jdk/src/java.desktop/share/classes/sun/java2d/marlin/Renderer.java
changeset 34419 14108cfd0823
parent 34417 57a3863abbb4
child 34814 09435f7f0013
equal deleted inserted replaced
34418:a947f6b4e0b3 34419:14108cfd0823
       
     1 /*
       
     2  * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
       
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
       
     4  *
       
     5  * This code is free software; you can redistribute it and/or modify it
       
     6  * under the terms of the GNU General Public License version 2 only, as
       
     7  * published by the Free Software Foundation.  Oracle designates this
       
     8  * particular file as subject to the "Classpath" exception as provided
       
     9  * by Oracle in the LICENSE file that accompanied this code.
       
    10  *
       
    11  * This code is distributed in the hope that it will be useful, but WITHOUT
       
    12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
       
    13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
       
    14  * version 2 for more details (a copy is included in the LICENSE file that
       
    15  * accompanied this code).
       
    16  *
       
    17  * You should have received a copy of the GNU General Public License version
       
    18  * 2 along with this work; if not, write to the Free Software Foundation,
       
    19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
       
    20  *
       
    21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
       
    22  * or visit www.oracle.com if you need additional information or have any
       
    23  * questions.
       
    24  */
       
    25 
       
    26 package sun.java2d.marlin;
       
    27 
       
    28 import java.util.Arrays;
       
    29 import sun.awt.geom.PathConsumer2D;
       
    30 import static sun.java2d.marlin.OffHeapArray.SIZE_INT;
       
    31 import jdk.internal.misc.Unsafe;
       
    32 
       
    33 final class Renderer implements PathConsumer2D, MarlinConst {
       
    34 
       
    35     static final boolean DISABLE_RENDER = false;
       
    36 
       
    37     static final boolean ENABLE_BLOCK_FLAGS = MarlinProperties.isUseTileFlags();
       
    38     static final boolean ENABLE_BLOCK_FLAGS_HEURISTICS = MarlinProperties.isUseTileFlagsWithHeuristics();
       
    39 
       
    40     private static final int ALL_BUT_LSB = 0xfffffffe;
       
    41     private static final int ERR_STEP_MAX = 0x7fffffff; // = 2^31 - 1
       
    42 
       
    43     private static final double POWER_2_TO_32 = FloatMath.powerOfTwoD(32);
       
    44 
       
    45     // use float to make tosubpix methods faster (no int to float conversion)
       
    46     public static final float f_SUBPIXEL_POSITIONS_X
       
    47         = (float) SUBPIXEL_POSITIONS_X;
       
    48     public static final float f_SUBPIXEL_POSITIONS_Y
       
    49         = (float) SUBPIXEL_POSITIONS_Y;
       
    50     public static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
       
    51     public static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
       
    52 
       
    53     // number of subpixels corresponding to a tile line
       
    54     private static final int SUBPIXEL_TILE
       
    55         = TILE_SIZE << SUBPIXEL_LG_POSITIONS_Y;
       
    56 
       
    57     // 2048 (pixelSize) pixels (height) x 8 subpixels = 64K
       
    58     static final int INITIAL_BUCKET_ARRAY
       
    59         = INITIAL_PIXEL_DIM * SUBPIXEL_POSITIONS_Y;
       
    60 
       
    61     public static final int WIND_EVEN_ODD = 0;
       
    62     public static final int WIND_NON_ZERO = 1;
       
    63 
       
    64     // common to all types of input path segments.
       
    65     // OFFSET as bytes
       
    66     // only integer values:
       
    67     public static final long OFF_CURX_OR  = 0;
       
    68     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
       
    69     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
       
    70     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
       
    71     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
       
    72     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
       
    73 
       
    74     // size of one edge in bytes
       
    75     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
       
    76 
       
    77     // curve break into lines
       
    78     // cubic error in subpixels to decrement step
       
    79     private static final float CUB_DEC_ERR_SUBPIX
       
    80         = 2.5f * (NORM_SUBPIXELS / 8f); // 2.5 subpixel for typical 8x8 subpixels
       
    81     // cubic error in subpixels to increment step
       
    82     private static final float CUB_INC_ERR_SUBPIX
       
    83         = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
       
    84 
       
    85     // cubic bind length to decrement step = 8 * error in subpixels
       
    86     // pisces: 20 / 8
       
    87     // openjfx pisces: 8 / 3.2
       
    88     // multiply by 8 = error scale factor:
       
    89     public static final float CUB_DEC_BND
       
    90         = 8f * CUB_DEC_ERR_SUBPIX; // 20f means 2.5 subpixel error
       
    91     // cubic bind length to increment step = 8 * error in subpixels
       
    92     public static final float CUB_INC_BND
       
    93         = 8f * CUB_INC_ERR_SUBPIX; // 8f means 1 subpixel error
       
    94 
       
    95     // cubic countlg
       
    96     public static final int CUB_COUNT_LG = 2;
       
    97     // cubic count = 2^countlg
       
    98     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
       
    99     // cubic count^2 = 4^countlg
       
   100     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
       
   101     // cubic count^3 = 8^countlg
       
   102     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
       
   103     // cubic dt = 1 / count
       
   104     private static final float CUB_INV_COUNT = 1f / CUB_COUNT;
       
   105     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
       
   106     private static final float CUB_INV_COUNT_2 = 1f / CUB_COUNT_2;
       
   107     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
       
   108     private static final float CUB_INV_COUNT_3 = 1f / CUB_COUNT_3;
       
   109 
       
   110     // quad break into lines
       
   111     // quadratic error in subpixels
       
   112     private static final float QUAD_DEC_ERR_SUBPIX
       
   113         = 1f * (NORM_SUBPIXELS / 8f); // 1 subpixel for typical 8x8 subpixels
       
   114 
       
   115     // quadratic bind length to decrement step = 8 * error in subpixels
       
   116     // pisces and openjfx pisces: 32
       
   117     public static final float QUAD_DEC_BND
       
   118         = 8f * QUAD_DEC_ERR_SUBPIX; // 8f means 1 subpixel error
       
   119 
       
   120 //////////////////////////////////////////////////////////////////////////////
       
   121 //  SCAN LINE
       
   122 //////////////////////////////////////////////////////////////////////////////
       
   123     // crossings ie subpixel edge x coordinates
       
   124     private int[] crossings;
       
   125     // auxiliary storage for crossings (merge sort)
       
   126     private int[] aux_crossings;
       
   127 
       
   128     // indices into the segment pointer lists. They indicate the "active"
       
   129     // sublist in the segment lists (the portion of the list that contains
       
   130     // all the segments that cross the next scan line).
       
   131     private int edgeCount;
       
   132     private int[] edgePtrs;
       
   133     // auxiliary storage for edge pointers (merge sort)
       
   134     private int[] aux_edgePtrs;
       
   135 
       
   136     // max used for both edgePtrs and crossings (stats only)
       
   137     private int activeEdgeMaxUsed;
       
   138 
       
   139     // per-thread initial arrays (large enough to satisfy most usages) (1024)
       
   140     private final int[] crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K
       
   141     // +1 to avoid recycling in Helpers.widenArray()
       
   142     private final int[] edgePtrs_initial  = new int[INITIAL_SMALL_ARRAY + 1]; // 4K
       
   143     // merge sort initial arrays (large enough to satisfy most usages) (1024)
       
   144     private final int[] aux_crossings_initial = new int[INITIAL_SMALL_ARRAY]; // 4K
       
   145     // +1 to avoid recycling in Helpers.widenArray()
       
   146     private final int[] aux_edgePtrs_initial  = new int[INITIAL_SMALL_ARRAY + 1]; // 4K
       
   147 
       
   148 //////////////////////////////////////////////////////////////////////////////
       
   149 //  EDGE LIST
       
   150 //////////////////////////////////////////////////////////////////////////////
       
   151     private float edgeMinY = Float.POSITIVE_INFINITY;
       
   152     private float edgeMaxY = Float.NEGATIVE_INFINITY;
       
   153     private float edgeMinX = Float.POSITIVE_INFINITY;
       
   154     private float edgeMaxX = Float.NEGATIVE_INFINITY;
       
   155 
       
   156     // edges [floats|ints] stored in off-heap memory
       
   157     private final OffHeapArray edges;
       
   158 
       
   159     private int[] edgeBuckets;
       
   160     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
       
   161     // used range for edgeBuckets / edgeBucketCounts
       
   162     private int buckets_minY;
       
   163     private int buckets_maxY;
       
   164     // sum of each edge delta Y (subpixels)
       
   165     private int edgeSumDeltaY;
       
   166 
       
   167     // +1 to avoid recycling in Helpers.widenArray()
       
   168     private final int[] edgeBuckets_initial
       
   169         = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K
       
   170     private final int[] edgeBucketCounts_initial
       
   171         = new int[INITIAL_BUCKET_ARRAY + 1]; // 64K
       
   172 
       
   173     // Flattens using adaptive forward differencing. This only carries out
       
   174     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
       
   175     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
       
   176     private void quadBreakIntoLinesAndAdd(float x0, float y0,
       
   177                                           final Curve c,
       
   178                                           final float x2, final float y2)
       
   179     {
       
   180         int count = 1; // dt = 1 / count
       
   181 
       
   182         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
       
   183         float maxDD = FloatMath.max(Math.abs(c.dbx), Math.abs(c.dby));
       
   184 
       
   185         final float _DEC_BND = QUAD_DEC_BND;
       
   186 
       
   187         while (maxDD >= _DEC_BND) {
       
   188             // divide step by half:
       
   189             maxDD /= 4f; // error divided by 2^2 = 4
       
   190 
       
   191             count <<= 1;
       
   192             if (doStats) {
       
   193                 RendererContext.stats.stat_rdr_quadBreak_dec.add(count);
       
   194             }
       
   195         }
       
   196 
       
   197         int nL = 0; // line count
       
   198         if (count > 1) {
       
   199             final float icount = 1f / count; // dt
       
   200             final float icount2 = icount * icount; // dt^2
       
   201 
       
   202             final float ddx = c.dbx * icount2;
       
   203             final float ddy = c.dby * icount2;
       
   204             float dx = c.bx * icount2 + c.cx * icount;
       
   205             float dy = c.by * icount2 + c.cy * icount;
       
   206 
       
   207             float x1, y1;
       
   208 
       
   209             while (--count > 0) {
       
   210                 x1 = x0 + dx;
       
   211                 dx += ddx;
       
   212                 y1 = y0 + dy;
       
   213                 dy += ddy;
       
   214 
       
   215                 addLine(x0, y0, x1, y1);
       
   216 
       
   217                 if (doStats) { nL++; }
       
   218                 x0 = x1;
       
   219                 y0 = y1;
       
   220             }
       
   221         }
       
   222         addLine(x0, y0, x2, y2);
       
   223 
       
   224         if (doStats) {
       
   225             RendererContext.stats.stat_rdr_quadBreak.add(nL + 1);
       
   226         }
       
   227     }
       
   228 
       
   229     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
       
   230     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
       
   231     // numerical errors, and our callers already have the exact values.
       
   232     // Another alternative would be to pass all the control points, and call
       
   233     // c.set here, but then too many numbers are passed around.
       
   234     private void curveBreakIntoLinesAndAdd(float x0, float y0,
       
   235                                            final Curve c,
       
   236                                            final float x3, final float y3)
       
   237     {
       
   238         int count           = CUB_COUNT;
       
   239         final float icount  = CUB_INV_COUNT;   // dt
       
   240         final float icount2 = CUB_INV_COUNT_2; // dt^2
       
   241         final float icount3 = CUB_INV_COUNT_3; // dt^3
       
   242 
       
   243         // the dx and dy refer to forward differencing variables, not the last
       
   244         // coefficients of the "points" polynomial
       
   245         float dddx, dddy, ddx, ddy, dx, dy;
       
   246         dddx = 2f * c.dax * icount3;
       
   247         dddy = 2f * c.day * icount3;
       
   248         ddx = dddx + c.dbx * icount2;
       
   249         ddy = dddy + c.dby * icount2;
       
   250         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
       
   251         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
       
   252 
       
   253         // we use x0, y0 to walk the line
       
   254         float x1 = x0, y1 = y0;
       
   255         int nL = 0; // line count
       
   256 
       
   257         final float _DEC_BND = CUB_DEC_BND;
       
   258         final float _INC_BND = CUB_INC_BND;
       
   259 
       
   260         while (count > 0) {
       
   261             // divide step by half:
       
   262             while (Math.abs(ddx) >= _DEC_BND || Math.abs(ddy) >= _DEC_BND) {
       
   263                 dddx /= 8f;
       
   264                 dddy /= 8f;
       
   265                 ddx = ddx/4f - dddx;
       
   266                 ddy = ddy/4f - dddy;
       
   267                 dx = (dx - ddx) / 2f;
       
   268                 dy = (dy - ddy) / 2f;
       
   269 
       
   270                 count <<= 1;
       
   271                 if (doStats) {
       
   272                     RendererContext.stats.stat_rdr_curveBreak_dec.add(count);
       
   273                 }
       
   274             }
       
   275 
       
   276             // double step:
       
   277             // TODO: why use first derivative dX|Y instead of second ddX|Y ?
       
   278             // both scale changes should use speed or acceleration to have the same metric.
       
   279 
       
   280             // can only do this on even "count" values, because we must divide count by 2
       
   281             while (count % 2 == 0
       
   282                    && Math.abs(dx) <= _INC_BND && Math.abs(dy) <= _INC_BND)
       
   283             {
       
   284                 dx = 2f * dx + ddx;
       
   285                 dy = 2f * dy + ddy;
       
   286                 ddx = 4f * (ddx + dddx);
       
   287                 ddy = 4f * (ddy + dddy);
       
   288                 dddx *= 8f;
       
   289                 dddy *= 8f;
       
   290 
       
   291                 count >>= 1;
       
   292                 if (doStats) {
       
   293                     RendererContext.stats.stat_rdr_curveBreak_inc.add(count);
       
   294                 }
       
   295             }
       
   296             if (--count > 0) {
       
   297                 x1 += dx;
       
   298                 dx += ddx;
       
   299                 ddx += dddx;
       
   300                 y1 += dy;
       
   301                 dy += ddy;
       
   302                 ddy += dddy;
       
   303             } else {
       
   304                 x1 = x3;
       
   305                 y1 = y3;
       
   306             }
       
   307 
       
   308             addLine(x0, y0, x1, y1);
       
   309 
       
   310             if (doStats) { nL++; }
       
   311             x0 = x1;
       
   312             y0 = y1;
       
   313         }
       
   314         if (doStats) {
       
   315             RendererContext.stats.stat_rdr_curveBreak.add(nL);
       
   316         }
       
   317     }
       
   318 
       
   319     private void addLine(float x1, float y1, float x2, float y2) {
       
   320         if (doMonitors) {
       
   321             RendererContext.stats.mon_rdr_addLine.start();
       
   322         }
       
   323         if (doStats) {
       
   324             RendererContext.stats.stat_rdr_addLine.add(1);
       
   325         }
       
   326         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
       
   327         if (y2 < y1) {
       
   328             or = 0;
       
   329             float tmp = y2;
       
   330             y2 = y1;
       
   331             y1 = tmp;
       
   332             tmp = x2;
       
   333             x2 = x1;
       
   334             x1 = tmp;
       
   335         }
       
   336 
       
   337         // convert subpixel coordinates (float) into pixel positions (int)
       
   338 
       
   339         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
       
   340         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
       
   341         // ceil(y1) or ceil(y2)
       
   342         // upper integer (inclusive)
       
   343         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
       
   344 
       
   345         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
       
   346         // upper integer (exclusive)
       
   347         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
       
   348 
       
   349         /* skip horizontal lines in pixel space and clip edges
       
   350            out of y range [boundsMinY; boundsMaxY] */
       
   351         if (firstCrossing >= lastCrossing) {
       
   352             if (doMonitors) {
       
   353                 RendererContext.stats.mon_rdr_addLine.stop();
       
   354             }
       
   355             if (doStats) {
       
   356                 RendererContext.stats.stat_rdr_addLine_skip.add(1);
       
   357             }
       
   358             return;
       
   359         }
       
   360         // edge min/max X/Y are in subpixel space (inclusive)
       
   361         if (y1 < edgeMinY) {
       
   362             edgeMinY = y1;
       
   363         }
       
   364         if (y2 > edgeMaxY) {
       
   365             edgeMaxY = y2;
       
   366         }
       
   367 
       
   368         // Use double-precision for improved accuracy:
       
   369         final double x1d   = x1;
       
   370         final double y1d   = y1;
       
   371         final double slope = (x2 - x1d) / (y2 - y1d);
       
   372 
       
   373         if (slope >= 0.0) { // <==> x1 < x2
       
   374             if (x1 < edgeMinX) {
       
   375                 edgeMinX = x1;
       
   376             }
       
   377             if (x2 > edgeMaxX) {
       
   378                 edgeMaxX = x2;
       
   379             }
       
   380         } else {
       
   381             if (x2 < edgeMinX) {
       
   382                 edgeMinX = x2;
       
   383             }
       
   384             if (x1 > edgeMaxX) {
       
   385                 edgeMaxX = x1;
       
   386             }
       
   387         }
       
   388 
       
   389         // local variables for performance:
       
   390         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
       
   391 
       
   392         final OffHeapArray _edges = edges;
       
   393 
       
   394         // get free pointer (ie length in bytes)
       
   395         final int edgePtr = _edges.used;
       
   396 
       
   397         // use substraction to avoid integer overflow:
       
   398         if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
       
   399             // suppose _edges.length > _SIZEOF_EDGE_BYTES
       
   400             // so doubling size is enough to add needed bytes
       
   401             // note: throw IOOB if neededSize > 2Gb:
       
   402             final long edgeNewSize = ArrayCache.getNewLargeSize(_edges.length,
       
   403                                         edgePtr + _SIZEOF_EDGE_BYTES);
       
   404 
       
   405             if (doStats) {
       
   406                 RendererContext.stats.stat_rdr_edges_resizes.add(edgeNewSize);
       
   407             }
       
   408             _edges.resize(edgeNewSize);
       
   409         }
       
   410 
       
   411 
       
   412         final Unsafe _unsafe = OffHeapArray.unsafe;
       
   413         final long SIZE_INT = 4L;
       
   414         long addr   = _edges.address + edgePtr;
       
   415 
       
   416         // The x value must be bumped up to its position at the next HPC we will evaluate.
       
   417         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
       
   418         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
       
   419         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
       
   420         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
       
   421         // y1 = trueY - 0.5
       
   422         // trueY = y1 + 0.5
       
   423         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
       
   424         //                             = firstcrossing - y1
       
   425         // The x coordinate at that HPC is then:
       
   426         // x1_intercept = x1 + (firstcrossing - y1) * slope
       
   427         // The next VPC is then given by:
       
   428         // VPC index = ceil(x1_intercept - 0.5), or alternately
       
   429         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
       
   430         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
       
   431         // we convert to fixed point then these operations get easier:
       
   432         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
       
   433         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
       
   434         //                 = fixed_floor(x1_fixed + 2^31 - 1)
       
   435         //                 = fixed_floor(x1_fixed + 0x7fffffff)
       
   436         // and error       = fixed_fract(x1_fixed + 0x7fffffff)
       
   437         final double x1_intercept = x1d + (firstCrossing - y1d) * slope;
       
   438 
       
   439         // inlined scalb(x1_intercept, 32):
       
   440         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
       
   441                                      + 0x7fffffffL;
       
   442         // curx:
       
   443         // last bit corresponds to the orientation
       
   444         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
       
   445         addr += SIZE_INT;
       
   446         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
       
   447         addr += SIZE_INT;
       
   448 
       
   449         // inlined scalb(slope, 32):
       
   450         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
       
   451 
       
   452         // last bit set to 0 to keep orientation:
       
   453         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
       
   454         addr += SIZE_INT;
       
   455         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
       
   456         addr += SIZE_INT;
       
   457 
       
   458         final int[] _edgeBuckets      = edgeBuckets;
       
   459         final int[] _edgeBucketCounts = edgeBucketCounts;
       
   460 
       
   461         final int _boundsMinY = boundsMinY;
       
   462 
       
   463         // each bucket is a linked list. this method adds ptr to the
       
   464         // start of the "bucket"th linked list.
       
   465         final int bucketIdx = firstCrossing - _boundsMinY;
       
   466 
       
   467         // pointer from bucket
       
   468         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
       
   469         addr += SIZE_INT;
       
   470         // y max (inclusive)
       
   471         _unsafe.putInt(addr,  lastCrossing);
       
   472 
       
   473         // Update buckets:
       
   474         // directly the edge struct "pointer"
       
   475         _edgeBuckets[bucketIdx]       = edgePtr;
       
   476         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
       
   477         // last bit means edge end
       
   478         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
       
   479 
       
   480         // update sum of delta Y (subpixels):
       
   481         edgeSumDeltaY += (lastCrossing - firstCrossing);
       
   482 
       
   483         // update free pointer (ie length in bytes)
       
   484         _edges.used += _SIZEOF_EDGE_BYTES;
       
   485 
       
   486         if (doMonitors) {
       
   487             RendererContext.stats.mon_rdr_addLine.stop();
       
   488         }
       
   489     }
       
   490 
       
   491 // END EDGE LIST
       
   492 //////////////////////////////////////////////////////////////////////////////
       
   493 
       
   494     // Cache to store RLE-encoded coverage mask of the current primitive
       
   495     final MarlinCache cache;
       
   496 
       
   497     // Bounds of the drawing region, at subpixel precision.
       
   498     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
       
   499 
       
   500     // Current winding rule
       
   501     private int windingRule;
       
   502 
       
   503     // Current drawing position, i.e., final point of last segment
       
   504     private float x0, y0;
       
   505 
       
   506     // Position of most recent 'moveTo' command
       
   507     private float pix_sx0, pix_sy0;
       
   508 
       
   509     // per-thread renderer context
       
   510     final RendererContext rdrCtx;
       
   511     // dirty curve
       
   512     private final Curve curve;
       
   513 
       
   514     Renderer(final RendererContext rdrCtx) {
       
   515         this.rdrCtx = rdrCtx;
       
   516 
       
   517         this.edges = new OffHeapArray(rdrCtx, INITIAL_EDGES_CAPACITY); // 96K
       
   518 
       
   519         this.curve = rdrCtx.curve;
       
   520 
       
   521         edgeBuckets = edgeBuckets_initial;
       
   522         edgeBucketCounts = edgeBucketCounts_initial;
       
   523 
       
   524         alphaLine  = alphaLine_initial;
       
   525 
       
   526         this.cache = rdrCtx.cache;
       
   527 
       
   528         // ScanLine:
       
   529         crossings     = crossings_initial;
       
   530         aux_crossings = aux_crossings_initial;
       
   531         edgePtrs      = edgePtrs_initial;
       
   532         aux_edgePtrs  = aux_edgePtrs_initial;
       
   533 
       
   534         edgeCount = 0;
       
   535         activeEdgeMaxUsed = 0;
       
   536     }
       
   537 
       
   538     Renderer init(final int pix_boundsX, final int pix_boundsY,
       
   539                   final int pix_boundsWidth, final int pix_boundsHeight,
       
   540                   final int windingRule) {
       
   541 
       
   542         this.windingRule = windingRule;
       
   543 
       
   544         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
       
   545         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
       
   546         this.boundsMaxX =
       
   547             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
       
   548         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
       
   549         this.boundsMaxY =
       
   550             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
       
   551 
       
   552         if (doLogBounds) {
       
   553             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
       
   554                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
       
   555                                 + boundsMaxY + "[");
       
   556         }
       
   557 
       
   558         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
       
   559         // +1 for edgeBucketCounts
       
   560         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
       
   561 
       
   562         if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
       
   563             if (doStats) {
       
   564                 RendererContext.stats.stat_array_renderer_edgeBuckets
       
   565                     .add(edgeBucketsLength);
       
   566                 RendererContext.stats.stat_array_renderer_edgeBucketCounts
       
   567                     .add(edgeBucketsLength);
       
   568             }
       
   569             edgeBuckets = rdrCtx.getIntArray(edgeBucketsLength);
       
   570             edgeBucketCounts = rdrCtx.getIntArray(edgeBucketsLength);
       
   571         }
       
   572 
       
   573         edgeMinY = Float.POSITIVE_INFINITY;
       
   574         edgeMaxY = Float.NEGATIVE_INFINITY;
       
   575         edgeMinX = Float.POSITIVE_INFINITY;
       
   576         edgeMaxX = Float.NEGATIVE_INFINITY;
       
   577 
       
   578         // reset used mark:
       
   579         edgeCount = 0;
       
   580         activeEdgeMaxUsed = 0;
       
   581         edges.used = 0;
       
   582 
       
   583         edgeSumDeltaY = 0;
       
   584 
       
   585         return this; // fluent API
       
   586     }
       
   587 
       
   588     /**
       
   589      * Disposes this renderer and recycle it clean up before reusing this instance
       
   590      */
       
   591     void dispose() {
       
   592         if (doStats) {
       
   593             RendererContext.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
       
   594             RendererContext.stats.stat_rdr_edges.add(edges.used);
       
   595             RendererContext.stats.stat_rdr_edges_count
       
   596                 .add(edges.used / SIZEOF_EDGE_BYTES);
       
   597         }
       
   598         if (doCleanDirty) {
       
   599             // Force zero-fill dirty arrays:
       
   600             Arrays.fill(crossings,     0);
       
   601             Arrays.fill(aux_crossings, 0);
       
   602             Arrays.fill(edgePtrs,      0);
       
   603             Arrays.fill(aux_edgePtrs,  0);
       
   604         }
       
   605         // Return arrays:
       
   606         if (crossings != crossings_initial) {
       
   607             rdrCtx.putDirtyIntArray(crossings);
       
   608             crossings = crossings_initial;
       
   609             if (aux_crossings != aux_crossings_initial) {
       
   610                 rdrCtx.putDirtyIntArray(aux_crossings);
       
   611                 aux_crossings = aux_crossings_initial;
       
   612             }
       
   613         }
       
   614         if (edgePtrs != edgePtrs_initial) {
       
   615             rdrCtx.putDirtyIntArray(edgePtrs);
       
   616             edgePtrs = edgePtrs_initial;
       
   617             if (aux_edgePtrs != aux_edgePtrs_initial) {
       
   618                 rdrCtx.putDirtyIntArray(aux_edgePtrs);
       
   619                 aux_edgePtrs = aux_edgePtrs_initial;
       
   620             }
       
   621         }
       
   622         if (alphaLine != alphaLine_initial) {
       
   623             rdrCtx.putIntArray(alphaLine, 0, 0); // already zero filled
       
   624             alphaLine = alphaLine_initial;
       
   625         }
       
   626         if (blkFlags != blkFlags_initial) {
       
   627             rdrCtx.putIntArray(blkFlags, 0, 0); // already zero filled
       
   628             blkFlags = blkFlags_initial;
       
   629         }
       
   630 
       
   631         if (edgeMinY != Float.POSITIVE_INFINITY) {
       
   632             // clear used part
       
   633             if (edgeBuckets == edgeBuckets_initial) {
       
   634                 // fill only used part
       
   635                 IntArrayCache.fill(edgeBuckets,      buckets_minY,
       
   636                                                      buckets_maxY,     0);
       
   637                 IntArrayCache.fill(edgeBucketCounts, buckets_minY,
       
   638                                                      buckets_maxY + 1, 0);
       
   639             } else {
       
   640                  // clear only used part
       
   641                 rdrCtx.putIntArray(edgeBuckets,      buckets_minY,
       
   642                                                      buckets_maxY);
       
   643                 edgeBuckets = edgeBuckets_initial;
       
   644 
       
   645                 rdrCtx.putIntArray(edgeBucketCounts, buckets_minY,
       
   646                                                      buckets_maxY + 1);
       
   647                 edgeBucketCounts = edgeBucketCounts_initial;
       
   648             }
       
   649         } else if (edgeBuckets != edgeBuckets_initial) {
       
   650             // unused arrays
       
   651             rdrCtx.putIntArray(edgeBuckets, 0, 0);
       
   652             edgeBuckets = edgeBuckets_initial;
       
   653 
       
   654             rdrCtx.putIntArray(edgeBucketCounts, 0, 0);
       
   655             edgeBucketCounts = edgeBucketCounts_initial;
       
   656         }
       
   657 
       
   658         // At last: resize back off-heap edges to initial size
       
   659         if (edges.length != INITIAL_EDGES_CAPACITY) {
       
   660             // note: may throw OOME:
       
   661             edges.resize(INITIAL_EDGES_CAPACITY);
       
   662         }
       
   663         if (doCleanDirty) {
       
   664             // Force zero-fill dirty arrays:
       
   665             edges.fill(BYTE_0);
       
   666         }
       
   667         if (doMonitors) {
       
   668             RendererContext.stats.mon_rdr_endRendering.stop();
       
   669         }
       
   670     }
       
   671 
       
   672     private static float tosubpixx(final float pix_x) {
       
   673         return f_SUBPIXEL_POSITIONS_X * pix_x;
       
   674     }
       
   675 
       
   676     private static float tosubpixy(final float pix_y) {
       
   677         // shift y by -0.5 for fast ceil(y - 0.5):
       
   678         return f_SUBPIXEL_POSITIONS_Y * pix_y - 0.5f;
       
   679     }
       
   680 
       
   681     @Override
       
   682     public void moveTo(float pix_x0, float pix_y0) {
       
   683         closePath();
       
   684         this.pix_sx0 = pix_x0;
       
   685         this.pix_sy0 = pix_y0;
       
   686         this.y0 = tosubpixy(pix_y0);
       
   687         this.x0 = tosubpixx(pix_x0);
       
   688     }
       
   689 
       
   690     @Override
       
   691     public void lineTo(float pix_x1, float pix_y1) {
       
   692         float x1 = tosubpixx(pix_x1);
       
   693         float y1 = tosubpixy(pix_y1);
       
   694         addLine(x0, y0, x1, y1);
       
   695         x0 = x1;
       
   696         y0 = y1;
       
   697     }
       
   698 
       
   699     @Override
       
   700     public void curveTo(float x1, float y1,
       
   701             float x2, float y2,
       
   702             float x3, float y3)
       
   703     {
       
   704         final float xe = tosubpixx(x3);
       
   705         final float ye = tosubpixy(y3);
       
   706         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
       
   707                           tosubpixx(x2), tosubpixy(y2), xe, ye);
       
   708         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
       
   709         x0 = xe;
       
   710         y0 = ye;
       
   711     }
       
   712 
       
   713     @Override
       
   714     public void quadTo(float x1, float y1, float x2, float y2) {
       
   715         final float xe = tosubpixx(x2);
       
   716         final float ye = tosubpixy(y2);
       
   717         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
       
   718         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
       
   719         x0 = xe;
       
   720         y0 = ye;
       
   721     }
       
   722 
       
   723     @Override
       
   724     public void closePath() {
       
   725         // lineTo expects its input in pixel coordinates.
       
   726         lineTo(pix_sx0, pix_sy0);
       
   727     }
       
   728 
       
   729     @Override
       
   730     public void pathDone() {
       
   731         closePath();
       
   732     }
       
   733 
       
   734     @Override
       
   735     public long getNativeConsumer() {
       
   736         throw new InternalError("Renderer does not use a native consumer.");
       
   737     }
       
   738 
       
   739     // clean alpha array (zero filled)
       
   740     private int[] alphaLine;
       
   741     // 2048 (pixelsize) pixel large
       
   742     private final int[] alphaLine_initial = new int[INITIAL_AA_ARRAY]; // 8K
       
   743 
       
   744     private void _endRendering(final int ymin, final int ymax) {
       
   745         if (DISABLE_RENDER) {
       
   746             return;
       
   747         }
       
   748 
       
   749         // Get X bounds as true pixel boundaries to compute correct pixel coverage:
       
   750         final int bboxx0 = bbox_spminX;
       
   751         final int bboxx1 = bbox_spmaxX;
       
   752 
       
   753         final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
       
   754 
       
   755         // Useful when processing tile line by tile line
       
   756         final int[] _alpha = alphaLine;
       
   757 
       
   758         // local vars (performance):
       
   759         final MarlinCache _cache = cache;
       
   760         final OffHeapArray _edges = edges;
       
   761         final int[] _edgeBuckets = edgeBuckets;
       
   762         final int[] _edgeBucketCounts = edgeBucketCounts;
       
   763 
       
   764         int[] _crossings = this.crossings;
       
   765         int[] _edgePtrs  = this.edgePtrs;
       
   766 
       
   767         // merge sort auxiliary storage:
       
   768         int[] _aux_crossings = this.aux_crossings;
       
   769         int[] _aux_edgePtrs  = this.aux_edgePtrs;
       
   770 
       
   771         // copy constants:
       
   772         final long _OFF_ERROR    = OFF_ERROR;
       
   773         final long _OFF_BUMP_X   = OFF_BUMP_X;
       
   774         final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
       
   775 
       
   776         final long _OFF_NEXT     = OFF_NEXT;
       
   777         final long _OFF_YMAX     = OFF_YMAX;
       
   778 
       
   779         final int _ALL_BUT_LSB   = ALL_BUT_LSB;
       
   780         final int _ERR_STEP_MAX  = ERR_STEP_MAX;
       
   781 
       
   782         // unsafe I/O:
       
   783         final Unsafe _unsafe = OffHeapArray.unsafe;
       
   784         final long    addr0  = _edges.address;
       
   785         long addr;
       
   786         final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
       
   787         final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
       
   788         final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
       
   789         final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
       
   790         final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
       
   791 
       
   792         final int _MIN_VALUE = Integer.MIN_VALUE;
       
   793         final int _MAX_VALUE = Integer.MAX_VALUE;
       
   794 
       
   795         // Now we iterate through the scanlines. We must tell emitRow the coord
       
   796         // of the first non-transparent pixel, so we must keep accumulators for
       
   797         // the first and last pixels of the section of the current pixel row
       
   798         // that we will emit.
       
   799         // We also need to accumulate pix_bbox, but the iterator does it
       
   800         // for us. We will just get the values from it once this loop is done
       
   801         int minX = _MAX_VALUE;
       
   802         int maxX = _MIN_VALUE;
       
   803 
       
   804         int y = ymin;
       
   805         int bucket = y - boundsMinY;
       
   806 
       
   807         int numCrossings = this.edgeCount;
       
   808         int edgePtrsLen = _edgePtrs.length;
       
   809         int crossingsLen = _crossings.length;
       
   810         int _arrayMaxUsed = activeEdgeMaxUsed;
       
   811         int ptrLen = 0, newCount, ptrEnd;
       
   812 
       
   813         int bucketcount, i, j, ecur;
       
   814         int cross, lastCross;
       
   815         int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
       
   816         int pix_x, pix_xmaxm1, pix_xmax;
       
   817 
       
   818         int low, high, mid, prevNumCrossings;
       
   819         boolean useBinarySearch;
       
   820 
       
   821         final int[] _blkFlags = blkFlags;
       
   822         final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
       
   823         final int _BLK_SIZE = BLOCK_SIZE;
       
   824 
       
   825         final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
       
   826 
       
   827         // Use block flags if large pixel span and few crossings:
       
   828         // ie mean(distance between crossings) is high
       
   829         boolean useBlkFlags = this.prevUseBlkFlags;
       
   830 
       
   831         final int stroking = rdrCtx.stroking;
       
   832 
       
   833         int lastY = -1; // last emited row
       
   834 
       
   835 
       
   836         // Iteration on scanlines
       
   837         for (; y < ymax; y++, bucket++) {
       
   838             // --- from former ScanLineIterator.next()
       
   839             bucketcount = _edgeBucketCounts[bucket];
       
   840 
       
   841             // marker on previously sorted edges:
       
   842             prevNumCrossings = numCrossings;
       
   843 
       
   844             // bucketCount indicates new edge / edge end:
       
   845             if (bucketcount != 0) {
       
   846                 if (doStats) {
       
   847                     RendererContext.stats.stat_rdr_activeEdges_updates
       
   848                         .add(numCrossings);
       
   849                 }
       
   850 
       
   851                 // last bit set to 1 means that edges ends
       
   852                 if ((bucketcount & 0x1) != 0) {
       
   853                     // eviction in active edge list
       
   854                     // cache edges[] address + offset
       
   855                     addr = addr0 + _OFF_YMAX;
       
   856 
       
   857                     for (i = 0, newCount = 0; i < numCrossings; i++) {
       
   858                         // get the pointer to the edge
       
   859                         ecur = _edgePtrs[i];
       
   860                         // random access so use unsafe:
       
   861                         if (_unsafe.getInt(addr + ecur) > y) {
       
   862                             _edgePtrs[newCount++] = ecur;
       
   863                         }
       
   864                     }
       
   865                     // update marker on sorted edges minus removed edges:
       
   866                     prevNumCrossings = numCrossings = newCount;
       
   867                 }
       
   868 
       
   869                 ptrLen = bucketcount >> 1; // number of new edge
       
   870 
       
   871                 if (ptrLen != 0) {
       
   872                     if (doStats) {
       
   873                         RendererContext.stats.stat_rdr_activeEdges_adds
       
   874                             .add(ptrLen);
       
   875                         if (ptrLen > 10) {
       
   876                             RendererContext.stats.stat_rdr_activeEdges_adds_high
       
   877                                 .add(ptrLen);
       
   878                         }
       
   879                     }
       
   880                     ptrEnd = numCrossings + ptrLen;
       
   881 
       
   882                     if (edgePtrsLen < ptrEnd) {
       
   883                         if (doStats) {
       
   884                             RendererContext.stats.stat_array_renderer_edgePtrs
       
   885                                 .add(ptrEnd);
       
   886                         }
       
   887                         this.edgePtrs = _edgePtrs
       
   888                             = rdrCtx.widenDirtyIntArray(_edgePtrs, numCrossings,
       
   889                                                         ptrEnd);
       
   890 
       
   891                         edgePtrsLen = _edgePtrs.length;
       
   892                         // Get larger auxiliary storage:
       
   893                         if (_aux_edgePtrs != aux_edgePtrs_initial) {
       
   894                             rdrCtx.putDirtyIntArray(_aux_edgePtrs);
       
   895                         }
       
   896                         // use ArrayCache.getNewSize() to use the same growing
       
   897                         // factor than widenDirtyIntArray():
       
   898                         if (doStats) {
       
   899                             RendererContext.stats.stat_array_renderer_aux_edgePtrs
       
   900                                 .add(ptrEnd);
       
   901                         }
       
   902                         this.aux_edgePtrs = _aux_edgePtrs
       
   903                             = rdrCtx.getDirtyIntArray(
       
   904                                 ArrayCache.getNewSize(numCrossings, ptrEnd)
       
   905                             );
       
   906                     }
       
   907 
       
   908                     // cache edges[] address + offset
       
   909                     addr = addr0 + _OFF_NEXT;
       
   910 
       
   911                     // add new edges to active edge list:
       
   912                     for (ecur = _edgeBuckets[bucket];
       
   913                          numCrossings < ptrEnd; numCrossings++)
       
   914                     {
       
   915                         // store the pointer to the edge
       
   916                         _edgePtrs[numCrossings] = ecur;
       
   917                         // random access so use unsafe:
       
   918                         ecur = _unsafe.getInt(addr + ecur);
       
   919                     }
       
   920 
       
   921                     if (crossingsLen < numCrossings) {
       
   922                         // Get larger array:
       
   923                         if (_crossings != crossings_initial) {
       
   924                             rdrCtx.putDirtyIntArray(_crossings);
       
   925                         }
       
   926                         if (doStats) {
       
   927                             RendererContext.stats.stat_array_renderer_crossings
       
   928                                 .add(numCrossings);
       
   929                         }
       
   930                         this.crossings = _crossings
       
   931                             = rdrCtx.getDirtyIntArray(numCrossings);
       
   932 
       
   933                         // Get larger auxiliary storage:
       
   934                         if (_aux_crossings != aux_crossings_initial) {
       
   935                             rdrCtx.putDirtyIntArray(_aux_crossings);
       
   936                         }
       
   937                         if (doStats) {
       
   938                             RendererContext.stats.stat_array_renderer_aux_crossings
       
   939                                 .add(numCrossings);
       
   940                         }
       
   941                         this.aux_crossings = _aux_crossings
       
   942                             = rdrCtx.getDirtyIntArray(numCrossings);
       
   943 
       
   944                         crossingsLen = _crossings.length;
       
   945                     }
       
   946                     if (doStats) {
       
   947                         // update max used mark
       
   948                         if (numCrossings > _arrayMaxUsed) {
       
   949                             _arrayMaxUsed = numCrossings;
       
   950                         }
       
   951                     }
       
   952                 } // ptrLen != 0
       
   953             } // bucketCount != 0
       
   954 
       
   955 
       
   956             if (numCrossings != 0) {
       
   957                 /*
       
   958                  * thresholds to switch to optimized merge sort
       
   959                  * for newly added edges + final merge pass.
       
   960                  */
       
   961                 if ((ptrLen < 10) || (numCrossings < 40)) {
       
   962                     if (doStats) {
       
   963                         RendererContext.stats.hist_rdr_crossings
       
   964                             .add(numCrossings);
       
   965                         RendererContext.stats.hist_rdr_crossings_adds
       
   966                             .add(ptrLen);
       
   967                     }
       
   968 
       
   969                     /*
       
   970                      * threshold to use binary insertion sort instead of
       
   971                      * straight insertion sort (to reduce minimize comparisons).
       
   972                      */
       
   973                     useBinarySearch = (numCrossings >= 20);
       
   974 
       
   975                     // if small enough:
       
   976                     lastCross = _MIN_VALUE;
       
   977 
       
   978                     for (i = 0; i < numCrossings; i++) {
       
   979                         // get the pointer to the edge
       
   980                         ecur = _edgePtrs[i];
       
   981 
       
   982                         /* convert subpixel coordinates (float) into pixel
       
   983                             positions (int) for coming scanline */
       
   984                         /* note: it is faster to always update edges even
       
   985                            if it is removed from AEL for coming or last scanline */
       
   986 
       
   987                         // random access so use unsafe:
       
   988                         addr = addr0 + ecur; // ecur + OFF_F_CURX
       
   989 
       
   990                         // get current crossing:
       
   991                         curx = _unsafe.getInt(addr);
       
   992 
       
   993                         // update crossing with orientation at last bit:
       
   994                         cross = curx;
       
   995 
       
   996                         // Increment x using DDA (fixed point):
       
   997                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
       
   998 
       
   999                         // Increment error:
       
  1000                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
       
  1001                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
       
  1002 
       
  1003                         // Manual carry handling:
       
  1004                         // keep sign and carry bit only and ignore last bit (preserve orientation):
       
  1005                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
       
  1006                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
       
  1007 
       
  1008                         if (doStats) {
       
  1009                             RendererContext.stats.stat_rdr_crossings_updates
       
  1010                                 .add(numCrossings);
       
  1011                         }
       
  1012 
       
  1013                         // insertion sort of crossings:
       
  1014                         if (cross < lastCross) {
       
  1015                             if (doStats) {
       
  1016                                 RendererContext.stats.stat_rdr_crossings_sorts
       
  1017                                     .add(i);
       
  1018                             }
       
  1019 
       
  1020                             /* use binary search for newly added edges
       
  1021                                in crossings if arrays are large enough */
       
  1022                             if (useBinarySearch && (i >= prevNumCrossings)) {
       
  1023                                 if (doStats) {
       
  1024                                     RendererContext.stats.
       
  1025                                         stat_rdr_crossings_bsearch.add(i);
       
  1026                                 }
       
  1027                                 low = 0;
       
  1028                                 high = i - 1;
       
  1029 
       
  1030                                 do {
       
  1031                                     // note: use signed shift (not >>>) for performance
       
  1032                                     // as indices are small enough to exceed Integer.MAX_VALUE
       
  1033                                     mid = (low + high) >> 1;
       
  1034 
       
  1035                                     if (_crossings[mid] < cross) {
       
  1036                                         low = mid + 1;
       
  1037                                     } else {
       
  1038                                         high = mid - 1;
       
  1039                                     }
       
  1040                                 } while (low <= high);
       
  1041 
       
  1042                                 for (j = i - 1; j >= low; j--) {
       
  1043                                     _crossings[j + 1] = _crossings[j];
       
  1044                                     _edgePtrs [j + 1] = _edgePtrs[j];
       
  1045                                 }
       
  1046                                 _crossings[low] = cross;
       
  1047                                 _edgePtrs [low] = ecur;
       
  1048 
       
  1049                             } else {
       
  1050                                 j = i - 1;
       
  1051                                 _crossings[i] = _crossings[j];
       
  1052                                 _edgePtrs[i] = _edgePtrs[j];
       
  1053 
       
  1054                                 while ((--j >= 0) && (_crossings[j] > cross)) {
       
  1055                                     _crossings[j + 1] = _crossings[j];
       
  1056                                     _edgePtrs [j + 1] = _edgePtrs[j];
       
  1057                                 }
       
  1058                                 _crossings[j + 1] = cross;
       
  1059                                 _edgePtrs [j + 1] = ecur;
       
  1060                             }
       
  1061 
       
  1062                         } else {
       
  1063                             _crossings[i] = lastCross = cross;
       
  1064                         }
       
  1065                     }
       
  1066                 } else {
       
  1067                     if (doStats) {
       
  1068                         RendererContext.stats.stat_rdr_crossings_msorts
       
  1069                             .add(numCrossings);
       
  1070                         RendererContext.stats.hist_rdr_crossings_ratio
       
  1071                             .add((1000 * ptrLen) / numCrossings);
       
  1072                         RendererContext.stats.hist_rdr_crossings_msorts
       
  1073                             .add(numCrossings);
       
  1074                         RendererContext.stats.hist_rdr_crossings_msorts_adds
       
  1075                             .add(ptrLen);
       
  1076                     }
       
  1077 
       
  1078                     // Copy sorted data in auxiliary arrays
       
  1079                     // and perform insertion sort on almost sorted data
       
  1080                     // (ie i < prevNumCrossings):
       
  1081 
       
  1082                     lastCross = _MIN_VALUE;
       
  1083 
       
  1084                     for (i = 0; i < numCrossings; i++) {
       
  1085                         // get the pointer to the edge
       
  1086                         ecur = _edgePtrs[i];
       
  1087 
       
  1088                         /* convert subpixel coordinates (float) into pixel
       
  1089                             positions (int) for coming scanline */
       
  1090                         /* note: it is faster to always update edges even
       
  1091                            if it is removed from AEL for coming or last scanline */
       
  1092 
       
  1093                         // random access so use unsafe:
       
  1094                         addr = addr0 + ecur; // ecur + OFF_F_CURX
       
  1095 
       
  1096                         // get current crossing:
       
  1097                         curx = _unsafe.getInt(addr);
       
  1098 
       
  1099                         // update crossing with orientation at last bit:
       
  1100                         cross = curx;
       
  1101 
       
  1102                         // Increment x using DDA (fixed point):
       
  1103                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
       
  1104 
       
  1105                         // Increment error:
       
  1106                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
       
  1107                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
       
  1108 
       
  1109                         // Manual carry handling:
       
  1110                         // keep sign and carry bit only and ignore last bit (preserve orientation):
       
  1111                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
       
  1112                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
       
  1113 
       
  1114                         if (doStats) {
       
  1115                             RendererContext.stats.stat_rdr_crossings_updates
       
  1116                                 .add(numCrossings);
       
  1117                         }
       
  1118 
       
  1119                         if (i >= prevNumCrossings) {
       
  1120                             // simply store crossing as edgePtrs is in-place:
       
  1121                             // will be copied and sorted efficiently by mergesort later:
       
  1122                             _crossings[i]     = cross;
       
  1123 
       
  1124                         } else if (cross < lastCross) {
       
  1125                             if (doStats) {
       
  1126                                 RendererContext.stats.stat_rdr_crossings_sorts
       
  1127                                     .add(i);
       
  1128                             }
       
  1129 
       
  1130                             // (straight) insertion sort of crossings:
       
  1131                             j = i - 1;
       
  1132                             _aux_crossings[i] = _aux_crossings[j];
       
  1133                             _aux_edgePtrs[i] = _aux_edgePtrs[j];
       
  1134 
       
  1135                             while ((--j >= 0) && (_aux_crossings[j] > cross)) {
       
  1136                                 _aux_crossings[j + 1] = _aux_crossings[j];
       
  1137                                 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
       
  1138                             }
       
  1139                             _aux_crossings[j + 1] = cross;
       
  1140                             _aux_edgePtrs [j + 1] = ecur;
       
  1141 
       
  1142                         } else {
       
  1143                             // auxiliary storage:
       
  1144                             _aux_crossings[i] = lastCross = cross;
       
  1145                             _aux_edgePtrs [i] = ecur;
       
  1146                         }
       
  1147                     }
       
  1148 
       
  1149                     // use Mergesort using auxiliary arrays (sort only right part)
       
  1150                     MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
       
  1151                                               _aux_crossings, _aux_edgePtrs,
       
  1152                                               numCrossings,   prevNumCrossings);
       
  1153                 }
       
  1154 
       
  1155                 // reset ptrLen
       
  1156                 ptrLen = 0;
       
  1157                 // --- from former ScanLineIterator.next()
       
  1158 
       
  1159 
       
  1160                 /* note: bboxx0 and bboxx1 must be pixel boundaries
       
  1161                    to have correct coverage computation */
       
  1162 
       
  1163                 // right shift on crossings to get the x-coordinate:
       
  1164                 curxo = _crossings[0];
       
  1165                 x0    = curxo >> 1;
       
  1166                 if (x0 < minX) {
       
  1167                     minX = x0; // subpixel coordinate
       
  1168                 }
       
  1169 
       
  1170                 x1 = _crossings[numCrossings - 1] >> 1;
       
  1171                 if (x1 > maxX) {
       
  1172                     maxX = x1; // subpixel coordinate
       
  1173                 }
       
  1174 
       
  1175 
       
  1176                 // compute pixel coverages
       
  1177                 prev = curx = x0;
       
  1178                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
       
  1179                 // last bit contains orientation (0 or 1)
       
  1180                 crorientation = ((curxo & 0x1) << 1) - 1;
       
  1181 
       
  1182                 if (windingRuleEvenOdd) {
       
  1183                     sum = crorientation;
       
  1184 
       
  1185                     // Even Odd winding rule: take care of mask ie sum(orientations)
       
  1186                     for (i = 1; i < numCrossings; i++) {
       
  1187                         curxo = _crossings[i];
       
  1188                         curx  =  curxo >> 1;
       
  1189                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
       
  1190                         // last bit contains orientation (0 or 1)
       
  1191                         crorientation = ((curxo & 0x1) << 1) - 1;
       
  1192 
       
  1193                         if ((sum & 0x1) != 0) {
       
  1194                             // TODO: perform line clipping on left-right sides
       
  1195                             // to avoid such bound checks:
       
  1196                             x0 = (prev > bboxx0) ? prev : bboxx0;
       
  1197                             x1 = (curx < bboxx1) ? curx : bboxx1;
       
  1198 
       
  1199                             if (x0 < x1) {
       
  1200                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
       
  1201                                 x1 -= bboxx0; // in the alpha array.
       
  1202 
       
  1203                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
       
  1204                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
       
  1205 
       
  1206                                 if (pix_x == pix_xmaxm1) {
       
  1207                                     // Start and end in same pixel
       
  1208                                     tmp = (x1 - x0); // number of subpixels
       
  1209                                     _alpha[pix_x    ] += tmp;
       
  1210                                     _alpha[pix_x + 1] -= tmp;
       
  1211 
       
  1212                                     if (useBlkFlags) {
       
  1213                                         // flag used blocks:
       
  1214                                         _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
       
  1215                                     }
       
  1216                                 } else {
       
  1217                                     tmp = (x0 & _SUBPIXEL_MASK_X);
       
  1218                                     _alpha[pix_x    ]
       
  1219                                         += (_SUBPIXEL_POSITIONS_X - tmp);
       
  1220                                     _alpha[pix_x + 1]
       
  1221                                         += tmp;
       
  1222 
       
  1223                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
       
  1224 
       
  1225                                     tmp = (x1 & _SUBPIXEL_MASK_X);
       
  1226                                     _alpha[pix_xmax    ]
       
  1227                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
       
  1228                                     _alpha[pix_xmax + 1]
       
  1229                                         -= tmp;
       
  1230 
       
  1231                                     if (useBlkFlags) {
       
  1232                                         // flag used blocks:
       
  1233                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
       
  1234                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
       
  1235                                     }
       
  1236                                 }
       
  1237                             }
       
  1238                         }
       
  1239 
       
  1240                         sum += crorientation;
       
  1241                         prev = curx;
       
  1242                     }
       
  1243                 } else {
       
  1244                     // Non-zero winding rule: optimize that case (default)
       
  1245                     // and avoid processing intermediate crossings
       
  1246                     for (i = 1, sum = 0;; i++) {
       
  1247                         sum += crorientation;
       
  1248 
       
  1249                         if (sum != 0) {
       
  1250                             // prev = min(curx)
       
  1251                             if (prev > curx) {
       
  1252                                 prev = curx;
       
  1253                             }
       
  1254                         } else {
       
  1255                             // TODO: perform line clipping on left-right sides
       
  1256                             // to avoid such bound checks:
       
  1257                             x0 = (prev > bboxx0) ? prev : bboxx0;
       
  1258                             x1 = (curx < bboxx1) ? curx : bboxx1;
       
  1259 
       
  1260                             if (x0 < x1) {
       
  1261                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
       
  1262                                 x1 -= bboxx0; // in the alpha array.
       
  1263 
       
  1264                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
       
  1265                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
       
  1266 
       
  1267                                 if (pix_x == pix_xmaxm1) {
       
  1268                                     // Start and end in same pixel
       
  1269                                     tmp = (x1 - x0); // number of subpixels
       
  1270                                     _alpha[pix_x    ] += tmp;
       
  1271                                     _alpha[pix_x + 1] -= tmp;
       
  1272 
       
  1273                                     if (useBlkFlags) {
       
  1274                                         // flag used blocks:
       
  1275                                         _blkFlags[pix_x >> _BLK_SIZE_LG] = 1;
       
  1276                                     }
       
  1277                                 } else {
       
  1278                                     tmp = (x0 & _SUBPIXEL_MASK_X);
       
  1279                                     _alpha[pix_x    ]
       
  1280                                         += (_SUBPIXEL_POSITIONS_X - tmp);
       
  1281                                     _alpha[pix_x + 1]
       
  1282                                         += tmp;
       
  1283 
       
  1284                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
       
  1285 
       
  1286                                     tmp = (x1 & _SUBPIXEL_MASK_X);
       
  1287                                     _alpha[pix_xmax    ]
       
  1288                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
       
  1289                                     _alpha[pix_xmax + 1]
       
  1290                                         -= tmp;
       
  1291 
       
  1292                                     if (useBlkFlags) {
       
  1293                                         // flag used blocks:
       
  1294                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
       
  1295                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
       
  1296                                     }
       
  1297                                 }
       
  1298                             }
       
  1299                             prev = _MAX_VALUE;
       
  1300                         }
       
  1301 
       
  1302                         if (i == numCrossings) {
       
  1303                             break;
       
  1304                         }
       
  1305 
       
  1306                         curxo = _crossings[i];
       
  1307                         curx  =  curxo >> 1;
       
  1308                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
       
  1309                         // last bit contains orientation (0 or 1)
       
  1310                         crorientation = ((curxo & 0x1) << 1) - 1;
       
  1311                     }
       
  1312                 }
       
  1313             } // numCrossings > 0
       
  1314 
       
  1315             // even if this last row had no crossings, alpha will be zeroed
       
  1316             // from the last emitRow call. But this doesn't matter because
       
  1317             // maxX < minX, so no row will be emitted to the MarlinCache.
       
  1318             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
       
  1319                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
       
  1320 
       
  1321                 // convert subpixel to pixel coordinate within boundaries:
       
  1322                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
       
  1323                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
       
  1324 
       
  1325                 if (maxX >= minX) {
       
  1326                     // note: alpha array will be zeroed by copyAARow()
       
  1327                     // +2 because alpha [pix_minX; pix_maxX+1]
       
  1328                     // fix range [x0; x1[
       
  1329                     copyAARow(_alpha, lastY, minX, maxX + 2, useBlkFlags);
       
  1330 
       
  1331                     // speculative for next pixel row (scanline coherence):
       
  1332                     if (_enableBlkFlagsHeuristics) {
       
  1333                         // Use block flags if large pixel span and few crossings:
       
  1334                         // ie mean(distance between crossings) is larger than
       
  1335                         // 1 block size;
       
  1336 
       
  1337                         // fast check width:
       
  1338                         maxX -= minX;
       
  1339 
       
  1340                         // if stroking: numCrossings /= 2
       
  1341                         // => shift numCrossings by 1
       
  1342                         // condition = (width / (numCrossings - 1)) > blockSize
       
  1343                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
       
  1344                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
       
  1345 
       
  1346                         if (doStats) {
       
  1347                             tmp = FloatMath.max(1,
       
  1348                                     ((numCrossings >> stroking) - 1));
       
  1349                             RendererContext.stats.hist_tile_generator_encoding_dist
       
  1350                                 .add(maxX / tmp);
       
  1351                         }
       
  1352                     }
       
  1353                 } else {
       
  1354                     _cache.clearAARow(lastY);
       
  1355                 }
       
  1356                 minX = _MAX_VALUE;
       
  1357                 maxX = _MIN_VALUE;
       
  1358             }
       
  1359         } // scan line iterator
       
  1360 
       
  1361         // Emit final row
       
  1362         y--;
       
  1363         y >>= _SUBPIXEL_LG_POSITIONS_Y;
       
  1364 
       
  1365         // convert subpixel to pixel coordinate within boundaries:
       
  1366         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
       
  1367         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
       
  1368 
       
  1369         if (maxX >= minX) {
       
  1370             // note: alpha array will be zeroed by copyAARow()
       
  1371             // +2 because alpha [pix_minX; pix_maxX+1]
       
  1372             // fix range [x0; x1[
       
  1373             copyAARow(_alpha, y, minX, maxX + 2, useBlkFlags);
       
  1374         } else if (y != lastY) {
       
  1375             _cache.clearAARow(y);
       
  1376         }
       
  1377 
       
  1378         // update member:
       
  1379         edgeCount = numCrossings;
       
  1380         prevUseBlkFlags = useBlkFlags;
       
  1381 
       
  1382         if (doStats) {
       
  1383             // update max used mark
       
  1384             activeEdgeMaxUsed = _arrayMaxUsed;
       
  1385         }
       
  1386     }
       
  1387 
       
  1388     boolean endRendering() {
       
  1389         if (doMonitors) {
       
  1390             RendererContext.stats.mon_rdr_endRendering.start();
       
  1391         }
       
  1392         if (edgeMinY == Float.POSITIVE_INFINITY) {
       
  1393             return false; // undefined edges bounds
       
  1394         }
       
  1395 
       
  1396         final int _boundsMinY = boundsMinY;
       
  1397         final int _boundsMaxY = boundsMaxY;
       
  1398 
       
  1399         // bounds as inclusive intervals
       
  1400         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5f), boundsMinX);
       
  1401         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5f), boundsMaxX - 1);
       
  1402 
       
  1403         // y1 (and y2) are already biased by -0.5 in tosubpixy():
       
  1404         final int spminY = FloatMath.max(FloatMath.ceil_int(edgeMinY), _boundsMinY);
       
  1405         int maxY = FloatMath.ceil_int(edgeMaxY);
       
  1406 
       
  1407         final int spmaxY;
       
  1408 
       
  1409         if (maxY <= _boundsMaxY - 1) {
       
  1410             spmaxY = maxY;
       
  1411         } else {
       
  1412             spmaxY = _boundsMaxY - 1;
       
  1413             maxY   = _boundsMaxY;
       
  1414         }
       
  1415         buckets_minY = spminY - _boundsMinY;
       
  1416         buckets_maxY = maxY   - _boundsMinY;
       
  1417 
       
  1418         if (doLogBounds) {
       
  1419             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
       
  1420                                 + "][" + edgeMinY + " ... " + edgeMaxY + "]");
       
  1421             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
       
  1422                                 + "][" + spminY + " ... " + spmaxY + "]");
       
  1423         }
       
  1424 
       
  1425         // test clipping for shapes out of bounds
       
  1426         if ((spminX > spmaxX) || (spminY > spmaxY)) {
       
  1427             return false;
       
  1428         }
       
  1429 
       
  1430         // half open intervals
       
  1431         // inclusive:
       
  1432         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
       
  1433         // exclusive:
       
  1434         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
       
  1435         // inclusive:
       
  1436         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
       
  1437         // exclusive:
       
  1438         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
       
  1439 
       
  1440         // store BBox to answer ptg.getBBox():
       
  1441         this.cache.init(pminX, pminY, pmaxX, pmaxY, edgeSumDeltaY);
       
  1442 
       
  1443         // Heuristics for using block flags:
       
  1444         if (ENABLE_BLOCK_FLAGS) {
       
  1445             enableBlkFlags = this.cache.useRLE;
       
  1446             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
       
  1447 
       
  1448             if (enableBlkFlags) {
       
  1449                 // ensure blockFlags array is large enough:
       
  1450                 // note: +2 to ensure enough space left at end
       
  1451                 final int nxTiles = ((pmaxX - pminX) >> TILE_SIZE_LG) + 2;
       
  1452                 if (nxTiles > INITIAL_ARRAY) {
       
  1453                     blkFlags = rdrCtx.getIntArray(nxTiles);
       
  1454                 }
       
  1455             }
       
  1456         }
       
  1457 
       
  1458         // memorize the rendering bounding box:
       
  1459         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
       
  1460            to have correct coverage computation */
       
  1461         // inclusive:
       
  1462         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
       
  1463         // exclusive:
       
  1464         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
       
  1465         // inclusive:
       
  1466         bbox_spminY = spminY;
       
  1467         // exclusive:
       
  1468         bbox_spmaxY = FloatMath.min(spmaxY + 1, pmaxY << SUBPIXEL_LG_POSITIONS_Y);
       
  1469 
       
  1470         if (doLogBounds) {
       
  1471             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
       
  1472                                 + "[ [" + pminY + " ... " + pmaxY + "[");
       
  1473             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
       
  1474                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
       
  1475                                 + bbox_spmaxY + "[");
       
  1476         }
       
  1477 
       
  1478         // Prepare alpha line:
       
  1479         // add 2 to better deal with the last pixel in a pixel row.
       
  1480         final int width = (pmaxX - pminX) + 2;
       
  1481 
       
  1482         // Useful when processing tile line by tile line
       
  1483         if (width > INITIAL_AA_ARRAY) {
       
  1484             if (doStats) {
       
  1485                 RendererContext.stats.stat_array_renderer_alphaline
       
  1486                     .add(width);
       
  1487             }
       
  1488             alphaLine = rdrCtx.getIntArray(width);
       
  1489         }
       
  1490 
       
  1491         // process first tile line:
       
  1492         endRendering(pminY);
       
  1493 
       
  1494         return true;
       
  1495     }
       
  1496 
       
  1497     private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
       
  1498 
       
  1499     void endRendering(final int pminY) {
       
  1500         if (doMonitors) {
       
  1501             RendererContext.stats.mon_rdr_endRendering_Y.start();
       
  1502         }
       
  1503 
       
  1504         final int spminY       = pminY << SUBPIXEL_LG_POSITIONS_Y;
       
  1505         final int fixed_spminY = FloatMath.max(bbox_spminY, spminY);
       
  1506 
       
  1507         // avoid rendering for last call to nextTile()
       
  1508         if (fixed_spminY < bbox_spmaxY) {
       
  1509             // process a complete tile line ie scanlines for 32 rows
       
  1510             final int spmaxY = FloatMath.min(bbox_spmaxY, spminY + SUBPIXEL_TILE);
       
  1511 
       
  1512             // process tile line [0 - 32]
       
  1513             cache.resetTileLine(pminY);
       
  1514 
       
  1515             // Process only one tile line:
       
  1516             _endRendering(fixed_spminY, spmaxY);
       
  1517         }
       
  1518         if (doMonitors) {
       
  1519             RendererContext.stats.mon_rdr_endRendering_Y.stop();
       
  1520         }
       
  1521     }
       
  1522 
       
  1523     private boolean enableBlkFlags = false;
       
  1524     private boolean prevUseBlkFlags = false;
       
  1525 
       
  1526     private final int[] blkFlags_initial = new int[INITIAL_ARRAY]; // 1 tile line
       
  1527     /* block flags (0|1) */
       
  1528     private int[] blkFlags = blkFlags_initial;
       
  1529 
       
  1530     void copyAARow(final int[] alphaRow,
       
  1531                    final int pix_y, final int pix_from, final int pix_to,
       
  1532                    final boolean useBlockFlags)
       
  1533     {
       
  1534         if (useBlockFlags) {
       
  1535             if (doStats) {
       
  1536                 RendererContext.stats.hist_tile_generator_encoding.add(1);
       
  1537             }
       
  1538             cache.copyAARowRLE_WithBlockFlags(blkFlags, alphaRow, pix_y, pix_from, pix_to);
       
  1539         } else {
       
  1540             if (doStats) {
       
  1541                 RendererContext.stats.hist_tile_generator_encoding.add(0);
       
  1542             }
       
  1543             cache.copyAARowNoRLE(alphaRow, pix_y, pix_from, pix_to);
       
  1544         }
       
  1545     }
       
  1546 }