2
|
1 |
/*
|
|
2 |
* Copyright 2006-2007 Sun Microsystems, Inc. All Rights Reserved.
|
|
3 |
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
|
|
4 |
*
|
|
5 |
* This code is free software; you can redistribute it and/or modify it
|
|
6 |
* under the terms of the GNU General Public License version 2 only, as
|
|
7 |
* published by the Free Software Foundation. Sun designates this
|
|
8 |
* particular file as subject to the "Classpath" exception as provided
|
|
9 |
* by Sun in the LICENSE file that accompanied this code.
|
|
10 |
*
|
|
11 |
* This code is distributed in the hope that it will be useful, but WITHOUT
|
|
12 |
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 |
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 |
* version 2 for more details (a copy is included in the LICENSE file that
|
|
15 |
* accompanied this code).
|
|
16 |
*
|
|
17 |
* You should have received a copy of the GNU General Public License version
|
|
18 |
* 2 along with this work; if not, write to the Free Software Foundation,
|
|
19 |
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
|
|
20 |
*
|
|
21 |
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
|
|
22 |
* CA 95054 USA or visit www.sun.com if you need additional information or
|
|
23 |
* have any questions.
|
|
24 |
*/
|
|
25 |
|
|
26 |
package java.awt;
|
|
27 |
|
|
28 |
import java.awt.MultipleGradientPaint.CycleMethod;
|
|
29 |
import java.awt.MultipleGradientPaint.ColorSpaceType;
|
|
30 |
import java.awt.color.ColorSpace;
|
|
31 |
import java.awt.geom.AffineTransform;
|
|
32 |
import java.awt.geom.NoninvertibleTransformException;
|
|
33 |
import java.awt.geom.Rectangle2D;
|
|
34 |
import java.awt.image.ColorModel;
|
|
35 |
import java.awt.image.DataBuffer;
|
|
36 |
import java.awt.image.DataBufferInt;
|
|
37 |
import java.awt.image.DirectColorModel;
|
|
38 |
import java.awt.image.Raster;
|
|
39 |
import java.awt.image.SinglePixelPackedSampleModel;
|
|
40 |
import java.awt.image.WritableRaster;
|
|
41 |
import java.lang.ref.SoftReference;
|
|
42 |
import java.lang.ref.WeakReference;
|
|
43 |
import java.util.Arrays;
|
|
44 |
|
|
45 |
/**
|
|
46 |
* This is the superclass for all PaintContexts which use a multiple color
|
|
47 |
* gradient to fill in their raster. It provides the actual color
|
|
48 |
* interpolation functionality. Subclasses only have to deal with using
|
|
49 |
* the gradient to fill pixels in a raster.
|
|
50 |
*
|
|
51 |
* @author Nicholas Talian, Vincent Hardy, Jim Graham, Jerry Evans
|
|
52 |
*/
|
|
53 |
abstract class MultipleGradientPaintContext implements PaintContext {
|
|
54 |
|
|
55 |
/**
|
|
56 |
* The PaintContext's ColorModel. This is ARGB if colors are not all
|
|
57 |
* opaque, otherwise it is RGB.
|
|
58 |
*/
|
|
59 |
protected ColorModel model;
|
|
60 |
|
|
61 |
/** Color model used if gradient colors are all opaque. */
|
|
62 |
private static ColorModel xrgbmodel =
|
|
63 |
new DirectColorModel(24, 0x00ff0000, 0x0000ff00, 0x000000ff);
|
|
64 |
|
|
65 |
/** The cached ColorModel. */
|
|
66 |
protected static ColorModel cachedModel;
|
|
67 |
|
|
68 |
/** The cached raster, which is reusable among instances. */
|
|
69 |
protected static WeakReference<Raster> cached;
|
|
70 |
|
|
71 |
/** Raster is reused whenever possible. */
|
|
72 |
protected Raster saved;
|
|
73 |
|
|
74 |
/** The method to use when painting out of the gradient bounds. */
|
|
75 |
protected CycleMethod cycleMethod;
|
|
76 |
|
|
77 |
/** The ColorSpace in which to perform the interpolation */
|
|
78 |
protected ColorSpaceType colorSpace;
|
|
79 |
|
|
80 |
/** Elements of the inverse transform matrix. */
|
|
81 |
protected float a00, a01, a10, a11, a02, a12;
|
|
82 |
|
|
83 |
/**
|
|
84 |
* This boolean specifies wether we are in simple lookup mode, where an
|
|
85 |
* input value between 0 and 1 may be used to directly index into a single
|
|
86 |
* array of gradient colors. If this boolean value is false, then we have
|
|
87 |
* to use a 2-step process where we have to determine which gradient array
|
|
88 |
* we fall into, then determine the index into that array.
|
|
89 |
*/
|
|
90 |
protected boolean isSimpleLookup;
|
|
91 |
|
|
92 |
/**
|
|
93 |
* Size of gradients array for scaling the 0-1 index when looking up
|
|
94 |
* colors the fast way.
|
|
95 |
*/
|
|
96 |
protected int fastGradientArraySize;
|
|
97 |
|
|
98 |
/**
|
|
99 |
* Array which contains the interpolated color values for each interval,
|
|
100 |
* used by calculateSingleArrayGradient(). It is protected for possible
|
|
101 |
* direct access by subclasses.
|
|
102 |
*/
|
|
103 |
protected int[] gradient;
|
|
104 |
|
|
105 |
/**
|
|
106 |
* Array of gradient arrays, one array for each interval. Used by
|
|
107 |
* calculateMultipleArrayGradient().
|
|
108 |
*/
|
|
109 |
private int[][] gradients;
|
|
110 |
|
|
111 |
/** Normalized intervals array. */
|
|
112 |
private float[] normalizedIntervals;
|
|
113 |
|
|
114 |
/** Fractions array. */
|
|
115 |
private float[] fractions;
|
|
116 |
|
|
117 |
/** Used to determine if gradient colors are all opaque. */
|
|
118 |
private int transparencyTest;
|
|
119 |
|
|
120 |
/** Color space conversion lookup tables. */
|
|
121 |
private static final int SRGBtoLinearRGB[] = new int[256];
|
|
122 |
private static final int LinearRGBtoSRGB[] = new int[256];
|
|
123 |
|
|
124 |
static {
|
|
125 |
// build the tables
|
|
126 |
for (int k = 0; k < 256; k++) {
|
|
127 |
SRGBtoLinearRGB[k] = convertSRGBtoLinearRGB(k);
|
|
128 |
LinearRGBtoSRGB[k] = convertLinearRGBtoSRGB(k);
|
|
129 |
}
|
|
130 |
}
|
|
131 |
|
|
132 |
/**
|
|
133 |
* Constant number of max colors between any 2 arbitrary colors.
|
|
134 |
* Used for creating and indexing gradients arrays.
|
|
135 |
*/
|
|
136 |
protected static final int GRADIENT_SIZE = 256;
|
|
137 |
protected static final int GRADIENT_SIZE_INDEX = GRADIENT_SIZE -1;
|
|
138 |
|
|
139 |
/**
|
|
140 |
* Maximum length of the fast single-array. If the estimated array size
|
|
141 |
* is greater than this, switch over to the slow lookup method.
|
|
142 |
* No particular reason for choosing this number, but it seems to provide
|
|
143 |
* satisfactory performance for the common case (fast lookup).
|
|
144 |
*/
|
|
145 |
private static final int MAX_GRADIENT_ARRAY_SIZE = 5000;
|
|
146 |
|
|
147 |
/**
|
|
148 |
* Constructor for MultipleGradientPaintContext superclass.
|
|
149 |
*/
|
|
150 |
protected MultipleGradientPaintContext(MultipleGradientPaint mgp,
|
|
151 |
ColorModel cm,
|
|
152 |
Rectangle deviceBounds,
|
|
153 |
Rectangle2D userBounds,
|
|
154 |
AffineTransform t,
|
|
155 |
RenderingHints hints,
|
|
156 |
float[] fractions,
|
|
157 |
Color[] colors,
|
|
158 |
CycleMethod cycleMethod,
|
|
159 |
ColorSpaceType colorSpace)
|
|
160 |
{
|
|
161 |
if (deviceBounds == null) {
|
|
162 |
throw new NullPointerException("Device bounds cannot be null");
|
|
163 |
}
|
|
164 |
|
|
165 |
if (userBounds == null) {
|
|
166 |
throw new NullPointerException("User bounds cannot be null");
|
|
167 |
}
|
|
168 |
|
|
169 |
if (t == null) {
|
|
170 |
throw new NullPointerException("Transform cannot be null");
|
|
171 |
}
|
|
172 |
|
|
173 |
if (hints == null) {
|
|
174 |
throw new NullPointerException("RenderingHints cannot be null");
|
|
175 |
}
|
|
176 |
|
|
177 |
// The inverse transform is needed to go from device to user space.
|
|
178 |
// Get all the components of the inverse transform matrix.
|
|
179 |
AffineTransform tInv;
|
|
180 |
try {
|
|
181 |
// the following assumes that the caller has copied the incoming
|
|
182 |
// transform and is not concerned about it being modified
|
|
183 |
t.invert();
|
|
184 |
tInv = t;
|
|
185 |
} catch (NoninvertibleTransformException e) {
|
|
186 |
// just use identity transform in this case; better to show
|
|
187 |
// (incorrect) results than to throw an exception and/or no-op
|
|
188 |
tInv = new AffineTransform();
|
|
189 |
}
|
|
190 |
double m[] = new double[6];
|
|
191 |
tInv.getMatrix(m);
|
|
192 |
a00 = (float)m[0];
|
|
193 |
a10 = (float)m[1];
|
|
194 |
a01 = (float)m[2];
|
|
195 |
a11 = (float)m[3];
|
|
196 |
a02 = (float)m[4];
|
|
197 |
a12 = (float)m[5];
|
|
198 |
|
|
199 |
// copy some flags
|
|
200 |
this.cycleMethod = cycleMethod;
|
|
201 |
this.colorSpace = colorSpace;
|
|
202 |
|
|
203 |
// we can avoid copying this array since we do not modify its values
|
|
204 |
this.fractions = fractions;
|
|
205 |
|
|
206 |
// note that only one of these values can ever be non-null (we either
|
|
207 |
// store the fast gradient array or the slow one, but never both
|
|
208 |
// at the same time)
|
|
209 |
int[] gradient =
|
|
210 |
(mgp.gradient != null) ? mgp.gradient.get() : null;
|
|
211 |
int[][] gradients =
|
|
212 |
(mgp.gradients != null) ? mgp.gradients.get() : null;
|
|
213 |
|
|
214 |
if (gradient == null && gradients == null) {
|
|
215 |
// we need to (re)create the appropriate values
|
|
216 |
calculateLookupData(colors);
|
|
217 |
|
|
218 |
// now cache the calculated values in the
|
|
219 |
// MultipleGradientPaint instance for future use
|
|
220 |
mgp.model = this.model;
|
|
221 |
mgp.normalizedIntervals = this.normalizedIntervals;
|
|
222 |
mgp.isSimpleLookup = this.isSimpleLookup;
|
|
223 |
if (isSimpleLookup) {
|
|
224 |
// only cache the fast array
|
|
225 |
mgp.fastGradientArraySize = this.fastGradientArraySize;
|
|
226 |
mgp.gradient = new SoftReference<int[]>(this.gradient);
|
|
227 |
} else {
|
|
228 |
// only cache the slow array
|
|
229 |
mgp.gradients = new SoftReference<int[][]>(this.gradients);
|
|
230 |
}
|
|
231 |
} else {
|
|
232 |
// use the values cached in the MultipleGradientPaint instance
|
|
233 |
this.model = mgp.model;
|
|
234 |
this.normalizedIntervals = mgp.normalizedIntervals;
|
|
235 |
this.isSimpleLookup = mgp.isSimpleLookup;
|
|
236 |
this.gradient = gradient;
|
|
237 |
this.fastGradientArraySize = mgp.fastGradientArraySize;
|
|
238 |
this.gradients = gradients;
|
|
239 |
}
|
|
240 |
}
|
|
241 |
|
|
242 |
/**
|
|
243 |
* This function is the meat of this class. It calculates an array of
|
|
244 |
* gradient colors based on an array of fractions and color values at
|
|
245 |
* those fractions.
|
|
246 |
*/
|
|
247 |
private void calculateLookupData(Color[] colors) {
|
|
248 |
Color[] normalizedColors;
|
|
249 |
if (colorSpace == ColorSpaceType.LINEAR_RGB) {
|
|
250 |
// create a new colors array
|
|
251 |
normalizedColors = new Color[colors.length];
|
|
252 |
// convert the colors using the lookup table
|
|
253 |
for (int i = 0; i < colors.length; i++) {
|
|
254 |
int argb = colors[i].getRGB();
|
|
255 |
int a = argb >>> 24;
|
|
256 |
int r = SRGBtoLinearRGB[(argb >> 16) & 0xff];
|
|
257 |
int g = SRGBtoLinearRGB[(argb >> 8) & 0xff];
|
|
258 |
int b = SRGBtoLinearRGB[(argb ) & 0xff];
|
|
259 |
normalizedColors[i] = new Color(r, g, b, a);
|
|
260 |
}
|
|
261 |
} else {
|
|
262 |
// we can just use this array by reference since we do not
|
|
263 |
// modify its values in the case of SRGB
|
|
264 |
normalizedColors = colors;
|
|
265 |
}
|
|
266 |
|
|
267 |
// this will store the intervals (distances) between gradient stops
|
|
268 |
normalizedIntervals = new float[fractions.length-1];
|
|
269 |
|
|
270 |
// convert from fractions into intervals
|
|
271 |
for (int i = 0; i < normalizedIntervals.length; i++) {
|
|
272 |
// interval distance is equal to the difference in positions
|
|
273 |
normalizedIntervals[i] = this.fractions[i+1] - this.fractions[i];
|
|
274 |
}
|
|
275 |
|
|
276 |
// initialize to be fully opaque for ANDing with colors
|
|
277 |
transparencyTest = 0xff000000;
|
|
278 |
|
|
279 |
// array of interpolation arrays
|
|
280 |
gradients = new int[normalizedIntervals.length][];
|
|
281 |
|
|
282 |
// find smallest interval
|
|
283 |
float Imin = 1;
|
|
284 |
for (int i = 0; i < normalizedIntervals.length; i++) {
|
|
285 |
Imin = (Imin > normalizedIntervals[i]) ?
|
|
286 |
normalizedIntervals[i] : Imin;
|
|
287 |
}
|
|
288 |
|
|
289 |
// Estimate the size of the entire gradients array.
|
|
290 |
// This is to prevent a tiny interval from causing the size of array
|
|
291 |
// to explode. If the estimated size is too large, break to using
|
|
292 |
// separate arrays for each interval, and using an indexing scheme at
|
|
293 |
// look-up time.
|
|
294 |
int estimatedSize = 0;
|
|
295 |
for (int i = 0; i < normalizedIntervals.length; i++) {
|
|
296 |
estimatedSize += (normalizedIntervals[i]/Imin) * GRADIENT_SIZE;
|
|
297 |
}
|
|
298 |
|
|
299 |
if (estimatedSize > MAX_GRADIENT_ARRAY_SIZE) {
|
|
300 |
// slow method
|
|
301 |
calculateMultipleArrayGradient(normalizedColors);
|
|
302 |
} else {
|
|
303 |
// fast method
|
|
304 |
calculateSingleArrayGradient(normalizedColors, Imin);
|
|
305 |
}
|
|
306 |
|
|
307 |
// use the most "economical" model
|
|
308 |
if ((transparencyTest >>> 24) == 0xff) {
|
|
309 |
model = xrgbmodel;
|
|
310 |
} else {
|
|
311 |
model = ColorModel.getRGBdefault();
|
|
312 |
}
|
|
313 |
}
|
|
314 |
|
|
315 |
/**
|
|
316 |
* FAST LOOKUP METHOD
|
|
317 |
*
|
|
318 |
* This method calculates the gradient color values and places them in a
|
|
319 |
* single int array, gradient[]. It does this by allocating space for
|
|
320 |
* each interval based on its size relative to the smallest interval in
|
|
321 |
* the array. The smallest interval is allocated 255 interpolated values
|
|
322 |
* (the maximum number of unique in-between colors in a 24 bit color
|
|
323 |
* system), and all other intervals are allocated
|
|
324 |
* size = (255 * the ratio of their size to the smallest interval).
|
|
325 |
*
|
|
326 |
* This scheme expedites a speedy retrieval because the colors are
|
|
327 |
* distributed along the array according to their user-specified
|
|
328 |
* distribution. All that is needed is a relative index from 0 to 1.
|
|
329 |
*
|
|
330 |
* The only problem with this method is that the possibility exists for
|
|
331 |
* the array size to balloon in the case where there is a
|
|
332 |
* disproportionately small gradient interval. In this case the other
|
|
333 |
* intervals will be allocated huge space, but much of that data is
|
|
334 |
* redundant. We thus need to use the space conserving scheme below.
|
|
335 |
*
|
|
336 |
* @param Imin the size of the smallest interval
|
|
337 |
*/
|
|
338 |
private void calculateSingleArrayGradient(Color[] colors, float Imin) {
|
|
339 |
// set the flag so we know later it is a simple (fast) lookup
|
|
340 |
isSimpleLookup = true;
|
|
341 |
|
|
342 |
// 2 colors to interpolate
|
|
343 |
int rgb1, rgb2;
|
|
344 |
|
|
345 |
//the eventual size of the single array
|
|
346 |
int gradientsTot = 1;
|
|
347 |
|
|
348 |
// for every interval (transition between 2 colors)
|
|
349 |
for (int i = 0; i < gradients.length; i++) {
|
|
350 |
// create an array whose size is based on the ratio to the
|
|
351 |
// smallest interval
|
|
352 |
int nGradients = (int)((normalizedIntervals[i]/Imin)*255f);
|
|
353 |
gradientsTot += nGradients;
|
|
354 |
gradients[i] = new int[nGradients];
|
|
355 |
|
|
356 |
// the 2 colors (keyframes) to interpolate between
|
|
357 |
rgb1 = colors[i].getRGB();
|
|
358 |
rgb2 = colors[i+1].getRGB();
|
|
359 |
|
|
360 |
// fill this array with the colors in between rgb1 and rgb2
|
|
361 |
interpolate(rgb1, rgb2, gradients[i]);
|
|
362 |
|
|
363 |
// if the colors are opaque, transparency should still
|
|
364 |
// be 0xff000000
|
|
365 |
transparencyTest &= rgb1;
|
|
366 |
transparencyTest &= rgb2;
|
|
367 |
}
|
|
368 |
|
|
369 |
// put all gradients in a single array
|
|
370 |
gradient = new int[gradientsTot];
|
|
371 |
int curOffset = 0;
|
|
372 |
for (int i = 0; i < gradients.length; i++){
|
|
373 |
System.arraycopy(gradients[i], 0, gradient,
|
|
374 |
curOffset, gradients[i].length);
|
|
375 |
curOffset += gradients[i].length;
|
|
376 |
}
|
|
377 |
gradient[gradient.length-1] = colors[colors.length-1].getRGB();
|
|
378 |
|
|
379 |
// if interpolation occurred in Linear RGB space, convert the
|
|
380 |
// gradients back to sRGB using the lookup table
|
|
381 |
if (colorSpace == ColorSpaceType.LINEAR_RGB) {
|
|
382 |
for (int i = 0; i < gradient.length; i++) {
|
|
383 |
gradient[i] = convertEntireColorLinearRGBtoSRGB(gradient[i]);
|
|
384 |
}
|
|
385 |
}
|
|
386 |
|
|
387 |
fastGradientArraySize = gradient.length - 1;
|
|
388 |
}
|
|
389 |
|
|
390 |
/**
|
|
391 |
* SLOW LOOKUP METHOD
|
|
392 |
*
|
|
393 |
* This method calculates the gradient color values for each interval and
|
|
394 |
* places each into its own 255 size array. The arrays are stored in
|
|
395 |
* gradients[][]. (255 is used because this is the maximum number of
|
|
396 |
* unique colors between 2 arbitrary colors in a 24 bit color system.)
|
|
397 |
*
|
|
398 |
* This method uses the minimum amount of space (only 255 * number of
|
|
399 |
* intervals), but it aggravates the lookup procedure, because now we
|
|
400 |
* have to find out which interval to select, then calculate the index
|
|
401 |
* within that interval. This causes a significant performance hit,
|
|
402 |
* because it requires this calculation be done for every point in
|
|
403 |
* the rendering loop.
|
|
404 |
*
|
|
405 |
* For those of you who are interested, this is a classic example of the
|
|
406 |
* time-space tradeoff.
|
|
407 |
*/
|
|
408 |
private void calculateMultipleArrayGradient(Color[] colors) {
|
|
409 |
// set the flag so we know later it is a non-simple lookup
|
|
410 |
isSimpleLookup = false;
|
|
411 |
|
|
412 |
// 2 colors to interpolate
|
|
413 |
int rgb1, rgb2;
|
|
414 |
|
|
415 |
// for every interval (transition between 2 colors)
|
|
416 |
for (int i = 0; i < gradients.length; i++){
|
|
417 |
// create an array of the maximum theoretical size for
|
|
418 |
// each interval
|
|
419 |
gradients[i] = new int[GRADIENT_SIZE];
|
|
420 |
|
|
421 |
// get the the 2 colors
|
|
422 |
rgb1 = colors[i].getRGB();
|
|
423 |
rgb2 = colors[i+1].getRGB();
|
|
424 |
|
|
425 |
// fill this array with the colors in between rgb1 and rgb2
|
|
426 |
interpolate(rgb1, rgb2, gradients[i]);
|
|
427 |
|
|
428 |
// if the colors are opaque, transparency should still
|
|
429 |
// be 0xff000000
|
|
430 |
transparencyTest &= rgb1;
|
|
431 |
transparencyTest &= rgb2;
|
|
432 |
}
|
|
433 |
|
|
434 |
// if interpolation occurred in Linear RGB space, convert the
|
|
435 |
// gradients back to SRGB using the lookup table
|
|
436 |
if (colorSpace == ColorSpaceType.LINEAR_RGB) {
|
|
437 |
for (int j = 0; j < gradients.length; j++) {
|
|
438 |
for (int i = 0; i < gradients[j].length; i++) {
|
|
439 |
gradients[j][i] =
|
|
440 |
convertEntireColorLinearRGBtoSRGB(gradients[j][i]);
|
|
441 |
}
|
|
442 |
}
|
|
443 |
}
|
|
444 |
}
|
|
445 |
|
|
446 |
/**
|
|
447 |
* Yet another helper function. This one linearly interpolates between
|
|
448 |
* 2 colors, filling up the output array.
|
|
449 |
*
|
|
450 |
* @param rgb1 the start color
|
|
451 |
* @param rgb2 the end color
|
|
452 |
* @param output the output array of colors; must not be null
|
|
453 |
*/
|
|
454 |
private void interpolate(int rgb1, int rgb2, int[] output) {
|
|
455 |
// color components
|
|
456 |
int a1, r1, g1, b1, da, dr, dg, db;
|
|
457 |
|
|
458 |
// step between interpolated values
|
|
459 |
float stepSize = 1.0f / output.length;
|
|
460 |
|
|
461 |
// extract color components from packed integer
|
|
462 |
a1 = (rgb1 >> 24) & 0xff;
|
|
463 |
r1 = (rgb1 >> 16) & 0xff;
|
|
464 |
g1 = (rgb1 >> 8) & 0xff;
|
|
465 |
b1 = (rgb1 ) & 0xff;
|
|
466 |
|
|
467 |
// calculate the total change in alpha, red, green, blue
|
|
468 |
da = ((rgb2 >> 24) & 0xff) - a1;
|
|
469 |
dr = ((rgb2 >> 16) & 0xff) - r1;
|
|
470 |
dg = ((rgb2 >> 8) & 0xff) - g1;
|
|
471 |
db = ((rgb2 ) & 0xff) - b1;
|
|
472 |
|
|
473 |
// for each step in the interval calculate the in-between color by
|
|
474 |
// multiplying the normalized current position by the total color
|
|
475 |
// change (0.5 is added to prevent truncation round-off error)
|
|
476 |
for (int i = 0; i < output.length; i++) {
|
|
477 |
output[i] =
|
|
478 |
(((int) ((a1 + i * da * stepSize) + 0.5) << 24)) |
|
|
479 |
(((int) ((r1 + i * dr * stepSize) + 0.5) << 16)) |
|
|
480 |
(((int) ((g1 + i * dg * stepSize) + 0.5) << 8)) |
|
|
481 |
(((int) ((b1 + i * db * stepSize) + 0.5) ));
|
|
482 |
}
|
|
483 |
}
|
|
484 |
|
|
485 |
/**
|
|
486 |
* Yet another helper function. This one extracts the color components
|
|
487 |
* of an integer RGB triple, converts them from LinearRGB to SRGB, then
|
|
488 |
* recompacts them into an int.
|
|
489 |
*/
|
|
490 |
private int convertEntireColorLinearRGBtoSRGB(int rgb) {
|
|
491 |
// color components
|
|
492 |
int a1, r1, g1, b1;
|
|
493 |
|
|
494 |
// extract red, green, blue components
|
|
495 |
a1 = (rgb >> 24) & 0xff;
|
|
496 |
r1 = (rgb >> 16) & 0xff;
|
|
497 |
g1 = (rgb >> 8) & 0xff;
|
|
498 |
b1 = (rgb ) & 0xff;
|
|
499 |
|
|
500 |
// use the lookup table
|
|
501 |
r1 = LinearRGBtoSRGB[r1];
|
|
502 |
g1 = LinearRGBtoSRGB[g1];
|
|
503 |
b1 = LinearRGBtoSRGB[b1];
|
|
504 |
|
|
505 |
// re-compact the components
|
|
506 |
return ((a1 << 24) |
|
|
507 |
(r1 << 16) |
|
|
508 |
(g1 << 8) |
|
|
509 |
(b1 ));
|
|
510 |
}
|
|
511 |
|
|
512 |
/**
|
|
513 |
* Helper function to index into the gradients array. This is necessary
|
|
514 |
* because each interval has an array of colors with uniform size 255.
|
|
515 |
* However, the color intervals are not necessarily of uniform length, so
|
|
516 |
* a conversion is required.
|
|
517 |
*
|
|
518 |
* @param position the unmanipulated position, which will be mapped
|
|
519 |
* into the range 0 to 1
|
|
520 |
* @returns integer color to display
|
|
521 |
*/
|
|
522 |
protected final int indexIntoGradientsArrays(float position) {
|
|
523 |
// first, manipulate position value depending on the cycle method
|
|
524 |
if (cycleMethod == CycleMethod.NO_CYCLE) {
|
|
525 |
if (position > 1) {
|
|
526 |
// upper bound is 1
|
|
527 |
position = 1;
|
|
528 |
} else if (position < 0) {
|
|
529 |
// lower bound is 0
|
|
530 |
position = 0;
|
|
531 |
}
|
|
532 |
} else if (cycleMethod == CycleMethod.REPEAT) {
|
|
533 |
// get the fractional part
|
|
534 |
// (modulo behavior discards integer component)
|
|
535 |
position = position - (int)position;
|
|
536 |
|
|
537 |
//position should now be between -1 and 1
|
|
538 |
if (position < 0) {
|
|
539 |
// force it to be in the range 0-1
|
|
540 |
position = position + 1;
|
|
541 |
}
|
|
542 |
} else { // cycleMethod == CycleMethod.REFLECT
|
|
543 |
if (position < 0) {
|
|
544 |
// take absolute value
|
|
545 |
position = -position;
|
|
546 |
}
|
|
547 |
|
|
548 |
// get the integer part
|
|
549 |
int part = (int)position;
|
|
550 |
|
|
551 |
// get the fractional part
|
|
552 |
position = position - part;
|
|
553 |
|
|
554 |
if ((part & 1) == 1) {
|
|
555 |
// integer part is odd, get reflected color instead
|
|
556 |
position = 1 - position;
|
|
557 |
}
|
|
558 |
}
|
|
559 |
|
|
560 |
// now, get the color based on this 0-1 position...
|
|
561 |
|
|
562 |
if (isSimpleLookup) {
|
|
563 |
// easy to compute: just scale index by array size
|
|
564 |
return gradient[(int)(position * fastGradientArraySize)];
|
|
565 |
} else {
|
|
566 |
// more complicated computation, to save space
|
|
567 |
|
|
568 |
// for all the gradient interval arrays
|
|
569 |
for (int i = 0; i < gradients.length; i++) {
|
|
570 |
if (position < fractions[i+1]) {
|
|
571 |
// this is the array we want
|
|
572 |
float delta = position - fractions[i];
|
|
573 |
|
|
574 |
// this is the interval we want
|
|
575 |
int index = (int)((delta / normalizedIntervals[i])
|
|
576 |
* (GRADIENT_SIZE_INDEX));
|
|
577 |
|
|
578 |
return gradients[i][index];
|
|
579 |
}
|
|
580 |
}
|
|
581 |
}
|
|
582 |
|
|
583 |
return gradients[gradients.length - 1][GRADIENT_SIZE_INDEX];
|
|
584 |
}
|
|
585 |
|
|
586 |
/**
|
|
587 |
* Helper function to convert a color component in sRGB space to linear
|
|
588 |
* RGB space. Used to build a static lookup table.
|
|
589 |
*/
|
|
590 |
private static int convertSRGBtoLinearRGB(int color) {
|
|
591 |
float input, output;
|
|
592 |
|
|
593 |
input = color / 255.0f;
|
|
594 |
if (input <= 0.04045f) {
|
|
595 |
output = input / 12.92f;
|
|
596 |
} else {
|
|
597 |
output = (float)Math.pow((input + 0.055) / 1.055, 2.4);
|
|
598 |
}
|
|
599 |
|
|
600 |
return Math.round(output * 255.0f);
|
|
601 |
}
|
|
602 |
|
|
603 |
/**
|
|
604 |
* Helper function to convert a color component in linear RGB space to
|
|
605 |
* SRGB space. Used to build a static lookup table.
|
|
606 |
*/
|
|
607 |
private static int convertLinearRGBtoSRGB(int color) {
|
|
608 |
float input, output;
|
|
609 |
|
|
610 |
input = color/255.0f;
|
|
611 |
if (input <= 0.0031308) {
|
|
612 |
output = input * 12.92f;
|
|
613 |
} else {
|
|
614 |
output = (1.055f *
|
|
615 |
((float) Math.pow(input, (1.0 / 2.4)))) - 0.055f;
|
|
616 |
}
|
|
617 |
|
|
618 |
return Math.round(output * 255.0f);
|
|
619 |
}
|
|
620 |
|
|
621 |
/**
|
|
622 |
* {@inheritDoc}
|
|
623 |
*/
|
|
624 |
public final Raster getRaster(int x, int y, int w, int h) {
|
|
625 |
// If working raster is big enough, reuse it. Otherwise,
|
|
626 |
// build a large enough new one.
|
|
627 |
Raster raster = saved;
|
|
628 |
if (raster == null ||
|
|
629 |
raster.getWidth() < w || raster.getHeight() < h)
|
|
630 |
{
|
|
631 |
raster = getCachedRaster(model, w, h);
|
|
632 |
saved = raster;
|
|
633 |
}
|
|
634 |
|
|
635 |
// Access raster internal int array. Because we use a DirectColorModel,
|
|
636 |
// we know the DataBuffer is of type DataBufferInt and the SampleModel
|
|
637 |
// is SinglePixelPackedSampleModel.
|
|
638 |
// Adjust for initial offset in DataBuffer and also for the scanline
|
|
639 |
// stride.
|
|
640 |
// These calls make the DataBuffer non-acceleratable, but the
|
|
641 |
// Raster is never Stable long enough to accelerate anyway...
|
|
642 |
DataBufferInt rasterDB = (DataBufferInt)raster.getDataBuffer();
|
|
643 |
int[] pixels = rasterDB.getData(0);
|
|
644 |
int off = rasterDB.getOffset();
|
|
645 |
int scanlineStride = ((SinglePixelPackedSampleModel)
|
|
646 |
raster.getSampleModel()).getScanlineStride();
|
|
647 |
int adjust = scanlineStride - w;
|
|
648 |
|
|
649 |
fillRaster(pixels, off, adjust, x, y, w, h); // delegate to subclass
|
|
650 |
|
|
651 |
return raster;
|
|
652 |
}
|
|
653 |
|
|
654 |
protected abstract void fillRaster(int pixels[], int off, int adjust,
|
|
655 |
int x, int y, int w, int h);
|
|
656 |
|
|
657 |
|
|
658 |
/**
|
|
659 |
* Took this cacheRaster code from GradientPaint. It appears to recycle
|
|
660 |
* rasters for use by any other instance, as long as they are sufficiently
|
|
661 |
* large.
|
|
662 |
*/
|
|
663 |
private static synchronized Raster getCachedRaster(ColorModel cm,
|
|
664 |
int w, int h)
|
|
665 |
{
|
|
666 |
if (cm == cachedModel) {
|
|
667 |
if (cached != null) {
|
|
668 |
Raster ras = (Raster) cached.get();
|
|
669 |
if (ras != null &&
|
|
670 |
ras.getWidth() >= w &&
|
|
671 |
ras.getHeight() >= h)
|
|
672 |
{
|
|
673 |
cached = null;
|
|
674 |
return ras;
|
|
675 |
}
|
|
676 |
}
|
|
677 |
}
|
|
678 |
return cm.createCompatibleWritableRaster(w, h);
|
|
679 |
}
|
|
680 |
|
|
681 |
/**
|
|
682 |
* Took this cacheRaster code from GradientPaint. It appears to recycle
|
|
683 |
* rasters for use by any other instance, as long as they are sufficiently
|
|
684 |
* large.
|
|
685 |
*/
|
|
686 |
private static synchronized void putCachedRaster(ColorModel cm,
|
|
687 |
Raster ras)
|
|
688 |
{
|
|
689 |
if (cached != null) {
|
|
690 |
Raster cras = (Raster) cached.get();
|
|
691 |
if (cras != null) {
|
|
692 |
int cw = cras.getWidth();
|
|
693 |
int ch = cras.getHeight();
|
|
694 |
int iw = ras.getWidth();
|
|
695 |
int ih = ras.getHeight();
|
|
696 |
if (cw >= iw && ch >= ih) {
|
|
697 |
return;
|
|
698 |
}
|
|
699 |
if (cw * ch >= iw * ih) {
|
|
700 |
return;
|
|
701 |
}
|
|
702 |
}
|
|
703 |
}
|
|
704 |
cachedModel = cm;
|
|
705 |
cached = new WeakReference<Raster>(ras);
|
|
706 |
}
|
|
707 |
|
|
708 |
/**
|
|
709 |
* {@inheritDoc}
|
|
710 |
*/
|
|
711 |
public final void dispose() {
|
|
712 |
if (saved != null) {
|
|
713 |
putCachedRaster(model, saved);
|
|
714 |
saved = null;
|
|
715 |
}
|
|
716 |
}
|
|
717 |
|
|
718 |
/**
|
|
719 |
* {@inheritDoc}
|
|
720 |
*/
|
|
721 |
public final ColorModel getColorModel() {
|
|
722 |
return model;
|
|
723 |
}
|
|
724 |
}
|