is returned. Note that if the result is subnormal, |
|
2287 * precision may be lost; that is, when {@code scalb(x, n)} |
|
2288 * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal |
|
2289 * <i>x</i>. When the result is non-NaN, the result has the same |
|
2290 * sign as {@code f}. |
|
2291 * |
|
2292 * <p>Special cases: |
|
2293 * <ul> |
|
2294 * <li> If the first argument is NaN, NaN is returned. |
|
2295 * <li> If the first argument is infinite, then an infinity of the |
|
2296 * same sign is returned. |
|
2297 * <li> If the first argument is zero, then a zero of the same |
|
2298 * sign is returned. |
|
2299 * </ul> |
|
2300 * |
|
2301 * @param f number to be scaled by a power of two. |
|
2302 * @param scaleFactor power of 2 used to scale {@code f} |
|
2303 * @return {@code f} × 2<sup>{@code scaleFactor}</sup> |
|
2304 * @since 1.6 |
|
2305 */ |
|
2306 public static float scalb(float f, int scaleFactor) { |
|
2307 // magnitude of a power of two so large that scaling a finite |
|
2308 // nonzero value by it would be guaranteed to over or |
|
2309 // underflow; due to rounding, scaling down takes takes an |
|
2310 // additional power of two which is reflected here |
|
2311 final int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT + |
|
2312 FloatConsts.SIGNIFICAND_WIDTH + 1; |
|
2313 |
|
2314 // Make sure scaling factor is in a reasonable range |
|
2315 scaleFactor = Math.max(Math.min(scaleFactor, MAX_SCALE), -MAX_SCALE); |
|
2316 |
|
2317 /* |
|
2318 * Since + MAX_SCALE for float fits well within the double |
|
2319 * exponent range and + float -> double conversion is exact |
|
2320 * the multiplication below will be exact. Therefore, the |
|
2321 * rounding that occurs when the double product is cast to |
|
2322 * float will be the correctly rounded float result. Since |
|
2323 * all operations other than the final multiply will be exact, |
|
2324 * it is not necessary to declare this method strictfp. |
|
2325 */ |
|
2326 return (float)((double)f*powerOfTwoD(scaleFactor)); |
|
2327 } |
|
2328 |
|
2329 // Constants used in scalb |
|
2330 static double twoToTheDoubleScaleUp = powerOfTwoD(512); |
|
2331 static double twoToTheDoubleScaleDown = powerOfTwoD(-512); |
|
2332 |
|
2333 /** |
|
2334 * Returns a floating-point power of two in the normal range. |
|
2335 */ |
|
2336 static double powerOfTwoD(int n) { |
|
2337 assert(n >= DoubleConsts.MIN_EXPONENT && n <= DoubleConsts.MAX_EXPONENT); |
|
2338 return Double.longBitsToDouble((((long)n + (long)DoubleConsts.EXP_BIAS) << |
|
2339 (DoubleConsts.SIGNIFICAND_WIDTH-1)) |
|
2340 & DoubleConsts.EXP_BIT_MASK); |
|
2341 } |
|
2342 |
|
2343 /** |
|
2344 * Returns a floating-point power of two in the normal range. |
|
2345 */ |
|
2346 static float powerOfTwoF(int n) { |
|
2347 assert(n >= FloatConsts.MIN_EXPONENT && n <= FloatConsts.MAX_EXPONENT); |
|
2348 return Float.intBitsToFloat(((n + FloatConsts.EXP_BIAS) << |
|
2349 (FloatConsts.SIGNIFICAND_WIDTH-1)) |
|
2350 & FloatConsts.EXP_BIT_MASK); |
|
2351 } |
|
2352 } |