author | mcherkas |
Thu, 05 Sep 2013 15:37:40 +0400 | |
changeset 20113 | ee0defbadbb1 |
parent 18698 | 862c19338ded |
child 27453 | 9aeb9b97bef6 |
permissions | -rw-r--r-- |
18450 | 1 |
//package com.polytechnik.utils; |
2 |
/* |
|
3 |
* (C) Vladislav Malyshkin 2010 |
|
4 |
* This file is under GPL version 3. |
|
5 |
* |
|
6 |
*/ |
|
7 |
||
8 |
/** Polynomial root. |
|
9 |
* @version $Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $ |
|
10 |
* @author Vladislav Malyshkin mal@gromco.com |
|
11 |
*/ |
|
12 |
||
13 |
/** |
|
14 |
* @test |
|
15 |
* @bug 8005956 |
|
16 |
* @summary C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block |
|
17 |
* |
|
18698
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
18 |
* @run main/timeout=300 PolynomialRoot |
18450 | 19 |
*/ |
20 |
||
21 |
public class PolynomialRoot { |
|
22 |
||
23 |
||
24 |
public static int findPolynomialRoots(final int n, |
|
25 |
final double [] p, |
|
26 |
final double [] re_root, |
|
27 |
final double [] im_root) |
|
28 |
{ |
|
29 |
if(n==4) |
|
30 |
{ |
|
31 |
return root4(p,re_root,im_root); |
|
32 |
} |
|
33 |
else if(n==3) |
|
34 |
{ |
|
35 |
return root3(p,re_root,im_root); |
|
36 |
} |
|
37 |
else if(n==2) |
|
38 |
{ |
|
39 |
return root2(p,re_root,im_root); |
|
40 |
} |
|
41 |
else if(n==1) |
|
42 |
{ |
|
43 |
return root1(p,re_root,im_root); |
|
44 |
} |
|
45 |
else |
|
46 |
{ |
|
47 |
throw new RuntimeException("n="+n+" is not supported yet"); |
|
48 |
} |
|
49 |
} |
|
50 |
||
51 |
||
52 |
||
53 |
static final double SQRT3=Math.sqrt(3.0),SQRT2=Math.sqrt(2.0); |
|
54 |
||
55 |
||
56 |
private static final boolean PRINT_DEBUG=false; |
|
57 |
||
58 |
public static int root4(final double [] p,final double [] re_root,final double [] im_root) |
|
59 |
{ |
|
60 |
if(PRINT_DEBUG) System.err.println("=====================root4:p="+java.util.Arrays.toString(p)); |
|
61 |
final double vs=p[4]; |
|
62 |
if(PRINT_DEBUG) System.err.println("p[4]="+p[4]); |
|
63 |
if(!(Math.abs(vs)>EPS)) |
|
64 |
{ |
|
65 |
re_root[0]=re_root[1]=re_root[2]=re_root[3]= |
|
66 |
im_root[0]=im_root[1]=im_root[2]=im_root[3]=Double.NaN; |
|
67 |
return -1; |
|
68 |
} |
|
69 |
||
70 |
/* zsolve_quartic.c - finds the complex roots of |
|
71 |
* x^4 + a x^3 + b x^2 + c x + d = 0 |
|
72 |
*/ |
|
73 |
final double a=p[3]/vs,b=p[2]/vs,c=p[1]/vs,d=p[0]/vs; |
|
74 |
if(PRINT_DEBUG) System.err.println("input a="+a+" b="+b+" c="+c+" d="+d); |
|
75 |
||
76 |
||
77 |
final double r4 = 1.0 / 4.0; |
|
78 |
final double q2 = 1.0 / 2.0, q4 = 1.0 / 4.0, q8 = 1.0 / 8.0; |
|
79 |
final double q1 = 3.0 / 8.0, q3 = 3.0 / 16.0; |
|
80 |
final int mt; |
|
81 |
||
82 |
/* Deal easily with the cases where the quartic is degenerate. The |
|
83 |
* ordering of solutions is done explicitly. */ |
|
84 |
if (0 == b && 0 == c) |
|
85 |
{ |
|
86 |
if (0 == d) |
|
87 |
{ |
|
88 |
re_root[0]=-a; |
|
89 |
im_root[0]=im_root[1]=im_root[2]=im_root[3]=0; |
|
90 |
re_root[1]=re_root[2]=re_root[3]=0; |
|
91 |
return 4; |
|
92 |
} |
|
93 |
else if (0 == a) |
|
94 |
{ |
|
95 |
if (d > 0) |
|
96 |
{ |
|
97 |
final double sq4 = Math.sqrt(Math.sqrt(d)); |
|
98 |
re_root[0]=sq4*SQRT2/2; |
|
99 |
im_root[0]=re_root[0]; |
|
100 |
re_root[1]=-re_root[0]; |
|
101 |
im_root[1]=re_root[0]; |
|
102 |
re_root[2]=-re_root[0]; |
|
103 |
im_root[2]=-re_root[0]; |
|
104 |
re_root[3]=re_root[0]; |
|
105 |
im_root[3]=-re_root[0]; |
|
106 |
if(PRINT_DEBUG) System.err.println("Path a=0 d>0"); |
|
107 |
} |
|
108 |
else |
|
109 |
{ |
|
110 |
final double sq4 = Math.sqrt(Math.sqrt(-d)); |
|
111 |
re_root[0]=sq4; |
|
112 |
im_root[0]=0; |
|
113 |
re_root[1]=0; |
|
114 |
im_root[1]=sq4; |
|
115 |
re_root[2]=0; |
|
116 |
im_root[2]=-sq4; |
|
117 |
re_root[3]=-sq4; |
|
118 |
im_root[3]=0; |
|
119 |
if(PRINT_DEBUG) System.err.println("Path a=0 d<0"); |
|
120 |
} |
|
121 |
return 4; |
|
122 |
} |
|
123 |
} |
|
124 |
||
125 |
if (0.0 == c && 0.0 == d) |
|
126 |
{ |
|
127 |
root2(new double []{p[2],p[3],p[4]},re_root,im_root); |
|
128 |
re_root[2]=im_root[2]=re_root[3]=im_root[3]=0; |
|
129 |
return 4; |
|
130 |
} |
|
131 |
||
132 |
if(PRINT_DEBUG) System.err.println("G Path c="+c+" d="+d); |
|
133 |
final double [] u=new double[3]; |
|
134 |
||
135 |
if(PRINT_DEBUG) System.err.println("Generic Path"); |
|
136 |
/* For non-degenerate solutions, proceed by constructing and |
|
137 |
* solving the resolvent cubic */ |
|
138 |
final double aa = a * a; |
|
139 |
final double pp = b - q1 * aa; |
|
140 |
final double qq = c - q2 * a * (b - q4 * aa); |
|
141 |
final double rr = d - q4 * a * (c - q4 * a * (b - q3 * aa)); |
|
142 |
final double rc = q2 * pp , rc3 = rc / 3; |
|
143 |
final double sc = q4 * (q4 * pp * pp - rr); |
|
144 |
final double tc = -(q8 * qq * q8 * qq); |
|
145 |
if(PRINT_DEBUG) System.err.println("aa="+aa+" pp="+pp+" qq="+qq+" rr="+rr+" rc="+rc+" sc="+sc+" tc="+tc); |
|
146 |
final boolean flag_realroots; |
|
147 |
||
148 |
/* This code solves the resolvent cubic in a convenient fashion |
|
149 |
* for this implementation of the quartic. If there are three real |
|
150 |
* roots, then they are placed directly into u[]. If two are |
|
151 |
* complex, then the real root is put into u[0] and the real |
|
152 |
* and imaginary part of the complex roots are placed into |
|
153 |
* u[1] and u[2], respectively. */ |
|
154 |
{ |
|
155 |
final double qcub = (rc * rc - 3 * sc); |
|
156 |
final double rcub = (rc*(2 * rc * rc - 9 * sc) + 27 * tc); |
|
157 |
||
158 |
final double Q = qcub / 9; |
|
159 |
final double R = rcub / 54; |
|
160 |
||
161 |
final double Q3 = Q * Q * Q; |
|
162 |
final double R2 = R * R; |
|
163 |
||
164 |
final double CR2 = 729 * rcub * rcub; |
|
165 |
final double CQ3 = 2916 * qcub * qcub * qcub; |
|
166 |
||
167 |
if(PRINT_DEBUG) System.err.println("CR2="+CR2+" CQ3="+CQ3+" R="+R+" Q="+Q); |
|
168 |
||
169 |
if (0 == R && 0 == Q) |
|
170 |
{ |
|
171 |
flag_realroots=true; |
|
172 |
u[0] = -rc3; |
|
173 |
u[1] = -rc3; |
|
174 |
u[2] = -rc3; |
|
175 |
} |
|
176 |
else if (CR2 == CQ3) |
|
177 |
{ |
|
178 |
flag_realroots=true; |
|
179 |
final double sqrtQ = Math.sqrt (Q); |
|
180 |
if (R > 0) |
|
181 |
{ |
|
182 |
u[0] = -2 * sqrtQ - rc3; |
|
183 |
u[1] = sqrtQ - rc3; |
|
184 |
u[2] = sqrtQ - rc3; |
|
185 |
} |
|
186 |
else |
|
187 |
{ |
|
188 |
u[0] = -sqrtQ - rc3; |
|
189 |
u[1] = -sqrtQ - rc3; |
|
190 |
u[2] = 2 * sqrtQ - rc3; |
|
191 |
} |
|
192 |
} |
|
193 |
else if (R2 < Q3) |
|
194 |
{ |
|
195 |
flag_realroots=true; |
|
196 |
final double ratio = (R >= 0?1:-1) * Math.sqrt (R2 / Q3); |
|
197 |
final double theta = Math.acos (ratio); |
|
198 |
final double norm = -2 * Math.sqrt (Q); |
|
199 |
||
200 |
u[0] = norm * Math.cos (theta / 3) - rc3; |
|
201 |
u[1] = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - rc3; |
|
202 |
u[2] = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - rc3; |
|
203 |
} |
|
204 |
else |
|
205 |
{ |
|
206 |
flag_realroots=false; |
|
207 |
final double A = -(R >= 0?1:-1)*Math.pow(Math.abs(R)+Math.sqrt(R2-Q3),1.0/3.0); |
|
208 |
final double B = Q / A; |
|
209 |
||
210 |
u[0] = A + B - rc3; |
|
211 |
u[1] = -0.5 * (A + B) - rc3; |
|
212 |
u[2] = -(SQRT3*0.5) * Math.abs (A - B); |
|
213 |
} |
|
214 |
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+" u[1]="+u[1]+" u[2]="+u[2]+" qq="+qq+" disc="+((CR2 - CQ3) / 2125764.0)); |
|
215 |
} |
|
216 |
/* End of solution to resolvent cubic */ |
|
217 |
||
218 |
/* Combine the square roots of the roots of the cubic |
|
219 |
* resolvent appropriately. Also, calculate 'mt' which |
|
220 |
* designates the nature of the roots: |
|
221 |
* mt=1 : 4 real roots |
|
222 |
* mt=2 : 0 real roots |
|
223 |
* mt=3 : 2 real roots |
|
224 |
*/ |
|
225 |
||
226 |
||
227 |
final double w1_re,w1_im,w2_re,w2_im,w3_re,w3_im,mod_w1w2,mod_w1w2_squared; |
|
228 |
if (flag_realroots) |
|
229 |
{ |
|
230 |
mod_w1w2=-1; |
|
231 |
mt = 2; |
|
232 |
int jmin=0; |
|
233 |
double vmin=Math.abs(u[jmin]); |
|
234 |
for(int j=1;j<3;j++) |
|
235 |
{ |
|
236 |
final double vx=Math.abs(u[j]); |
|
237 |
if(vx<vmin) |
|
238 |
{ |
|
239 |
vmin=vx; |
|
240 |
jmin=j; |
|
241 |
} |
|
242 |
} |
|
243 |
final double u1=u[(jmin+1)%3],u2=u[(jmin+2)%3]; |
|
244 |
mod_w1w2_squared=Math.abs(u1*u2); |
|
245 |
if(u1>=0) |
|
246 |
{ |
|
247 |
w1_re=Math.sqrt(u1); |
|
248 |
w1_im=0; |
|
249 |
} |
|
250 |
else |
|
251 |
{ |
|
252 |
w1_re=0; |
|
253 |
w1_im=Math.sqrt(-u1); |
|
254 |
} |
|
255 |
if(u2>=0) |
|
256 |
{ |
|
257 |
w2_re=Math.sqrt(u2); |
|
258 |
w2_im=0; |
|
259 |
} |
|
260 |
else |
|
261 |
{ |
|
262 |
w2_re=0; |
|
263 |
w2_im=Math.sqrt(-u2); |
|
264 |
} |
|
265 |
if(PRINT_DEBUG) System.err.println("u1="+u1+" u2="+u2+" jmin="+jmin); |
|
266 |
} |
|
267 |
else |
|
268 |
{ |
|
269 |
mt = 3; |
|
270 |
final double w_mod2_sq=u[1]*u[1]+u[2]*u[2],w_mod2=Math.sqrt(w_mod2_sq),w_mod=Math.sqrt(w_mod2); |
|
271 |
if(w_mod2_sq<=0) |
|
272 |
{ |
|
273 |
w1_re=w1_im=0; |
|
274 |
} |
|
275 |
else |
|
276 |
{ |
|
277 |
// calculate square root of a complex number (u[1],u[2]) |
|
278 |
// the result is in the (w1_re,w1_im) |
|
279 |
final double absu1=Math.abs(u[1]),absu2=Math.abs(u[2]),w; |
|
280 |
if(absu1>=absu2) |
|
281 |
{ |
|
282 |
final double t=absu2/absu1; |
|
283 |
w=Math.sqrt(absu1*0.5 * (1.0 + Math.sqrt(1.0 + t * t))); |
|
284 |
if(PRINT_DEBUG) System.err.println(" Path1 "); |
|
285 |
} |
|
286 |
else |
|
287 |
{ |
|
288 |
final double t=absu1/absu2; |
|
289 |
w=Math.sqrt(absu2*0.5 * (t + Math.sqrt(1.0 + t * t))); |
|
290 |
if(PRINT_DEBUG) System.err.println(" Path1a "); |
|
291 |
} |
|
292 |
if(u[1]>=0) |
|
293 |
{ |
|
294 |
w1_re=w; |
|
295 |
w1_im=u[2]/(2*w); |
|
296 |
if(PRINT_DEBUG) System.err.println(" Path2 "); |
|
297 |
} |
|
298 |
else |
|
299 |
{ |
|
300 |
final double vi = (u[2] >= 0) ? w : -w; |
|
301 |
w1_re=u[2]/(2*vi); |
|
302 |
w1_im=vi; |
|
303 |
if(PRINT_DEBUG) System.err.println(" Path2a "); |
|
304 |
} |
|
305 |
} |
|
306 |
final double absu0=Math.abs(u[0]); |
|
307 |
if(w_mod2>=absu0) |
|
308 |
{ |
|
309 |
mod_w1w2=w_mod2; |
|
310 |
mod_w1w2_squared=w_mod2_sq; |
|
311 |
w2_re=w1_re; |
|
312 |
w2_im=-w1_im; |
|
313 |
} |
|
314 |
else |
|
315 |
{ |
|
316 |
mod_w1w2=-1; |
|
317 |
mod_w1w2_squared=w_mod2*absu0; |
|
318 |
if(u[0]>=0) |
|
319 |
{ |
|
320 |
w2_re=Math.sqrt(absu0); |
|
321 |
w2_im=0; |
|
322 |
} |
|
323 |
else |
|
324 |
{ |
|
325 |
w2_re=0; |
|
326 |
w2_im=Math.sqrt(absu0); |
|
327 |
} |
|
328 |
} |
|
329 |
if(PRINT_DEBUG) System.err.println("u[0]="+u[0]+"u[1]="+u[1]+" u[2]="+u[2]+" absu0="+absu0+" w_mod="+w_mod+" w_mod2="+w_mod2); |
|
330 |
} |
|
331 |
||
332 |
/* Solve the quadratic in order to obtain the roots |
|
333 |
* to the quartic */ |
|
334 |
if(mod_w1w2>0) |
|
335 |
{ |
|
336 |
// a shorcut to reduce rounding error |
|
337 |
w3_re=qq/(-8)/mod_w1w2; |
|
338 |
w3_im=0; |
|
339 |
} |
|
340 |
else if(mod_w1w2_squared>0) |
|
341 |
{ |
|
342 |
// regular path |
|
343 |
final double mqq8n=qq/(-8)/mod_w1w2_squared; |
|
344 |
w3_re=mqq8n*(w1_re*w2_re-w1_im*w2_im); |
|
345 |
w3_im=-mqq8n*(w1_re*w2_im+w2_re*w1_im); |
|
346 |
} |
|
347 |
else |
|
348 |
{ |
|
349 |
// typically occur when qq==0 |
|
350 |
w3_re=w3_im=0; |
|
351 |
} |
|
352 |
||
353 |
final double h = r4 * a; |
|
354 |
if(PRINT_DEBUG) System.err.println("w1_re="+w1_re+" w1_im="+w1_im+" w2_re="+w2_re+" w2_im="+w2_im+" w3_re="+w3_re+" w3_im="+w3_im+" h="+h); |
|
355 |
||
356 |
re_root[0]=w1_re+w2_re+w3_re-h; |
|
357 |
im_root[0]=w1_im+w2_im+w3_im; |
|
358 |
re_root[1]=-(w1_re+w2_re)+w3_re-h; |
|
359 |
im_root[1]=-(w1_im+w2_im)+w3_im; |
|
360 |
re_root[2]=w2_re-w1_re-w3_re-h; |
|
361 |
im_root[2]=w2_im-w1_im-w3_im; |
|
362 |
re_root[3]=w1_re-w2_re-w3_re-h; |
|
363 |
im_root[3]=w1_im-w2_im-w3_im; |
|
364 |
||
365 |
return 4; |
|
366 |
} |
|
367 |
||
368 |
||
369 |
||
370 |
static void setRandomP(final double [] p,final int n,java.util.Random r) |
|
371 |
{ |
|
372 |
if(r.nextDouble()<0.1) |
|
373 |
{ |
|
374 |
// integer coefficiens |
|
375 |
for(int j=0;j<p.length;j++) |
|
376 |
{ |
|
377 |
if(j<=n) |
|
378 |
{ |
|
379 |
p[j]=(r.nextInt(2)<=0?-1:1)*r.nextInt(10); |
|
380 |
} |
|
381 |
else |
|
382 |
{ |
|
383 |
p[j]=0; |
|
384 |
} |
|
385 |
} |
|
386 |
} |
|
387 |
else |
|
388 |
{ |
|
389 |
// real coefficiens |
|
390 |
for(int j=0;j<p.length;j++) |
|
391 |
{ |
|
392 |
if(j<=n) |
|
393 |
{ |
|
394 |
p[j]=-1+2*r.nextDouble(); |
|
395 |
} |
|
396 |
else |
|
397 |
{ |
|
398 |
p[j]=0; |
|
399 |
} |
|
400 |
} |
|
401 |
} |
|
402 |
if(Math.abs(p[n])<1e-2) |
|
403 |
{ |
|
404 |
p[n]=(r.nextInt(2)<=0?-1:1)*(0.1+r.nextDouble()); |
|
405 |
} |
|
406 |
} |
|
407 |
||
408 |
||
409 |
static void checkValues(final double [] p, |
|
410 |
final int n, |
|
411 |
final double rex, |
|
412 |
final double imx, |
|
413 |
final double eps, |
|
414 |
final String txt) |
|
415 |
{ |
|
416 |
double res=0,ims=0,sabs=0; |
|
417 |
final double xabs=Math.abs(rex)+Math.abs(imx); |
|
418 |
for(int k=n;k>=0;k--) |
|
419 |
{ |
|
420 |
final double res1=(res*rex-ims*imx)+p[k]; |
|
421 |
final double ims1=(ims*rex+res*imx); |
|
422 |
res=res1; |
|
423 |
ims=ims1; |
|
424 |
sabs+=xabs*sabs+p[k]; |
|
425 |
} |
|
426 |
sabs=Math.abs(sabs); |
|
427 |
if(false && sabs>1/eps? |
|
428 |
(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps)) |
|
429 |
: |
|
430 |
(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))) |
|
431 |
{ |
|
432 |
throw new RuntimeException( |
|
433 |
getPolinomTXT(p)+"\n"+ |
|
434 |
"\t x.r="+rex+" x.i="+imx+"\n"+ |
|
435 |
"res/sabs="+(res/sabs)+" ims/sabs="+(ims/sabs)+ |
|
436 |
" sabs="+sabs+ |
|
437 |
"\nres="+res+" ims="+ims+" n="+n+" eps="+eps+" "+ |
|
438 |
" sabs>1/eps="+(sabs>1/eps)+ |
|
439 |
" f1="+(!(Math.abs(res/sabs)<=eps)||!(Math.abs(ims/sabs)<=eps))+ |
|
440 |
" f2="+(!(Math.abs(res)<=eps)||!(Math.abs(ims)<=eps))+ |
|
441 |
" "+txt); |
|
442 |
} |
|
443 |
} |
|
444 |
||
445 |
static String getPolinomTXT(final double [] p) |
|
446 |
{ |
|
447 |
final StringBuilder buf=new StringBuilder(); |
|
448 |
buf.append("order="+(p.length-1)+"\t"); |
|
449 |
for(int k=0;k<p.length;k++) |
|
450 |
{ |
|
451 |
buf.append("p["+k+"]="+p[k]+";"); |
|
452 |
} |
|
453 |
return buf.toString(); |
|
454 |
} |
|
455 |
||
456 |
static String getRootsTXT(int nr,final double [] re,final double [] im) |
|
457 |
{ |
|
458 |
final StringBuilder buf=new StringBuilder(); |
|
459 |
for(int k=0;k<nr;k++) |
|
460 |
{ |
|
461 |
buf.append("x."+k+"("+re[k]+","+im[k]+")\n"); |
|
462 |
} |
|
463 |
return buf.toString(); |
|
464 |
} |
|
465 |
||
466 |
static void testRoots(final int n, |
|
467 |
final int n_tests, |
|
468 |
final java.util.Random rn, |
|
469 |
final double eps) |
|
470 |
{ |
|
471 |
final double [] p=new double [n+1]; |
|
472 |
final double [] rex=new double [n],imx=new double [n]; |
|
473 |
for(int i=0;i<n_tests;i++) |
|
474 |
{ |
|
475 |
for(int dg=n;dg-->-1;) |
|
476 |
{ |
|
477 |
for(int dr=3;dr-->0;) |
|
478 |
{ |
|
479 |
setRandomP(p,n,rn); |
|
480 |
for(int j=0;j<=dg;j++) |
|
481 |
{ |
|
482 |
p[j]=0; |
|
483 |
} |
|
484 |
if(dr==0) |
|
485 |
{ |
|
486 |
p[0]=-1+2.0*rn.nextDouble(); |
|
487 |
} |
|
488 |
else if(dr==1) |
|
489 |
{ |
|
490 |
p[0]=p[1]=0; |
|
491 |
} |
|
492 |
||
493 |
findPolynomialRoots(n,p,rex,imx); |
|
494 |
||
495 |
for(int j=0;j<n;j++) |
|
496 |
{ |
|
497 |
//System.err.println("j="+j); |
|
498 |
checkValues(p,n,rex[j],imx[j],eps," t="+i); |
|
499 |
} |
|
500 |
} |
|
501 |
} |
|
502 |
} |
|
503 |
System.err.println("testRoots(): n_tests="+n_tests+" OK, dim="+n); |
|
504 |
} |
|
505 |
||
506 |
||
507 |
||
508 |
||
509 |
static final double EPS=0; |
|
510 |
||
511 |
public static int root1(final double [] p,final double [] re_root,final double [] im_root) |
|
512 |
{ |
|
513 |
if(!(Math.abs(p[1])>EPS)) |
|
514 |
{ |
|
515 |
re_root[0]=im_root[0]=Double.NaN; |
|
516 |
return -1; |
|
517 |
} |
|
518 |
re_root[0]=-p[0]/p[1]; |
|
519 |
im_root[0]=0; |
|
520 |
return 1; |
|
521 |
} |
|
522 |
||
523 |
public static int root2(final double [] p,final double [] re_root,final double [] im_root) |
|
524 |
{ |
|
525 |
if(!(Math.abs(p[2])>EPS)) |
|
526 |
{ |
|
527 |
re_root[0]=re_root[1]=im_root[0]=im_root[1]=Double.NaN; |
|
528 |
return -1; |
|
529 |
} |
|
530 |
final double b2=0.5*(p[1]/p[2]),c=p[0]/p[2],d=b2*b2-c; |
|
531 |
if(d>=0) |
|
532 |
{ |
|
533 |
final double sq=Math.sqrt(d); |
|
534 |
if(b2<0) |
|
535 |
{ |
|
536 |
re_root[1]=-b2+sq; |
|
537 |
re_root[0]=c/re_root[1]; |
|
538 |
} |
|
539 |
else if(b2>0) |
|
540 |
{ |
|
541 |
re_root[0]=-b2-sq; |
|
542 |
re_root[1]=c/re_root[0]; |
|
543 |
} |
|
544 |
else |
|
545 |
{ |
|
546 |
re_root[0]=-b2-sq; |
|
547 |
re_root[1]=-b2+sq; |
|
548 |
} |
|
549 |
im_root[0]=im_root[1]=0; |
|
550 |
} |
|
551 |
else |
|
552 |
{ |
|
553 |
final double sq=Math.sqrt(-d); |
|
554 |
re_root[0]=re_root[1]=-b2; |
|
555 |
im_root[0]=sq; |
|
556 |
im_root[1]=-sq; |
|
557 |
} |
|
558 |
return 2; |
|
559 |
} |
|
560 |
||
561 |
public static int root3(final double [] p,final double [] re_root,final double [] im_root) |
|
562 |
{ |
|
563 |
final double vs=p[3]; |
|
564 |
if(!(Math.abs(vs)>EPS)) |
|
565 |
{ |
|
566 |
re_root[0]=re_root[1]=re_root[2]= |
|
567 |
im_root[0]=im_root[1]=im_root[2]=Double.NaN; |
|
568 |
return -1; |
|
569 |
} |
|
570 |
final double a=p[2]/vs,b=p[1]/vs,c=p[0]/vs; |
|
571 |
/* zsolve_cubic.c - finds the complex roots of x^3 + a x^2 + b x + c = 0 |
|
572 |
*/ |
|
573 |
final double q = (a * a - 3 * b); |
|
574 |
final double r = (a*(2 * a * a - 9 * b) + 27 * c); |
|
575 |
||
576 |
final double Q = q / 9; |
|
577 |
final double R = r / 54; |
|
578 |
||
579 |
final double Q3 = Q * Q * Q; |
|
580 |
final double R2 = R * R; |
|
581 |
||
582 |
final double CR2 = 729 * r * r; |
|
583 |
final double CQ3 = 2916 * q * q * q; |
|
584 |
final double a3=a/3; |
|
585 |
||
586 |
if (R == 0 && Q == 0) |
|
587 |
{ |
|
588 |
re_root[0]=re_root[1]=re_root[2]=-a3; |
|
589 |
im_root[0]=im_root[1]=im_root[2]=0; |
|
590 |
return 3; |
|
591 |
} |
|
592 |
else if (CR2 == CQ3) |
|
593 |
{ |
|
594 |
/* this test is actually R2 == Q3, written in a form suitable |
|
595 |
for exact computation with integers */ |
|
596 |
||
597 |
/* Due to finite precision some double roots may be missed, and |
|
598 |
will be considered to be a pair of complex roots z = x +/- |
|
599 |
epsilon i close to the real axis. */ |
|
600 |
||
601 |
final double sqrtQ = Math.sqrt (Q); |
|
602 |
||
603 |
if (R > 0) |
|
604 |
{ |
|
605 |
re_root[0] = -2 * sqrtQ - a3; |
|
606 |
re_root[1]=re_root[2]=sqrtQ - a3; |
|
607 |
im_root[0]=im_root[1]=im_root[2]=0; |
|
608 |
} |
|
609 |
else |
|
610 |
{ |
|
611 |
re_root[0]=re_root[1] = -sqrtQ - a3; |
|
612 |
re_root[2]=2 * sqrtQ - a3; |
|
613 |
im_root[0]=im_root[1]=im_root[2]=0; |
|
614 |
} |
|
615 |
return 3; |
|
616 |
} |
|
617 |
else if (R2 < Q3) |
|
618 |
{ |
|
619 |
final double sgnR = (R >= 0 ? 1 : -1); |
|
620 |
final double ratio = sgnR * Math.sqrt (R2 / Q3); |
|
621 |
final double theta = Math.acos (ratio); |
|
622 |
final double norm = -2 * Math.sqrt (Q); |
|
623 |
final double r0 = norm * Math.cos (theta/3) - a3; |
|
624 |
final double r1 = norm * Math.cos ((theta + 2.0 * Math.PI) / 3) - a3; |
|
625 |
final double r2 = norm * Math.cos ((theta - 2.0 * Math.PI) / 3) - a3; |
|
626 |
||
627 |
re_root[0]=r0; |
|
628 |
re_root[1]=r1; |
|
629 |
re_root[2]=r2; |
|
630 |
im_root[0]=im_root[1]=im_root[2]=0; |
|
631 |
return 3; |
|
632 |
} |
|
633 |
else |
|
634 |
{ |
|
635 |
final double sgnR = (R >= 0 ? 1 : -1); |
|
636 |
final double A = -sgnR * Math.pow (Math.abs (R) + Math.sqrt (R2 - Q3), 1.0 / 3.0); |
|
637 |
final double B = Q / A; |
|
638 |
||
639 |
re_root[0]=A + B - a3; |
|
640 |
im_root[0]=0; |
|
641 |
re_root[1]=-0.5 * (A + B) - a3; |
|
642 |
im_root[1]=-(SQRT3*0.5) * Math.abs(A - B); |
|
643 |
re_root[2]=re_root[1]; |
|
644 |
im_root[2]=-im_root[1]; |
|
645 |
return 3; |
|
646 |
} |
|
647 |
||
648 |
} |
|
649 |
||
650 |
||
651 |
static void root3a(final double [] p,final double [] re_root,final double [] im_root) |
|
652 |
{ |
|
653 |
if(Math.abs(p[3])>EPS) |
|
654 |
{ |
|
655 |
final double v=p[3], |
|
656 |
a=p[2]/v,b=p[1]/v,c=p[0]/v, |
|
657 |
a3=a/3,a3a=a3*a, |
|
658 |
pd3=(b-a3a)/3, |
|
659 |
qd2=a3*(a3a/3-0.5*b)+0.5*c, |
|
660 |
Q=pd3*pd3*pd3+qd2*qd2; |
|
661 |
if(Q<0) |
|
662 |
{ |
|
663 |
// three real roots |
|
664 |
final double SQ=Math.sqrt(-Q); |
|
665 |
final double th=Math.atan2(SQ,-qd2); |
|
666 |
im_root[0]=im_root[1]=im_root[2]=0; |
|
667 |
final double f=2*Math.sqrt(-pd3); |
|
668 |
re_root[0]=f*Math.cos(th/3)-a3; |
|
669 |
re_root[1]=f*Math.cos((th+2*Math.PI)/3)-a3; |
|
670 |
re_root[2]=f*Math.cos((th+4*Math.PI)/3)-a3; |
|
671 |
//System.err.println("3r"); |
|
672 |
} |
|
673 |
else |
|
674 |
{ |
|
675 |
// one real & two complex roots |
|
676 |
final double SQ=Math.sqrt(Q); |
|
677 |
final double r1=-qd2+SQ,r2=-qd2-SQ; |
|
678 |
final double v1=Math.signum(r1)*Math.pow(Math.abs(r1),1.0/3), |
|
679 |
v2=Math.signum(r2)*Math.pow(Math.abs(r2),1.0/3), |
|
680 |
sv=v1+v2; |
|
681 |
// real root |
|
682 |
re_root[0]=sv-a3; |
|
683 |
im_root[0]=0; |
|
684 |
// complex roots |
|
685 |
re_root[1]=re_root[2]=-0.5*sv-a3; |
|
686 |
im_root[1]=(v1-v2)*(SQRT3*0.5); |
|
687 |
im_root[2]=-im_root[1]; |
|
688 |
//System.err.println("1r2c"); |
|
689 |
} |
|
690 |
} |
|
691 |
else |
|
692 |
{ |
|
693 |
re_root[0]=re_root[1]=re_root[2]=im_root[0]=im_root[1]=im_root[2]=Double.NaN; |
|
694 |
} |
|
695 |
} |
|
696 |
||
697 |
||
698 |
static void printSpecialValues() |
|
699 |
{ |
|
700 |
for(int st=0;st<6;st++) |
|
701 |
{ |
|
702 |
//final double [] p=new double []{8,1,3,3.6,1}; |
|
703 |
final double [] re_root=new double [4],im_root=new double [4]; |
|
704 |
final double [] p; |
|
705 |
final int n; |
|
706 |
if(st<=3) |
|
707 |
{ |
|
708 |
if(st<=0) |
|
709 |
{ |
|
710 |
p=new double []{2,-4,6,-4,1}; |
|
711 |
//p=new double []{-6,6,-6,8,-2}; |
|
712 |
} |
|
713 |
else if(st==1) |
|
714 |
{ |
|
715 |
p=new double []{0,-4,8,3,-9}; |
|
716 |
} |
|
717 |
else if(st==2) |
|
718 |
{ |
|
719 |
p=new double []{-1,0,2,0,-1}; |
|
720 |
} |
|
721 |
else |
|
722 |
{ |
|
723 |
p=new double []{-5,2,8,-2,-3}; |
|
724 |
} |
|
725 |
root4(p,re_root,im_root); |
|
726 |
n=4; |
|
727 |
} |
|
728 |
else |
|
729 |
{ |
|
730 |
p=new double []{0,2,0,1}; |
|
731 |
if(st==4) |
|
732 |
{ |
|
733 |
p[1]=-p[1]; |
|
734 |
} |
|
735 |
root3(p,re_root,im_root); |
|
736 |
n=3; |
|
737 |
} |
|
738 |
System.err.println("======== n="+n); |
|
739 |
for(int i=0;i<=n;i++) |
|
740 |
{ |
|
741 |
if(i<n) |
|
742 |
{ |
|
743 |
System.err.println(String.valueOf(i)+"\t"+ |
|
744 |
p[i]+"\t"+ |
|
745 |
re_root[i]+"\t"+ |
|
746 |
im_root[i]); |
|
747 |
} |
|
748 |
else |
|
749 |
{ |
|
750 |
System.err.println(String.valueOf(i)+"\t"+p[i]+"\t"); |
|
751 |
} |
|
752 |
} |
|
753 |
} |
|
754 |
} |
|
755 |
||
756 |
||
757 |
||
758 |
public static void main(final String [] args) |
|
759 |
{ |
|
18698
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
760 |
if (System.getProperty("os.arch").equals("x86") || |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
761 |
System.getProperty("os.arch").equals("amd64") || |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
762 |
System.getProperty("os.arch").equals("x86_64")){ |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
763 |
final long t0=System.currentTimeMillis(); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
764 |
final double eps=1e-6; |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
765 |
//checkRoots(); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
766 |
final java.util.Random r=new java.util.Random(-1381923); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
767 |
printSpecialValues(); |
18450 | 768 |
|
18698
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
769 |
final int n_tests=100000; |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
770 |
//testRoots(2,n_tests,r,eps); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
771 |
//testRoots(3,n_tests,r,eps); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
772 |
testRoots(4,n_tests,r,eps); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
773 |
final long t1=System.currentTimeMillis(); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
774 |
System.err.println("PolynomialRoot.main: "+n_tests+" tests OK done in "+(t1-t0)+" milliseconds. ver=$Id: PolynomialRoot.java,v 1.105 2012/08/18 00:00:05 mal Exp $"); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
775 |
System.out.println("PASSED"); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
776 |
} else { |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
777 |
System.out.println("PASS test for non-x86"); |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
778 |
} |
862c19338ded
8019625: Test compiler/8005956/PolynomialRoot.java timeouts on Solaris SPARCs
adlertz
parents:
18450
diff
changeset
|
779 |
} |
18450 | 780 |
|
781 |
||
782 |
||
783 |
} |