28380
|
1 |
/*
|
|
2 |
* Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation.
|
|
8 |
*
|
|
9 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
10 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
11 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
12 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
13 |
* accompanied this code).
|
|
14 |
*
|
|
15 |
* You should have received a copy of the GNU General Public License version
|
|
16 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
17 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
18 |
*
|
|
19 |
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
|
|
20 |
* or visit www.oracle.com if you need additional information or have any
|
|
21 |
* questions.
|
|
22 |
*/
|
|
23 |
|
|
24 |
/*
|
|
25 |
* @test TestGCOld
|
|
26 |
* @key gc
|
|
27 |
* @key stress
|
|
28 |
* @requires vm.gc=="null"
|
|
29 |
* @summary Stress the GC by trying to make old objects more likely to be garbage than young objects.
|
|
30 |
* @run main/othervm -Xmx384M -XX:+UseSerialGC TestGCOld 50 1 20 10 10000
|
|
31 |
* @run main/othervm -Xmx384M -XX:+UseParallelGC TestGCOld 50 1 20 10 10000
|
|
32 |
* @run main/othervm -Xmx384M -XX:+UseParallelGC -XX:-UseParallelOldGC TestGCOld 50 1 20 10 10000
|
|
33 |
* @run main/othervm -Xmx384M -XX:+UseConcMarkSweepGC TestGCOld 50 1 20 10 10000
|
|
34 |
* @run main/othervm -Xmx384M -XX:+UseG1GC TestGCOld 50 1 20 10 10000
|
|
35 |
*/
|
|
36 |
|
|
37 |
import java.text.*;
|
|
38 |
import java.util.Random;
|
|
39 |
|
|
40 |
class TreeNode {
|
|
41 |
public TreeNode left, right;
|
|
42 |
public int val; // will always be the height of the tree
|
|
43 |
}
|
|
44 |
|
|
45 |
|
|
46 |
/* Args:
|
|
47 |
live-data-size: in megabytes (approximate, will be rounded down).
|
|
48 |
work: units of mutator non-allocation work per byte allocated,
|
|
49 |
(in unspecified units. This will affect the promotion rate
|
|
50 |
printed at the end of the run: more mutator work per step implies
|
|
51 |
fewer steps per second implies fewer bytes promoted per second.)
|
|
52 |
short/long ratio: ratio of short-lived bytes allocated to long-lived
|
|
53 |
bytes allocated.
|
|
54 |
pointer mutation rate: number of pointer mutations per step.
|
|
55 |
steps: number of steps to do.
|
|
56 |
*/
|
|
57 |
|
|
58 |
public class TestGCOld {
|
|
59 |
|
|
60 |
// Command-line parameters.
|
|
61 |
|
|
62 |
private static int size, workUnits, promoteRate, ptrMutRate, steps;
|
|
63 |
|
|
64 |
// Constants.
|
|
65 |
|
|
66 |
private static final int MEG = 1000000;
|
|
67 |
private static final int INSIGNIFICANT = 999; // this many bytes don't matter
|
|
68 |
private static final int BYTES_PER_WORD = 4;
|
|
69 |
private static final int BYTES_PER_NODE = 20; // bytes per TreeNode
|
|
70 |
private static final int WORDS_DEAD = 100; // size of young garbage object
|
|
71 |
|
|
72 |
private final static int treeHeight = 14;
|
|
73 |
private final static long treeSize = heightToBytes(treeHeight);
|
|
74 |
|
|
75 |
private static final String msg1
|
|
76 |
= "Usage: java TestGCOld <size> <work> <ratio> <mutation> <steps>";
|
|
77 |
private static final String msg2
|
|
78 |
= " where <size> is the live storage in megabytes";
|
|
79 |
private static final String msg3
|
|
80 |
= " <work> is the mutator work per step (arbitrary units)";
|
|
81 |
private static final String msg4
|
|
82 |
= " <ratio> is the ratio of short-lived to long-lived allocation";
|
|
83 |
private static final String msg5
|
|
84 |
= " <mutation> is the mutations per step";
|
|
85 |
private static final String msg6
|
|
86 |
= " <steps> is the number of steps";
|
|
87 |
|
|
88 |
// Counters (and global variables that discourage optimization)
|
|
89 |
|
|
90 |
private static long youngBytes = 0; // total young bytes allocated
|
|
91 |
private static long nodes = 0; // total tree nodes allocated
|
|
92 |
private static long actuallyMut = 0; // pointer mutations in old trees
|
|
93 |
private static long mutatorSum = 0; // checksum to discourage optimization
|
|
94 |
public static int[] aexport; // exported array to discourage opt
|
|
95 |
|
|
96 |
// Global variables.
|
|
97 |
|
|
98 |
private static TreeNode[] trees;
|
|
99 |
private static int where = 0; // roving index into trees
|
|
100 |
private static Random rnd = new Random();
|
|
101 |
|
|
102 |
// Returns the height of the given tree.
|
|
103 |
|
|
104 |
private static int height (TreeNode t) {
|
|
105 |
if (t == null) {
|
|
106 |
return 0;
|
|
107 |
}
|
|
108 |
else {
|
|
109 |
return 1 + Math.max (height (t.left), height (t.right));
|
|
110 |
}
|
|
111 |
}
|
|
112 |
|
|
113 |
// Returns the length of the shortest path in the given tree.
|
|
114 |
|
|
115 |
private static int shortestPath (TreeNode t) {
|
|
116 |
if (t == null) {
|
|
117 |
return 0;
|
|
118 |
}
|
|
119 |
else {
|
|
120 |
return 1 + Math.min (shortestPath (t.left), shortestPath (t.right));
|
|
121 |
}
|
|
122 |
}
|
|
123 |
|
|
124 |
// Returns the number of nodes in a balanced tree of the given height.
|
|
125 |
|
|
126 |
private static long heightToNodes (int h) {
|
|
127 |
if (h == 0) {
|
|
128 |
return 0;
|
|
129 |
}
|
|
130 |
else {
|
|
131 |
long n = 1;
|
|
132 |
while (h > 1) {
|
|
133 |
n = n + n;
|
|
134 |
h = h - 1;
|
|
135 |
}
|
|
136 |
return n + n - 1;
|
|
137 |
}
|
|
138 |
}
|
|
139 |
|
|
140 |
// Returns the number of bytes in a balanced tree of the given height.
|
|
141 |
|
|
142 |
private static long heightToBytes (int h) {
|
|
143 |
return BYTES_PER_NODE * heightToNodes (h);
|
|
144 |
}
|
|
145 |
|
|
146 |
// Returns the height of the largest balanced tree
|
|
147 |
// that has no more than the given number of nodes.
|
|
148 |
|
|
149 |
private static int nodesToHeight (long nodes) {
|
|
150 |
int h = 1;
|
|
151 |
long n = 1;
|
|
152 |
while (n + n - 1 <= nodes) {
|
|
153 |
n = n + n;
|
|
154 |
h = h + 1;
|
|
155 |
}
|
|
156 |
return h - 1;
|
|
157 |
}
|
|
158 |
|
|
159 |
// Returns the height of the largest balanced tree
|
|
160 |
// that occupies no more than the given number of bytes.
|
|
161 |
|
|
162 |
private static int bytesToHeight (long bytes) {
|
|
163 |
return nodesToHeight (bytes / BYTES_PER_NODE);
|
|
164 |
}
|
|
165 |
|
|
166 |
// Returns a newly allocated balanced binary tree of height h.
|
|
167 |
|
|
168 |
private static TreeNode makeTree(int h) {
|
|
169 |
if (h == 0) return null;
|
|
170 |
else {
|
|
171 |
TreeNode res = new TreeNode();
|
|
172 |
nodes++;
|
|
173 |
res.left = makeTree(h-1);
|
|
174 |
res.right = makeTree(h-1);
|
|
175 |
res.val = h;
|
|
176 |
return res;
|
|
177 |
}
|
|
178 |
}
|
|
179 |
|
|
180 |
// Allocates approximately size megabytes of trees and stores
|
|
181 |
// them into a global array.
|
|
182 |
|
|
183 |
private static void init() {
|
|
184 |
int ntrees = (int) ((size * MEG) / treeSize);
|
|
185 |
trees = new TreeNode[ntrees];
|
|
186 |
|
|
187 |
System.err.println("Allocating " + ntrees + " trees.");
|
|
188 |
System.err.println(" (" + (ntrees * treeSize) + " bytes)");
|
|
189 |
for (int i = 0; i < ntrees; i++) {
|
|
190 |
trees[i] = makeTree(treeHeight);
|
|
191 |
// doYoungGenAlloc(promoteRate*ntrees*treeSize, WORDS_DEAD);
|
|
192 |
}
|
|
193 |
System.err.println(" (" + nodes + " nodes)");
|
|
194 |
|
|
195 |
/* Allow any in-progress GC to catch up... */
|
|
196 |
// try { Thread.sleep(20000); } catch (InterruptedException x) {}
|
|
197 |
}
|
|
198 |
|
|
199 |
// Confirms that all trees are balanced and have the correct height.
|
|
200 |
|
|
201 |
private static void checkTrees() {
|
|
202 |
int ntrees = trees.length;
|
|
203 |
for (int i = 0; i < ntrees; i++) {
|
|
204 |
TreeNode t = trees[i];
|
|
205 |
int h1 = height(t);
|
|
206 |
int h2 = shortestPath(t);
|
|
207 |
if ((h1 != treeHeight) || (h2 != treeHeight)) {
|
|
208 |
System.err.println("*****BUG: " + h1 + " " + h2);
|
|
209 |
}
|
|
210 |
}
|
|
211 |
}
|
|
212 |
|
|
213 |
// Called only by replaceTree (below) and by itself.
|
|
214 |
|
|
215 |
private static void replaceTreeWork(TreeNode full, TreeNode partial, boolean dir) {
|
|
216 |
boolean canGoLeft = full.left != null && full.left.val > partial.val;
|
|
217 |
boolean canGoRight = full.right != null && full.right.val > partial.val;
|
|
218 |
if (canGoLeft && canGoRight) {
|
|
219 |
if (dir)
|
|
220 |
replaceTreeWork(full.left, partial, !dir);
|
|
221 |
else
|
|
222 |
replaceTreeWork(full.right, partial, !dir);
|
|
223 |
} else if (!canGoLeft && !canGoRight) {
|
|
224 |
if (dir)
|
|
225 |
full.left = partial;
|
|
226 |
else
|
|
227 |
full.right = partial;
|
|
228 |
} else if (!canGoLeft) {
|
|
229 |
full.left = partial;
|
|
230 |
} else {
|
|
231 |
full.right = partial;
|
|
232 |
}
|
|
233 |
}
|
|
234 |
|
|
235 |
// Given a balanced tree full and a smaller balanced tree partial,
|
|
236 |
// replaces an appropriate subtree of full by partial, taking care
|
|
237 |
// to preserve the shape of the full tree.
|
|
238 |
|
|
239 |
private static void replaceTree(TreeNode full, TreeNode partial) {
|
|
240 |
boolean dir = (partial.val % 2) == 0;
|
|
241 |
actuallyMut++;
|
|
242 |
replaceTreeWork(full, partial, dir);
|
|
243 |
}
|
|
244 |
|
|
245 |
// Allocates approximately n bytes of long-lived storage,
|
|
246 |
// replacing oldest existing long-lived storage.
|
|
247 |
|
|
248 |
private static void oldGenAlloc(long n) {
|
|
249 |
int full = (int) (n / treeSize);
|
|
250 |
long partial = n % treeSize;
|
|
251 |
// System.out.println("In oldGenAlloc, doing " + full + " full trees "
|
|
252 |
// + "and one partial tree of size " + partial);
|
|
253 |
for (int i = 0; i < full; i++) {
|
|
254 |
trees[where++] = makeTree(treeHeight);
|
|
255 |
if (where == trees.length) where = 0;
|
|
256 |
}
|
|
257 |
while (partial > INSIGNIFICANT) {
|
|
258 |
int h = bytesToHeight(partial);
|
|
259 |
TreeNode newTree = makeTree(h);
|
|
260 |
replaceTree(trees[where++], newTree);
|
|
261 |
if (where == trees.length) where = 0;
|
|
262 |
partial = partial - heightToBytes(h);
|
|
263 |
}
|
|
264 |
}
|
|
265 |
|
|
266 |
// Interchanges two randomly selected subtrees (of same size and depth).
|
|
267 |
|
|
268 |
private static void oldGenSwapSubtrees() {
|
|
269 |
// Randomly pick:
|
|
270 |
// * two tree indices
|
|
271 |
// * A depth
|
|
272 |
// * A path to that depth.
|
|
273 |
int index1 = rnd.nextInt(trees.length);
|
|
274 |
int index2 = rnd.nextInt(trees.length);
|
|
275 |
int depth = rnd.nextInt(treeHeight);
|
|
276 |
int path = rnd.nextInt();
|
|
277 |
TreeNode tn1 = trees[index1];
|
|
278 |
TreeNode tn2 = trees[index2];
|
|
279 |
for (int i = 0; i < depth; i++) {
|
|
280 |
if ((path & 1) == 0) {
|
|
281 |
tn1 = tn1.left;
|
|
282 |
tn2 = tn2.left;
|
|
283 |
} else {
|
|
284 |
tn1 = tn1.right;
|
|
285 |
tn2 = tn2.right;
|
|
286 |
}
|
|
287 |
path >>= 1;
|
|
288 |
}
|
|
289 |
TreeNode tmp;
|
|
290 |
if ((path & 1) == 0) {
|
|
291 |
tmp = tn1.left;
|
|
292 |
tn1.left = tn2.left;
|
|
293 |
tn2.left = tmp;
|
|
294 |
} else {
|
|
295 |
tmp = tn1.right;
|
|
296 |
tn1.right = tn2.right;
|
|
297 |
tn2.right = tmp;
|
|
298 |
}
|
|
299 |
actuallyMut += 2;
|
|
300 |
}
|
|
301 |
|
|
302 |
// Update "n" old-generation pointers.
|
|
303 |
|
|
304 |
private static void oldGenMut(long n) {
|
|
305 |
for (int i = 0; i < n/2; i++) {
|
|
306 |
oldGenSwapSubtrees();
|
|
307 |
}
|
|
308 |
}
|
|
309 |
|
|
310 |
// Does the amount of mutator work appropriate for n bytes of young-gen
|
|
311 |
// garbage allocation.
|
|
312 |
|
|
313 |
private static void doMutWork(long n) {
|
|
314 |
int sum = 0;
|
|
315 |
long limit = workUnits*n/10;
|
|
316 |
for (long k = 0; k < limit; k++) sum++;
|
|
317 |
// We don't want dead code elimination to eliminate the loop above.
|
|
318 |
mutatorSum = mutatorSum + sum;
|
|
319 |
}
|
|
320 |
|
|
321 |
// Allocate n bytes of young-gen garbage, in units of "nwords"
|
|
322 |
// words.
|
|
323 |
|
|
324 |
private static void doYoungGenAlloc(long n, int nwords) {
|
|
325 |
final int nbytes = nwords*BYTES_PER_WORD;
|
|
326 |
int allocated = 0;
|
|
327 |
while (allocated < n) {
|
|
328 |
aexport = new int[nwords];
|
|
329 |
/* System.err.println("Step"); */
|
|
330 |
allocated += nbytes;
|
|
331 |
}
|
|
332 |
youngBytes = youngBytes + allocated;
|
|
333 |
}
|
|
334 |
|
|
335 |
// Allocate "n" bytes of young-gen data; and do the
|
|
336 |
// corresponding amount of old-gen allocation and pointer
|
|
337 |
// mutation.
|
|
338 |
|
|
339 |
// oldGenAlloc may perform some mutations, so this code
|
|
340 |
// takes those mutations into account.
|
|
341 |
|
|
342 |
private static void doStep(long n) {
|
|
343 |
long mutations = actuallyMut;
|
|
344 |
|
|
345 |
doYoungGenAlloc(n, WORDS_DEAD);
|
|
346 |
doMutWork(n);
|
|
347 |
oldGenAlloc(n / promoteRate);
|
|
348 |
oldGenMut(Math.max(0L, (mutations + ptrMutRate) - actuallyMut));
|
|
349 |
}
|
|
350 |
|
|
351 |
public static void main(String[] args) {
|
|
352 |
if (args.length != 5) {
|
|
353 |
System.err.println(msg1);
|
|
354 |
System.err.println(msg2);
|
|
355 |
System.err.println(msg3);
|
|
356 |
System.err.println(msg4);
|
|
357 |
System.err.println(msg5);
|
|
358 |
System.err.println(msg6);
|
|
359 |
return;
|
|
360 |
}
|
|
361 |
|
|
362 |
size = Integer.parseInt(args[0]);
|
|
363 |
workUnits = Integer.parseInt(args[1]);
|
|
364 |
promoteRate = Integer.parseInt(args[2]);
|
|
365 |
ptrMutRate = Integer.parseInt(args[3]);
|
|
366 |
steps = Integer.parseInt(args[4]);
|
|
367 |
|
|
368 |
System.out.println(size + " megabytes of live storage");
|
|
369 |
System.out.println(workUnits + " work units per step");
|
|
370 |
System.out.println("promotion ratio is 1:" + promoteRate);
|
|
371 |
System.out.println("pointer mutation rate is " + ptrMutRate);
|
|
372 |
System.out.println(steps + " steps");
|
|
373 |
|
|
374 |
init();
|
|
375 |
// checkTrees();
|
|
376 |
youngBytes = 0;
|
|
377 |
nodes = 0;
|
|
378 |
|
|
379 |
System.err.println("Initialization complete...");
|
|
380 |
|
|
381 |
long start = System.currentTimeMillis();
|
|
382 |
|
|
383 |
for (int step = 0; step < steps; step++) {
|
|
384 |
doStep(MEG);
|
|
385 |
}
|
|
386 |
|
|
387 |
long end = System.currentTimeMillis();
|
|
388 |
float secs = ((float)(end-start))/1000.0F;
|
|
389 |
|
|
390 |
// checkTrees();
|
|
391 |
|
|
392 |
NumberFormat nf = NumberFormat.getInstance();
|
|
393 |
nf.setMaximumFractionDigits(1);
|
|
394 |
System.out.println("\nTook " + nf.format(secs) + " sec in steady state.");
|
|
395 |
nf.setMaximumFractionDigits(2);
|
|
396 |
System.out.println("Allocated " + steps + " Mb of young gen garbage"
|
|
397 |
+ " (= " + nf.format(((float)steps)/secs) +
|
|
398 |
" Mb/sec)");
|
|
399 |
System.out.println(" (actually allocated " +
|
|
400 |
nf.format(((float) youngBytes)/MEG) + " megabytes)");
|
|
401 |
float promoted = ((float)steps) / (float)promoteRate;
|
|
402 |
System.out.println("Promoted " + promoted +
|
|
403 |
" Mb (= " + nf.format(promoted/secs) + " Mb/sec)");
|
|
404 |
System.out.println(" (actually promoted " +
|
|
405 |
nf.format(((float) (nodes * BYTES_PER_NODE))/MEG) +
|
|
406 |
" megabytes)");
|
|
407 |
if (ptrMutRate != 0) {
|
|
408 |
System.out.println("Mutated " + actuallyMut +
|
|
409 |
" pointers (= " +
|
|
410 |
nf.format(actuallyMut/secs) + " ptrs/sec)");
|
|
411 |
|
|
412 |
}
|
|
413 |
// This output serves mainly to discourage optimization.
|
|
414 |
System.out.println("Checksum = " + (mutatorSum + aexport.length));
|
|
415 |
|
|
416 |
}
|
|
417 |
}
|